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1. Introduction

Recent years have seen a great deal of work around the concept of sparse domination. 

Perhaps the easiest domination result is the one for the dyadic maximal function

MDf(x) = sup
Q�x

1

|Q|

∫

Q

|f |,
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where the supremum is taken over the family D of all dyadic cubes in Rd. One can use the 

Calderón–Zygmund decomposition at varying heights to obtain (for each non-negative 

locally integrable function f) a collection S of dyadic cubes from the same filtration D

such that

MDf ≤ C
∑

Q∈S

〈f〉Q1Q,

where 〈f〉Q = 1
|Q|

∫
Q

f , and S is sparse:

Definition 1. A collection of sets S is η-sparse if for all Q ∈ S there exists a subset 

E(Q) ⊆ Q such that |E(Q)| ≥ η|Q| and the collection {E(Q)} is pairwise disjoint.1

It is worth mentioning that this notion was already used by Sawyer [21] and by 

Christ–Fefferman [3] to prove certain weighted estimates, although the language that 

they used was different. Moreover, the result readily extends to more general martingale 

filtrations and a similar estimate allows one to sparsely dominate martingale transforms 

as well (see [15]).

The recent interest in sparse domination results was sparked by Lerner (see for ex-

ample [18–20]) in connection with the famous A2 conjecture as it gave a particularly 

simple proof of the – now – theorem (first settled by Hytönen in [13] after numerous ef-

forts by the mathematical community). Lerner’s original result was a dual form of sparse 

domination:

‖Tf‖X � sup
S

∥∥∥
∑

Q∈S

〈|f |〉Q1Q

∥∥∥
X

, (1.1)

where the supremum is taken over all sparse collections (with respect to a finite number 

of dyadic grids), and X is any Banach function space.

The number of sparse domination results is by now very large and it would be im-

possible to give a detailed survey of all of them in a reasonable amount of text. But let 

us note that (1.1) has been generalized in many ways, and the typical result is that for 

every pair of (sufficiently nice) functions f and g there exists a sparse collection of cubes 

S such that

|〈Tf, g〉| �
∑

Q∈S

〈|f |〉Q〈|g|〉Q|Q| (1.2)

or more generally

|〈Tf, g〉| �
∑

Q∈S

〈|f |〉Q,r〈|g|〉Q,s|Q|, (1.3)

1 In what follows, we will usually omit the parameter η and just say “sparse” instead of “η-sparse”.



A. Barron et al. / Advances in Mathematics 345 (2019) 1–26 3

where 〈|f |〉Q,r = 〈|f |r〉
1
r

Q and 1 ≤ r, s < ∞. The (r, s) sparse forms of type (1.3) arise when 

studying operators that fall outside the scope of classical Calderón–Zygmund theory, and 

which may not satisfy the full range of strong and weak-type Lp estimates implied by 

(1.2). The operators that have been studied include but are not limited to rough singular 

integral operators, Bochner–Riesz multipliers, spherical maximal functions, singular in-

tegrals along manifolds, pseudodifferential operators, and the bilinear Hilbert transform. 

See for example [1,5,15,16,2,17,4,8,7]. Sparse domination provides a fine quantification 

of the mapping properties of operators that carries much more information than Lp

bounds. In particular, it is a very effective way to obtain sharp quantitative weighted 

estimates and has also been used to study previously unknown endpoint behaviors (see 

for instance [14]).

In the present work we study the problem of sparsely dominating the bi-parameter 

analogue of the dyadic maximal function. This operator is the dyadic strong maximal 

function:

MSf(x) := sup
R�x

〈|f |〉R, (1.4)

where the supremum is taken over all dyadic rectangles containing x with sides paral-

lel to the axes. The strong maximal function is one of the most important operators 

in the theory of multi-parameter singular integrals, associated with which is an un-

derlying non-isotropic dilation structure. This class of operators arise naturally in the 

theory of summation of multiple Fourier series, several complex variables and certain 

boundary value problems, and is a first step into the study of operators with more com-

plicated dilation structure (e.g. Zygmund dilations). However, much less is known about 

these operators compared to the one-parameter case, for example the sharp weighted 

bound, thus it is natural to ask whether the sparse domination technique can be in-

troduced into the multi-parameter setting to help the study. Unfortunately, this seems 

to be very difficulty due to the fact that one of the key ingredients in standard proofs 

of sparse domination, the stopping time argument, is missing in the multi-parameter 

setting.

We first note that in the study of multi-parameter sparse domination, the natural 

geometric objects to consider are axes-parallel rectangles instead of cubes, since MS

can be large on axis-parallel rectangles of arbitrary eccentricity. Then, one observes that 

the strong maximal function is indeed dominated by sparse forms (based on rectangles) 

when restricted to a single point mass. Indeed, one can make sense of (1.4) when applied 

to finite positive measures, and then it is easy to see that

MS(δ0)(x, y) ≤
1

|x||y|
. (1.5)

And this function can actually be dominated by a sparse operator: if we define Im =

[0, 2m) and Jm = [2m−1, 2m) then
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1

|x||y|
=

∑

m,n∈Z

1

|x||y|
1Jm×Jn

(x, y)

≤
∑

m,n∈Z

22−m−n
1Jm×Jn

(x, y)

= 4
∑

m,n∈Z

〈δ0〉Im×In
1Im×In

(x, y).

Note that the collection S = {Im × In : m, n ∈ Z} is sparse since for every R = Im × In

we can define E(R) = Jm × Jn and this satisfies the conditions of Definition 1 with 

η = 1/4.

This example is relevant because (approximate) point masses are extremal examples 

for the weak-type behavior of MS and the Hardy–Littlewood maximal functions near 

the L1 endpoint. Moreover, we know from the one-parameter theory that there is a con-

nection between sparse bounds and weak-type endpoint estimates; for example, a (1, 1)

sparse bound of type (1.2) implies that T maps L1 into weak L1 (see the appendix in [4]). 

Taking the above discussion into account, it is natural to ask whether or not MS admits 

a (1, 1) sparse bound of the type

|〈MSf, g〉| �
∑

R∈S

〈|f |〉R〈|g|〉R|R|, (1.6)

where the collection S consists of dyadic axis-parallel rectangles. We also note that there 

is no immediate contradiction implied by a bound of type (1.6); indeed, an estimate of 

the type

|〈Tf, g〉| �
∑

R∈S

〈|f |〉R〈|g|〉R|R|

implies that T maps L log L into weak L1, but does not imply that T maps L1 into 

weak L1 (the proof is similar to the argument in the appendix of [4]).

Our main result answers the question raised above in the negative: there can be no 

domination by positive sparse forms of the type (1.2) for the strong maximal function.

Theorem A. For every C > 0 and 0 < η < 1 there exist a pair of compactly supported 

integrable functions f and g such that

|〈MSf, g〉| ≥ C
∑

R∈S

〈|f |〉R〈|g|〉R|R|,

for all η-sparse collections S of dyadic rectangles with sides parallel to the axes.

