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scales but cannot effectively estimate concentrations from the combination of regional and local sources at both
local and regional scales simultaneously. This study describes a hybrid modeling framework, HYCAMR, combin-
ing a regional model, CAMX, and a local-scale dispersion model, R-LINE, to estimate concentrations of both pri-
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shows strong temporal and seasonal variability in NOx, PM, 5, and elemental carbon (EC) concentrations. This
study evaluates HYCAMR year 2011 estimates of NO, and PM, 5 against two sources: satellite-based estimates
at coarse resolution and regression model estimates at census block group resolution. In this evaluation,
HYCAMR demonstrates improved agreement with the land-use regression modeling and mixed agreement
with satellite-based estimates when compared to the regional CAMx estimates.
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1. Introduction

Motor vehicles are one of the most significant anthropogenic sources
of air pollution in urban areas. In addition, the rapid growth of the world's
motor-vehicle fleet resulting from population growth, economic growth,
metropolitan expansion, and increased dependence on motor vehicles
has resulted in an increase in the number of people living and working
near major roads (Adar and Kaufman, 2007; Salam et al., 2008). Negative
health outcomes associated with traffic-related air pollution include
asthma (Vette et al,, 2013; Jerrett et al., 2008; Rohr et al.,, 2014), respira-
tory impacts (Kim et al,, 2015; Winquist et al., 2015; Pascal et al., 2014),
cardiovascular impacts (Franck et al., 2011; Crouse et al., 2012), cancer
(Arden Pope et al., 2011; Turner et al., 2011; Loomis et al., 2013), low
birth weight (Wilhelm et al., 2012; Bell et al., 2008; Ebisu and Bell,
2012), and premature death (Schwartz et al., 2008; Pope et al., 2009;
Crouse et al., 2012). A special report on traffic related air pollution by
the Health Effects Institute (HEIL 2010) identified a heightened exposure
zone within a range extending to somewhere between 300 m and
500 m from major roads. Much of the area in this zone may experience
concentrations 2.5 to 6 times higher than the background. There is an ur-
gent need to estimate near road pollutant concentrations at high resolu-
tion to improve exposure estimates.

Scientists and policy makers typically estimate ambient air pollutant
concentrations using either data from air quality monitoring networks
or from air pollution models. Both of these methods have limitations. A
major limitation associated with monitored concentrations is the rela-
tively low spatial resolution and spatial coverage associated with most
networks. It is also challenging to estimate source specific contributions
to air pollutant concentrations using monitored values. Caiazzo et al.
(2013) estimated that, in 2005, road sources accounted for 38.5% of
total NO, and 6.9% of total PM, 5 emissions in the United States.
Dedoussi and Barrett (2014) attributed 7826, 3982, and 3702 premature
death in 2005 in California, New York, and New Jersey, respectively, due
to exposure to traffic-related pollution. Unfortunately, current regulatory
ambient air monitoring does not adequately capture near road concen-
tration levels for most locations and chemical species. For this reason, reg-
ulators need high spatial and temporal resolution modeling approaches
to accurately estimate exposure for a wide variety of chemical species.

The air quality modeling approaches currently available can compute
the source-specific pollutant concentrations either on a regional- or
local-scale but still lack effective ways to estimate the combined expo-
sure from regional and local sources. Fann et al. (2013) used the CAMx
regional air pollution model (12kmx12km resolution) to quantify
ozone and PM, 5 related premature deaths from onroad emission sources
in the United States. As elevated concentrations near roads reach back-
ground levels within a few hundred meters, regional air pollution
models which can, at most, resolve down to 1 km cannot adequately rep-
resent these gradients. Further, temporal variabilities in pollutant disper-
sion patterns in stable and unstable atmospheric conditions also greatly
influence the concentration gradients near roads. Estimating air pollu-
tion from local sources such as motor vehicles using a regional air pollu-
tion model which considers all the processes that impact atmospheric
chemistry and physics is a computationally intensive process. A poten-
tially better, and more realistic approach, is to use local scale dispersion
models for near road air pollution estimation. Compared to chemical
transport model (CTMs), local scale dispersion models are less computa-
tionally expensive and can provide concentration estimates at high reso-
lution. Batterman et al. (2015) implemented the R-LINE, a local scale
dispersion model, to quantify spatially resolved PM, 5 and NOx concen-
trations in Detroit, MI. Greco et al. (2007) estimated traffic related expo-
sures using a line source model, CAL3QHCR, in Boston, MA. Traditionally,
the dispersion models available to estimate near road pollutant concen-
trations either do not account for background concentrations from re-
gional sources, do not account for temporal variability, or do not
consider chemical interactions between local and regional pollutants.
There remains a need to better quantify the combined local and regional

