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Cytokine exocytosis and JAK/STAT activation in the Drosophila
ovary requires the vesicle trafficking regulator α-Snap
Afsoon Saadin and Michelle Starz-Gaiano*

ABSTRACT
How vesicle trafficking components actively contribute to regulation
of paracrine signaling is unclear. We genetically uncovered a
requirement for α-soluble NSF attachment protein (α-Snap) in the
activation of the Janus kinase/signal transducer and activator of
transcription (JAK/STAT) pathway during Drosophila egg
development. α-Snap, a well-conserved vesicle trafficking regulator,
mediates association of N-ethylmaleimide-sensitive factor (NSF) and
SNAREs to promote vesicle fusion. Depletion of α-Snap or the
SNARE family member Syntaxin1A in epithelia blocks polar cells
maintenance and prevents specification of motile border cells.
Blocking apoptosis rescues polar cell maintenance in α-Snap-
depleted egg chambers, indicating that the lack of border cells in
mutants is due to impaired signaling. Genetic experiments implicate
α-Snap and NSF in secretion of a STAT-activating cytokine. Live
imaging suggests that changes in intracellular Ca2+ are linked to this
event. Our data suggest a cell-type specific requirement for particular
vesicle trafficking components in regulated exocytosis during
development. Given the central role for STAT signaling in immunity,
this work may shed light on regulation of cytokine release in humans.

KEY WORDS: Drosophila oogenesis, JAK/STAT signaling,
Exocytosis, Cell fate specification

Introduction
Paracrine signaling relies on the proper spatiotemporal release of
activators from signaling cells, typically by exocytosis, to elicit
distant responses. During trafficking, fusion of a vesicle to the
appropriate target membrane requires coordination through multiple
conserved proteins, including Snap receptor (SNARE) superfamily
members (reviewed in Rothman, 1996; Zhao et al., 2007;
Bombardier and Munson, 2015; Zhao and Brunger, 2016;
Wickner and Rizo, 2017). Generally, an R-Snare in the vesicle
membrane tethers to three Q-Snares on the target membrane,
bringing the membranes close and docking them for fusion.
Different SNARE proteins have distinct subcellular localizations,
mediating specific fusion events. α-soluble NSF attachment protein
(α-Snap) binds to the cis-SNARE complex and recruits the ATPase
N-ethylmaleimide-sensitive Factor (NSF). Upon ATP hydrolysis,
NSF and α-Snap promote Snare complex disassembly, which is
required for another round of fusion.
While much of vesicle trafficking occurs constitutively,

additional specialized mechanisms are needed for certain cases,

such as cytokine or histamine release from immune cells,
neurotransmitter release from neurons, or insulin secretion from
β-pancreatic cells. (Burgoyne and Morgan, 2003; Südhof, 2012;
Scheller, 2013; Xiong et al., 2017). In these cases, secretory cargo is
separated and stored in vesicles, followed by rapid release that is
independent from constitutive exocytosis. This is clearest in
synaptic signaling, for which NSF and α-Snap are required.

Although a few specific roles have been suggested for NSF and
α-Snap, their distinct developmental functions remain largely
unknown. NSF and α-Snap are required for Drosophila
neurotransmission (Kawasaki et al., 1998; Babcock et al., 2004;
Yu et al., 2011; Li et al., 2015), and in hypothalamus and neuron
development in zebrafish and mice, respectively (Chae et al., 2004;
Hong et al., 2004; Kurrasch et al., 2009). Two genes encode NSF
proteins in Drosophila – comatose (comt) and NSF2 – with some
tissue-specific requirements (Siddiqi and Benzer, 1976; Boulianne
and Trimble, 1995; Pallanck et al., 1995; Golby et al., 2001; Zhao
et al., 2012). Notably, expression of a dominant-negative NSF2
mutant can phenocopy the loss of Wingless/WNT and Notch
signaling, and can genetically interact with components of these
pathways (Stewart et al., 2001) and other developmental signaling
cascades (Laviolette et al., 2005). We found a specific requirement
for α-Snap and an NSF component in ovaries to regulate Janus
kinase/signal transducer and activator of transcription (JAK/STAT)
signaling.

