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• Assessing exposure requires detailed

spatiotemporal air pollutant concentra-

tions.

• This approach estimates hourly air pol-

lutant concentrations at 40 m × 40 m

resolution.

• Air pollutant concentrations vary signif-

icantly by hour of the day and the sea-

son.

• 40 m × 40 m estimates lead to higher

average exposure concentrations than

12 km × 12 km.

• This model, HYCAMR, efficiently pro-

vides needed estimates for exposure

assessment.
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Traffic related air pollution is one of themajor local sources of pollution challengingmost urban populations. Cur-

rent air quality modeling approaches can estimate the concentrations of air pollutants on either regional or local

scales but cannot effectively estimate concentrations from the combination of regional and local sources at both

local and regional scales simultaneously. This study describes a hybrid modeling framework, HYCAMR, combin-

ing a regional model, CAMx, and a local-scale dispersion model, R-LINE, to estimate concentrations of both pri-

mary and secondary species at high temporal (hourly) and spatial (40 m) resolution. HYCAMR utilizes all the

chemical and physical processes available in CAMx and the ParticulateMatter Source Apportionment Technology

(PSAT) tool to estimate concentrations from both onroad and nonroad emission sources. HYCAMR employs R-

LINE, to estimate the normalized dispersion of pollutant mass from onroad emission sources, from primary

and secondary roads, at high resolution. Applying R-LINE for one day permonth using average dailymeteorology

yields seasonally-resolved spatial dispersion profiles at low computational cost. Combining the R-LINE spatial

dispersion profile with CAMx concentration estimates yields an estimate of the combined concentrations for a

range of pollutants at high spatial and temporal resolution. In three major cities in Connecticut, HYCAMR

shows strong temporal and seasonal variability in NOx, PM2.5, and elemental carbon (EC) concentrations. This

study evaluates HYCAMR year 2011 estimates of NO2 and PM2.5 against two sources: satellite-based estimates

at coarse resolution and regression model estimates at census block group resolution. In this evaluation,

HYCAMR demonstrates improved agreement with the land-use regression modeling and mixed agreement

with satellite-based estimates when compared to the regional CAMx estimates.
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1. Introduction

Motor vehicles are one of the most significant anthropogenic sources

of air pollution in urban areas. In addition, the rapid growth of theworld's

motor-vehicle fleet resulting from population growth, economic growth,

metropolitan expansion, and increased dependence on motor vehicles

has resulted in an increase in the number of people living and working

near major roads (Adar and Kaufman, 2007; Salam et al., 2008). Negative

health outcomes associated with traffic-related air pollution include

asthma (Vette et al., 2013; Jerrett et al., 2008; Rohr et al., 2014), respira-

tory impacts (Kim et al., 2015; Winquist et al., 2015; Pascal et al., 2014),

cardiovascular impacts (Franck et al., 2011; Crouse et al., 2012), cancer

(Arden Pope et al., 2011; Turner et al., 2011; Loomis et al., 2013), low

birth weight (Wilhelm et al., 2012; Bell et al., 2008; Ebisu and Bell,

2012), and premature death (Schwartz et al., 2008; Pope et al., 2009;

Crouse et al., 2012). A special report on traffic related air pollution by

the Health Effects Institute (HEI, 2010) identified a heightened exposure

zone within a range extending to somewhere between 300 m and

500 m from major roads. Much of the area in this zone may experience

concentrations 2.5 to 6 times higher than the background. There is an ur-

gent need to estimate near road pollutant concentrations at high resolu-

tion to improve exposure estimates.

Scientists and policy makers typically estimate ambient air pollutant

concentrations using either data from air quality monitoring networks

or from air pollution models. Both of these methods have limitations. A

major limitation associated with monitored concentrations is the rela-

tively low spatial resolution and spatial coverage associated with most

networks. It is also challenging to estimate source specific contributions

to air pollutant concentrations using monitored values. Caiazzo et al.

(2013) estimated that, in 2005, road sources accounted for 38.5% of

total NOx and 6.9% of total PM2.5 emissions in the United States.

