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Abstract. Incomplete MaxSAT solving aims to quickly find a solution
that attempts to minimize the sum of the weights of the unsatisfied soft
clauses without providing any optimality guarantees. In this paper, we
propose two approximation strategies for improving incomplete MaxSAT
solving. In one of the strategies, we cluster the weights and approximate
them with a representative weight. In another strategy, we break up
the problem of minimizing the sum of weights of unsatisfiable clauses
into multiple minimization subproblems. Experimental results show that
approximation strategies can be used to find better solutions than the
best incomplete solvers in the MaxSAT Evaluation 2017.
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1 Introduction

Given a set of Boolean constraints in a conjunctive normal form (CNF), the
problem of Maximum Satisfiability (MaxSAT) asks to provide valuation of vari-
ables so that maximum number of constraints are satisfied. These constraints
can be assigned weights to prioritize some set of constraints over others, which
would give rise to a weighted MaxSAT problem where the goal is to find a valu-
ation which maximizes the sum of the weights of the satisfied constraints. Any
improvements in MaxSAT solving have a huge impact because many real world
problems can be encoded as MaxSAT problems (e.g., [5,14,16]).

Often, the application may be able to tolerate a suboptimal solution but
requires this solution to be computed in a very short amount of time. For such
cases, it tremendously helps if there are techniques and tools that can very
quickly find a solution which is close enough to an optimal solution. Incomplete
MaxSAT solvers [4,9,10,19,20,26] strive to find a good solution in a limited
time frame. The solution, thus provided, need not be an optimal one. Therefore,
for improvement, we need to develop tools and techniques that can find better
solutions (closer to an optimal solution) in the same time frame.
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As part of this paper, we contribute the following:

— An approximation strategy based on weight relaxation (Sect.3), which mod-
ifies the weights of the clauses in a manner so that it is easier for the solver
to find a solution quickly.

— An approximation strategy which breaks up the problem of minimizing the
sum of weights of unsatisfied clauses into multiple minimization subproblems
and attempts to minimize these subproblems in a greedy order (Sect. 3). This
strategy can also be combined with the weight relaxation strategy.

— Empirical results on how the accuracy of the solver gets affected as we vary
the weight relaxation parameter (Sect.5).

— An implementation of these strategies using the Open-WBO framework. We
also demonstrate the advantage of these approximation strategies by showing
its prowess against state-of-the-art incomplete MaxSAT solvers (Sect. 5).

2 Preliminaries

Let = be a Boolean variable which can take values true or false. A literal [ is a
variable x or its negation —x. A clause w is a disjunction of literals and a formula
 is a conjunction of clauses. Notationally, we will treat a clause w and a formula
 as sets containing literals and clauses respectively.

An assignment v maps variables to either true or false. An assignment is
said to satisfy a positive literal x (resp. a negative literal —x) if v(x) = true
(resp. v(x) = false). A clause is said to be satisfied if at least one of its literals is
satisfied. A formula is said to be satisfied by an assignment if all of its clauses are
satisfied by the assignment. A formula is called satisfiable if there exists a sat-
isfying assignment for that formula, otherwise it is called unsatisfiable. Boolean
satisfiability problem (SAT) asks to find a satisfying assignment (i.e., model) to
a formula. Maximum satisfiability (MaxSAT) problem is an optimization version
where the goal is to find an assignment which satisfies the maximum number of
clauses of a formula. In a partial MaxSAT problem, a partition of ¢ is given as
two mutually exclusive sets oy (hard clauses) and ps (soft clauses), where the
goal is to satisfy all the clauses in ¢! while maximizing the number of clauses
satisfied in @,. Let weight : Clauses — N* be a map from a set of clauses to
positive integers. In a partial weighted MaxSAT problem, the goal is to find an
assignment that maximizes the sum of weights of the satisfied soft clauses. From
now on, we will refer to a weighted partial MaxSAT problem as MaxSAT.

