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1. Introduction

Recent years have seen a great deal of work around the concept of sparse domination.

Perhaps the easiest domination result is the one for the dyadic maximal function
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where the supremum is taken over the family D of all dyadic cubes in R%. One can use the
Calderén—Zygmund decomposition at varying heights to obtain (for each non-negative
locally integrable function f) a collection S of dyadic cubes from the same filtration D
such that

Mpf<CY (fele,

QeS

where (f)g = ﬁ fQ f, and S is sparse:

Definition 1. A collection of sets S is n-sparse if for all Q € S there exists a subset
E(Q) C Q such that |E(Q)| > n|Q| and the collection {E(Q)} is pairwise disjoint.

It is worth mentioning that this notion was already used by Sawyer [21] and by
Christ—Fefferman [3] to prove certain weighted estimates, although the language that
they used was different. Moreover, the result readily extends to more general martingale
filtrations and a similar estimate allows one to sparsely dominate martingale transforms
as well (see [15]).

The recent interest in sparse domination results was sparked by Lerner (see for ex-
ample [18-20]) in connection with the famous As conjecture as it gave a particularly
simple proof of the — now — theorem (first settled by Hytonen in [13] after numerous ef-
forts by the mathematical community). Lerner’s original result was a dual form of sparse
domination:

||Tf||x,<ngpHQ§<|f|>QlQHX, (L1)

where the supremum is taken over all sparse collections (with respect to a finite number
of dyadic grids), and X is any Banach function space.

The number of sparse domination results is by now very large and it would be im-
possible to give a detailed survey of all of them in a reasonable amount of text. But let
us note that (1.1) has been generalized in many ways, and the typical result is that for
every pair of (sufficiently nice) functions f and g there exists a sparse collection of cubes
S such that

(T 9 < D (1 hellahel@l (1.2)
Qes
or more generally
(TFa) S Y (1 DarllahaeslQl (1.3)
QeS

! In what follows, we will usually omit the parameter n and just say “sparse” instead of “n-sparse”.
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where (|f])o,r = (\f|’>§2 and 1 <r,s < co. The (r, s) sparse forms of type (1.3) arise when
studying operators that fall outside the scope of classical Calderon—Zygmund theory, and
which may not satisfy the full range of strong and weak-type LP estimates implied by
(1.2). The operators that have been studied include but are not limited to rough singular
integral operators, Bochner—Riesz multipliers, spherical maximal functions, singular in-
tegrals along manifolds, pseudodifferential operators, and the bilinear Hilbert transform.
See for example [1,5,15,16,2,17,4,8,7]. Sparse domination provides a fine quantification
of the mapping properties of operators that carries much more information than LP
bounds. In particular, it is a very effective way to obtain sharp quantitative weighted
estimates and has also been used to study previously unknown endpoint behaviors (see
for instance [14]).

In the present work we study the problem of sparsely dominating the bi-parameter
analogue of the dyadic maximal function. This operator is the dyadic strong maximal
function:

Mg f(z) = ;gg(lflm (1.4)

where the supremum is taken over all dyadic rectangles containing x with sides paral-
lel to the axes. The strong maximal function is one of the most important operators
in the theory of multi-parameter singular integrals, associated with which is an un-
derlying non-isotropic dilation structure. This class of operators arise naturally in the
theory of summation of multiple Fourier series, several complex variables and certain
boundary value problems, and is a first step into the study of operators with more com-
plicated dilation structure (e.g. Zygmund dilations). However, much less is known about
these operators compared to the one-parameter case, for example the sharp weighted
bound, thus it is natural to ask whether the sparse domination technique can be in-
troduced into the multi-parameter setting to help the study. Unfortunately, this seems
to be very difficulty due to the fact that one of the key ingredients in standard proofs
of sparse domination, the stopping time argument, is missing in the multi-parameter
setting.

We first note that in the study of multi-parameter sparse domination, the natural
geometric objects to consider are axes-parallel rectangles instead of cubes, since Mg
can be large on axis-parallel rectangles of arbitrary eccentricity. Then, one observes that
the strong maximal function is indeed dominated by sparse forms (based on rectangles)
when restricted to a single point mass. Indeed, one can make sense of (1.4) when applied
to finite positive measures, and then it is easy to see that

M (00)(z,y) <

B (15)

And this function can actually be dominated by a sparse operator: if we define I,,, =
[0,2™) and J,,, = [2™71,2™) then
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1 1
——= > =l (7Y
lzllyl 4=y l=llyl
< Y 2Ty, (2, y)
m,ne”
=4 ) (00) 11, L1y, (7, 9).
m,ne”z

Note that the collection & = {I,,, X I, : m,n € Z} is sparse since for every R = I,,, X I,
we can define E(R) = J,, x J, and this satisfies the conditions of Definition 1 with
n=1/4.

This example is relevant because (approximate) point masses are extremal examples
for the weak-type behavior of Mg and the Hardy-Littlewood maximal functions near
the L' endpoint. Moreover, we know from the one-parameter theory that there is a con-
nection between sparse bounds and weak-type endpoint estimates; for example, a (1,1)
sparse bound of type (1.2) implies that 7 maps L! into weak L' (see the appendix in [4]).
Taking the above discussion into account, it is natural to ask whether or not Mg admits
a (1,1) sparse bound of the type

[(Msf, )l S D (FfDrilgrIR, (1.6)

ReS

where the collection S consists of dyadic axis-parallel rectangles. We also note that there
is no immediate contradiction implied by a bound of type (1.6); indeed, an estimate of
the type

(Tf )l S D AN rghrIR|

ReS

implies that 7 maps Llog L into weak L', but does not imply that 7" maps L' into
weak L' (the proof is similar to the argument in the appendix of [4]).