pollution impact to design effective policies to protect human health
from the harmful effects of air pollution exposure.

Researchers have recently started to develop hybrid models to
bridge this gap between local and regional air pollution modeling.
Isakov et al. (2007) combined a regional and dispersion model to eval-
uate the sub-grid temporally- and spatially-resolved benzene and form-
aldehyde concentrations from vehicular emissions. Beevers et al. (2012)
also applied a similar modeling approach to estimate NOx and ozone
concentrations at 20mx20m resolution. Both of these approaches pro-
vide fine temporal and spatial scale concentration estimates that can
aid in health impact assessments and epidemiological studies. However,
these approaches potentially lead to over-estimation of pollutant con-
centrations due to the double counting emissions by considering the
same emissions in both models. Bates et al. (2018) developed a hybrid
modeling framework combining CMAQ and R-LINE to quantify pollut-
ants concentrations at a neighborhood scale. Chang et al. (2015)
employed a hybrid approach in central North Carolina and estimated
near road PM; s concentrations at a Census block resolution. Both
these approaches provide better concentration characterization in
terms of spatial resolution but lack temporal resolution. Running the
model multiple times for multiple species makes these modeling ap-
proaches also data intensive. Most of the hybrid modeling frameworks
currently available either double count onroad emissions, do not pro-
vide temporal information, need extensive additional data, or require
significant computational resources due to the required number of
model runs.

Here we present a hybrid modeling framework (HYCAMR) combin-
ing a regional chemical transport model and a local scale road disper-
sion model to estimate combined (regional and local/near road)
concentrations at fine spatial and temporal resolution. We employ
HYCAMR in three Connecticut cities - Hartford, New Haven, and
Willimantic - to estimate hourly PM, 5, NOx, and elemental carbon
(EC) concentrations at a 40mx40m resolution. This approach provides
improved spatial and temporal resolution of concentrations profiles in
near road environments to improve exposure assessment.

2. Method and model description

Our hybrid modeling framework, HYCAMR, is comprised of an
Eulerian 3-D chemical transport model, the Comprehensive Air Quality
Model with Extensions (CAMx version 6.0), and a local scale road dis-
persion model, R-LINE-v1.2. Fig. 1 shows a diagram of the information
flow within HYCAMR. HYCAMR uses CAMx to define the regional con-
tributions and also to determine the mass of pollutant originating
from local, onroad emissions. HYCAMR uses R-LINE to determine the
dispersion pattern of the local, onroad emissions. By combining the re-
sults from both models, HYCAMR provides an estimate of the total pol-
lutant concentration for each hour of the year at 40mx40m resolution.
We describe the details of HYCAMR in Sections 2.1-2.3.

2.1. Regional-scale estimates (CAMx)

In HYCAMR, we use the Comprehensive Air Quality Model with Ex-
tensions (CAMX) to quantify the concentrations of various species
from onroad and regional sources in the Northeastern US with a grid
resolution of 12kmx12km. We apply the Lambert Conformal Projection
over the studied domain with 6834 ground-level grid cells (67 north-
south x 102 east-west) and 20 vertical layers. CAMX uses first principles
to estimate the impacts of emissions, advection, turbulent diffusion,
condensation, evaporation, deposition, and chemical reactions (gaseous
and aqueous) on air pollutant concentrations. We implement the Partic-
ulate Matter Source Apportionment Technology (PSAT) tool available in
CAMX to separately track the transport and transformations of species
from onroad and regional emission sources. We use the 2011 National
Emissions Inventory (NEI) developed by the US Environmental Protec-
tion Agency (EPA) processed using the Sparse Matrix Operator Kernel
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Fig. 1. Schematic of our hybrid modeling framework, HYCAMR. NEI and AADT denote the National Emission Inventory and Annual Average Daily Traffic dataset, respectively.