The proof of Theorem A is based on the construction of pairs of extremal functions 

for which the sparse bound cannot hold. These extremal examples take advantage of 
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Fig. 1. Dyadic stairs.

the behavior of MS when applied to sums of several point masses. Indeed, when we 

apply MS to a point mass we get level sets that look like dyadic stairs, as displayed 

in Fig. 1. These stairs are sparse, in fact the measure of their union is proportional to 

the number of rectangles that form them. We shall describe a way to place many point 

masses sufficiently far from each other in such a way that these stairs are all necessary 

to dominate MS , but are packed too tightly to be sparse.

In particular, we shall construct a set of points P which are maximally separated 

with respect to a quantity that captures the biparametric structure of the problem. Our 

first extremal function is then the sum of point masses at the points in P. As we said 

above, this will guarantee that MS applied to it is uniformly large on the unit square. 

We complement the construction of the set P with another set, Z, with the following 

structure: for each point p ∈ P there exist a large amount of points z ∈ Z that are 

both near p and far away from all the other points in P. Moreover, the family of points 

in Z associated with a given p ∈ P are not clustered together, but are instead spread 

out over the boundary of a hyperbolic ball centered at p. Our second extremal function 

is then the normalized sum of point masses at the points in Z. We will show that the 

placement of the points in Z implies that if a form given by a family S dominates the 

pair 〈MSf, g〉 then the rectangles in S need to cover the portion of the stair centered 

at p that contains each z, for all z ∈ Z. But then the resulting collection of rectangles 

cannot be sparse.

We remark that our result actually extends to the situation in which we take slightly 

larger averaged norms of f . In particular our methods allow us to push Theorem A to 
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the case of Orlicz φ(L)-norms with φ(x) = x log(x)α for α < 1/2. We carry out this 

extension in Theorem 4.6.

We have learned that our construction of P is closely connected to the fields of discrep-

ancy, combinatorics, and computational learning. In particular it is a special construction 

of a low-discrepancy sequence similar to those of Hammersley, see for example Defini-

tion 3.44 of [9]. These low-discrepancy sequences are also closely connected to the notion 

of ε-nets, though our point of view is in a sense opposite to the one usually taken in the 

theory of ε-nets: we are interested in lower bounds on the cardinality of the intersection 

of these sets with rectangles. The notion of (t, m, s)-nets is closer to our purposes, see [9]. 

Our results show that these kinds of sets are particularly well-suited to the study of the 

strong maximal function. However, the theory of discrepancy and ε-nets is much more 

general so it would be very interesting to find further connections between other types of 

maximal operators and the fields above. In particular Zygmund-type maximal operators 

(defined like the strong maximal function, but with rectangles with fewer “parameters” 

than the ambient dimension, see [6,22,11,23]) could be amenable to this connection.

The structure of the rest of the paper is the following. In Section 2, we prove lower 

bounds for MS and, in the opposite direction, we prove an upper bound for sparse 

forms when acting on the same extremal functions. We assume the existence of the key 

sets of points P and Z, which are needed to construct the aforementioned extremal 

functions. The sets P and Z are constructed in detail in Section 3, completing the proof 

of Theorem A. Finally, in Section 4 we show how our results extend to higher dimensions 

by a tensor product argument. We also show that the strong maximal function is in a 

sense supercritical for L1-sparse forms, which allows us to slightly strengthen our result.

Acknowledgments

The authors would like to thank Jill Pipher and Dmitriy Bilyk for useful discussions 

regarding the content of this paper. The third named author is supported by NSF-DMS 

#1764454.

2. Lower bounds for MS and upper bounds for sparse forms

We start by introducing a quantity which is intimately related with the geometry of 

the bi-parameter setting: for every pair of points p, q in [0, 1)2 we set

distH(p, q) = inf{|R|1/2 : R ∈ D × D is a dyadic rectangle containing p and q}.

One can also define a distance between two (dyadic) rectangles:

distH(R1, R2) := inf
p∈R1,q∈R2

distH(p, q).

Note that distH is not a distance function, and not even a quasidistance, as the triangle 

inequality is completely false in general. We will, however, refer to it as the distance
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between two points. Using this language, the strong maximal function of a point mass 

(1.5) can now be written as

MS(δ0)(p) =
1

distH(p, 0)2
.

We are going to study the precise behavior of MS when applied to uniform probability 

measures concentrated on certain point sets: given a finite set of points F let

μ = μF =
1

#(F)

∑

p∈F

δp. (2.1)

In general evaluating the strong maximal function of a sum of point masses is a 

computationally difficult problem: for every point p one has to consider all possible 

subsets of F whose minimal enclosing rectangle contains p. However, if we know a priori 

that F is ε-separated (with respect to distH), and that it contains sufficiently many 

points, then this forces a certain uniform distribution of μ at large scales, reducing the 

problem to treating only small rectangles. In particular, let ε > 0, suppose that F = P

is such that #(P) ≥ Cε−2, and that it is ε-separated:

distH(p, q) ≥ ε ∀p �= q in P.

Then for any rectangle with |R| ≥ ε2 we have

〈μ〉R =
μ(R)

|R|
≤

#(R ∩ P)

C|R|ε−2
�

|R|ε−2

C|R|ε−2
=

1

C
.

If instead |R| < ε2 then R can contain at most one point from P and so for any p for 

which distH(p, P) � 1 we have

MS(μ)(p) ∼
1

#(P)
sup
q∈P

1

distH(p, q)2
. (2.2)

As we mentioned in the introduction, if one can find another set of points Z each of 

which is very close to exactly one point p from P—and which are not very close to one 

another, so that they do not form large clusters—, then we can force a contradiction 

that makes sparse domination fail. The rest of this section is devoted to giving lower 

bounds for MS assuming the existence of such sets of points P and Z. In Section 2.2 we 

exploit the intuition given above and use it to give upper bounds for sparse forms that, 

together with the lower bounds from this section, will ultimately yield a contradiction.

The following two theorems give the full description of P and Z. We postpone their 

proofs to Section 3.
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Theorem 2.1. For every m ≥ 0 there exists a collection of points P ⊂ [0, 1)2 such that

distH(p, q) ≥ 2−m, ∀p �= q in P, (P.1)

and

#(P) = 22m+1. (P.2)

Theorem 2.2. For every k � m and every 2−m-separated set P ⊂ [0, 1)2 there exists a 

set Z ⊂ [0, 1)2 satisfying the following properties:

(Z.1) #(Z) � m22m.

(Z.2) For every z ∈ Z there exists exactly one point p(z) ∈ P such that

distH(p(z), z)2 < 2−2m−1.

(Z.3) For every z ∈ Z,

distH(p(z), z)2 ∼ 2−2m−k.

(Z.4) For every dyadic rectangle R with |R| ≤ 2−2m−2 that intersects P we have

#(R ∩ Z) � k.

(Z.5) For every dyadic rectangle R with |R| ≥ 2−2m−1 we have

#(R ∩ Z) � 22mmk|R|.