Dedoussi and Barrett (2014) attributed 7826, 3982, and 3702 premature

death in 2005 in California, New York, and New Jersey, respectively, due

to exposure to traffic-related pollution. Unfortunately, current regulatory

ambient air monitoring does not adequately capture near road concen-

tration levels formost locations and chemical species. For this reason, reg-

ulators need high spatial and temporal resolution modeling approaches

to accurately estimate exposure for a wide variety of chemical species.

The air qualitymodeling approaches currently available can compute

the source-specific pollutant concentrations either on a regional- or

local-scale but still lack effective ways to estimate the combined expo-

sure from regional and local sources. Fann et al. (2013) used the CAMx

regional air pollution model (12kmx12km resolution) to quantify

ozone andPM2.5 related premature deaths fromonroad emission sources

in the United States. As elevated concentrations near roads reach back-

ground levels within a few hundred meters, regional air pollution

modelswhich can, atmost, resolve down to 1 kmcannot adequately rep-

resent these gradients. Further, temporal variabilities in pollutant disper-

sion patterns in stable and unstable atmospheric conditions also greatly

influence the concentration gradients near roads. Estimating air pollu-

tion from local sources such as motor vehicles using a regional air pollu-

tion model which considers all the processes that impact atmospheric

chemistry and physics is a computationally intensive process. A poten-

tially better, and more realistic approach, is to use local scale dispersion

models for near road air pollution estimation. Compared to chemical

transportmodel (CTMs), local scale dispersionmodels are less computa-

tionally expensive and can provide concentration estimates at high reso-

lution. Batterman et al. (2015) implemented the R-LINE, a local scale

dispersion model, to quantify spatially resolved PM2.5 and NOx concen-

trations in Detroit, MI. Greco et al. (2007) estimated traffic related expo-

sures using a line sourcemodel, CAL3QHCR, in Boston, MA. Traditionally,

the dispersion models available to estimate near road pollutant concen-

trations either do not account for background concentrations from re-

gional sources, do not account for temporal variability, or do not

consider chemical interactions between local and regional pollutants.

There remains a need to better quantify the combined local and regional

pollution impact to design effective policies to protect human health

from the harmful effects of air pollution exposure.

Researchers have recently started to develop hybrid models to

bridge this gap between local and regional air pollution modeling.

Isakov et al. (2007) combined a regional and dispersion model to eval-

uate the sub-grid temporally- and spatially-resolved benzene and form-

aldehyde concentrations from vehicular emissions. Beevers et al. (2012)

also applied a similar modeling approach to estimate NOx and ozone

concentrations at 20mx20m resolution. Both of these approaches pro-

vide fine temporal and spatial scale concentration estimates that can

aid in health impact assessments and epidemiological studies. However,

these approaches potentially lead to over-estimation of pollutant con-

centrations due to the double counting emissions by considering the

same emissions in both models. Bates et al. (2018) developed a hybrid

modeling framework combining CMAQ and R-LINE to quantify pollut-

ants concentrations at a neighborhood scale. Chang et al. (2015)

employed a hybrid approach in central North Carolina and estimated

near road PM2.5 concentrations at a Census block resolution. Both

these approaches provide better concentration characterization in

terms of spatial resolution but lack temporal resolution. Running the

model multiple times for multiple species makes these modeling ap-

proaches also data intensive. Most of the hybrid modeling frameworks

currently available either double count onroad emissions, do not pro-

vide temporal information, need extensive additional data, or require

significant computational resources due to the required number of

model runs.

Here we present a hybrid modeling framework (HYCAMR) combin-

ing a regional chemical transport model and a local scale road disper-

sion model to estimate combined (regional and local/near road)

concentrations at fine spatial and temporal resolution. We employ

HYCAMR in three Connecticut cities - Hartford, New Haven, and

Willimantic - to estimate hourly PM2.5, NOx, and elemental carbon

(EC) concentrations at a 40mx40m resolution. This approach provides

improved spatial and temporal resolution of concentrations profiles in

near road environments to improve exposure assessment.

2. Method and model description

Our hybrid modeling framework, HYCAMR, is comprised of an

Eulerian 3-D chemical transport model, the Comprehensive Air Quality

Model with Extensions (CAMx version 6.0), and a local scale road dis-

persion model, R-LINE-v1.2. Fig. 1 shows a diagram of the information

flow within HYCAMR. HYCAMR uses CAMx to define the regional con-

tributions and also to determine the mass of pollutant originating

from local, onroad emissions. HYCAMR uses R-LINE to determine the

dispersion pattern of the local, onroad emissions. By combining the re-

sults from both models, HYCAMR provides an estimate of the total pol-

lutant concentration for each hour of the year at 40mx40m resolution.