Emissions (SMOKE) (CMAS, 2013) model. These emissions inputs were
included as part of the United States Environmental Protection Agency's
Ozone Regulatory Reanalysis, including model evaluation (US EPA,
2014a). For gas phase chemistry, we use CAMx mechanism 7. This
mechanism is based on the Carbon Bond version 6 (CB-6) (Yarwood
et al,, 2010) mechanism and includes aerosol chemistry. CAMx mecha-
nism 7 has a total of 218 reactions for 77 gaseous species and includes
16 aerosol species. In CAMx, PM, s includes secondary nitrate, sulfate,
ammonium, organic aerosols, and several primary species. We create
boundary conditions for the New England domain using a CAMX run
for the continental US using the same inputs. We use meteorological in-
puts predicted by the Weather Research and Forecasting model WRF
(version 3.4) (Skamarock et al., 2008). The WRF domain includes 471
x 311 cells with a horizontal resolution of 12kmx12km over the
United States. The vertical grid has 35 sigma levels stretching from
near surface to 50 hPa. The meteorological model evaluation is provided
in US EPA's Meteorological Model Performance report 2011 (US EPA,
2014b). Parvez et al. (2017) contains a detailed performance evaluation
of CAMX estimates using this set of inputs.

Using these datasets, we create two emission categories - onroad
and all other sources. More specifically, we track the onroad emissions
from each grid cell in each city as a separate source for use in
HYCAMR (described in Section 2.3). We use these separated emissions
in PSAT to track concentrations from onroad and other sources individ-
ually. We use this approach later to avoid double counting emissions. In
the combined model, CAMx not only accounts for the chemistry of re-
gional pollutants but also local onroad pollutants throughout PSAT.

2.2. Local-scale estimates (R-LINE)

R-LINE is a steady state Gaussian plume line source dispersion model
developed by US EPA to estimate pollutant concentrations near roads.

This model numerically integrates over multiple point sources to ap-
proximate emissions occurring along a line (Snyder et al,, 2013). R-
LINE includes both vertical and lateral dispersion, simulates low wind
meander conditions, and applies Monin-Obukhov similarity theory for
vertically profiling the wind and turbulence near the surface. For sim-
plicity in this initial implementation of HYCAMR, we consider only pri-
mary and secondary roads.

Like other dispersion models, R-LINE typically uses meteorology
from a nearby weather station. For consistency between CAMx and R-
LINE, we use the same WRF-predicted meteorology for both R-LINE
and CAMx (described in Section 2.1). We have compared this approach
with using nearby weather station data in past work (Parvez and
Wagstrom, 2018). We use the Mesoscale Model Interface Program
(MMIFv3.2-beta) (EPA, 2015) to process meteorology and surface char-
acteristics variables from WREF for use by R-LINE. MMIF considers the
height of the lowest sigma level mid-point (~10 m) in computing mete-
orology inputs for dispersion models. The MMIF processed meteorolog-
ical file contains 18 parameters representing near surface characteristics
including friction velocity, wind speed, boundary layer depth, tempera-
ture, and convective velocity scale. Instead of using meteorology specific
to each hour of the year, we consider daily hourly-resolved meteorology
averaged over each month of the year 2011. For example, instead of
model 1:00 am on each day of October, we average the meteorological
conditions present at 1:00 am each day of October and run R-LINE for
these average conditions. This provides 288 meteorological proxies
representing one diurnal profile for each month.