The implied constants are independent of k and m.

Remark 2.3. A simple pigeonholing argument shows that if P is the collection from 

Theorem 2.1 and R is a dyadic rectangle with |R| ≥ 2−2m−1, then #(R∩P) = 22m+1|R|.

Remark 2.4. Above, we deliberately omitted the precise dependence of m on k. It turns 

out that any m ≥ k + C is admissible as one can check from the proofs in Section 3. 

This justifies our choices of m and k in the next subsections.

2.1. Lower bound for MS

For the rest of this section k � m will be some fixed large numbers, and (P, Z) will be 

the sets given by Theorems 2.1 and 2.2. Also, μ = μP and ν = νZ will always denote the 

associated uniform probability measures introduced in (2.1). The proofs of Theorems 2.1

and 2.2 in the next section show that μ and ν can be arbitrarily well-approximated by 
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L1 functions, in particular because we will be able to choose the points from P and Z

in small cubes. Because of this we will prove Theorem A with f and g replaced by the 

measures μ and ν, respectively, and the full result can then be recovered by a simple 

limiting argument.

Proposition 2.5. Under these conditions we have

〈MS(μ), ν〉 � 2k. (2.3)

Proof. The positivity of MS makes the proof almost trivial since we do not need to care 

about possible interactions among the points in P. In particular for all z ∈ Z let p(z)

be the point guaranteed by (Z.2) of Theorem 2.2. Then, by (2.2) and (Z.3),

MS(μ)(z) ≥
1

#(P) distH(p(z), z)2
∼

22m+k

#(P)
.

Now by (P.2) of Theorem 2.1,

MS(μ)(z) � 2k

and the claim follows from the fact that ν is a uniform probability measure over the 

set Z. �

2.2. Upper bound for sparse forms

We now prove upper bounds for sparse forms when acting on μ and ν. Our results 

here are written in the language of Carleson sequences:

Definition. Let α be a non-negative function defined on all rectangles that is zero for all 

but a finite collection of rectangles. We say that α is Λ-Carleson if for all open sets Ω

we have

∑

R⊆Ω

αR|R| ≤ Λ|Ω|,

where the sum is taken over all rectangles contained in Ω.

We call a collection of dyadic rectangles S a Λ-Carleson collection if the sequence

αR =

{
1 if R ∈ S,

0 otherwise

is a Λ-Carleson sequence. The notions of sparse and Carleson collections are equivalent: 

a Λ-Carleson collection is Λ−1-sparse and vice versa, as was shown in [12] (see also [10]).
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Proposition 2.6. For every Λ-Carleson collection S and all k and m we have

∑

R∈S

〈μ〉R〈ν〉R|R| � Λk
(

1 +
22k

m

)
. (2.4)

Proof. For any rectangle R let R be the intersection of R with the unit square [0, 1)2. 

We will show that

〈μ〉R〈ν〉R � k
(

1 +
22k

m

)( |R|

|R|

)2

. (2.5)

Assume first that R is large, i.e.: |R| ≥ 2−2m−1. Then by the 2−m-separation of P

〈μ〉R =
1

22m+1

#(P ∩ R)

|R|
=

|R|

|R|
.

Similarly, for ν we have by (Z.5):

〈ν〉R � k
|R|

|R|
.

Therefore, for large rectangles we have

〈μ〉R〈ν〉R � k
( |R|

|R|

)2

.

If instead R is small, i.e.: |R| < 2−2m−1, then we have to be more careful. If

〈μ〉R〈ν〉R �= 0

then R must contain at least one point p ∈ P. In fact, since R is sufficiently small, there 

exists exactly one p ∈ P ∩ R. Hence

〈μ〉R �
1

22m|R|
.

Since 〈ν〉R �= 0 the rectangle R must contain at least one point from Z. This implies a 

lower bound on the size of R. To see this observe that if z is any point in R ∩ Z, then 

by the smallness of R and (Z.2) we must have p = p(z), and hence distH(p, z) ∼ 2−2m−k

by (Z.3), therefore

|R| � 2−2m−k.

Now, by (Z.4) we have

#(R ∩ Z) � k,
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so

〈μ〉R � 2k and 〈ν〉R �
k2k

m
,

from which inequality (2.5) follows.

Now we can finish the proof by splitting S into families Sj as follows:

Sj = {R ∈ S : 2−j−1|R| ≤ |R| < 2−j |R|}.

Note that the rectangles in Sj are contained in

Ωj = {p ∈ R2 : MS(1[0,1)2) � 2−j},

which, by the weak-type boundedness of the strong maximal function, satisfies

|Ωj | � j2j . (2.6)

Then by estimate (2.5), the Carleson condition, and (2.6),

∑

R∈S

〈μ〉R〈ν〉R|R| =
∞∑

j=0

∑

R∈Sj

〈μ〉R〈ν〉R|R|

� k
(

1 +
22k

m

) ∞∑

j=0

2−2j
∑

R∈Sj

|R|

≤ k
(

1 +
22k

m

) ∞∑

j=0

2−2jΛ|Ωj |

� Λk
(

1 +
22k

m

) ∞∑

j=0

j2−j

� Λk
(

1 +
22k

m

)
. �

Remark 2.7. An examination of the proof above shows that we do not use the full power 

of the Carleson condition. In particular, the collection S can be assumed to satisfy the 

Λ-Carleson packing condition with respect to the unit cube and the level sets Ωj, but it 

does not need to be Λ-Carleson with respect to any other open sets (and in particular 

need not be Λ-Carleson at small scales).

We can now formally conclude the proof of Theorem A conditionally on Theorems 2.1

and 2.2.
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Proof of Theorem A. Choose m = k22k. Proposition 2.5 implies that

〈MS(μ), ν〉 � 2k,

so Proposition 2.6 forces Λ → ∞ if we make k → ∞, which leads to a contradiction. �

3. Construction of the extremal sets

In this section, we will sometimes need to work with the projections of a rectangle R

onto the axes. To that end, if R = I × J we denote

π1(R) := I, π2(R) := J.

For dyadic intervals I we let Î denote the dyadic parent of I. We also let I(j) denote the 

j-fold dyadic dilation of I, so that I(j) is the dyadic interval containing I with |I| = 2j |I|.

3.1. Construction of P and the proof of Theorem 2.1

The following observation will be useful in the construction:

Lemma 3.1. Let R1 = I1 × J1, R2 = I2 × J2 be two dyadic rectangles such that I1 ∩ I2 =

J1 ∩ J2 = ∅. Then

distH(p1, p2) = distH(q1, q2), ∀p1, q1 ∈ R1, p2, q2 ∈ R2.