We describe the details of HYCAMR in Sections 2.1–2.3.

2.1. Regional-scale estimates (CAMx)

In HYCAMR, we use the Comprehensive Air Quality Model with Ex-

tensions (CAMx) to quantify the concentrations of various species

from onroad and regional sources in the Northeastern US with a grid

resolution of 12kmx12km.We apply the Lambert Conformal Projection

over the studied domain with 6834 ground-level grid cells (67 north-

south x 102 east-west) and 20 vertical layers. CAMx uses first principles

to estimate the impacts of emissions, advection, turbulent diffusion,

condensation, evaporation, deposition, and chemical reactions (gaseous

and aqueous) on air pollutant concentrations.We implement the Partic-

ulateMatter Source Apportionment Technology (PSAT) tool available in

CAMx to separately track the transport and transformations of species

from onroad and regional emission sources. We use the 2011 National

Emissions Inventory (NEI) developed by the US Environmental Protec-

tion Agency (EPA) processed using the Sparse Matrix Operator Kernel
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Emissions (SMOKE) (CMAS, 2013) model. These emissions inputs were

included as part of the United States Environmental Protection Agency's

Ozone Regulatory Reanalysis, including model evaluation (US EPA,

2014a). For gas phase chemistry, we use CAMx mechanism 7. This

mechanism is based on the Carbon Bond version 6 (CB-6) (Yarwood

et al., 2010) mechanism and includes aerosol chemistry. CAMx mecha-

nism 7 has a total of 218 reactions for 77 gaseous species and includes

16 aerosol species. In CAMx, PM2.5 includes secondary nitrate, sulfate,

ammonium, organic aerosols, and several primary species. We create

boundary conditions for the New England domain using a CAMx run

for the continental US using the same inputs.We usemeteorological in-

puts predicted by the Weather Research and Forecasting model WRF

(version 3.4) (Skamarock et al., 2008). The WRF domain includes 471

× 311 cells with a horizontal resolution of 12kmx12km over the

United States. The vertical grid has 35 sigma levels stretching from

near surface to 50 hPa. Themeteorologicalmodel evaluation is provided

in US EPA's Meteorological Model Performance report 2011 (US EPA,

2014b). Parvez et al. (2017) contains a detailed performance evaluation

of CAMx estimates using this set of inputs.

Using these datasets, we create two emission categories - onroad

and all other sources. More specifically, we track the onroad emissions

from each grid cell in each city as a separate source for use in

HYCAMR (described in Section 2.3). We use these separated emissions

in PSAT to track concentrations from onroad and other sources individ-

ually. We use this approach later to avoid double counting emissions. In

the combined model, CAMx not only accounts for the chemistry of re-

gional pollutants but also local onroad pollutants throughout PSAT.

2.2. Local-scale estimates (R-LINE)

R-LINE is a steady state Gaussian plume line source dispersionmodel

developed by US EPA to estimate pollutant concentrations near roads.

This model numerically integrates over multiple point sources to ap-

proximate emissions occurring along a line (Snyder et al., 2013). R-

LINE includes both vertical and lateral dispersion, simulates low wind

meander conditions, and applies Monin-Obukhov similarity theory for

vertically profiling the wind and turbulence near the surface. For sim-

plicity in this initial implementation of HYCAMR, we consider only pri-

mary and secondary roads.

Like other dispersion models, R-LINE typically uses meteorology

from a nearby weather station. For consistency between CAMx and R-

LINE, we use the same WRF-predicted meteorology for both R-LINE

and CAMx (described in Section 2.1). We have compared this approach

with using nearby weather station data in past work (Parvez and

Wagstrom, 2018). We use the Mesoscale Model Interface Program

(MMIFv3.2-beta) (EPA, 2015) to process meteorology and surface char-

acteristics variables from WRF for use by R-LINE. MMIF considers the

height of the lowest sigma level mid-point (~10m) in computingmete-

orology inputs for dispersion models. TheMMIF processedmeteorolog-

icalfile contains 18 parameters representing near surface characteristics

including friction velocity, wind speed, boundary layer depth, tempera-

ture, and convective velocity scale. Instead of usingmeteorology specific

to each hour of the year, we consider daily hourly-resolvedmeteorology

averaged over each month of the year 2011. For example, instead of

model 1:00 am on each day of October, we average the meteorological

conditions present at 1:00 am each day of October and run R-LINE for

these average conditions. This provides 288 meteorological proxies

representing one diurnal profile for each month.