Our main result answers the question raised above in the negative: there can be no
domination by positive sparse forms of the type (1.2) for the strong maximal function.

Theorem A. For every C' > 0 and 0 < n < 1 there exist a pair of compactly supported
integrable functions f and g such that

[(Msf.g)l = C Y (1) r(lg)rIRI,

ReS

for all n-sparse collections S of dyadic rectangles with sides parallel to the axes.

The proof of Theorem A is based on the construction of pairs of extremal functions
for which the sparse bound cannot hold. These extremal examples take advantage of
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Fig. 1. Dyadic stairs.

the behavior of Mg when applied to sums of several point masses. Indeed, when we
apply Mg to a point mass we get level sets that look like dyadic stairs, as displayed
in Fig. 1. These stairs are sparse, in fact the measure of their union is proportional to
the number of rectangles that form them. We shall describe a way to place many point
masses sufficiently far from each other in such a way that these stairs are all necessary
to dominate Mg, but are packed too tightly to be sparse.

In particular, we shall construct a set of points P which are maximally separated
with respect to a quantity that captures the biparametric structure of the problem. Our
first extremal function is then the sum of point masses at the points in P. As we said
above, this will guarantee that Mg applied to it is uniformly large on the unit square.
We complement the construction of the set P with another set, Z, with the following
structure: for each point p € P there exist a large amount of points z € Z that are
both near p and far away from all the other points in 7. Moreover, the family of points
in Z associated with a given p € P are not clustered together, but are instead spread
out over the boundary of a hyperbolic ball centered at p. Our second extremal function
is then the normalized sum of point masses at the points in Z. We will show that the
placement of the points in Z implies that if a form given by a family S dominates the
pair (Mg f,g) then the rectangles in S need to cover the portion of the stair centered
at p that contains each z, for all z € Z. But then the resulting collection of rectangles
cannot be sparse.

We remark that our result actually extends to the situation in which we take slightly
larger averaged norms of f. In particular our methods allow us to push Theorem A to
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the case of Orlicz ¢(L)-norms with ¢(x) = zlog(x)® for a < 1/2. We carry out this
extension in Theorem 4.6.

We have learned that our construction of P is closely connected to the fields of discrep-
ancy, combinatorics, and computational learning. In particular it is a special construction
of a low-discrepancy sequence similar to those of Hammersley, see for example Defini-
tion 3.44 of [9]. These low-discrepancy sequences are also closely connected to the notion
of e-nets, though our point of view is in a sense opposite to the one usually taken in the
theory of e-nets: we are interested in lower bounds on the cardinality of the intersection
of these sets with rectangles. The notion of (¢,m, s)-nets is closer to our purposes, see [9].
Our results show that these kinds of sets are particularly well-suited to the study of the
strong maximal function. However, the theory of discrepancy and e-nets is much more
general so it would be very interesting to find further connections between other types of
maximal operators and the fields above. In particular Zygmund-type maximal operators
(defined like the strong maximal function, but with rectangles with fewer “parameters”
than the ambient dimension, see [6,22,11,23]) could be amenable to this connection.

The structure of the rest of the paper is the following. In Section 2, we prove lower
bounds for Mg and, in the opposite direction, we prove an upper bound for sparse
forms when acting on the same extremal functions. We assume the existence of the key
sets of points P and Z, which are needed to construct the aforementioned extremal
functions. The sets P and Z are constructed in detail in Section 3, completing the proof
of Theorem A. Finally, in Section 4 we show how our results extend to higher dimensions
by a tensor product argument. We also show that the strong maximal function is in a
sense supercritical for L!-sparse forms, which allows us to slightly strengthen our result.

Acknowledgments

The authors would like to thank Jill Pipher and Dmitriy Bilyk for useful discussions
regarding the content of this paper. The third named author is supported by NSF-DMS
#1764454.

2. Lower bounds for Mg and upper bounds for sparse forms

We start by introducing a quantity which is intimately related with the geometry of
the bi-parameter setting: for every pair of points p,q in [0,1)? we set

distr(p, ¢) = inf{|R|*/? : R € D x D is a dyadic rectangle containing p and ¢}.
One can also define a distance between two (dyadic) rectangles:

distg(R1, R2) :=  inf  distu(p, q).

pER1,qER2

Note that disty is not a distance function, and not even a quasidistance, as the triangle
inequality is completely false in general. We will, however, refer to it as the distance
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between two points. Using this language, the strong maximal function of a point mass
(1.5) can now be written as

1

Ms(do)(p) = distg(p, 0)2°

We are going to study the precise behavior of Mg when applied to uniform probability
measures concentrated on certain point sets: given a finite set of points F let

1
p=pr = MZ%- (2.1)

peF

In general evaluating the strong maximal function of a sum of point masses is a
computationally difficult problem: for every point p one has to consider all possible
subsets of F whose minimal enclosing rectangle contains p. However, if we know a priori
that F is e-separated (with respect to disty), and that it contains sufficiently many
points, then this forces a certain uniform distribution of u at large scales, reducing the
problem to treating only small rectangles. In particular, let € > 0, suppose that F =P
is such that #(P) > Ce~2, and that it is e-separated:

disty(p,q) > ¢ Vp#qin P.