Proof. Given any p1 ∈ R1, p2 ∈ R2, it suffices to show that any dyadic rectangle R =

I × J containing both p1 and p2 needs to contain R1 and R2. Since I ∩ Ii �= ∅, i = 1, 2, 

and I1 ∩ I2 = ∅, one has I ⊃ Ii, i = 1, 2. The same holds for J : J ⊃ Ji for i = 1, 2. �

Proof of Theorem 2.1. We are going to show the following claim by induction: for ev-

ery non-negative integer m there exist 22m+1 dyadic squares Qm
1 , . . . , Qm

22m+1 in [0, 1)2

satisfying

(1) 	(Qm
i ) = 2−2m−1 for all i,

(2) distH(Qm
i , Qm

j ) ≥ 2−m for all i �= j.

Assuming the claim, it is enough to take

P = {pQ : Q ∈ {Qm
1 , . . . , Qm

22m+1}} ,

where pQ denotes the center of the cube Q—in fact, any point of Q would work. Then, 

by Lemma 3.1 we immediately get (P.1) and (P.2) and we end the proof.
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We turn to the proof of the claim. The case m = 0 is easy: it suffices to take Q0
1 =

[0, 1/2)2 and Q0
2 = [1/2, 1)2. Assume now by induction that the theorem is true for m −1. 

Scale the family obtained in that step by 1/2 in both dimensions and place a translated 

copy of the result in each square Q ∈ D1([0, 1)2). Denote the cubes so constructed by 

P Q
1 , . . . , P Q

22m−1 . By the dilation invariance of distH we have

	(P Q
i ) = 2−1 · 2−2(m−1)−1 = 2−2m.

Therefore, it is enough to choose a first-generation child from each of these squares 

{P Q
i }i,Q in such a way that (2) is satisfied. Write D1([0, 1)2) = {Q0

0, Q1
0, Q0

1, Q1
1}, where 

the children are listed in the order of upper left, upper right, lower left, and lower right. 

We first consider Q0
0 and Q1

1. For each P Q
i with Q ∈ {Q0

0, Q1
1} we choose an arbitrary 

first-generation child and call it QQ
i . By induction we have

distH(QQ
i , QQ

j ) ≥ distH(P Q
i , P Q

j ) ≥ 2−1 · 2−(m−1) = 2−m for all i �= j,

while the distance between any square in Q0
0 and any other square in Q1

1 must be exactly 

1 according to Lemma 3.1.

Now we must choose the children from the squares in the other diagonal. This choice 

is more delicate since the squares from the first diagonal could be much closer. By 

the pigeonhole principle, for each P = P Q
i , Q ∈ {Q1

0, Q0
1}, there exist exactly two 

other squares, P
Q0

0
j and P

Q1
1

k , which are at distance at most 2−m. Indeed, according to 

Lemma 3.1, the distance condition forces P
Q0

0
j , P

Q1
1

k to be in the same row (or column) as 

P Q
i , while each row (or column) of Q0

0 (or Q1
1) contains exactly one square by induction 

hypothesis. In fact, the distance between P Q
i and P

Q0
0

j is precisely equal to 0, and the 

same holds for P
Q1

1

k .

We now project Q
Q0

0
j and Q

Q1
1

k , the children chosen from P
Q0

0
j and P

Q1
1

k onto P . Note 

that their projection leaves exactly one first-generation child of P untouched, which we 

select as QQ
i . It suffices to show that the distance from QQ

i to any square in Q0
0 is larger 

than 2−m, since the case of Q1
1 is symmetric and any other combination can be dealt 

with in the same way as above. To see this, if the square in Q0
0 does not come from the 

P
Q0

0
j chosen above, the distance has to be larger than 2−m by Lemma 3.1. Otherwise, 

the square is exactly Q
Q0

0
j . By the construction above, both its horizontal projection and 

its vertical projection and the respective ones of QQ
i are disjoint, which allows one to 

apply Lemma 3.1 once more to conclude the proof. �

3.2. Construction of Z

In the construction, there are two aspects that will require special care: each point in 

Z has to be close to exactly one point from P (but not too close), while two different 
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points in Z cannot be too close to each other. We begin by constructing certain special 

rectangles inside which we shall place the points forming Z.

Definition. We say that a rectangle R is a standard rectangle if it belongs to the collection

E = {R ⊆ [0, 1)2 : R dyadic, |R| = 2−2m−2, and R ∩ P �= ∅}.

If R ∈ E we let pR denote the unique point in R ∩ P. Also let Ep denote the collection 

of standard rectangles containing p ∈ P.

One can obtain Ep by area-preserving dilations of one fixed R ∈ Ep. Indeed, for any 

dyadic R = I × J and any j ∈ Z define

Dilj R = I ′ × J ′,

where I ′ ×J ′ is the unique dyadic rectangle in Ep of dimensions 2j |I| ×2−j |J |. Then it is 

easy to see that for each standard rectangle R, Ep = {Dilj R ⊆ [0, 1)2}. In particular, for 

any p ∈ P there are approximately m distinct standard rectangles in Ep. Given x, y ∈ R, 

let

δ(x, y) = inf{|Q| : Q ∈ D is a dyadic interval containing x and y}.

Also, for dyadic intervals K define

δ(x, K) := inf
y∈K

δ(x, y).

Now suppose R = I × J ∈ E , with pR = p = (x, y). Given k ≥ 1, we define I(k) to be the 

largest dyadic interval I ′ such that

δ(x, I ′) = 2−k+1|I|,

and define J(k) similarly. Note that I(1) is the child of I that does not contain x, and for 

all k ≥ 1, I(k) is the unique dyadic offspring of I of generation k satisfying x /∈ I(k) and 

x ∈ Î(k) (the dyadic parent of I(k)).

The following result is the main technical lemma needed for our construction.

Lemma 3.2. Fix an integer k ≥ 1 with k � m. For any dyadic rectangle R = I × J ∈ Ep

there exists a sub-rectangle R∗ ⊂ I(1) × J(k) such that for all q �= p in P:

distH(q, R∗)2 ≥ 2−2m−1.

We will apply this lemma to construct the points Z used in the proof of the main 

theorem as follows: given R = I × J ∈ E , we choose one point zR in R∗ ⊂ I(1) × J(k)
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Fig. 2. Log–log sketch of some standard rectangles. In blue are the subrectangles I(1) × J(k) with k = 3. (For 
interpretation of the colors in the figure, the reader is referred to the web version of this article.)

and let Z =
⋃

R∈E zR. Fig. 2 gives some intuition about the situation. Note that this 

immediately guarantees properties (Z.1), (Z.2) and (Z.3) of Theorem 2.2. This placing 

also allows us to prove the remaining two properties. We start by proving directly (Z.4):

Lemma 3.3. For every R ∈ E we have

#(R ∩ Z) � k.

Proof. First observe that if zR′ ∈ R with R, R′ ∈ E then by Lemma 3.2 we must have 

pR′ = pR = p. So let ZR be defined by

ZR = {T ∈ Ep : zT ∈ R}.

It suffices to show that #(ZR) � k.