In HYCAMR, R-LINE (version 1.2) provides spatially- and
temporally-resolved near road pollutant dispersion profiles at high res-
olution. To do this, we run R-LINE using each of the 288 meteorological
proxies described above to estimate spatial pollutant concentrations.
This provides an estimate of pollutant spatial distribution representing
a typical hour of the day of each month. We implement R-LINE in each



F. Parvez, K. Wagstrom / Science of the Total Environment 663 (2019) 144-153 147

individual CAMx grid cell within each city of interest with a receptor
spacing of 40 m yielding an estimate of near road pollutant concentra-
tions at 40mx40m resolution. We use these estimated concentrations
to create spatial proxies over which we distribute the hourly onroad
source mass predicted by CAMx-PSAT. We describe this step in more
detail in Section 2.3. This transforms the 288 proxies into hourly con-
centrations throughout the year (covering 8760 h) without needing to
run R-LINE for every single hour of the year. This decreases the R-LINE
computational burden by over an order of magnitude.

We use the Annual Average Daily Traffic (AADT) data from Connect-
icut Department of Transportation (CT DOT, 2011) for vehicle counts on
major roads in the cities of interest. As mentioned earlier, we use R-LINE
to quantify the relative dispersion of mass rather than the absolute con-
centrations. Applying an assumption of negligible chemistry and depo-
sition, each species should follow the same anticipated dispersion
pattern no matter the emissions rate. This allows us to use a simplified
emission factor of 1 g/(ms) for each vehicle per day on each road. We
designed this approach to minimize the computational burden associ-
ated with needing separate model runs for each species. For road loca-
tion, we use the primary and secondary roads defined in the TIGER/
Line shapefiles developed by the United States Department of Agricul-
ture and available through the Geospatial Data Gateway (USDA,
2015). We have included maps of the roads in the Supporting informa-
tion (Fig. S1).

2.3. Hybrid model (HYCAMR)

In the HYCAMR, we combine the CAMXx estimated regional concen-
trations with R-LINE-estimated local dispersion to estimate total hourly
pollutant concentrations at 40mx40m resolution. Using the R-LINE-
predicted concentrations described in Section 2.2, we create the pre-
dicted pollutant dispersion pattern by normalizing each by the mass
at each 40 m spaced receptor by the total mass within the CAMXx grid
cell (Eq. (1)).

R;
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In Eq. (1), f; is the fractional contribution at receptor location i, R; is
the R-LINE-predicted near road pollutant concentrations at receptor lo-
cation i and n is the total number of receptor locations. We then distrib-
ute the CAMx-predicted onroad source concentration over the R-LINE-
predicted normalized dispersion profile (f;) to estimate near road pol-
lutant concentrations at high resolution (Eq. (2)).
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InEq. (2), C.;is the near road pollutant concentrations at receptor lo-
cation i, C camyx is the CAMx-predicted onroad source concentration, and
Viokm and Vo, are the resolution of the CAMx and R-LINE models, re-
spectively. Once we estimate the concentrations from onroad sources
at high resolution, we can simply add the regional concentration to es-
timate the total pollutant concentration at high resolution (Eq. (3)).

Ccomb,i = CLi + Crcamx 3)

In Eq. (3), Ccomp,i is the combined regional and local pollutant con-
centrations at receptor location i and Cgcany is the CAMx-predicted re-
gional concentration. We include a simplified, example calculation in
the Supporting information (Section S2).

2.4. Model evaluation approach

Traditionally, developers evaluate the performance of air quality
models using measurements. Due to the lack of availability of

measurements in our domain at such a fine scale resolution, we instead
evaluate the performance of HYCAMR with two other approaches to es-
timate fine scale concentrations: one based on land-use regression
modeling (at census block group resolution) and one based on down-
scaled satellite measurements (at 0.01° x 0.01° resolution).