JAK/STAT signaling is well-conserved, required for
development and immune function, and misregulated in disease
(Amoyel et al., 2014; O’Shea et al., 2015; Villarino et al., 2015). In
Drosophila, an Unpaired (Upd) protein binds to a cytokine receptor,
which results in JAK activation, STAT phosphorylation and the
regulation of target genes (Zeidler and Bausek, 2013; Chen et al.,
2014). STAT signaling is required for the specification and
migration of ovarian follicle cells that are called border cells
(reviewed in Saadin and Starz-Gaiano, 2016a).

Developing egg chambers are encased by a monolayer of follicle
cells that differentiate into multiple fates. The anterior and posterior-
most follicle cells become polar cells, which are essential for
patterning (reviewed in Wu et al., 2008; Duhart et al., 2017).
Upd secreted from polar cells activates JAK/STAT signaling (Van
de Bor et al., 2011; Hayashi et al., 2012). Early on, this signaling
reduces the number of polar cells and specifies stalk cells (Baksa
et al., 2002; McGregor et al., 2002; Assa-Kunik et al., 2007;
Borensztejn et al., 2013, 2018). Later, follicle cells with the highest
STAT activity become border cells and migrate to the oocyte
(Fig. 1A,B) (Montell et al., 2012; Saadin and Starz-Gaiano, 2016a).
Border cell specification and migration requires multiple inputs
that control transcription, signaling, cytoskeletal organization,
adhesion and protein trafficking. Here, we demonstrate a crucial
role for α-Snap, Syntaxin1A (Syx1A) and NSF/NSF2 in
mediating trafficking event(s) required to induce JAK/STAT
signaling.Received 19 March 2018; Accepted 11 October 2018
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RESULTS AND DISCUSSION
α-Snap and Syx1A are required for border cell specification
To assay vesicle trafficking in developmental signaling, we disrupted
trafficking regulators by utilizing RNA interference (RNAi)
(Table S1). We downregulated α-Snap, ɣ-Snap, comt/NSF, NSF2
and ten syntaxins (Q-Snares) (Littleton, 2000; Lloyd et al., 2000;
Zhao et al., 2012) in a subset of follicle cells, including polar cells and
border cell precursors by using c306-Gal4 (Fig. 1A,B).
Strikingly, depletion of α-Snap resulted in an unusual phenotype,

i.e. egg chambers without border cell clusters, as assayed by
expression of border cell-enriched proteins (Fig. 1C; Fig. S3C; see

Materials and Methods). We observed this phenotype in 20–50% of
stage 10 egg chambers by using two α-Snap RNAi lines (Fig. 1M;
Table S1). Depletion of Syx1A resulted in the same phenotype
(Table S1; Fig. 1D). Downregulation of other vesicle trafficking
regulators produced wild-type egg chambers or other defects
(Table S1). Thus, different vesicle trafficking genes are likely to
have different key roles in follicle cells.

We confirmed the on-target effect of α-Snap RNAi by qRT-PCR
(Table S2) and by rescuing the no-border cell phenotype through
α-Snap overexpression (>3-fold rescue compared to controls,
Fig. S1A,B,J,M). Overexpression of α-Snap-HA alone caused no