Observe that any T ∈ ZR must have π1(T ) ⊆ π1(R). Indeed, if π1(T ) � π1(R), by 

definition zT ∈ π1(T )(1) × π2(T )(k) and one has π1(R) ⊂ π1(T )(1). But this is impossible 

since π1(T )(1) ⊆ π1(T ) \ π1(R). In addition, there must hold

|π2(T )| ≤ 2k−1|π2(R)|,

as the smallest interval containing both π2(pT ) and π2(zT ) is ̂π2(T )(k). The desired 

estimate then follows from the fact that there are O(k) such standard rectangles. �

3.3. Proof of Lemma 3.2 and (Z.5)

In this subsection, given two dyadic rectangles R1, R2 that are not contained in one 

another but which do intersect at some nontrivial set, we say that R2 intersects R1

horizontally if
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π2(R2) � π2(R1),

and similarly R2 intersects R1 vertically if

π1(R2) � π1(R1).

One can see that these two options are mutually exclusive for R1 and R2. Also, one can 

see that if R2 intersects R1 horizontally then π1(R1) � π1(R2), and if R2 intersects R1

vertically then π2(R1) � π2(R2). We start by recording the following information that 

will be used later:

Lemma 3.4. Let R = I × J ∈ E be such that I × J (�+1) ⊆ [0, 1)2, 	 ≥ 1. Then

I(�) × J (�+1)

contains exactly one q ∈ P, q �= pR, and furthermore

q ∈ I(�) × (J (�+1) \ J (�)).

Proof. We have that |Î(�) × J (�+1)| = 2−�+12�+1|I||J | = 2−2m, so there are exactly two 

points from P in Î(�) × J (�+1). One of these points must be pR, so the other one is q. To 

prove the second part of the assertion, note that we cannot have q ∈ (Î(�)\I(�)) × J (�+1)

or q ∈ I(�) × J (�), since in each case we would have pR and q contained in a dyadic 

rectangle of area smaller or equal than 2−2m−1, violating (P.1). �

Lemma 3.5. Let R = I × J ∈ E. For any 	 ≥ 1 with 2�+1|J | ≤ 1, there exists exactly 

one T = W × H ∈ E intersecting R vertically such that pT �= pR, W ⊂ I(�), and 

|W | = 2−1|I(�)|.

Proof. By Lemma 3.4 the rectangle I(�) × J (�+1) contains exactly one q ∈ P and q �= pR. 

Moreover, we know that q ∈ I(�) × (J (�+1)\J (�)). We define W as the child of I(�) that 

contains π1(q), and choose H so that π2(q) ∈ H and T = W × H has area 2−2m−2. In 

particular, we have H = J (�+1). By construction, T ∈ E .

We now claim that T is the unique standard rectangle intersecting R vertically with 

pT �= pR, W ⊂ I(�), and |W | = 1
2 |I(�)|. By contradiction, suppose there existed another 

T ′ = W ′ × H ′ satisfying the same properties. Then since W, W ′ ⊂ I(�) with |W | = |W ′|

we know that T and T ′ are disjoint and therefore pT �= pT ′ . Since T ′ is a standard 

rectangle and T, T ′ both intersect R vertically, we also know that H ′ = H = J (�+1). 

But this contradicts Lemma 3.4: that there can only be one q ∈ P in I(�) × J (�+1) with 

q �= pR, so pT = pT ′ , which is a contradiction. �

Lemma 3.5 holds for rectangles intersecting R horizontally with exactly the same 

proof, which we omit for brevity. Assume now that the rectangle R = I × J has been 

fixed. Let
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E�,v
R =

{
T ∈ E : T intersects R vertically and π1(T ) ⊂ I(�)

}
,

and

E�,h
R =

{
T ∈ E : T intersects R horizontally and π2(T ) ⊂ J(�)

}
.

We will analyze the vertical rectangles E�,v
R ; essentially the same arguments apply to the 

horizontal collection E�,h
R .

If S and T are in E�,v
R , we say that S � T if π1(S) ⊂ π1(T ) (an analogous order can 

be defined in E�,v
R ). Denote by E�,v,∗

R = {T1, T2, . . . } the set of maximal elements with 

respect to the ordering �. Assume they are ordered so that the sequence ai := |π1(Ti)|

is non-increasing.

Lemma 3.6. The sequence ai satisfies

ai = 2−i|I(�)|, 1 ≤ i ≤ m − 	.

Proof. By Lemma 3.5 we find that T1 satisfies π1(T1) ⊂ I(�) and a1 = 2−1|I(�)|. Moreover, 

we know that there can be no other Tj with aj = a1, and so in particular a2 ≤ 2−2|I(�)|.

We assume inductively that the desired result holds for T1, . . . , Ti−1, and aim to 

show that ai = 2−i|I(�)|. Note that {π1(T1), . . . , π1(Ti−1)} are pairwise disjoint. Then by 

induction

π1(Ti) ⊂ I(�)\
i−1

�
j=1

π1(Tj),

and we also have that aj = 2−1aj−1 and a1 = 2−1|I(�)|. Therefore, π1(Ti) must be 

contained in some interval K with |K| = 2−i+1|I(�)|. Moreover, by induction K and 

π1(Ti−1) must have the same dyadic parent.

We first show that ai < |K|. To see this, suppose by contradiction that π1(Ti) = K. 

Then ai = ai−1 and

π̂1(Ti) = ̂π1(Ti−1).

Since both Ti−1 and Ti must also have the same height, their union is a dyadic rectangle 

of area 2−2m−1 which contains both pTi−1
and pTi

, which is impossible by (P.1).

Finally, we have to show that ai ≥ 2−1ai−1 or, equivalently, that there exists T ∈ E�,v,∗
R

with |π1(T )| = 2−1ai−1. To that end, let T̃i−1 ∈ EpTi−1
be the unique rectangle with 

π1(T̃i−1) = K̂. If 22|π2(T̃i−1)| ≤ 1, one can apply Lemma 3.5 with 	 = 1 to T̃i−1 to 

conclude that there is exactly one T ∈ E intersecting T̃i−1 vertically with pT �= pTi−1

and

|π1(T )| = 2−1|K̂(1)| = 2−i|I(�)|.
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Ti = T by maximality, and this closes the induction. If on the other hand 22|π2(T̃i−1)| > 1, 

then we claim that i > m − 	 and we have finished. Indeed, if Ti exists in this case, one 

has

|π1(Ti)| < |K| = 2−1|π1(T̃i−1)|.

Therefore,

|π2(Ti)| > 2|π2(T̃i−1)| ≥ 22|π2(T̃i−1)| > 1,

which means it is impossible for Ti to be contained in [0, 1)2. �

Proof of Lemma 3.2. It is enough to show the following slightly stronger claim: for any 

pair of integers k, 	 ≥ 1, any R = I × J ∈ E contains a non-empty rectangle E × F such 

that

E × F ⊆ I(�) × J(k)\
( ⋃

R′∈E
pR′ �=pR

R′
)
.

Any R′ ∈ E which intersects I(�) × J(k) must be in one of the two collections E�,v
R , Ek,h

R , 

when pR �= pR′ .