We evaluate HYCAMR performance for NO, and PM, 5 in the year
2011 using two datasets: satellite-based estimates and land use regres-
sion estimates. We estimate satellite-based ground level NO, mixing
ratio at Ozone Monitoring Instrument (OMI) resolution (0.05° x 0.05°)
using an approach similar to the one described in Lamsal et al. (2008)
(Eq. (4)). This approach uses a chemical transport model (GEOS-
Chem) to estimate ground-level concentrations from satellite-measure
NO, column density.
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In Eq. (4), S represents the surface-level NO, mixing ratio and Q rep-
resents the tropospheric NO, column density. The subscripts “O” and
“G” represent OMI and GEOS-Chem, respectively. The OMI-derived sur-
face NO, (So) represents the mixing ratio at the lowest vertical grid. v
represents the ratio of the local OMI NO, column to the mean NO,
across the GEOS-Chem domain (2° x 2.5° resolution). Q is the free tro-
pospheric NO, column over the GEOS-Chem grid cell. The GEOS-Chem
development team routinely compares model performance to a set of
standard benchmarks (GEOS-Chem v9-02 benchmark history, 2017).
For satellite data, we use the Berkeley High-Resolution (BEHR v3.0A)
processed OMI NO, column density (Laughner et al., 2016) for our anal-
ysis. Finally, we compare this estimate of ground-level NO, with both
HYCAMR and CAMXx estimated concentrations. We also compare the
HYCAMR and CAMx estimated NO, concentrations with Kim land use
regression (Kim LUR) model estimates at census block group resolution
developed by Kim et al. (2018). They employed a modeling approach to
estimate the concentrations of the six criteria pollutants within each
census block group in the contiguous United States for the years
1979-2015. Their modeling approach uses a universal kriging frame-
work that includes summary predictors, estimated by partial least
squares (PLS) from geographical variables, and spatial correlation..

To evaluate performance for PM, s, we compare the HYCAMR and
CAMX estimated concentrations with combined geophysical-statistical
model estimated concentrations with a resolution of 0.01° x 0.01°.
This model estimates ground-level PM; 5 by combining Aerosol Optical
Depth (AOD) retrievals from the NASA Moderate Resolution Imaging
Spectroradiometer (MODIS), Multi-angle Imaging Spectroradiometer
(MISR), and Sea-Viewing Wide Field-of-View Sensor (SeaWIFS) instru-
ments with the GEOS-Chem. GEOS-Chem is further calibrated to global-
based observations using a geographically-weighted regression (GWR)
(Van Donkelaar et al.,, 2016). The estimated PM, 5 concentrations using
GWR were highly consistent (R?> = 0.81) with out-of-sample cross-
validated PM, 5 concentrations from monitors. We also again compare
the estimates to the Kim LUR-estimated PM, 5 concentrations. We in-
clude the definitions of each statistical quantity used in the model eval-
uation in the Supporting information.

3. Results
3.1. Seasonal variation of pollutant concentrations

We estimate the seasonal average concentration fields for NOx (NO,
NO;, N,0s, radical NOs, and HONO), PM, s, and elemental carbon (EC)
using HYCAMR in New Haven, Hartford, and Willimantic (Figs. 2 and
S3-54). We see substantial seasonal variation in the dispersion pattern
between species and locations. The differences in the spatial dispersion
between seasons mostly results from meteorological differences though
we do account for changes in emissions at both regional and local scales
through the use of CAMx concentrations for both sets of sources,
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regional and onroad (Section 2.3). We see the highest concentrations in
winter due to the lower mixing heights, friction velocities, and convec-
tive velocities that hinder the dispersion of pollutants. Conversely, high
wind speeds in spring facilitate rapid dispersion leading to lower con-
centrations near the road and decreasing the impact of local sources.
The higher mixing heights in the summer lower background concentra-
tions, but the lower wind speeds also decrease dispersion, increasing
the impact of onroad emissions.

The concentrations near roads in HYCAMR are generally high; the
values are even higher where major interstate highways merge. In
New Haven, we find the highest concentrations where 1-95 and [-91
merge and we observe similar behavior in other cities. Compared to
NOx, EC concentrations reach background concentrations nearer to
the roads. This could result from the relatively lower EC emission rate
from onroad sources compared to NOx. We also anticipate that NOx sec-
ondary chemistry and interaction with regional pollutant would

increase the split between NO and NO, allowing greater dispersion of
NOx in HYCAMR. Our initial analysis indicates that HYCAMR captures
the anticipated qualitative spatial dispersion of primary and secondary
species.