Then for any rectangle with |R| > 2 we have

p(R) _ #RNP) _ |Re? 1
= < < _
Wlr =5 =GR “CREZ " C

If instead |R| < &2 then R can contain at most one point from P and so for any p for
which distg(p, P) S 1 we have

Ms(p)(p) ~

FP) o distm(p.q)? (22)

As we mentioned in the introduction, if one can find another set of points Z each of
which is very close to exactly one point p from P—and which are not very close to one
another, so that they do not form large clusters—, then we can force a contradiction
that makes sparse domination fail. The rest of this section is devoted to giving lower
bounds for Mg assuming the existence of such sets of points P and Z. In Section 2.2 we
exploit the intuition given above and use it to give upper bounds for sparse forms that,
together with the lower bounds from this section, will ultimately yield a contradiction.

The following two theorems give the full description of P and Z. We postpone their
proofs to Section 3.



8 A. Barron et al. / Advances in Mathematics 345 (2019) 1-26

Theorem 2.1. For every m > 0 there exists a collection of points P C [0,1)? such that
distg(p,q) > 27, Vp#q inP, (P.1)
and
#(P) = 22", (P.2)

Theorem 2.2. For every k < m and every 2~ ™-separated set P C [0,1)? there exists a
set Z C [0,1)? satisfying the following properties:

(Z.1) #(2) Z m22m.
(Z.2) For every z € Z there exists exactly one point p(z) € P such that

distg(p(2),2)* < 272m~1,
(Z.3) For every z € Z,

distg(p(2), 2)? ~ 272m =k,
(Z.4) For every dyadic rectangle R with |R| < 272™=2 that intersects P we have

#RNZ2)S k.
(Z.5) For every dyadic rectangle R with |R| > 272"~ we have
#(RN 2) <22 mk|R|.

The implied constants are independent of k and m.

Remark 2.3. A simple pigeonholing argument shows that if P is the collection from
Theorem 2.1 and R is a dyadic rectangle with |R| > 272"~ then #(RNP) = 22"+ |R|.

Remark 2.4. Above, we deliberately omitted the precise dependence of m on k. It turns
out that any m > k + C is admissible as one can check from the proofs in Section 3.
This justifies our choices of m and k in the next subsections.

2.1. Lower bound for Mg

For the rest of this section k < m will be some fixed large numbers, and (P, Z) will be
the sets given by Theorems 2.1 and 2.2. Also, 4 = up and v = vz will always denote the
associated uniform probability measures introduced in (2.1). The proofs of Theorems 2.1
and 2.2 in the next section show that p and v can be arbitrarily well-approximated by
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L' functions, in particular because we will be able to choose the points from P and Z
in small cubes. Because of this we will prove Theorem A with f and g replaced by the
measures p and v, respectively, and the full result can then be recovered by a simple

limiting argument.
Proposition 2.5. Under these conditions we have
(Ms(p),v) 2 2% (2.3)

Proof. The positivity of Mg makes the proof almost trivial since we do not need to care
about possible interactions among the points in P. In particular for all z € Z let p(z)
be the point guaranteed by (Z.2) of Theorem 2.2. Then, by (2.2) and (Z.3),

1 22m+k
> ~
~ #(P) distu(p(z), 2)? #(P)

M (1) (2)
Now by (P.2) of Theorem 2.1,

Ms(p)(2) Z 2"

and the claim follows from the fact that v is a uniform probability measure over the
set Z. O

2.2. Upper bound for sparse forms

We now prove upper bounds for sparse forms when acting on p and v. Our results
here are written in the language of Carleson sequences:

Definition. Let o be a non-negative function defined on all rectangles that is zero for all
but a finite collection of rectangles. We say that « is A-Carleson if for all open sets {2

we have

S arlRl < A0,
RCQ

where the sum is taken over all rectangles contained in €.

We call a collection of dyadic rectangles S a A-Carleson collection if the sequence

1 ifREeS,
aR —
0 otherwise

is a A-Carleson sequence. The notions of sparse and Carleson collections are equivalent:
a A-Carleson collection is A~!-sparse and vice versa, as was shown in [12] (see also [10]).
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Proposition 2.6. For every A-Carleson collection S and all k and m we have

> (i)l RIS Ak(1+ %) (2.4)

ReS

Proof. For any rectangle R let R be the intersection of R with the unit square [0, 1)2.
We will show that

22k

(Wr{V)R S k(l + F) (:%)2. (2.5)

Assume first that R is large, i.e.: |R| > 272™~1. Then by the 2~™-separation of P

_ 1 #(PnR) _|R
()R = 22m+1 IR] = ﬁ

Similarly, for v we have by (Z.5):

Therefore, for large rectangles we have

W rihn S k(@f

If instead R is small, i.e.: |[R| < 272™~1 then we have to be more careful. If

(W r(V)R #0

then R must contain at least one point p € P. In fact, since R is sufficiently small, there
exists exactly one p € P N R. Hence

1
(Ww < 22m R

Since (v)r # 0 the rectangle R must contain at least one point from Z. This implies a
lower bound on the size of R. To see this observe that if z is any point in RN Z, then
by the smallness of R and (Z.2) we must have p = p(z), and hence disty(p, z) ~ 272m~*
by (Z.3), therefore

|R| Z 2—2m—k.
Now, by (Z.4) we have

#(RNZ) Sk,
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SO

from which inequality (2.5) follows.
Now we can finish the proof by splitting S into families S; as follows:

S;={ReS&S: 27" YR| <|R| < 277|R|}.
Note that the rectangles in S; are contained in
Q; ={peR’: Ms(Ljp)) 227"},
which, by the weak-type boundedness of the strong maximal function, satisfies
] S 2. (2.6)

Then by estimate (2.5), the Carleson condition, and (2.6),

> (mr()rIR| = Z > (Wr(v)rIR)

ReS j=0 RES;

(1+—)Z2 % 57 |R|

ReS;

22k

<k(1+ —) fy 27| |

7=0
22k o )
< k(14 —) jo
=0

<Ak(1+ﬁ) 0

Remark 2.7. An examination of the proof above shows that we do not use the full power
of the Carleson condition. In particular, the collection & can be assumed to satisfy the
A-Carleson packing condition with respect to the unit cube and the level sets €2;, but it
does not need to be A-Carleson with respect to any other open sets (and in particular
need not be A-Carleson at small scales).

We can now formally conclude the proof of Theorem A conditionally on Theorems 2.1
and 2.2.
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Proof of Theorem A. Choose m = k22*. Proposition 2.5 implies that

(Ms(p),v) Z 2,
so Proposition 2.6 forces A — oo if we make k — oo, which leads to a contradiction. O
3. Construction of the extremal sets

In this section, we will sometimes need to work with the projections of a rectangle R
onto the axes. To that end, if R = I x J we denote

m(R):=1, m(R):=J.

For dyadic intervals I we let T denote the dyadic parent of I. We also let 1) denote the
j-fold dyadic dilation of I, so that /) is the dyadic interval containing I with |I| = 27|1].

3.1. Construction of P and the proof of Theorem 2.1

The following observation will be useful in the construction:

Lemma 3.1. Let Ry = I1 X J1, Ry = I3 X Jo be two dyadic rectangles such that Iy N Is =
Jl n JQ = @ Then

distgr(p1, p2) = distu(q1,92), Vp1,q1 € Ri, p2,q2 € Ra.

Proof. Given any p; € Ry, ps € Ro, it suffices to show that any dyadic rectangle R =
I x J containing both p; and ps needs to contain Ry and Rs. Since INT; # 0, i =1,2,
and Iy NIy =0, one has I D I;, i = 1,2. The same holds for J: J D J; fori=1,2. O

Proof of Theorem 2.1. We are going to show the following claim by induction: for ev-
ery non-negative integer m there exist 22! dyadic squares Q7" ..., Q5,41 in [0,1)?
satisfying

(1) £Qm) =272m~1 for all 4,
(2) distg(Q7*,QF') > 27™ for all i # j.

Assuming the claim, it is enough to take

’P:{pQQG {QT,~-~7Q3§m+1}}7

where pg denotes the center of the cube —in fact, any point of () would work. Then,
by Lemma 3.1 we immediately get (P.1) and (P.2) and we end the proof.
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We turn to the proof of the claim. The case m = 0 is easy: it suffices to take Q) =
[0,1/2)? and QY = [1/2,1)?. Assume now by induction that the theorem is true for m—1.
Scale the family obtained in that step by 1/2 in both dimensions and place a translated
copy of the result in each square @ € D;([0,1)?). Denote the cubes so constructed by
PlQ Y ,P;gm_ 1. By the dilation invariance of disty we have

E(PiQ) —9-1.9-2(m-1)-1 _ 9—2m

Therefore, it is enough to choose a first-generation child from each of these squares
{PiQ}LQ in such a way that (2) is satisfied. Write Dy(]0,1)?) = {QY, QJ, Q%, @1}, where
the children are listed in the order of upper left, upper right, lower left, and lower right.
We first consider QY and Q7. For each PP with Q {Q3,Q1} we choose an arbitrary

K3
first-generation child and call it Q? By induction we have

distm(QF, QF) > distw(P?, PP) > 271 27"V =27™ for all i # j,

while the distance between any square in Q) and any other square in Q1 must be exactly
1 according to Lemma 3.1.

Now we must choose the children from the squares in the other diagonal. This choice
is more delicate since the squares from the first diagonal could be much closer. By
the pigeonhole principle, for each P = PZQ, Q € {Q},QV}, there exist exactly two

other squares, Png and P,? i, which are at distance at most 27", Indeed, according to
Lemma 3.1, the distance condition forces PJQS, P,? i to be in the same row (or column) as
PP, while each row (or column) of QY (or Q1) contains exactly one square by induction
hypothesis. In fact, the distance between PZ»Q and Png is precisely equal to 0, and the
same holds for P,? }.

We now project Q?g and Q,;Q%, the children chosen from Png and P,? : onto P. Note
that their projection leaves exactly one first-generation child of P untouched, which we
select as Q? It suffices to show that the distance from Q? to any square in QY is larger
than 27™, since the case of @ is symmetric and any other combination can be dealt
with in the same way as above. To see this, if the square in QY does not come from the

0
P]-Q“ chosen above, the distance has to be larger than 27™ by Lemma 3.1. Otherwise,
0
the square is exactly Q?O. By the construction above, both its horizontal projection and

its vertical projection and the respective ones of QZQ are disjoint, which allows one to
apply Lemma 3.1 once more to conclude the proof. O

3.2. Construction of Z

In the construction, there are two aspects that will require special care: each point in
Z has to be close to exactly one point from P (but not too close), while two different
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points in Z cannot be too close to each other. We begin by constructing certain special
rectangles inside which we shall place the points forming Z.