We start by constructing E, so now we only need to take rectangles belonging to E�,v,∗
R

into account. From Lemma 3.6 we know that ai = |π1(Ti)| satisfies ai = 2−i|I(�)|. It thus 

follows that |π2(Ti)| must increase in size exponentially, and therefore the total number 

of Ti ∈ E�,v,∗
R is bounded by some constant that depends on R (since all rectangles are 

contained in [0, 1)2). Since there are only finitely many π1(Ti) ⊂ I(�), the estimate on 

their sizes from Lemma 3.6 implies that there must be some dyadic subinterval E ⊂ I(�)

with

π1(Ti) ∩ E = ∅ for all i,

as desired. The same procedure yields an interval F ⊂ J(k) which no rectangles T ′ ∈

Ek,h,∗
R can intersect. �

Finally, we turn to the proof of (Z.5), which is the content of the next lemma.

Lemma 3.7. For every dyadic rectangle R ⊂ [0, 1)2 with |R| ≥ 2−2m−1 we have

#(R ∩ Z) � 22mmk|R|.

Proof. First, we may assume that |R| = 2−2m−1 and show

#(R ∩ Z) � mk.
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Indeed, if it is larger we can just write it as a disjoint union of dyadic rectangles of area 

2−2m−1 and use the estimate for rectangles of that size. Since |R| = 2−2m−1 we know 

that it contains exactly one point p0 ∈ P, and from Lemma 3.3 we know R contains 

about k points z ∈ Z such that p(z) = p0.

For every z ∈ R ∩ Z such that p(z) �= p0, there exists T ∈ E for which zT = z, which 

we denote by Tz. Since both R and Tz are dyadic rectangles and |Tz| < |R| we must have

Z ∩ R = V � H � O,

where V consists of those points z ∈ Z ∩R such that Tz intersects R vertically, H consists 

of those points z ∈ Z ∩ R such that Tz intersects R horizontally, and O is the collection 

of points z ∈ Z whose associated point p(z) = p0. We will only estimate the size of V, 

since the argument for H is similar.

By the construction of Z and the previous arguments, for each z ∈ V there exists 

T ∈ E�,v,∗
R containing z. By Lemma 3.3 it suffices to show that there are no more than 

some constant times m such rectangles.

Let R̃ = Ĩ × J̃ be the unique rectangle in E satisfying

pR ∈ R̃ ⊂ R and π1(R̃) = π1(R).

Observe that any rectangle T ∈ E�,v,∗
R intersecting R vertically and whose zT is inside 

R must intersect (Ĩ)(1) × J̃ vertically (since otherwise zT would be too close to p0). 

According to Lemma 3.5 with 	 = 1, the maximal rectangle with shortest height must 

have height at least 4|J̃ | = |π2(R)| and the heights of these maximal rectangles increase 

exponentially. Therefore the number of maximal rectangles going through (Ĩ)(1) is at 

most

log2(22m|π2(R)|) ≤ 2m + log2(|π2(R)|) ≤ 2m. �

The proof of Theorem 2.2 is complete.

4. Extensions and open questions

4.1. Failure of sparse bound for bi-parameter martingale transform

In this subsection, we extend our main theorem to the bi-parameter martingale trans-

form, which is a 0-complexity dyadic shift that resembles the behavior of the bi-parameter 

Hilbert transform. In general, given a sequence σ = {σR}R∈D×D satisfying |σR| ≤ 1, the 

corresponding martingale transform is defined as

Tσ(f) :=
∑

R∈D

σR〈f, hR〉hR.

We have the following lower bound result.
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Theorem 4.1. Let measures μ, ν be the same as above. Then there exists a martingale 

transform Tσ such that

|〈Tσ(μ), ν〉| � 2k.

Recalling the upper estimate of sparse forms obtained in Subsection 2.2, one imme-

diately gets the following corollary:

Corollary 4.2. There cannot be any (1, 1) sparse domination for all bi-parameter martin-

gale transforms.

Proof of Theorem 4.1. We first assume that σR = 0 unless R ⊂ [0, 1]2. In general, for 

any R = I × J ∈ E that gives rise to some point z ∈ Z, denote TR := Î(�) × Ĵ(k), which 

is the smallest rectangle that contains both z and p(z) ∈ P. Also, denote the standard 

rectangle that gives rise to z ∈ Z by Rz. Now for any fixed z ∈ Z,

Tσ(μ)(z) =
1

#P

∑

p∈P

∑

R⊂[0,1]2

σRhR(p)hR(z).

Set σT = 0 unless T = TR for some R ∈ E . In particular, {TR}R∈E and {R}R∈E are 

one-to-one, and each TR contains exactly one pR ∈ P. Hence,

Tσ(μ)(z) ∼ 2−2m
∑

R∈E

σTR
hTR

(pR)hTR
(z).

Note that z cannot be contained in TR unless R = Rz according to Lemma 4.3 below, 

therefore,

Tσ(μ)(z) ∼ 2−2mσTRz
hTRz

(pRz
)hTRz

(z) = 2−2mσTRz
|TRz

|−1ξTRz
,

where ξTRz
= ±1. Choosing σTRz

= ξTRz
, one has

Tσ(μ)(z) ∼ 2−2m|TRz
|−1 = 2−2m ·

(
2−k+1|Rz|

)−1
∼ 2k,

and the desired estimate follows immediately. �

In the proof above, we have used the key observation that even though R ∈ E can 

contain many points z ∈ Z with pR = pRz
, TR can only contain one zR ∈ Z. This is 

justified by the following result.

Lemma 4.3. For any integers k, 	 ≥ 1 and R = I × J ∈ E, let zR ∈ Z be the point chosen 

in R as in Subsection 3.2, and TR = Î(�) × Ĵ(k). Then

zT /∈ TR, ∀R, T ∈ E , R �= T.
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Proof. Fix R = I × J ∈ E and denote z = zR. Given any other R′ = I ′ × J ′ ∈ E , our 

goal is to show zR′ /∈ TR. Obviously, if pR′ �= pR, then by Lemma 3.2 zR′ is not even 

contained in R. It thus suffices to assume pR′ = pR = p. Suppose |I| > |I ′|, i.e. I = I ′ (j)

for some j ≥ 1, then |J | = 2−j |J ′| and J ⊂ J ′. Since both Ĵ(k), Ĵ
′
(k) contain π2(p), one 

has Ĵ ′
(k) � Ĵ(k).

We claim that π2(zR′) /∈ Ĵ(k), hence zR′ /∈ TR. Indeed, π2(zR′) ∈ J ′
(k), and Ĵ(k) is 

either contained in J ′
(k) or its dyadic sibling. But it is impossible for Ĵ(k) to be contained 

in J ′
(k) as it would imply π2(p) ∈ J ′

(k), which is an obvious contradiction. Therefore, 

π2(zR′) /∈ Ĵ(k) and the proof for the case |I| > |I ′| is complete.