HYCAMR estimates yields improved spatial resolution and in-
creased concentration gradients. CAMx estimated NOx concentra-
tions in New Haven ranged from 12.24 ppb to 17.02 ppb in
winter, 9.37 ppb to 13.56 ppb in spring, 12.77 ppb to 16.92 ppb in
summer, and 10.17 ppb to 15.33 ppb in fall, while HYCAMR esti-
mates ranged from 7.10 ppb to 828 ppb in winter, 5.30 ppb to
520 ppb in spring, 6.25 ppb to 559 ppb in summer, and 5.31 ppb
to 618 ppb in fall. Similarly, we find significant differences in the
range of EC and PM, 5 estimates between CAMx and HYCAMR.
This results from the higher resolution of HYCAMR which captures
the higher concentration gradients near roads yielding a wider
range of predicted concentrations.

"7 summer

Fig. 2. Average combined concentrations (regional and on-road) of NOx, EC, and PM, 5 at 40 mx40 m resolution in winter (December, January, February), spring (March, April, May),

summer (June, July, August), and fall (September, October, November) in New Haven, CT.
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6:00

Fig. 3. Annual average hourly NOx concentration in New Haven, CT. We average concentrations over all months of the year 2011 at different hours of each day. We observe significant

diurnal variability in NOx concentration.

Between the three locations, the estimated pollutant concentrations
in Willimantic are lower than in Hartford and New Haven as
Willimantic is a much smaller city and has fewer primary and secondary
roads and lower traffic loads (Figs. 2 and S3-S4). Although Hartford
does not have as many primary and secondary roads as New Haven it
still displays elevated concentrations from vehicular emissions due to
the high traffic volume in the city. One of the major benefits of
HYCAMR is that it can capture high concentration zones within cities.
For instance, we observe heighten concentrations in the urban cores
where population densities and traffic loads are highest. We also ob-
serve similar high concentration zones near major roads or where mul-
tiple major roads intersect.

3.2. Diurnal variation of pollutant concentration

Figs. 3-5 show the annual average hourly concentrations of NOx, EC,
and PM, s for New Haven. We find substantial diurnal variability in

concentrations for all three pollutants. Concentrations, especially those
near roads, decrease during the day and increase at night. This results
from a shift from a dominant unstable atmosphere during the day,
which promotes greater mixing, to a dominant stable atmosphere at
night. Between the three species, the impact of onroad emissions is
less dominate for PM, s, likely because PM; 5 results from more regional
sources. We see similar trends for Hartford (Figs. S5-S7).

3.3. Near road concentration profiles

Fig. 6 shows the HYCAMR estimated downwind concentration pro-
files of NOx and EC in New Haven, normalized by the concentrations
at the center of the road. We calculate these estimates using several iso-
lated major roads in northern New Haven (State Highway 69, State
Highway 63, Amity Rd, and Litchfield Turnpike) to avoid interference
with emissions from nearby roads. In order to estimate the decay profile
of each pollutant, we first consider the concentration at a specific

5:00 6 00 7:00

Fig. 4. Annual average hourly elemental carbon (EC) concentration in New Haven, CT. We average concentrations over all months of the year 2011 at different hours of each day. We

observe significant diurnal variability in EC concentration.
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Fig. 5. Annual average hourly PM, 5 concentration in New Haven, CT. We average concentrations over all months of the year 2011 at different hours of each day. We observe significant

diurnal variability in PM; 5 concentration.

downwind distance and then normalize by the concentration at the
closest point to the center line of the road. We then average the profiles
from multiple roads to create the average profiles shown in Fig. 6. Our
results show an exponential decay with distance for all seasons, though
the profiles do show substantial differences between seasons and spe-
cies. As found by Saha et al. (2018), we also find that the differences
in decay patterns between species in a single season are less prominent
than the differences in decay patterns for the same species in different
seasons. Winter shows the slower decay rate anticipated due to domi-
nant stable atmospheric conditions. For instance, in New Haven, NOx
concentrations drop by ~40% at 200 m in winter, whereas, in fall and
spring, concentrations drop by ~60% over the same distance. These find-
ings are consistent with Beckerman et al. (2008). We observe similar
trends for EC. We also find that the higher convective atmosphere and
temperature in summer do not impact the decay rate. In fact, we find
no significant differences between summer and winter predicted pol-
lutant decay profiles. This indicates that, apart from emissions, wind
speed is the major factor influencing dispersion from roads. Lower
wind speeds in summer ultimately leads to slow decay rates, while
higher wind speeds lead to faster decay rates in fall and spring. Overall,
both the species reach background levels within 400 m of the road
though EC reaches background levels at shorter distances than NOx.
These findings are again consistent with Riley et al. (2014).
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3.4. Average exposure concentration