Definition. We say that a rectangle R is a standard rectangle if it belongs to the collection
E={RC0,1)?: R dyadic, |R| =272""2 and RNP # 0}.

If R € £ we let pr denote the unique point in R N P. Also let £, denote the collection
of standard rectangles containing p € P.

One can obtain &, by area-preserving dilations of one fixed R € &,. Indeed, for any
dyadic R =1 x J and any j € Z define

Dil; R=1'x.J',

where I’ x J’ is the unique dyadic rectangle in &, of dimensions 27|I| x 277|.J|. Then it is
easy to see that for each standard rectangle R, &, = {Dil; R C [0,1)?}. In particular, for
any p € P there are approximately m distinct standard rectangles in £,. Given z,y € R,
let

0(z,y) =inf{|Q| : Q € D is a dyadic interval containing = and y}.
Also, for dyadic intervals K define

§(z,K) = ylgf{é(x,y)

Now suppose R = I x J € &, with pr = p = (2,y). Given k > 1, we define I} to be the
largest dyadic interval I’ such that

Sz, I') =27 FH11],

and define J(; similarly. Note that ) is the child of I that does not contain z, and for
all k > 1, Iy is the unique dyadic offspring of I of generation k satisfying x ¢ I(;) and
T € f(k\) (the dyadic parent of I(yy).

The following result is the main technical lemma needed for our construction.

Lemma 3.2. Fiz an integer k > 1 with k < m. For any dyadic rectangle R=1x J € &,
there exists a sub-rectangle R* C I(1y x J(x) such that for all ¢ # p in P:

disty (¢, R*)? > 272m~ 1,

We will apply this lemma to construct the points Z used in the proof of the main
theorem as follows: given R = I x J € £, we choose one point zg in R* C I(1) X J,
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Fig. 2. Log-log sketch of some standard rectangles. In blue are the subrectangles I(1y X J(xy with k = 3. (For
interpretation of the colors in the figure, the reader is referred to the web version of this article.)

and let Z = (Jzce 2r- Fig. 2 gives some intuition about the situation. Note that this
immediately guarantees properties (Z.1), (Z.2) and (Z.3) of Theorem 2.2. This placing
also allows us to prove the remaining two properties. We start by proving directly (Z.4):

Lemma 3.3. For every R € £ we have
#RNZ)S k.

Proof. First observe that if zgr € R with R, R’ € £ then by Lemma 3.2 we must have
Pr = pr = p. So let Zg be defined by

ZR:{TGEPZZTER}.

It suffices to show that #(Zg) < k.
Observe that any T € Zi must have 71 (T) C 71 (R). Indeed, if m1(T) 2 m(R), by

definition zp € m1(T") 1y X 2(T")(xy and one has 71 (R) C 71 (T')(1). But this is impossible
since 71 (1) 1y € m1(T) \ m1(R). In addition, there must hold

|m2(T)| < 257 Hma(R)),

as the smallest interval containing both ma(pr) and ma(zr) is Fﬂk). The desired
estimate then follows from the fact that there are O(k) such standard rectangles. O

3.3. Proof of Lemma 5.2 and (Z.5)
In this subsection, given two dyadic rectangles R;, Ro that are not contained in one

another but which do intersect at some nontrivial set, we say that Ro intersects R
horizontally if
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ma(R2) C m2(R1),
and similarly Ro intersects Ry wvertically if
7T1(R2) g 7T1(R1).

One can see that these two options are mutually exclusive for Ry and Rs. Also, one can
see that if Ry intersects R; horizontally then 71 (R;) C m(Rze), and if Rs intersects R
vertically then mo(R1) C m2(R2). We start by recording the following information that
will be used later:

Lemma 3.4. Let R =1 x J € £ be such that I x J¢*D C[0,1)2, £ > 1. Then
Iy x JED
contains exactly one q € P, q # pr, and furthermore
q € Iy x (JEFD\ JO),

Proof. We have that |T(-g\) x JUAD| = 2=+ 1] ]| = 2727 50 there are exactly two
points from P in T(B x JUH1D)  One of these points must be pgr, so the other one is g. To
prove the second part of the assertion, note that we cannot have ¢q € (T(B\I ) xJ (£+1)
orq € Iy xJ (©) since in each case we would have pr and ¢ contained in a dyadic
rectangle of area smaller or equal than 272"~ violating (P.1). O

Lemma 3.5. Let R =1 x J € €. For any £ > 1 with 2”1|J| < 1, there exists ezactly
one T = W x H € & intersecting R vertically such that pr # pr, W C Iy, and
(W =271

Proof. By Lemma 3.4 the rectangle I(y) x J (4+1) contains exactly one ¢ € P and ¢ # pg.
Moreover, we know that g € I(y) x (JEHIN\J®), We define W as the child of Iy that
contains 71 (g), and choose H so that ma(q) € H and T = W x H has area 272m~2, In
particular, we have H = J¢*t1 | By construction, T € &.