In HYCAMR, R-LINE (version 1.2) provides spatially- and

temporally-resolved near road pollutant dispersion profiles at high res-

olution. To do this, we run R-LINE using each of the 288 meteorological

proxies described above to estimate spatial pollutant concentrations.

This provides an estimate of pollutant spatial distribution representing

a typical hour of the day of each month. We implement R-LINE in each

Fig. 1. Schematic of our hybrid modeling framework, HYCAMR. NEI and AADT denote the National Emission Inventory and Annual Average Daily Traffic dataset, respectively.
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individual CAMx grid cell within each city of interest with a receptor

spacing of 40 m yielding an estimate of near road pollutant concentra-

tions at 40mx40m resolution. We use these estimated concentrations

to create spatial proxies over which we distribute the hourly onroad

source mass predicted by CAMx-PSAT. We describe this step in more

detail in Section 2.3. This transforms the 288 proxies into hourly con-

centrations throughout the year (covering 8760 h) without needing to

run R-LINE for every single hour of the year. This decreases the R-LINE

computational burden by over an order of magnitude.

We use the Annual Average Daily Traffic (AADT) data from Connect-

icut Department of Transportation (CT DOT, 2011) for vehicle counts on

major roads in the cities of interest. Asmentioned earlier, we use R-LINE

to quantify the relative dispersion of mass rather than the absolute con-

centrations. Applying an assumption of negligible chemistry and depo-

sition, each species should follow the same anticipated dispersion

pattern no matter the emissions rate. This allows us to use a simplified

emission factor of 1 g/(ms) for each vehicle per day on each road. We

designed this approach to minimize the computational burden associ-

ated with needing separate model runs for each species. For road loca-

tion, we use the primary and secondary roads defined in the TIGER/

Line shapefiles developed by the United States Department of Agricul-

ture and available through the Geospatial Data Gateway (USDA,

2015). We have included maps of the roads in the Supporting informa-

tion (Fig. S1).

2.3. Hybrid model (HYCAMR)

In the HYCAMR, we combine the CAMx estimated regional concen-

trations with R-LINE-estimated local dispersion to estimate total hourly

pollutant concentrations at 40mx40m resolution. Using the R-LINE-

predicted concentrations described in Section 2.2, we create the pre-

dicted pollutant dispersion pattern by normalizing each by the mass

at each 40 m spaced receptor by the total mass within the CAMx grid

cell (Eq. (1)).

f i ¼
RiPn
1 Ri

ð1Þ

In Eq. (1), fi is the fractional contribution at receptor location i, Ri is

the R-LINE-predicted near road pollutant concentrations at receptor lo-

cation i and n is the total number of receptor locations. We then distrib-

ute the CAMx-predicted onroad source concentration over the R-LINE-

predicted normalized dispersion profile (fi) to estimate near road pol-

lutant concentrations at high resolution (Eq. (2)).

CL;i ¼ CL;CAMx � f i �
V12km

V40m
ð2Þ

In Eq. (2), CL,i is thenear roadpollutant concentrations at receptor lo-

cation i, CL,CAMx is the CAMx-predicted onroad source concentration, and

V12km and V40m are the resolution of the CAMx and R-LINE models, re-

spectively. Once we estimate the concentrations from onroad sources

at high resolution, we can simply add the regional concentration to es-

timate the total pollutant concentration at high resolution (Eq. (3)).

CComb;i ¼ CL;i þ CR;CAMx ð3Þ

In Eq. (3), CComb,i is the combined regional and local pollutant con-

centrations at receptor location i and CR,CAMx is the CAMx-predicted re-

gional concentration. We include a simplified, example calculation in

the Supporting information (Section S2).