Fig. 1. α-Snap or Syx1A depletion in polar cells prevents border cell specification. Shown are egg chambers of indicated genotypes and stages. Egg
chambers in all panels are oriented with anterior to the left, posterior to the right; scale bars: 20 µm. Nuclei were stained using DAPI (blue). Arrowheads indicate
border cell clusters. (A,B) c306-Gal4-driven expression of UAS-mCD8-GFP (green; the ‘>’ symbol in labels denotes drives expression of) in polar cells of egg
chambers at stage 2 (A), and in polar cells and border cells (BCs) of egg chambers at stages 8 and 9 (A) and stage 10 (B). Expression of Eya (red) marks follicle
cells. (C,D) c306-Gal4-driven α-Snap RNAi (C) or Syx1A RNAi (D) results in no BC specification. Compare red staining of Arm+Eya (C) and Arm (D) with that
shown in panel L. (E) Stage 8 wild-type anterior follicle cells, showing cytoplasmic α-Snap (green) apically enriched; cortical F-actin (red). The asterisk indicates
the area shownmagnified in insets. (F,G) upd-Gal4-drivenGFPexpression in polar cells at stages 2 (F) to 10 (G). (H,I) upd-Gal4-driven α-SnapRNAi (H) orSyx1A
RNAi (I) results in no BC specification. (J,K) fruitless-Gal4 drives GFP (green) in anterior cells, excluding polar cells (FasIII, red), before (J) and after (K) BC
specification (magnified in insets). (L) fruitless-Gal4-driven α-Snap RNAi produces wild-type BCs. (M) Penetrance of the BC phenotype for the indicated
genotypes. A lack of bar (1st, 5th, 8th and 9th position) in the graphmeans that all egg chambers contained border cells. ***P<0.0005 (two-tailed Fisher’s exact test).
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obvious defects (Fig.S1C). We verified the temporal requirement
for α-Snap by reducing its expression specifically in adults by using
a temperature-sensitive (ts) version of the transcriptional regulator
Gal80 (tub-Gal80ts) and also rescuing the mutant phenotype in
adults (Fig.S1D–F,K). By using α-Snap antiserum (Babcock et al.,
2004), we detected the protein at or near the plasma membrane of
follicle cells, consistent with it functioning there (Fig. 1E).

α-Snap functions with NSF in border cell specification
α-Snap recruits NSF, which hydrolyzes ATP to provide the energy
for conformational changes that disassemble the SNARE complex,
thereby resetting the components for a later round of fusion.
However, recent studies have revealed that α-Snap can act
independently of NSF activity, for example, to promote yeast
vacuolar fusion (Zick et al., 2015; Schwartz et al., 2017; Song et al.,
2017) or to regulate other cellular behaviors (Naydenov et al., 2012,
2014; Miao et al., 2013). Depletion of comt/NSF or NSF2 in follicle
cells yielded wild-type phenotypes (Tables S1 and S2); thus, the
function of α-Snap in these cells could be NSF-independent or the
two NSFs might function redundantly (Golby et al., 2001).
Consistent with the latter, depletion of both genes together caused
lethality (Table S2). Different cell types show different levels of
NSF/NSF2 expression (Ordway et al., 1994; Boulianne and
Trimble, 1995; Pallanck et al., 1995; Golby et al., 2001;
Mohtashami et al., 2001), indicating they have different demands
for its function. We detected both genes by qRT-PCR from ovaries,
and found high expression levels of NSF protein in the early
germline and follicle cells, including polar cells, by antibody
staining (Li et al., 2015) (not shown). Next, we overexpressed NSF2
in follicle cells. While overexpression of NSF2 alone yielded no
mutant phenotype, it significantly rescued the phenotype caused by
reduced α-Snap (Fig. S2). NSF2 overexpression may promote
vesicle machinery resetting in the presence of a small amount of
α-Snap through less favored interactions, or it may promote fusion
independently of α-Snap at high concentrations – like overexpressed
yeast Sec18 (Zick et al., 2015; Song et al., 2017). Since the two
NSF proteins are more than 80% identical and both are detected in
the ovary, we suspect that α-Snap normally functions with either in
follicle cells. These results, and the role of Syx1A at the plasma
membrane (Schulze et al., 1995), suggest that α-Snap, NSF and/or
NSF2 and Syx1A are necessary for exocytosis during border
cell specification.

α-Snap is required in polar cells for border cell specification
α-Snap could be required in signaling cells for signal release or in
responding cells to traffic receptors to the cell surface. To
distinguish between these, we depleted α-Snap in different cell
types: polar cells early (upd-Gal4, Fig. 1F,G) (McGregor et al.,
2002), border cell precursors (not polar cells) ( fruitless-Gal4,
Fig. 1J,K) (Borensztejn et al., 2013), or later in specified border
cells (not polar cells) (stage 8/9, slbo-Gal4, not shown) (Rørth et al.,
1998). α-Snap depletion in border cells or their precursors yielded
wild-type phenotypes (Fig. 1L,M, and data not shown). In contrast,
depletion of α-Snap by using upd-Gal4 led to the absence of border
cells in >80% of egg chambers (Fig. 1H,M), and a lack of polar
cells by stage 10. This severe phenotype was rescued by α-Snap
overexpression (Fig. S1G–I,L). Similarly, reduction of Syx1A in
polar cells resulted in impaired polar cell maintenance and no border
cells (Fig. 1I,M).
These results suggest that α-Snap and Syx1A are required in polar