We now claim that 7" is the unique standard rectangle intersecting R vertically with
pr # pr, W C Iy, and [W| = %|I(g)|. By contradiction, suppose there existed another
T' = W' x H' satisfying the same properties. Then since W, W' C Iy with [W| = |W’|
we know that T and T” are disjoint and therefore pr # pp.. Since T’ is a standard
rectangle and T, 7T’ both intersect R vertically, we also know that H' = H = JU¢+1,
But this contradicts Lemma 3.4: that there can only be one q € P in I(y) X JEHD with
q # pRr, SO pr = pr+, which is a contradiction. O

Lemma 3.5 holds for rectangles intersecting R horizontally with exactly the same
proof, which we omit for brevity. Assume now that the rectangle R = I x J has been
fixed. Let
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Slg’v = {T € £ : T intersects R vertically and 71 (T) C I(y)},
and
c‘,’é’h = {T € &£ : T intersects R horizontally and m2(T) C Ji)} -

We will analyze the vertical rectangles 5}%”; essentially the same arguments apply to the
horizontal collection Egh.

If S and T are in 82’“, we say that S < T if m1(S) C 71(T) (an analogous order can
be defined in £5"). Denote by €5 = {1}, Ty, ...} the set of maximal elements with
respect to the ordering <. Assume they are ordered so that the sequence a; := |71 (T})|

is non-increasing.
Lemma 3.6. The sequence a; satisfies
a; =27y, 1 <i<m—4

Proof. By Lemma 3.5 we find that T satisfies 71 (1) C I(y) and a1 = 27| |. Moreover,
we know that there can be no other T with a; = a1, and so in particular as < 2‘2|I(4)|.

We assume inductively that the desired result holds for Ti,...,T;—1, and aim to
show that a; = 27/|I(y)|. Note that {m(T%),...,m1(Ti—1)} are pairwise disjoint. Then by

induction
i—1
m(Ty) C I\ || m(Ty),
j=1

and we also have that a; = 27'a;_; and a; = 27!|[()|. Therefore, 71(T;) must be
contained in some interval K with |K| = 27""!|I(,|. Moreover, by induction K and
m1(T;—1) must have the same dyadic parent.

We first show that a; < |K|. To see this, suppose by contradiction that 71 (7;) = K.
Then a; = a;_1 and

—_—

w1 (T;) = m(Tiz1).

Since both T;_; and T; must also have the same height, their union is a dyadic rectangle
of area 272™~1 which contains both pr,_, and pr,, which is impossible by (P.1).

Finally, we have to show that a; > 27 'a,;_; or, equivalently, that there exists T' € 51%”’*
with |71 (T)| = 27 a;_1. To that end, let Tj_; € Epr, , be the unique rectangle with
1 (Ti_1) = K. If 22|15 (Ti—1)| < 1, one can apply Lemma 3.5 with £ = 1 to T;_; to
conclude that there is exactly one T € € intersecting Tj_; vertically with pp # Ty,
and

[ (T)| = 27 K1yl = 27" (g)-
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T; = T by maximality, and this closes the induction. If on the other hand 22|mo(T;_1)| > 1,
then we claim that ¢ > m — ¢ and we have finished. Indeed, if T; exists in this case, one
has

[ (T3)] < |K| =27 (Tima)]-
Therefore,
|72(T3)| > 2|ma(Tim1)| > 2°|ma(Tioa)| > 1,
which means it is impossible for T} to be contained in [0,1)%. O

Proof of Lemma 3.2. It is enough to show the following slightly stronger claim: for any
pair of integers k,¢ > 1, any R = I x J € £ contains a non-empty rectangle £ x F' such
that

ExFCIyxJu\( | R)
R'e€
Pr! #PR
Any R' € £ which intersects I(y) x J(i) must be in one of the two collections Eg”, Elk%’h,

when pr # prr.
We start by constructing E, so now we only need to take rectangles belonging to 5}%”’*

into account. From Lemma 3.6 we know that a; = |71 (T;)] satisfies a; = 27%|I()|. It thus
follows that |mo(T;)| must increase in size exponentially, and therefore the total number
of T; € 52”’* is bounded by some constant that depends on R (since all rectangles are
contained in [0,1)?). Since there are only finitely many 71(7;) C I(y), the estimate on
their sizes from Lemma 3.6 implies that there must be some dyadic subinterval E C Iy
with

m(T;) NE =0 for all 4,

as desired. The same procedure yields an interval F' C J(;) which no rectangles 7" €
Eg’h’* can intersect. O

Finally, we turn to the proof of (Z.5), which is the content of the next lemma.
Lemma 3.7. For every dyadic rectangle R C [0,1)? with |R| > 272™~! we have
#(RN Z) < 2°™mk|R).
Proof. First, we may assume that |R| = 272™~! and show

#(RNZ) < mk.
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Indeed, if it is larger we can just write it as a disjoint union of dyadic rectangles of area

g—2m—1 2m=1 we know

and use the estimate for rectangles of that size. Since |R| = 2~
that it contains exactly one point py € P, and from Lemma 3.3 we know R contains
about k points z € Z such that p(z) = po.

For every z € RN Z such that p(z) # po, there exists T' € £ for which zp = z, which

we denote by T,. Since both R and T, are dyadic rectangles and |T,| < |R| we must have
ZAR=VUHUO,

where V consists of those points z € ZN R such that T, intersects R vertically, H consists
of those points z € Z N R such that T, intersects R horizontally, and O is the collection
of points z € Z whose associated point p(z) = pg. We will only estimate the size of V,
since the argument for # is similar.

By the construction of Z and the previous arguments, for each z € V there exists
T € 512’”’* containing z. By Lemma 3.3 it suffices to show that there are no more than
some constant times m such rectangles.