A clause w can be relaxed by adding a relaxation variable r so that the relaxed
clause becomes w U {r}. The relaxed clause can be satisfied by either satisfying
the original clause or its relaxation variable. For a formula ¢, when all of its soft
clauses are relaxed, we will denote it as ¢". We define the cost of a relaxation
variable r to be the weight of the clause that it relaxed, cost(r) = weight(w).
The cost of an assignment v is defined as cost(v) = >_, ... )=1 cost(r;). The

riv(r;

goal of MaxSAT is to find a satisfying assignment with the minimum cost.

! For simplicity, we will assume that ¢y, is always satisfiable.
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Input : Formula ¢, Map weight, partitioning parameter m
Output: Partition P(m), new weight map weight,,
n — |ps|
sort clauses of ¢, in the ascending order of weights
fori«+— 1ton—1do

‘ dif fi — weight(w;+1) — weight(w;)
(21,...,%m—1) < sorted indices where top (m — 1) difference dif f; occurs
C1 — {wl,‘ .. ,wil}
for j — 2 tom —1do

‘ Cj — {wij,1+1, cee ,wij}
Cm = {Wi,, 1415 Wn}
P(m) «— {c1,...,em}
foreach c¢; € P(m) do
foreach w; € ¢; do

‘ weight, [w;] < RepresentativeWeight(c;)
return (P(m), weight.,,)

Algorithm 1. Partitioning and weight approximation
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Input: Formula ", weight maps weight,,, and weight
Output: model to ¢
(model, p, ow ) «— (0, +00,¢")
status = SAT
while status = SAT do
(status, v) < SAT(pw)
if status = SAT then
if cost(v) < cost(model) then
|  model — v
1 — costy, (V)
ow — pw ULONF((S, v, (cost (r) - 1)) < p— 1)}
return model

Algorithm 2. Linear search Sat-Unsat algorithm for MaxSAT
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3 Approximation Strategies

In this section, we describe two approximation strategies that can allow MaxSAT
algorithms to converge faster to lower cost solutions. Note that the best model
found by approximation strategies is not guaranteed to be an optimal solution
of the original MaxSAT formula.

Weight-Based Approximation. Let P,,(¢s) = {c1,...,¢m} be a partition
of ¢, into m mutually exclusive sets cy, ..., ¢, such that U1<i<m ¢; = ps and
Vizj :¢iNej = 0. We will call sets c1, ..., ¢, as clusters of the partition.

Given a formula ¢, Algorithm 1 partitions the clauses into clusters as follows.
All soft clauses are sorted by their weights (Line 2). Then, differences in weights
between two consecutive clauses are calculated (Line 4). m — 1 indices are picked
where the weight differences are amongst the top m — 1 weight differences (Line
5). These indices are used as boundaries to create clusters (Lines 6-9). This way
of clustering is similar to single-link agglomerative clustering [15]. Finally, a new
weight map weight,, is created, where all the clauses in the same cluster get
the same weight (Lines 11-13). RepresentativeWeight (Line 13) indicates any
representative weight for the cluster. In this paper, we use the arithmetic mean of
the weights of the clauses in a cluster as the representative weight. In principle,
other representative weights can also be chosen which may have different effect on
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Input: ¢ = pp U ¢, weight maps weight and weight,,, Partition P(m)
Output: model to ¢

1 (model, 1, pw, C) — (B, 400, ", P (5))

2 foreach c; € C in the descending order of weight,,(c;) do
3 Vi — Vr Nec;

a status = SAT

5 while status = SAT do

6 (status, v) < SAT(pw)

7 if status = SAT then

8 if cost(v) < cost(model) then

9 ‘ model «— v
10 i — {r € Vi | v(r) = 1}|
11 pw — ow U{CNF(X, oy, m < i — 1)}
12 else
13 pw — "
14 foreach c; € C such that weight,, (c;) > weight,,(c;) do
15 | ew —ew U{CF(C, ey, m < py)}

16 return model

Algorithm 3. Clustering-based algorithm for MaxSAT

how much an algorithm can deviate from finding the minimum cost assignment.
It is redundant to have m > #weights, where #weights are different number
of weights, because for m > #weights, weight = weight,,. Algorithm 1 can
be combined with any search algorithm and as m increases the deviation of the
search algorithm from an optimal solution decreases. If m = 0 it is assumed that
no partitioning is done.