2.4. Model evaluation approach

Traditionally, developers evaluate the performance of air quality

models using measurements. Due to the lack of availability of

measurements in our domain at such a fine scale resolution, we instead

evaluate the performance of HYCAMRwith two other approaches to es-

timate fine scale concentrations: one based on land-use regression

modeling (at census block group resolution) and one based on down-

scaled satellite measurements (at 0.01° × 0.01° resolution).

We evaluate HYCAMR performance for NO2 and PM2.5 in the year

2011 using two datasets: satellite-based estimates and land use regres-

sion estimates. We estimate satellite-based ground level NO2 mixing

ratio at Ozone Monitoring Instrument (OMI) resolution (0.05° × 0.05°)

using an approach similar to the one described in Lamsal et al. (2008)

(Eq. (4)). This approach uses a chemical transport model (GEOS-

Chem) to estimate ground-level concentrations from satellite-measure

NO2 column density.

So ¼
νSG

νΩG− ν−1ð ÞΩF
G

�Ωo ð4Þ

In Eq. (4), S represents the surface-level NO2mixing ratio andΩ rep-

resents the tropospheric NO2 column density. The subscripts “O” and

“G” represent OMI and GEOS-Chem, respectively. The OMI-derived sur-

face NO2 (SO) represents the mixing ratio at the lowest vertical grid. ν

represents the ratio of the local OMI NO2 column to the mean NO2

across the GEOS-Chem domain (2° × 2.5° resolution).ΩG
F is the free tro-

pospheric NO2 column over the GEOS-Chem grid cell. The GEOS-Chem

development team routinely compares model performance to a set of

standard benchmarks (GEOS-Chem v9-02 benchmark history, 2017).

For satellite data, we use the Berkeley High-Resolution (BEHR v3.0A)

processed OMI NO2 column density (Laughner et al., 2016) for our anal-

ysis. Finally, we compare this estimate of ground-level NO2 with both

HYCAMR and CAMx estimated concentrations. We also compare the

HYCAMR and CAMx estimated NO2 concentrations with Kim land use

regression (Kim LUR) model estimates at census block group resolution

developed by Kim et al. (2018). They employed amodeling approach to

estimate the concentrations of the six criteria pollutants within each

census block group in the contiguous United States for the years

1979–2015. Their modeling approach uses a universal kriging frame-

work that includes summary predictors, estimated by partial least

squares (PLS) from geographical variables, and spatial correlation..

To evaluate performance for PM2.5, we compare the HYCAMR and

CAMx estimated concentrations with combined geophysical-statistical

model estimated concentrations with a resolution of 0.01° × 0.01°.

This model estimates ground-level PM2.5 by combining Aerosol Optical

Depth (AOD) retrievals from the NASA Moderate Resolution Imaging

Spectroradiometer (MODIS), Multi-angle Imaging Spectroradiometer

(MISR), and Sea-ViewingWide Field-of-View Sensor (SeaWIFS) instru-

ments with the GEOS-Chem. GEOS-Chem is further calibrated to global-

based observations using a geographically-weighted regression (GWR)

(Van Donkelaar et al., 2016). The estimated PM2.5 concentrations using

GWR were highly consistent (R2 = 0.81) with out-of-sample cross-

validated PM2.5 concentrations from monitors. We also again compare

the estimates to the Kim LUR-estimated PM2.5 concentrations. We in-

clude the definitions of each statistical quantity used in themodel eval-

uation in the Supporting information.

3. Results

3.1. Seasonal variation of pollutant concentrations

We estimate the seasonal average concentration fields for NOx (NO,

NO2, N2O5, radical NO3, and HONO), PM2.5, and elemental carbon (EC)

using HYCAMR in New Haven, Hartford, and Willimantic (Figs. 2 and

S3–S4). We see substantial seasonal variation in the dispersion pattern

between species and locations. The differences in the spatial dispersion

between seasonsmostly results frommeteorological differences though

we do account for changes in emissions at both regional and local scales

through the use of CAMx concentrations for both sets of sources,
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regional and onroad (Section 2.3). We see the highest concentrations in

winter due to the lower mixing heights, friction velocities, and convec-

tive velocities that hinder the dispersion of pollutants. Conversely, high

wind speeds in spring facilitate rapid dispersion leading to lower con-

centrations near the road and decreasing the impact of local sources.