The case |I| < |I ′| can be treated symmetrically, as one has |J | < |J ′| and can show 

in the same way as above that π1(zR′) /∈ Î(�). �

Remark 4.4. Using the same method, one can easily show that there exists a bi-parameter 

dyadic shift of any given complexity which cannot have a (1, 1) sparse bound. We omit 

the details.

4.2. Failure of sparse bound in higher dimensions

For n ≥ 1, define the n-parameter strong maximal function

Mn(f)(x) := sup
R�x

1

|R|

∫

R

|f(y)| dy, f : Rn → C,

where R is any n-dimensional dyadic rectangle. Clearly, MS equals M2. We have the 

following theorem.

Theorem 4.5. Let (Dn) denote the following statement: there exists C > 0 such that for 

all compactly supported integrable functions f, g on Rn, there exists a sparse collection 

of dyadic rectangles S such that

|〈Mn(f), g〉| ≤ C
∑

R∈S

〈|f |〉R〈|f |〉R|R|.

Then for all n ≥ 2, there holds

(Dn) =⇒ (Dn−1).

Proof. The desired result follows from a tensor product argument. For the sake of sim-

plicity, we will only prove (D3) =⇒ (D2). Our goal is to show (D2): for any given 

functions f, g on R2, we would like to find a sparse dominating form for 〈M2(f), g〉. 

Define f̃ = f ⊗ χ[0,1) and g̃ = g ⊗ χ[0,1), both are compactly supported integrable func-

tions on R3. By the assumption (D3), there exists a sparse collection S̃ of rectangles in 

R3 such that
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|〈M3(f̃), g̃〉| ≤ C
∑

R̃=R×J∈S̃

〈|f̃ |〉R̃〈|g̃|〉R̃|R̃|,

where R ∈ R2, J ∈ R.

By definition, for all x̃ = (x, x3) ∈ R3 with x3 ∈ [0, 1),

M3(f̃)(x̃) = sup
R×J�x̃

1

|R| · |J |

∫

R×J

|f̃(ỹ)| dỹ = M2(f)(x)M(1[0,1))(x3) = M2(f)(x).

Therefore,

〈M3(f̃), g̃〉R3 = 〈M2(f), g〉R2 .

It thus suffices to show that the sparse form in R3 can be dominated by a sparse form 

in R2.

To see this, rewrite

∑

R̃=R×J∈S̃

〈|f̃ |〉R̃〈|g̃|〉R̃|R̃| =
∑

R̃=R×J⊂R3

αR̃〈|f̃ |〉R̃〈|g̃|〉R̃|R̃|

where αR̃ = 1 if R̃ ∈ R̃, and 0 otherwise. The sparsity of R̃ thus means for some constant 

Λ there holds

∑

R̃⊂Ω̃

αR̃|R̃| ≤ Λ|Ω̃|, ∀ open set Ω̃ ⊂ R3.

One can further simplify the expression

∑

R̃=R×J⊂R3

αR̃〈|f̃ |〉R̃〈|g̃|〉R̃|R̃|

=
∑

R⊂R2

〈|f |〉R〈|g|〉R|R|
∑

J⊂R

αR×J |J | ·

(
|[0, 1) ∩ J |

|J |

)2

=:
∑

R⊂R2

〈|f |〉R〈|g|〉R|R|βR.

It suffices to show that {βR}R⊂R2 is a Carleson sequence.

Indeed, decomposing

βR =

∞∑

j=0

2−2j
∑

J⊂R

|J∩[0,1)|∼2−j |J|

αR×J |J |,

one has for all open set Ω ⊂ R2 that
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∑

R⊂Ω

βR|R| =
∞∑

j=0

2−2j
∑

R⊂Ω

∑

J⊂R

|J∩[0,1)|∼2−j |J|

αR×J |R × J |

≤
∞∑

j=0

2−2j
∑

R×J⊂Ω̃

αR×J |R × J |,

where Ω̃ := Ω × {x3 ∈ R : M(χ[0,1))(x3) > C2−j}. By the weak L1 boundedness of M , 

one has |Ω̃| � 2j |Ω|, hence

∑

R⊂Ω

βR|R| � Λ
∞∑

j=0

2−j |Ω| � Λ|Ω|.

The proof is complete. �

Similar results hold true for multi-parameter martingale transforms as well. One can 

define f̃ = f ⊗ h[0,1) and g̃ = g ⊗ h[0,1). Then one observes that |〈Tσ(h[0,1)), h[0,1)〉| ≥ C

for some martingale transform Tσ in the third variable and therefore can argue similarly 

as above. The details are left to the reader.

4.3. Other sparse forms

As mentioned in the introduction, it is also interesting to consider the possibility of 

domination of the bi-parameter operators by bigger sparse forms, for instance those of 

type (φ, 1):

∑

R∈S

〈|f |〉R,φ〈|g|〉R|R|,

where

〈f〉R,φ = inf

{
λ > 0 :

1

|R|

∫

R

φ

(
f(x)

λ

)
≤ 1

}
dx,

and interesting norms include for example φ(x) = x[log(e + x)]α, α > 0, and φ(x) = xp, 

p > 1. We can actually extend our main theorem to the following:

Theorem 4.6. Let φ(x) = x[log(e + x)]α, 0 < α < 1
2 . Then there cannot be any (φ, 1)-

sparse domination for the strong maximal function or the martingale transform Tσ.

Proof. Fix k � m. We need to first slightly modify the measure μ to get a function that 

lies in the correct normed space. Let ν be the same as before and define
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f =
1

#P

∑

p∈P

1Qp

|Qp|
,

where for each p ∈ P, Qp � p is the little cube (of side-length ∼ 2−2m) that is constructed 

in the proof of Theorem 2.1. By the exact same argument in Section 2, it is easy to check 

that the same lower bound for the bilinear forms associated to MS and the special 

martingale transform Tσ still hold true, i.e.

〈MS(f), ν〉 � 2k, 〈Tσ(f), ν〉 � 2k.

We shall now focus on showing the upper bound. For every Λ-Carleson collection S we 

will show that

∑

R∈S

〈f〉R,φ〈ν〉R|R| � Λkmα
(

1 +
22k

m

)
. (4.1)

If (4.1) holds true, then by taking m = 22k and by noting that α < 1
2 , one immediately 

sees that Λ blows up to infinity as k → ∞, which completes the proof.

We now prove (4.1). Compared to the estimate of 〈μ〉R in the proof of Theorem 2.6, 

it suffices to show that there is at most an extra factor of mα in the upper estimate of 

the new average form 〈f〉R,φ. Specifically, in the case |R| = |R ∩ [0, 1)2| ≥ 2−2m−1, we 

would like to show that

〈f〉R,φ �
|R|

|R|
· max

(
mα,

[
log

( |R|

|R|

)]α)
. (4.2)

Note that if this estimate holds true, then one can proceed as in the proof of Theorem 2.6

to conclude that contribution to 
∑

R∈S〈f〉R,φ〈ν〉R|R| from rectangles of this type is 

controlled by Λk(1 + mα). Similarly, in the case |R| < 2−2m−1, we will show that

〈f〉R,φ �
mα

22m|R|
, (4.3)

which, combined with the estimates for large rectangles, completes the proof of (4.1).