There are encodings which perform better when #weights is small [12,17].
Such encodings can benefit from approximation of weights because it results
in a smaller size formula when converted to CNF. This can be used with a
cost minimization algorithm for MaxSAT such as the linear search Sat-Unsat
algorithm [8,18] shown in Algorithm 2. In this algorithm, all the clauses in @5
are initially relaxed, and the set of corresponding relaxation variables is denoted
as Vr. A working formula ¢y is initialized with the relaxed formula ¢”. The cost
of an empty model is assumed to be +0o0. Our primary goal is to find a satisfying
assignment v to ¢ with the minimum cost(v). Algorithm 2 iteratively asks a SAT
solver if there is a satisfying assignment, with its cost at most ;—1 (Line 9). The
approximation comes from Algorithm 2 using cost,, instead of cost to encode
a pseudo-Boolean (PB) constraint that restricts the cost of relaxation variables
being set to true (Line 9). Since cost,, is an approximation of cost, minimizing
cost,, does not necessarily translate to minimization w.r.t. cost. Therefore, we
update model, only when a satisfying assignment indeed reduces the previous
value of cost(model) (Lines 6-7).

Approximation via Subproblem Minimization. Algorithm 3 proceeds in a
greedy manner by processing each cluster in the descending order of its represen-
tative weight (Line 2). V; indicates a set of relaxation variables corresponding
to the clauses in ¢; (Line 3). Minimization of the cost of a satisfying assign-
ment is divided in subproblems by minimizing the number of unsatisfied clauses
in clusters, starting from highest representative weight to the lowest (Line 2).
For each cluster, the number of unsatisfied clauses are minimized by iteratively
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reducing the upper bound p; on the number of relaxation variables in V; that
can be set to true (Lines 10-11). In the process, the minimum cost assignment
seen so far is recorded (Lines 8-9). Since within any cluster, all the clauses have
the same weight,,, only cardinality constraints are used to restrict the number
of unsatisfied clauses within p; (Line 11). Once u; can not be reduced further, it
is frozen by adding upper bound p; for all the cluster seen so far (Lines 12-15).
Since the minimization is done locally as a minimization subproblem at a cluster
level, rather than looking at the whole formula, this procedure is not guaranteed
to converge to a globally optimum solution.

4 Related Work

Approaches for incomplete MaxSAT solving can primarily be divided into two
categories: (i) stochastic MaxSAT solvers [9,10,13,19,20] and (ii) complete Max-
SAT solvers that can find intermediate solutions [4,8,11,18,23,25].

Incomplete MaxSAT. Stochastic solvers start by finding a random assignment
v for (. Since this assignment is unlikely to satisfy all clauses in ¢, they choose
a clause w; that is unsatisfied by v and flip the assignment of a variable in w;
such that w; becomes satisfied. When compared to local SAT solvers, stochastic
MaxSAT solvers have additional challenges since they must find an assignment
v that satisfies ¢, while attempting to minimize the cost of the unsatisfied soft
clauses. Stochastic MaxSAT solvers are particularly effective for random bench-
marks but their performance tends to deteriorate for industrial benchmarks.
Since the MaxSAT Evaluation 2017 (MSE2017) [2] did not contain any random
instances, there were no stochastic MaxSAT solvers in the MSE2017.