cells to promote border cell specification but are largely dispensable
in border cells themselves. This is unlike depletion of exocyst

components, which affects cell migration but not specification
(Assaker et al., 2010; Laflamme et al., 2012; Ramel et al., 2013).
Together, these results indicate that different vesicle trafficking
regulators have cell-type specific key functions.

α-Snap is required for polar cell maintenance and,
separately, for border cell induction
The lack of border cells upon reduction of α-Snap expression could
be due to cell death or failed specification. A primary marker for
polar cells, fasciclin III (FasIII) (Ruohola et al., 1991), was present
early but not detected later when α-Snap was depleted, indicating
the cells are specified but not maintained (Fig. 2A). We do not
believe that this reflects a general requirement for α-Snap in cell
viability since depletion in other follicle cells does not result in
obvious defects (Fig. 1L). Different cell types differ in their ability
to survive α-Snap disruption (Babcock et al., 2004; Chae et al.,
2004; Hong et al., 2004; Tomes et al., 2005; Bátiz et al., 2009;
Naydenov et al., 2014; Arcos et al., 2017) and might require
different amounts of this regulator. To overcome polar cell loss, we
expressed the anti-apoptotic gene p35 (Hay et al., 1994) in α-Snap-
depleted polar cells. Polar cells were apparent at all stages in this
genotype, indicating that α-Snap is essential for their maintenance
(Fig. 2 compare panels A and B with panels D and E, respectively).
Interestingly, >70% of these egg chambers still lacked border cells
(Fig. 2F), revealing a separable, essential function for α-Snap to
enable polar cells to specify border cells.

α-Snap is not required for all subcellular trafficking
In mammalian cells, α-Snap is required for localization of
E-cadherin (E-Cad), β-catenin, and apical proteins (Chae et al.,
2004; Hong et al., 2004; Andreeva et al., 2005; Naydenov et al.,
2012). Since early depletion of α-Snap resulted in the absence of
polar cells, we could not investigate protein localization there.
However, the localization patterns and/or levels of E-Cad and
Armadillo (Arm) were normal in posterior cells upon disruption of
α-Snap or Syx1A (Fig. 1C,D,H,I; Fig. S3A–C) and normal upon
α-Snap disruption in border cells (not targeting the polar cells,
Fig. 1L). Additionally, reduction of α-Snap affects border cells
differently than loss of adhesion and polarity molecules: reduction
of E-Cad results in cluster separation (Cai et al., 2014) and
disruption of apical proteins yields poor border cell migration
(Niewiadomska et al., 1999; Pinheiro and Montell, 2004).

Polar cells activate several signaling pathways but most do not
appear to require α-Snap. Depletion of α-Snap did not result in
fused egg chambers, stalk defects or oocyte polarity defects
(Figs 1C and 2B), as would disruption of Hedgehog, Hippo and/
or Notch signaling (Lopez-Schier and St Johnston, 2001;
Grammont and Irvine, 2002; Chen et al., 2011). Furthermore,
although polar cell fate requires Notch activity, we found no genetic
interaction between Notch (Nts2) and α-Snap (α-SnapG8) in polar
cell fate (Fig. S3D). These observations are consistent with cell
culture studies linking α-Snap only to certain signaling cascades
(Baeg et al., 2005; DasGupta et al., 2005; Nybakken et al., 2005).
Notably, genetic disruptions of α-Snap dramatically compromise
the functions of some cell types while not obviously affecting
others (Babcock et al., 2004; Chae et al., 2004; Hong et al., 2004;
Bátiz et al., 2009; Arcos et al., 2017), suggesting that some cells
can overcome this defect. It is possible that less-sensitive cells
synthesize SNAREs rapidly to reduce demand for recycling or have
a ‘bypass’ mechanism that alleviates the need for α-Snap and/or
NSF activity (Thorngren et al., 2004), or that NSF functions with a
not-yet identified co-factor to promote exocytosis.
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α-Snap in polar cells regulates STAT activation in the
border cells
Because border cell specification requires JAK/STAT signaling, we
tested whether α-Snap could regulate components of this pathway.We
assayed the recessive mutant alleles Stat92E397 (Silver and Montell,
2001) andα-SnapG8 (Babcock et al., 2004). Single heterozygotes have
normal numbers of border cells but minor cell migration defects (<5%
of stage 10 egg chambers had border cell migration defects; Fig. 3A,
B,D) (Silver and Montell, 2001; Silver et al., 2005). Trans-
heterozygous (Stat92E397/α-SnapG8) flies had a significantly
enhanced mutant phenotype (>20% of stage 10 egg chambers had
border cell migration defects; Fig. 3C,D), indicating that α-Snap and
Stat92E are likely to function in the same genetic pathway.
Next we examined the secreted activator Upd. In epistasis tests, we