The highermixing heights in the summer lower background concentra-

tions, but the lower wind speeds also decrease dispersion, increasing

the impact of onroad emissions.

The concentrations near roads in HYCAMR are generally high; the

values are even higher where major interstate highways merge. In

New Haven, we find the highest concentrations where I-95 and I-91

merge and we observe similar behavior in other cities. Compared to

NOx, EC concentrations reach background concentrations nearer to

the roads. This could result from the relatively lower EC emission rate

fromonroad sources compared toNOx.We also anticipate that NOx sec-

ondary chemistry and interaction with regional pollutant would

increase the split between NO and NO2 allowing greater dispersion of

NOx in HYCAMR. Our initial analysis indicates that HYCAMR captures

the anticipated qualitative spatial dispersion of primary and secondary

species.

HYCAMR estimates yields improved spatial resolution and in-

creased concentration gradients. CAMx estimated NOx concentra-

tions in New Haven ranged from 12.24 ppb to 17.02 ppb in

winter, 9.37 ppb to 13.56 ppb in spring, 12.77 ppb to 16.92 ppb in

summer, and 10.17 ppb to 15.33 ppb in fall, while HYCAMR esti-

mates ranged from 7.10 ppb to 828 ppb in winter, 5.30 ppb to

520 ppb in spring, 6.25 ppb to 559 ppb in summer, and 5.31 ppb

to 618 ppb in fall. Similarly, we find significant differences in the

range of EC and PM2.5 estimates between CAMx and HYCAMR.

This results from the higher resolution of HYCAMR which captures

the higher concentration gradients near roads yielding a wider

range of predicted concentrations.

Fig. 2. Average combined concentrations (regional and on-road) of NOx, EC, and PM2.5 at 40 m×40 m resolution in winter (December, January, February), spring (March, April, May),

summer (June, July, August), and fall (September, October, November) in New Haven, CT.
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Between the three locations, the estimated pollutant concentrations

in Willimantic are lower than in Hartford and New Haven as

Willimantic is amuch smaller city and has fewer primary and secondary

roads and lower traffic loads (Figs. 2 and S3–S4). Although Hartford

does not have as many primary and secondary roads as New Haven it

still displays elevated concentrations from vehicular emissions due to

the high traffic volume in the city. One of the major benefits of

HYCAMR is that it can capture high concentration zones within cities.

For instance, we observe heighten concentrations in the urban cores

where population densities and traffic loads are highest. We also ob-

serve similar high concentration zones near major roads or where mul-

tiple major roads intersect.

3.2. Diurnal variation of pollutant concentration

Figs. 3–5 show the annual average hourly concentrations of NOx, EC,

and PM2.5 for New Haven. We find substantial diurnal variability in

concentrations for all three pollutants. Concentrations, especially those

near roads, decrease during the day and increase at night. This results

from a shift from a dominant unstable atmosphere during the day,

which promotes greater mixing, to a dominant stable atmosphere at

night. Between the three species, the impact of onroad emissions is

less dominate for PM2.5, likely because PM2.5 results frommore regional

sources. We see similar trends for Hartford (Figs. S5–S7).

3.3. Near road concentration profiles

Fig. 6 shows the HYCAMR estimated downwind concentration pro-

files of NOx and EC in New Haven, normalized by the concentrations

at the center of the road.We calculate these estimates using several iso-

lated major roads in northern New Haven (State Highway 69, State

Highway 63, Amity Rd, and Litchfield Turnpike) to avoid interference

with emissions fromnearby roads. In order to estimate the decay profile

of each pollutant, we first consider the concentration at a specific

Fig. 3. Annual average hourly NOx concentration in New Haven, CT. We average concentrations over all months of the year 2011 at different hours of each day. We observe significant

diurnal variability in NOx concentration.