Complete MaxSAT. Complete solvers can often find intermediate solutions to
 before finding an optimal assignment v. MaxSAT solvers based on linear search
algorithms [8,18,23] can find a sequence of intermediate solutions that converge
to an optimal solution. These solvers use PB constraints to enforce convergence.
While SAT4J [8] uses specialized data structures for PB constraints to avoid
their conversion to CNF, other solvers such as QMaxSAT [18] convert the PB
constraint into clauses using PB encodings [12,17,27]. Some MaxSAT solvers
which are based on the implicit hitting set approach [11,25] maintain a lower
and an upper bound on the values of the solution. These solvers can also be used
for incomplete MaxSAT since they are also able to find intermediate solutions.
Another approach for complete MaxSAT solving is to use unsatisfiability-based
algorithms [1,4,24]. These algorithms use unsatisfiable subformulas to increase
a lower bound on the cost of a solution until they find an optimal solution. For
weighted MaxSAT, these algorithms employ a stratified approach [3] where they
start by considering only a subset of the soft clauses with the largest weights
and iteratively add more soft clauses when the subformula becomes satisfiable.
An intermediate solution is found at each iteration. WPM3 [4] is an example of
an unsatisfiable-based solver that can be used for incomplete MaxSAT and was
the best incomplete MaxSAT solver in the MSE2016 [6]. maxroster [26] was the
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winner of the incomplete track for Weighted MaxSAT in the MSE2017. It is a
hybrid solver that combines an initial short phase of a stochastic algorithm [13]
with complete MaxSAT algorithms [18,24].

Boolean Multilevel Optimization. The clustering-based algorithm presented
in Algorithm 3 is closely related to Boolean Multilevel Optimization (BMO) [21].
BMO is a technique for identifying lexicographic optimization conditions, i.e. the
existence of an ordered sequence of objective functions. Let M; be the minimum
weight of soft clauses in a cluster ¢;. Consider a sequence of clusters cy,...,cnp
arranged in a descending order of M;. A MaxSAT formula is an instance of BMO
if for every cluster ¢;, M; is larger than the sum of the weights of all soft clauses
in clusters ¢;ji1,...,Cn. If this condition holds then the result of Algorithm 3
is equivalent to solving a BMO formula. However, when using the proposed
clustering-based algorithm on partitions that do not preserve the BMO condi-
tion, it is not guaranteed that the solution found by Algorithm 3 is an optimal
solution for . Our approach differs from previous complete approaches in using
approximation strategies that do not preserve optimality but are more likely to
converge faster to a better solution.

5 Experimental Results

To evaluate incomplete MaxSAT solvers we used the scoring mechanism from
MaxSAT Evaluations 2017 (MSE2017) [2]. Given a formula ¢, the score for a
solver S is computed by the ratio of the cost (sum of weights of unsatisfied
clauses) of the best solution known for ¢, denoted as best(¢),? to the best cost
found by S, denoted as cost®(¢).® The score for S for a set of n benchmarks is
given by the average score ([0,1]) as follows:

Zn best(pq)

score(S) = Z=L costP (i) (1)
n

score(S) shows how close on average is a solver S to the best known solution.

All the experiments were conducted on Intel® Xeon® E5-2620 v4 processors
with a memory limit of 32 GB and time limits of 10, 60 and 300s. We have
used a non-standard timeout of 10s to show that approximation strategies can
find good solutions very quickly. We used the 156 benchmarks for incomplete
MaxSAT from MSE2017 [2]. Note that most of these benchmarks are challenging
for complete solvers and have unknown optimal solutions.

We have implemented all the algorithms presented in this paper in Open-
WBO-Inc. Open-WBO-Inc is built on top of Open-WBO [23] which uses Glu-
cose [7] as the underlying SAT solver. We used Generalized Totalizer Encoding
(GTE) [17] and incremental Totalizer encoding [22] to translate PB constraints
and cardinality constraints into CNF, respectively.