found that overexpression of upd in the polar cells significantly
rescued the phenotype caused byone α-SnapRNAi line (Fig. 3E) and
to a lesser extent by another (not shown), resulting in normal border
cells. These results are consistent with a model in which α-Snap and
Syx1A are necessary in polar cells to regulate Upd release.
During early oogenesis, Upd in polar cells promotes stalk cell fate

(Lopez-Schier and St Johnston, 2001; Baksa et al., 2002; McGregor
et al., 2002; Assa-Kunik et al., 2007) and eliminates excess polar
cells (Borensztejn et al., 2013; Torres et al., 2017). Although we
disrupted α-Snap and Syx1A early, we did not see stalk defects or
extra polar cells (Fig. 2B), or changes in stretch or centripetal cells,
which require low levels of STAT signaling (Xi et al., 2003). We
speculate that α-Snap is not depleted early enough to cause these
defects, or that low levels of α-Snap function permit low levels of

STAT activity. Upd is not required for polar cell fate, and the
survival signal(s) that α-Snap regulates to maintain polar cells is
unknown.

We propose that α-Snap mediates the controlled exocytosis of
Upd separately from constitutive trafficking. Our results add another
control node to JAK/STAT signaling. Given the strong conservation
of this pathway, it will be interesting to see whether the human
α-Snap homolog NAPA, which is 60% identical to fly α-Snap
(Lemons et al., 1997), regulates STAT-mediated immune responses.

Intracellular Ca2+ increases transiently in polar cells prior to
border cell specification
Some secreted molecules are sequestered and released in a
Ca2+-dependent, regulated manner (Südhof, 2012; Xiong et al.,
2017), including secretory granules from neutrophils, neurotransmitter
release and the sperm acrosome reaction (Littleton et al., 1993; Tomes
et al., 2005; Stow et al., 2009; Scheller, 2013; Sheshachalam et al.,
2014). The latter two events are known to be mediated by α-Snap,
NSF and certain syntaxins. Since our data suggest that STAT
activation depends on these regulators in polar cells, we examined
intracellular Ca2+ flux in egg chambers using the verified Ca2+

sensors GCaMP6s and GCaMP6m, which fluoresce in response
to high intracellular Ca2+ (Chen et al., 2013). Interestingly, we
observed periodic, transient increases of intracellular Ca2+ signals in
polar cells prior to border cell specification by using three different
Gal4 drivers (Fig. 4A–C; Movies 1–3). Consistent with a role for
Ca2+, we observed significantly fewer border cells when free Ca2+