Fig. 4. Annual average hourly elemental carbon (EC) concentration in New Haven, CT. We average concentrations over all months of the year 2011 at different hours of each day. We

observe significant diurnal variability in EC concentration.
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downwind distance and then normalize by the concentration at the

closest point to the center line of the road. We then average the profiles

from multiple roads to create the average profiles shown in Fig. 6. Our

results show an exponential decay with distance for all seasons, though

the profiles do show substantial differences between seasons and spe-

cies. As found by Saha et al. (2018), we also find that the differences

in decay patterns between species in a single season are less prominent

than the differences in decay patterns for the same species in different

seasons. Winter shows the slower decay rate anticipated due to domi-

nant stable atmospheric conditions. For instance, in New Haven, NOx

concentrations drop by ~40% at 200 m in winter, whereas, in fall and

spring, concentrations drop by ~60% over the same distance. Thesefind-

ings are consistent with Beckerman et al. (2008). We observe similar

trends for EC. We also find that the higher convective atmosphere and

temperature in summer do not impact the decay rate. In fact, we find

no significant differences between summer and winter predicted pol-

lutant decay profiles. This indicates that, apart from emissions, wind

speed is the major factor influencing dispersion from roads. Lower

wind speeds in summer ultimately leads to slow decay rates, while

higher wind speeds lead to faster decay rates in fall and spring. Overall,

both the species reach background levels within 400 m of the road

though EC reaches background levels at shorter distances than NOx.

These findings are again consistent with Riley et al. (2014).

3.4. Average exposure concentration

We estimate the average exposure concentration (i.e. the average

concentration to which populations are exposed) in each urban area

using population-weighted average concentrations. We compare aver-

age exposure concentrations at census block group resolution using

HYCAMR and CAMx as a first evaluation of the impact of using high res-

olutionmodeling for exposure estimation.We use the 2010 census data

(US Census Bureau, 2010) to quantify average exposure concentration

using Eq. (5).

Cpop; j ¼

PN
i Ci � Pi
PN

i Pi

ð5Þ

In Eq. (5), Cpop,j is the average exposure concentration for species j; Ci
and Pi are the concentrations and population in census block group i, re-

spectively; and N is the total number of census block groups in a given

city. Fig. 7 shows the estimated average exposure concentrations of

NOx, elemental carbon (EC), and PM2.5 for each season in New Haven

andHartford. Our results show substantial differences in the average ex-

posure concentrations for each seasonwith the highest values inwinter.

The average exposure concentrations for PM2.5 and EC in New Haven

Fig. 5. Annual average hourly PM2.5 concentration in New Haven, CT. We average concentrations over all months of the year 2011 at different hours of each day. We observe significant

diurnal variability in PM2.5 concentration.

Fig. 6. Downwind concentration decay profiles for NOx and EC in New Haven. The four different lines depict the trend in each season.
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andHartford are quite similar; however, the averageNOx exposure con-

centration is significantly higher in New Haven due to the larger num-

ber of major roads and denser population in New Haven. When we

compare the fine (HYCAMR) and coarse (CAMx) estimates, we find

that winter exhibits the largest differences, especially for NOx (Fig. 8).

The lower mixing height, slower chemistry, and lower dispersion in

winter elevates HYCAMR predicted concentrations near roads leading

to these greater differences. The HYCAMR estimated annual average ex-

posure concentrations of NOx are 58% and 13% higher than CAMx for

NewHaven andHartford, respectively. This substantial increase in aver-

age exposure concentrations using HYCAMR compared to CAMx results

from the coarse resolution of regional modeling underestimating the

impact of local exposures, particularly as onroad emissions are the

major source of NOx. For PM2.5, we observe greater differences between

fine (HYCAMR) and coarse (CAMx) model estimates. This results be-

cause PM2.5 is comprised of several species including near road dust

and nitrate and the fine resolution of HYCAMR captures the elevated

concentrations near roads. This leads to increased differences in average

exposure concentrations using HYCAMR compared to CAMx. Unlike our

findings for NOx and PM2.5, our estimates show that CAMxpredicted av-

erage exposure EC concentration is slightly higher than HYCAMR. This

results from the rapid decay in EC concentrations as distance from the

road increases leading to less of the population living in the elevated

zone for EC than for PM2.5 and NOx.

3.5. Model evaluation

We compare the performance of HYCAMR and CAMx for all three

Connecticut cities (New Haven, Hartford, and Willimantic) for NO2

and PM2.5. We present all the statistical parameters summarizing

model performance in Tables 1 and S1–S3.