2 best(p) is the cost of the best solution found by any solver in this evaluation.
3 We consider a score of 0 if S did not find any solution to ¢.
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We evaluated Open-WBO-Inc by conducting experiments that are designed
to answer the following questions: (1) What is the impact of the number of
clusters in the quality of the solution found by our approximation strategies? (2)
How does Open-WBO-Inc compare against state-of-the-art incomplete MaxSAT
solvers?

Impact of the Number of Clusters. We measure the impact of partitioning
parameter m on the accuracy of the results. Figure 1la shows the score of Algo-
rithm 2 with GTE encoding (henceforth called apx-weight). Figure 1a shows that
apx-weight performs the worst when no partitioning is done. This is attributed
to the fact that in the absence of any partitioning, the size of the underlying
encoding is dictated by #weights, where #weights are the number of different
weights in the weight map. Figure lc shows a measure of increase in formula
size as m varies. The Y-axis shows the ratio of the formula size after the PB
encoding to the size of the original input formula. Because of the weight-based
approximation, the reduction on the #weights leads to a smaller encoding, thus
making it easier for the underlying SAT solver. As m increases, the possible devi-
ation from an optimal cost also decreases, thereby resulting in increased scores.
The degradation for larger m is attributed to larger size of the formula. As the
timeout is increased, the score increases because Algorithm 2 has more time and
can do more iterations to reduce cost,,(model).

Figure 1b shows that similar scoring trends are witnessed for Algorithm 3
(henceforth called apx-subprob). As apx-subprob uses only cardinality constraints,
the formula size is not much sensitive to m. As m increases, the scores also
improve, with the best scores achieved when m = #weights. apx-subprob is guar-
anteed to find optimal solution only if BMO condition holds and m = #weights.
Only 3 out of 156 benchmarks have the BMO condition and apx-subprob with
m = #weights does not terminate for any of them. However, apx-subprob using
a 300s time limit terminates for 94 out of 156 benchmarks which shows that
apx-subprob quickly finds a good solution.

Comparison Against State-of-the-Art MaxSAT Solvers. We compared
the best version of Open-WBO-Inc for weight-based approximation, apx-weight
with m = 2, and subproblem minimization approximation, apx-subprob with
m = #weights, with maxroster [26], WPM3 [4] and QMaxSAT [18]. maxroster and
WPM3 were the winners of the incomplete weighted category of the MSE2017
and MSE2016, respectively. QMaxSAT was placed second on the complete cate-
gory of the MSE2017 and uses the algorithm described in Algorithm 2.4

As shown in Fig. 1d, for a 10s timeout, both apx-weight and apx-subprob
perform better than all the other solvers with apx-subprob performing the best.
This demonstrates that approximation strategies are quite effective when we
want to quickly find a solution which is closer to an optimal solution. For 60
and 300s timeout, apx-subprob performs the best with maxroster being second
and apx-weight outperforming WPM3 and QMaxSAT. Even though apx-weight

* Even though MaxHS [11] placed first in the complete weighted category of the
MSE2017, its incomplete version is not as competitive as the other solvers [2].
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Effect of clustering on apx-weight Effect of clustering on apx-subprob
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Fig. 1. Impact of clustering and comparison against state-of-the-art

with m = 0 performs worse than QMaxSAT, it outperforms QMaxSAT when
clustering is used. apx-subprob outperforms all other solvers and these results
prove the efficacy of approximation strategies with respect to the state-of-the-
art in incomplete MaxSAT solving.

6 Conclusion and Future Work

Approximation strategies, be it weight-based relaxation or subproblem mini-
mization, are not guaranteed to find an optimal solution even when unlimited
time is given. However, they serve the purpose of quickly finding a good solution.
Our experiments have successfully demonstrated that with the right parameters,
these strategies can outperform the best incomplete solvers. In future, we would
like to explore the application of approximation strategies to complete algo-
rithms. In particular, progressively increasing the number of clusters and using
approximation strategies to find good initial upper bounds that can later be
exploited by complete MaxSAT algorithms.
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