was reduced in polar cells by overexpression of the human

Fig. 2. Blocking apoptosis in α-Snap-depleted polar
cells does not rescue border cell specification.
(A,B) upd-Gal4 driving α-Snap RNAi results in egg
chambers that have polar cells early (FasIII-positive, red;
arrow in A), but lack polar and border cells later (B; Arm, red;
DAPI, blue). (C) p35 expression in polar cells yields normal
border cells (arrowhead). (D,E) p35 expression in α-Snap-
depleted polar cells rescues polar cell maintenance but not
border cell specification (arrow, magnified in insets).
All scale bars: 20 µm. (F) Penetrance of the no-polar (PC)
and/or no-border cells (BC) phenotypes by genotype (line
JF03266).
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parvalbumin protein (PVALB, hereafter referred to as PV )
(Harrisingh et al., 2007) (Fig. 4D–G). The number of border cells
is known to drop with decreasing STAT activity (Silver et al., 2005;
Starz-Gaiano et al., 2008; Van de Bor et al., 2011). Thus, we favor a
model in which Upd is released in a regulated non-constitutive
manner in response to Ca2+ (Fig. 4H). Notably, cation
concentrations govern morphogen release during fly wing
development (Dahal et al., 2012, 2017). Thus, ion-regulated
exocytosis might represent a widespread means to mediate
specificity of signal release during animal development.

MATERIALS AND METHODS
Fly stocks
The GD11986 and KK107910 transgenic α-Snap RNAi lines were from
Vienna Drosophila Research Center (Dietzl et al., 2007). The polar cell
driver (upd-Gal4) (Khammari et al., 2011), and UAS-upd (21.2) (Silver
et al., 2005) transgenic and stat92E397 mutant flies were provided by D. J.
Montell (University of California Santa Barbara, Santa Barbara, CA). UAS-
NSF2 transgenic fly line was a generous gift from L. Pallanck (University of
Washington, Seattle, WA). All other transgenic and mutant fly lines
including UAS-mCD8-GFP/CyO (Lee and Luo, 1999), UAS-GFP.nls 14
(Neufeld et al., 1998), the anterior follicle cell drivers: c306-Gal4 (Manseau
et al., 1997), slbo-Gal4 (Rørth et al., 1998) and fruitless-Gal4 (Hayashi
et al., 2002), tub-Gal80ts/TM6 (McGuire et al., 2003), UAS-p35 (Hay et al.,
1994), Ep-Dome (P(EPgy2)EY22614) (Bellen et al., 2011), αSnapM4 and
αSnapG8 (Babcock et al., 2004), Nl1N-ts2 (Shellenbarger and Mohler, 1975),
UAS-GCaMP6m and UAS-GCaMP6s reporters (Chen et al., 2013), tub-
Gal4/TM3 (Lee and Luo, 1999), UAS-PV-Myc (Harrisingh et al., 2007),
JF03266 and HMS00872 RNAi lines for α-Snap, and the rest of RNAi lines
were from the Bloomington Drosophila Stock Center (Ni et al., 2008).

Overexpression and knockdown studies
Genetic expression of transgenes in follicle cells was performed as
previously described (Saadin and Starz-Gaiano, 2016b). All genetic

crosses were established at 25°C. When offspring of a cross involving
Gal4 were not viable at 25°C, the cross was maintained at 18°C or the
temperature-sensitive allele of tub-Gal80 was introduced to the cross while
the cross was maintained at 20–21°C (permissive temperature range for
Gal80ts) to repress Gal4. Female offspring (3–7 days old) were cultured on
yeast-supplemented food and maintained at either 25°C, 29°C or 31°C,
depending on their genotype, for different periods of time prior to
dissection. Unless otherwise stated in the figure legends, flies bearing Gal4
were incubated at 29°C for 12–16 h. Flies bearing Gal4 and Gal80ts were
incubated at 31°C (non-permissive temperature for Gal80ts) for 54 h, and
flies that did not bear either Gal4 or Gal80ts, were incubated at 25°C for
12–16 h before dissection.

RNAi validation and quantitative real time PCR
Genetic crosses were established and maintained at 25°C. Since follicle cell
Gal4 drivers only impact a fraction of the cells in the ovary, we tested RNAi
efficiency in embryos. tub-Gal4 females were crossed with males from the
indicated RNAi lines. Total RNA was isolated from 0–24-hour-old F1
embryos (25°C) by using the Qiagen RNeasy Plus Micro Kit. BioRad
iScript was used for cDNA synthesis. qRT-PCR was performed in
triplicates, using BioRad iTaq SYBR Green Supermix and the BioRad
CFX96 thermocycler. Tubulin-Gal4 embryos were used as the calibrating
sample, and relative changes in gene expression were calculated using rp49
as a reference gene. Fold-changes were determined using the Livak 2-ΔΔCT