Let R = I x J be the unique rectangle in £ satisfying

pr € R C Rand m(R) = m(R).

Observe that any rectangle T € 512”’* intersecting R vertically and whose z7 is inside

R must intersect (I )1) X J vertically (since otherwise 2z would be too close to po).
According to Lemma 3.5 with £ = 1, the maximal rectangle with shortest height must
have height at least 4|.J| = |m2(R)| and the heights of these maximal rectangles increase
exponentially. Therefore the number of maximal rectangles going through (f )1y is at
most

log, (2% |ma(R)|) < 2m + logy(|m2(R)|) < 2m. O
The proof of Theorem 2.2 is complete.
4. Extensions and open questions
4.1. Failure of sparse bound for bi-parameter martingale transform

In this subsection, we extend our main theorem to the bi-parameter martingale trans-
form, which is a 0-complexity dyadic shift that resembles the behavior of the bi-parameter
Hilbert transform. In general, given a sequence o = {0} repxp satisfying |or| < 1, the
corresponding martingale transform is defined as

T,(f) =Y or(fshr)hn.

ReD

We have the following lower bound result.
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Theorem 4.1. Let measures p,v be the same as above. Then there exists a martingale
transform T, such that

(To (1), )] 2 2"

Recalling the upper estimate of sparse forms obtained in Subsection 2.2, one imme-
diately gets the following corollary:

Corollary 4.2. There cannot be any (1,1) sparse domination for all bi-parameter martin-
gale transforms.

Proof of Theorem 4.1. We first assume that o = 0 unless R C [0,1]2. In general, for
any R =1 x J € £ that gives rise to some point z € Z, denote Tg := I/(B X J/(k\), which
is the smallest rectangle that contains both z and p(z) € P. Also, denote the standard
rectangle that gives rise to z € Z by R,. Now for any fixed z € Z,

Ty(1)(2) = #ZZURhR p)hr(2).

pEP RC[0,1]2

Set o = 0 unless T = Tg for some R € £. In particular, {Tg}ree and {R}ree are
one-to-one, and each Tk contains exactly one pr € P. Hence,

TU(H’)(Z) ~ 272 Z UTRhTR (pR)h’TR (z)
Re&

Note that z cannot be contained in T unless R = R, according to Lemma 4.3 below,
therefore,

Ty (1)(2) ~ 272" 01y, hrg, (PR )1y, (2) = 27 01, TR, 1.,
where §TRZ = +1. Choosing TR, = §TRZ, one has
Ty ()(2) ~ 272" T, |7 = 2727 (27 R, )~ 2b,
and the desired estimate follows immediately. O

In the proof above, we have used the key observation that even though R € £ can
contain many points z € Z with pr = pgr., Tr can only contain one zr € Z. This is
justified by the following result.

Lemma 4.3. For any integers k, ¢ > 1 and R =1xJeg&, let zr € Z be the point chosen
in R as in Subsection 3.2, and Tr = (,3) X J . Then

27 ¢ Th, VYR,T€E R#T.
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Proof. Fix R = I x J € £ and denote z = zg. Given any other R’ = I' x J' € &, our
goal is to show zp ¢ Tg. Obviously, if prr # pg, then by Lemma 3.2 zg/ is not even
contained in R. It thus suffices to assume prr = pr = p. Supposeﬂ> |I'|,ie. I =1'0)
for some j > 1, then |J| = 277|J'| and J C J'. Since both j(k\),J(’k) contain mo(p), one
has j(’k\) 2 j(k\)

We claim that ma(zr/) ¢ j(;), hence zp: ¢ Tg. Indeed, m3(zr/) € Jj,, and j(k\) is
either contained in J(’ k) OF its dyadic sibling. But it is impossible for j(?) to be contained
in J(’k) as it would imply ma(p) € J(’k), which is an obvious contradiction. Therefore,
mo(zr) € j(k\) and the proof for the case |I| > |I’| is complete.

The case |I| < |I’| can be treated symmetrically, as one has |J| < |J| and can show
in the same way as above that m(zr/) ¢ T(g\). O

Remark 4.4. Using the same method, one can easily show that there exists a bi-parameter
dyadic shift of any given complexity which cannot have a (1, 1) sparse bound. We omit
the details.

4.2. Fuailure of sparse bound in higher dimensions

For n > 1, define the n-parameter strong maximal function

1 n
Mo(la) =sw o [ If@)ldy, fiR" 5,
R3zx |R‘
R
where R is any n-dimensional dyadic rectangle. Clearly, Mg equals M. We have the
following theorem.

Theorem 4.5. Let (D,,) denote the following statement: there exists C > 0 such that for
all compactly supported integrable functions f,g on R™, there exists a sparse collection
of dyadic rectangles S such that

[(Ma(£), )] < C Y Dr{lfDrIRI.

ReS

Then for all n > 2, there holds
(Dn) = (Dp—1).

Proof. The desired result follows from a tensor product argument. For the sake of sim-
plicity, we will only prove (D3) = (Dz). Our goal is to show (Dz): for any given
functions f,g on R? we would like to find a sparse dominating form for (Ms(f),g).
Define fz f ®Xjo,1) and g = g ® XJo,1), both are compactly supported integrable func-
tions on R3. By the assumption (D3), there exists a sparse collection S of rectangles in
R3 such that
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M.l <C > (FDa(ah &R,

R=RxJES

where R € R? J € R.
By definition, for all # = (z,x3) € R? with z3 € [0, 1),

Mi(P@) = sw / F@)1d5 = Ma()@)M (10.1))(3) = Ma () ).