We estimate the average exposure concentration (i.e. the average
concentration to which populations are exposed) in each urban area
using population-weighted average concentrations. We compare aver-
age exposure concentrations at census block group resolution using
HYCAMR and CAMX as a first evaluation of the impact of using high res-
olution modeling for exposure estimation. We use the 2010 census data
(US Census Bureau, 2010) to quantify average exposure concentration
using Eq. (5).

S G x Py

S P )

Cpop,j =

InEq. (5), Gyop,j is the average exposure concentration for species j; G;
and P; are the concentrations and population in census block group i, re-
spectively; and N is the total number of census block groups in a given
city. Fig. 7 shows the estimated average exposure concentrations of
NOx, elemental carbon (EC), and PM, 5 for each season in New Haven
and Hartford. Our results show substantial differences in the average ex-
posure concentrations for each season with the highest values in winter.
The average exposure concentrations for PM; 5 and EC in New Haven
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Fig. 6. Downwind concentration decay profiles for NOx and EC in New Haven. The four different lines depict the trend in each season.
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Fig. 7. HYCAMR estimated average exposure concentrations of PM; 5, EC, and NOx in New Haven and Hartford in each season. We observe significant seasonal variability.

and Hartford are quite similar; however, the average NOx exposure con-
centration is significantly higher in New Haven due to the larger num-
ber of major roads and denser population in New Haven. When we
compare the fine (HYCAMR) and coarse (CAMx) estimates, we find
that winter exhibits the largest differences, especially for NOx (Fig. 8).
The lower mixing height, slower chemistry, and lower dispersion in
winter elevates HYCAMR predicted concentrations near roads leading
to these greater differences. The HYCAMR estimated annual average ex-
posure concentrations of NOx are 58% and 13% higher than CAMXx for
New Haven and Hartford, respectively. This substantial increase in aver-
age exposure concentrations using HYCAMR compared to CAMX results
from the coarse resolution of regional modeling underestimating the
impact of local exposures, particularly as onroad emissions are the
major source of NOx. For PM, s, we observe greater differences between
fine (HYCAMR) and coarse (CAMx) model estimates. This results be-
cause PM, 5 is comprised of several species including near road dust
and nitrate and the fine resolution of HYCAMR captures the elevated
concentrations near roads. This leads to increased differences in average
exposure concentrations using HYCAMR compared to CAMX. Unlike our
findings for NOx and PM, s, our estimates show that CAMx predicted av-
erage exposure EC concentration is slightly higher than HYCAMR. This
results from the rapid decay in EC concentrations as distance from the
road increases leading to less of the population living in the elevated
zone for EC than for PM, 5 and NOx.

3.5. Model evaluation

We compare the performance of HYCAMR and CAMX for all three
Connecticut cities (New Haven, Hartford, and Willimantic) for NO,
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and PM,s. We present all the statistical parameters summarizing
model performance in Tables 1 and S1-S3.

Table 1 shows the comparison between HYCAMR and CAMx over
New Haven against both the satellite-based and Kim LUR estimates.
For NO, satellite-based estimates, the mean fractional bias (MFB) and
mean fractional error (MFE) reduce from —1.11 to —0.66 and 1.11 to
0.89, respectively, when comparing CAMx and HYCAMR. This clearly in-
dicates that HYCAMR shows better agreement than CAMXx; however,
both these model underestimated NO, with respect to satellite-based
estimates. This could likely results from two factors. First, the ap-
proaches use different temporal data when estimating the average
NO, concentration. Satellite-based estimates use the concentrations at
a single time point for each day, whereas HYCAMR and CAMXx estimates
include concentration estimates for all hours. Second, the datasets pro-
vide estimates at different spatial resolution. We also estimate the frac-
tion of HYCAMR and CAMx estimates within a factor of two of reference
datasets (FAC2). The FAC2 for NO, values are within the limit (0.5
< FAC2 < 2) for HYCAMR, however for CAMXx this value is smaller than
the expected limit.