To see why (4.2) holds, let λ > 0 and one has

1

|R|

∫

R

φ

(
f(x)

λ

)
dx =

1

|R|

∑

p∈P∩R

∫

R∩Qp

φ

⎛
⎝

∑
q∈P

1Qq (x)

|Qq|

λ · #P

⎞
⎠ dx

=
1

|R|
· #{P ∩ R} · |R ∩ Qp| · φ

(
1

λ · #P · |Qp|

)

≤
|R|

|R|
· 2−2m · φ

(
22m

λ

)
.
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Take λ = |R|
|R| ·max

(
mα,

[
log

( |R|

|R|

)]α)
, it suffices to show that the expression above with 

this λ value is � 1. Indeed, note that e � 22m

λ , so

|R|

|R|
· 2−2m · φ

(
22m

λ

)
�

[
2m + log

( |R|

|R|

)
− α log

(
max

(
m, log(|R|/|R|)

))]α

max
(

mα,
[
log

( |R|

|R|

)]α) � 1.

To see (4.3), again let λ > 0 and one can calculate similarly as above to obtain

1

|R|

∫

R

φ

(
f(x)

λ

)
dx ≤ 2−2mφ

(
22m

λ

)
=

1

λ

[
log

(
e +

22m

λ

)]α

.

Take λ = mα

22m|R|
, then it suffices to show that the expression above with this λ value is 

� 1. Indeed, the lower bound |R| � 2−2m−k guarantees that 22m

λ � e, hence

1

λ

[
log

(
e +

22m

λ

)]α

�
22m|R|

mα

[
4m + log |R| − α log m

]α
� 22m|R| � 1. �

The argument in the theorem above is not strong enough to produce a contradiction 

when α ≥ 1
2 . In other words, it could be possible that the bi-parameter operators that 

are considered have a (φ, 1)-type sparse bound with some α ≥ 1
2 . Moreover, it is easy 

to check that a very similar argument as in Theorem 4.6 barely fails for concluding a 

contradiction when φ(x) = xp, p > 1. We think that positive or negative results for those 

types of bounds would be very interesting.

Problem. Determine whether (φ, 1)-type sparse bounds for MS are possible for φ(x) =

xp, p > 1 or φ(x) = x[log(e + x)]α (α ≥ 1
2).

References

[1] D. Beltran, L. Cladek, Sparse bounds for pseudodifferential operators, arXiv e-prints, Nov. 2017.
[2] C. Benea, F. Bernicot, T. Luque, Sparse bilinear forms for Bochner Riesz multipliers and applica-

tions, Trans. Lond. Math. Soc. 4 (1) (2017) 110–128.
[3] M. Christ, R. Fefferman, A note on weighted norm inequalities for the Hardy–Littlewood maximal 

operator, Proc. Amer. Math. Soc. 87 (3) (1983) 447–448.
[4] J.M. Conde-Alonso, A. Culiuc, F. Di Plinio, Y. Ou, A sparse domination principle for rough singular 

integrals, Anal. PDE 10 (5) (2017) 1255–1284.
[5] J.M. Conde-Alonso, G. Rey, A pointwise estimate for positive dyadic shifts and some applications, 

Math. Ann. 365 (3–4) (2016) 1111–1135.
[6] A. Córdoba, Maximal functions: a problem of A. Zygmund, in: Euclidean Harmonic Analysis, Proc. 

Sem., Univ. Maryland, College Park, MD, 1979, in: Lecture Notes in Math., vol. 779, Springer, 
Berlin, 1980, pp. 154–161.

[7] A. Culiuc, F. Di Plinio, Y. Ou, Domination of multilinear singular integrals by positive sparse forms, 
J. Lond. Math. Soc. 98 (2) (2018) 369–392.

[8] A. Culiuc, F. Di Plinio, Y. Ou, Uniform sparse domination of singular integrals via dyadic shifts, 
Math. Res. Lett. 2 (1) (2018).



26 A. Barron et al. / Advances in Mathematics 345 (2019) 1–26

[9] J. Dick, F. Pillichshammer, Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo 
Integration, Cambridge University Press, Cambridge, 2010.

[10] L.E. Dor, On projections in L1, Ann. of Math. (2) 102 (3) (1975) 463–474.
[11] R. Fefferman, J. Pipher, A covering lemma for rectangles in Rn, Proc. Amer. Math. Soc. 133 (11) 

(2005) 3235–3241.
[12] T.S. Hanninen, Equivalence of sparse and Carleson coefficients for general sets, arXiv e-prints, Sept. 

2017.
[13] T.P. Hytönen, The sharp weighted bound for general Calderón–Zygmund operators, Ann. of Math. 

(2) 175 (3) (2012) 1473–1506.
[14] B. Krause, M.T. Lacey, Sparse bounds for maximally truncated oscillatory singular integrals, arXiv 

e-prints, Jan. 2017.
[15] M.T. Lacey, An elementary proof of the A2 bound, Israel J. Math. 217 (1) (2017) 181–195.
[16] M.T. Lacey, Sparse bounds for spherical maximal functions, arXiv e-prints, Feb. 2017.
[17] M.T. Lacey, D. Mena Arias, The sparse T1 theorem, Houston J. Math. 43 (1) (2017) 111–127.
[18] A.K. Lerner, A pointwise estimate for the local sharp maximal function with applications to singular 

integrals, Bull. Lond. Math. Soc. 42 (5) (2010) 843–856.
[19] A.K. Lerner, On an estimate of Calderón–Zygmund operators by dyadic positive operators, J. Anal. 

Math. 121 (2013) 141–161.
[20] A.K. Lerner, A simple proof of the A2 conjecture, Int. Math. Res. Not. IMRN (14) (2013) 3159–3170.
[21] E.T. Sawyer, A characterization of a two-weight norm inequality for maximal operators, Studia 

Math. 75 (1) (1982) 1–11.
[22] F. Soria, Examples and counterexamples to a conjecture in the theory of differentiation of integrals, 

Ann. of Math. (2) 123 (1) (1986) 1–9.
[23] A. Stokolos, Properties of the maximal operators associated with bases of rectangles in R3, Proc. 

Edinb. Math. Soc. (2) 51 (2) (2008) 489–494.


	Sparse domination and the strong maximal function
	1 Introduction
	Acknowledgments
	2 Lower bounds for MS and upper bounds for sparse forms
	2.1 Lower bound for MS
	2.2 Upper bound for sparse forms

	3 Construction of the extremal sets
	3.1 Construction of P and the proof of Theorem 2.1
	3.2 Construction of Z
	3.3 Proof of Lemma 3.2 and (Z.5)

	4 Extensions and open questions
	4.1 Failure of sparse bound for bi-parameter martingale transform
	4.2 Failure of sparse bound in higher dimensions
	4.3 Other sparse forms

	References