R><J9:v

Therefore,

(Ms(f), Ghms = (Ma(f), g)e-
It thus suffices to show that the sparse form in R? can be dominated by a sparse form

in R2.
To see this, rewrite

Yo What@halRl= > ap(fhalahslR

R=RxJeS R=RxJCR3

where ap = 1if Re ﬁ, and 0 otherwise. The sparsity of R thus means for some constant
A there holds

Z a§|é| < A, V open set Q2 C R>.
RC®
One can further simplify the expression

Yo ap(fDalEh &R

R=RxJCR3

= > (fDrllghalR] Y arxlJl- (W)

RCR? JCR

=Y (D r(lg)rlRIBR.

RCR?

It suffices to show that {Sr}rcr2 is a Carleson sequence.
Indeed, decomposing

oo
R=» 27 > apx|J],
J=0

JCR
|IA[0,1)|~277|J|

one has for all open set Q C R? that
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oo
ZﬁR‘R|:ZQ_2j Z Z OéRXJ|RXJ|
7=0 JCR

RCQ RCQ CR
[JN[0,1)|~277]J]

§i2_2j Z OszleXJ|,
j=0

RxJCQ

where O := Q x {23 € R : M (x[o,1y)(x3) > C277}. By the weak L' boundedness of M,
one has | < 27|, hence

> BrIRISAY 2770 S AQ.
RCQ j=0

The proof is complete. O

Similar results hold true for multi-parameter martingale transforms as well. One can
define fz J ®hjo,1y and g = g ® hg,1). Then one observes that [(T5(h,1)), hjo,1))| > C
for some martingale transform T, in the third variable and therefore can argue similarly
as above. The details are left to the reader.

4.3. Other sparse forms

As mentioned in the introduction, it is also interesting to consider the possibility of
domination of the bi-parameter operators by bigger sparse forms, for instance those of

type (¢, 1):

> D rellgrIRl,

ReS

where

s =usfrso: o [o(52) <aba
R

and interesting norms include for example ¢(z) = z[log(e + z)]*, a > 0, and ¢(z) = zP,
p > 1. We can actually extend our main theorem to the following:

Theorem 4.6. Let ¢(z) = z[log(e + z)]*, 0 < a < 1. Then there cannot be any (¢,1)-
sparse domination for the strong maximal function or the martingale transform T, .

Proof. Fix k < m. We need to first slightly modify the measure p to get a function that
lies in the correct normed space. Let v be the same as before and define
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1o,
#P Z = 1@l

where for each p € P, Q,, > p is the little cube (of side-length ~ 272™) that is constructed
in the proof of Theorem 2.1. By the exact same argument in Section 2, it is easy to check
that the same lower bound for the bilinear forms associated to Mg and the special
martingale transform T, still hold true, i.e.

(Ms(f),v) 228, (T,(f),v) 22"

We shall now focus on showing the upper bound. For every A-Carleson collection S we
will show that

2k

S (P alfl < Mkm (14 2). (41)

ReS

If (4.1) holds true, then by taking m = 22* and by noting that o < %, one immediately
sees that A blows up to infinity as k — oo, which completes the proof.

We now prove (4.1). Compared to the estimate of (u) g in the proof of Theorem 2.6,
it suffices to show that there is at most an extra factor of m® in the upper estimate of
the new average form (f)g . Specifically, in the case |R| = |[RN[0,1)%] > 272™71 we
would like to show that

(e % - (e [os (D] ) (1.2

Note that if this estimate holds true, then one can proceed as in the proof of Theorem 2.6
to conclude that contribution to ) s(f)r¢(V)r|R| from rectangles of this type is
controlled by Ak(1+ m®). Similarly, in the case |R| < 272™~1, we will show that

(Fo < QQZW (4.3)

which, combined with the estimates for large rectangles, completes the proof of (4.1).
To see why (4.2) holds, let A > 0 and one has

L/qs(M)dx_L S [ ofZe el T 4
|R| A IR A-#P
R

pE’PﬁE RQQP

1
| #{PNR} - |[RNQy|- fb(m)
2m
l ()

445
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Take \ = }ﬂ max ( [log (:g} )} ), it suffices to show that the expression above with

this A value is < 1. Indeed, note that e < 2sz, SO

| . 92m [Qm + log (%) — alog (max (m, 10g(|R|/|F|)))} “
m ) S e )

To see (4.3), again let A > 0 and one can calculate similarly as above to obtain

o (5 wezre (5) =5 st 0]

Take \ = 22%734’ then it suffices to show that the expression above with this A value is

< 1. Indeed, the lower bound |R| > 2-2™~* guarantees that 2~ > e, hence

2m 22m a o
X [Iog (e+ T)] < % [4m +log |R| — alogm]” < 2°™|R| < 1. ]

The argument in the theorem above is not strong enough to produce a contradiction

when a > % In other words, it could be possible that the bi-parameter operators that

are considered have a (¢, 1)-type sparse bound with some o > % Moreover, it is easy

to check that a very similar argument as in Theorem 4.6 barely fails for concluding a
contradiction when ¢(z) = 2P, p > 1. We think that positive or negative results for those

types of bounds would be very interesting.

Problem. Determine whether (¢, 1)-type sparse bounds for Mg are possible for ¢(x) =
aP, p > 1 or ¢(z) = zflog(e + z)]* (a > 1).
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