We further compare HYCAMR and CAMx estimates to NO, con-
centration estimates from the Kim LUR model at census block
group resolution to compare HYCAMR with another high resolution
estimate. To compare these estimates, we first up-scale the
HYCAMR estimates from 40 m x 40 m resolution to census block
group resolution. Both HYCAMR and CAMx show better agreement
with Kim LUR estimates than satellite-based estimates. Specifically,
the MFB and MFE for NO, when compared to Kim LUR estimates
are —0.47 and 0.50, respectively, for CAMx and 0.15 and 0.40, re-
spectively, for HYCAMR. This higher agreement likely results from
finer resolution (census block group) of the Kim LUR estimates.
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Fig. 8. Percent differences in the estimated average exposure concentrations between HYCAMR and CAMX.
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Table 1
Performance evaluation statistics for HYCAMR and CAMx in New Haven using satellite-
based and Kim LUR estimations for year 2011.

MFB MFE RMSE  IOA FAC2  Corr

CAMXx/Satellite
HYCAMR/Satellite

—-111 111 6497 034 030 0.16

NO, —066 089 6078 030 0.79 0.13

CAMx/LUR —047  0.50 7.72 024 0.68 —0.22
HYCAMR/LUR 0.15 040 2644 009 147 0.20

CAMxX/GWR —-0.77 077 7.45 044 049 —0.25

PM, 5 HYCAMR/GWR —0.11 046 5.55 029 1.04 —0.26
) CAMx/LUR —085 0.85 5.57 0.11 0.41 0.13
HYCAMR/LUR —0.12 0.20 222 024 091 0.22

HYCAMR performs better than CAMx when compared to both esti-
mates of NO,.

Model performance for PM, 5 displays similar trends with HYCAMR
showing better agreement than CAMX when compared to both
satellite-based and Kim LUR estimates (Tables 1 and S1-S2). However,
unlike NO,, we observe greater differences for PM, 5 in HYCAMR and
CAMXx performance with LUR model data set. This could result from dif-
ferences in the methods for estimating NO, and PM, 5 in the reference
data sets. We observe similar trends for Hartford and Willimantic
(Tables S1-S2).

4. Conclusions

The hybrid air pollutant concentration modeling framework,
HYCAMR, described here provides spatially and temporally resolved es-
timates of pollutant concentrations at high resolution. Implementing
this model in three cities in Connecticut, we find strong seasonal and
temporal variabilities in pollutant concentrations. Winter shows higher
concentrations due to lower mixing heights and turbulence. We also
find that concentrations near roads drop during the day due to in-
creased turbulence and instability. Comparing different species, onroad
NOx contributes more to the overall concentrations than PM, 5 or EC. In
alignment with past studies, we find that near road concentrations
reach background levels within approximately 400 m of the road.
HYCAMR estimated concentrations are also comparable with both
satellite-based and land use regression estimates of concentrations. In
addition to providing high resolution concentration estimates,
HYCAMR has several advantages over many contemporary hybrid
models. HYCAMR has relatively low computational and data require-
ments, captures temporal variability in pollutant concentrations, and
applies to a wide suite of species. The two approaches mentioned ear-
lier, Bates et al. (2018) and Chang et al. (2015), either use different
methods for gases and particular matter or need individual model
runs for each species. These both increase the complexity of model im-
plementation and the required computational time. Compared to these
models, HYCAMR not only provides detailed temporal estimates but is
also more internally consistent, simpler to implement, and only requires
a single run for all species. One of the limitations of the approach is that
it does not currently consider unique emissions factors for each road.
However, we have demonstrated that HYCAMR is a promising modeling
approach in estimating near road pollutant concentrations at high reso-
lution. With the increasing population living and working near roads,
high resolution concentration estimates are essential to estimate expo-
sure and eventually develop better policy to mitigate human exposure
to air pollution.
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