method.
Primers used, were α-snap ex1-2 forward: 5′-TGGGTGACAACGAA-

CAGAAG-3′, reverse: 5′-CCCAGCTTTGTCCAGTTTT-3′; α-snap ex2-3
forward: 5′-GCTGCCAAACATCACCAAAG-3′′, reverse: 5′-CCACCTT-
CAACATGCACTTG-3′; comt set2 forward: 5′-CCCGTGAAAATCAGC-
AAGAATC-3′′, reverse: 5′-ACCAACATTCACTATAGCCCG-3′; comt
ex4-6 forward: 5′-ACACGGATATCTTTAGCAAGGG-3′′, reverse: 5′-A-
CAGGAACTTTATGGCCCG-3′; NSF2 ex2-3 forward: 5′-AGTTCCTC-
ATGCAGTTCGC-3′′, reverse: 5′- GAGTCTTCGGTAGGGAATCG-3′;
NSF2 ex3-4 forward: 5′-AGTTGGAGGGTCTGGTTAGAG-3′′, reverse:
GCTTGATGTCGTTGTCCAATG-3′.

Fig. 3. α-Snap functions upstream of Upd to promote JAK/STAT signaling and cell specification. (A,B) Border cells (arrow; Eya- and Arm-positive, red)
form and migrate correctly in α-SnapG8/+ (A) or Stat92E397/+ (B) heterozygotes. (C) An α-SnapG8/Stat397 egg chamber that contains migratory-defective
border cells. (D) Penetrance of border cell migration defects by genotype. (E) Penetrance of the no border cell phenotype by genotype. A lack of bar
(4st and 5th position) in the graph indicates that all egg chambers contained border cells. *P<0.05, ***P<0.0005, two-tailed Fisher’s exact test. (F) upd
overexpression in polar cells yields a wild-type phenotype.
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Immunofluorescence labeling and phenotypic analysis
Fly ovaries were dissected to ovarioles in Schneider’s medium
supplemented with 10% fetal bovine serum (FBS) and 0.6× penicillin–
streptomycin (Pen–Strep) (Prasad et al., 2007), and fixed in 4%
paraformaldehyde diluted in 0.1 M potassium phosphate buffer. The egg
chambers were immunostained following a previously established protocol
(McDonald et al., 2006). Briefly, fixed egg chambers were washed in NP40
wash buffer (0.05 M Tris-HCl pH 7.4, 0.15 M NaCl, 1 mg/ml BSA, 0.5%

Nonidet P-40 (Igepal CA-630, Sigma-Aldrich), 0.02% sodium azide)
(McDonald et al., 2006) and incubated with primary antibodies (see below)
diluted in NP40 wash buffer either overnight at 4°C or for 2–3 h at room
temperature. The egg chambers were then washed four times in NP40 wash
buffer and incubated with diluted (1:400) secondary antibodies (Alexa Flour
488 and Alexa Flour 568; Life Technologies) at room temperature for 2–3 h.
Nuclei of the immuno-stained egg chambers were then stained with DAPI
(1:1000; D1306, Invitrogen,) for 10 min, washed and mounted in 70%

Fig. 4. See next page for legend.
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glycerol. Stage-10 egg chambers were scored for defects in border cell
specification characterized by the absence of border cell markers, including
the Drosophila β-catenin, Armadillo (Arm) (Peifer et al., 1993) (Fig. 1C),
Eyes Absent (Eya) (Bai andMontell, 2002) (Fig. 1C), Apontic (Apt) (Starz-
Gaiano et al., 2008), Slow border cells (Slbo) (Montell et al., 1992) and
E-cadherin (E-Cad) (Niewiadomska et al., 1999) (Fig. S3C and data not
shown), as well as defects in migration, where the border cell clusters had
not reached the oocyte. The absence of the border cells was further
confirmed using optical sections to examine the whole depth of the tissue.
Data for c306-driven and fruitless-driven JF03266 RNAi lines in Fig. 1M
are the average penetrance of four and two independent experiments,
respectively. Statistical significance was established using the Mann–
Whitney U test for border cell numbers and Fisher’s exact test for
proportions by using online tools (http://vassarstats.net).
The following primary antibodies were used: mouse anti-Eya (10H6,