Table 1 shows the comparison between HYCAMR and CAMx over

New Haven against both the satellite-based and Kim LUR estimates.

For NO2 satellite-based estimates, the mean fractional bias (MFB) and

mean fractional error (MFE) reduce from −1.11 to −0.66 and 1.11 to

0.89, respectively, when comparing CAMx andHYCAMR. This clearly in-

dicates that HYCAMR shows better agreement than CAMx; however,

both these model underestimated NO2 with respect to satellite-based

estimates. This could likely results from two factors. First, the ap-

proaches use different temporal data when estimating the average

NO2 concentration. Satellite-based estimates use the concentrations at

a single time point for each day, whereas HYCAMR and CAMx estimates

include concentration estimates for all hours. Second, the datasets pro-

vide estimates at different spatial resolution. We also estimate the frac-

tion of HYCAMR and CAMx estimateswithin a factor of two of reference

datasets (FAC2). The FAC2 for NO2 values are within the limit (0.5

≤ FAC2 ≤ 2) for HYCAMR, however for CAMx this value is smaller than

the expected limit.

We further compare HYCAMR and CAMx estimates to NO2 con-

centration estimates from the Kim LUR model at census block

group resolution to compare HYCAMR with another high resolution

estimate. To compare these estimates, we first up-scale the

HYCAMR estimates from 40 m × 40 m resolution to census block

group resolution. Both HYCAMR and CAMx show better agreement

with Kim LUR estimates than satellite-based estimates. Specifically,

the MFB and MFE for NO2 when compared to Kim LUR estimates

are −0.47 and 0.50, respectively, for CAMx and 0.15 and 0.40, re-

spectively, for HYCAMR. This higher agreement likely results from

finer resolution (census block group) of the Kim LUR estimates.

Fig. 7. HYCAMR estimated average exposure concentrations of PM2.5, EC, and NOx in New Haven and Hartford in each season. We observe significant seasonal variability.

Fig. 8. Percent differences in the estimated average exposure concentrations between HYCAMR and CAMx.
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HYCAMR performs better than CAMx when compared to both esti-

mates of NO2.

Model performance for PM2.5 displays similar trends with HYCAMR

showing better agreement than CAMx when compared to both

satellite-based and Kim LUR estimates (Tables 1 and S1–S2). However,

unlike NO2, we observe greater differences for PM2.5 in HYCAMR and

CAMx performance with LURmodel data set. This could result from dif-

ferences in the methods for estimating NO2 and PM2.5 in the reference

data sets. We observe similar trends for Hartford and Willimantic

(Tables S1–S2).

4. Conclusions

The hybrid air pollutant concentration modeling framework,

HYCAMR, described here provides spatially and temporally resolved es-

timates of pollutant concentrations at high resolution. Implementing

this model in three cities in Connecticut, we find strong seasonal and

temporal variabilities in pollutant concentrations. Winter shows higher

concentrations due to lower mixing heights and turbulence. We also

find that concentrations near roads drop during the day due to in-

creased turbulence and instability. Comparing different species, onroad

NOx contributes more to the overall concentrations than PM2.5 or EC. In

alignment with past studies, we find that near road concentrations

reach background levels within approximately 400 m of the road.

HYCAMR estimated concentrations are also comparable with both

satellite-based and land use regression estimates of concentrations. In

addition to providing high resolution concentration estimates,

HYCAMR has several advantages over many contemporary hybrid

models. HYCAMR has relatively low computational and data require-

ments, captures temporal variability in pollutant concentrations, and

applies to a wide suite of species. The two approaches mentioned ear-

lier, Bates et al. (2018) and Chang et al. (2015), either use different

methods for gases and particular matter or need individual model

runs for each species. These both increase the complexity of model im-

plementation and the required computational time. Compared to these

models, HYCAMR not only provides detailed temporal estimates but is

alsomore internally consistent, simpler to implement, and only requires

a single run for all species. One of the limitations of the approach is that

it does not currently consider unique emissions factors for each road.

However, we have demonstrated thatHYCAMR is a promisingmodeling

approach in estimating near road pollutant concentrations at high reso-

lution. With the increasing population living and working near roads,

high resolution concentration estimates are essential to estimate expo-

sure and eventually develop better policy to mitigate human exposure

to air pollution.
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