DSHB; 1:100) (Bonini et al., 1993), mouse anti-Armadillo (N27A1, DSHB;
1:40) (Riggleman et al., 1990), rabbit anti-Apt (provided by S. Hirose,
National Institute of Genetics, Mishima, Japan; 1:1000) (Liu et al., 2003),
guinea pig anti-Apt from GST-Apt (Pocono Rabbit Farm, 1:5000), rat anti-
Slbo (provided by P. Rorth, Institute of Molecular and Cell Biology A-
STAR, Proteos, Singapore; 1:1000) (Beccari et al., 2002), anti-rabbit GFP
(Life Technologies; 1:250), rat anti-Drosophila E-Cad (DCAD2,
DSHB;1:20) (Oda et al., 1997), rat anti-human influenza hemagglutinin
(HA) (11867423001, Roche; at 0.5 µg/ml), mouse anti-FasIII (7G10,
DSHB;1:50) (Patel et al., 1987), rabbit anti-NSF (provided by J. Han,
Southeast University, Nanjing, China; 1:50; Li et al., 2015) and α-Snap
(provided by L. Pallanck, University of Washington, Seattle, WA; 1:600;
Babcock et al., 2004). Images were acquired with a Carl Zeiss AxioImager
Z1 and Apotome optical sectioning with Axiovision acquisition software.
Image size adjustments and figure assembly were completed using
Photoshop CS6 Adobe.

Generation of UAS–α-Snap–HA transgenic flies
Drosophila melanogaster α-Snap cDNA clone (LD21601) was obtained
from Drosophila Genomic Research Center in pOT2 vector. The coding
sequence – excluding the stop codon – to allow expression of the HA tag was
amplified using primers that contained attB sites following the GateWay
cloning protocol by Invitrogen/ThermoFisher. The Kozak sequence
(CAAC) (Cavener, 1987) was also added to the forward primer just

upstreamof the start codon. TheBP reactionwas carried out using a pDNOR221
vector (Invitrogen, 12536-017) and Gateway BP Clonase II enzyme mix
(Invitrogen, 11789020) followed by heat shock-induced transformation into
One Shot OmniMax 2T1 competent E. coli cells (Invitrogen, C854003).
Successful cloning of α-Snap into pDONR221 was confirmed by sequencing
using M13F(-21) and M13R primers (Genewiz). The LR reaction was then
carried out using a pDONR221 vector containing α-Snap and pUASg-HA.attB
(Bischof et al., 2007, 2013) (GeneBankAccession numberKC896837.1)with a
Gateway LRClonase II enzymemix (Invitrogen, 11791020). The product of the
LR reaction was transformed into One Shot OmniMax 2T1 competent E. coli
cells. Successful cloning was confirmed by sequencing, using the primers
Forward 5′-CGTCGCTAAGCGAAAGCTAAGC-3′ and Reverse 5′-
AGCCTGCTGCTACACTTGCC-3′. The Destination vector (pUASg-
HA.attB) containing α-Snap was used for PhiC31 injection through
BestGene, Inc, plan H.

Live Ca2+ imaging
Live imaging was performed following the previously established protocol
by Manning and Starz-Gaiano, 2015. Briefly, fly ovaries were dissected in
Schneider’s medium containing 0.2 mg/ml insulin, 10% FBS and 0.6× Pen–
Strep. Egg chambers were cultured in insulin-containing medium
supplemented with 9 µM FM4-64 dye (Invitrogen) during imaging. The
dissected ovarioles were imaged every 10–20 s at 1–2 s exposure time for
0.5–2 h using a Carl Zeiss AxioImager Z1 microscope with AxioVision
acquisition software. Changes in fluorescence intensity were measured
using ImageJ, if needed after background correction, by defining regions of
interest (ROIs) around polar cells and by using Multi Measure on a stack of
time-lapse images. The ROI of a nearby cell was defined as background.
Change over background (ΔF) was normalized against fluorescence
intensity (F) at the start of the imaging procedure (Macleod, 2012).
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