
`

P4Guard: Designing P4 based Firewall
Rakesh Datta

Computer Engineering
San Jose State University
San Jose, CA USA
rakesh.datta@sjsu.edu

Sean Choi
Electrical Engineering
Stanford University
San Jose, CA USA
yo2seol@stanford.edu

Anurag Chowdhary
Computer Engineering
San Jose State University
San Jose, CA USA

anurag.chowdhary@sjsu.edu

Younghee Park
Computer Engineering
San Jose State University
San Jose, CA USA

younghee.park@sjsu.edu

Abstract— A virtual firewall based on Network Function
Virtualization (NFV) with Software Defined Networking (SDN)
provides high scalability and flexibility for low-cost monitoring of
legacy networks by dynamically deploying virtual network
appliances rather than traditional hardware-based appliances.
However, full utilization of virtual firewalls requires efficient
management of computer virtualization resources and on-
demand placement of virtual firewalls by steering traffic to the
correct routing path using an SDN controller. In this paper, we
design P4Guard, a software-based configurable firewall based on
a high-level domain-specific language to specify packet
processing logic using P4. P4Guard is a protocol-independent
and platform-agnostic software-based firewall that can be
incorporated into software switches that is highly usable and
deployable. We evaluate the efficiency of P4Guard in processing
traffic, compared to our previous virtual firewall in NFV.

Keywords—P4, Firewall, SDN/NFV, Security

I.� INTRODUCTION
The advent of Network Function Virtualization (NFV) and
Software Defined Networking (SDN) has significantly
reduced operation costs and capital costs by virtualizing
hardware network appliances, such as firewalls, NAT, load
balancers, and BRAS. Combining virtualization with SDN
offers the many advantages of programmability, scalability,
and flexibility [1, 2, 3]. At the same time, hardware firewalls
are rapidly being replaced with virtual firewalls at entry-points
in enterprise networks and the cloud [18]. For example,
VMware has introduced VMware NSX [17] to protect
enterprise networks with virtual firewalls, dramatically
increasing enterprise revenues through realization of huge
hardware maintenance cost savings.
 The benefits of NFV/SDN have been offset by certain
limitations in the design of NFV/SDN. Many NFV/SDN
devices require the network to operate under the constraints of
specific packet headers and actions (e.g,. firewall rules) that
adhere to OpenFlow protocols [2, 3]. In addition, OpenFlow is
limited in its ability to support customized protocols.
However, a new packet processing language called P4,
coupled with P4 supported hardware and software, enables
network operators to specify their own packet headers and
packet processing logic, which in turn, allows the data plane to

understand and process customized packet protocols within a
network [4, 5, 6].
 In this paper, we propose P4Guard, a software firewall

specified in P4 language that programs packet-forwarding
functions in the data plane. Our software provides a target-
oblivious and protocol-independent firewall that can be used
with any P4-supported programmable switches. P4Guard has a
controller to dynamically initiate and destroy software firewalls
across networks. Instead of hardware-based firewalls, P4Guard
can be easily configurable to update functionalities through
compiling the data plane and to install dynamic firewall rules
on the fly. The software firewall functions are defined in the
data plane of P4-enabled switches. We define packet headers,
packet parsers, and packet processing behaviors for the
proposed software firewall. We implement a counter table to
record the statistical flow information to control bandwidth
[19, 20] when the controller detects various flooding attacks
based on packet counters [21]. Our contributions are
summarized as follows. First, we propose an open-source
implementation of P4Guard, a software firewall without
virtualization, by using the high-level domain specific
language (DSL) called P4. Second, we introduce a P4Guard
controller to manage the software firewalls in a centralized
fashion. It accepts the high-level security policy language and
sends the RPC message (i.e. security rules) to the P4-enabled
switches. Third, we implement the structures of the firewall
rule tables into the flexible and reprogrammable forwarding
tables in the P4 data plane. Lastly, we discuss and analyze the
proposed P4Guard with VNGuard [1], a virtual firewall in
NFV to evaluate a packet-processing capability with different
settings.

The rest of the paper is organized as follows. We discuss
related work in Section II and present a software firewall with
P4 in Section III. In Section IV, we compare our new firewall
with our previous virtual firewall while analyzing the two
firewall approaches in Section V. Finally, we present our
conclusions in Section VI.

II.� RELATED WORK
Enabling programmability in the data planes has allowed us

to design customizable protocols and semantics for packet
forwarding [4, 5, 6, 7, 8, 9]. In particular, P4 program
language allows us to program the forwarding planes of
networking devices, shifting the paradigm of switches from a
vendor lock-in architecture to one that provides user-

Milcom 2018 Track 3 - Cyber Security and Trusted Computing

978-1-5386-7185-6/18/$31.00 ©2018 IEEE 64

customizable programmable data planes [4, 5, 6]. Regardless
of the underlying protocols, packet headers, packet parsers,
and packet processing behaviors can be defined in P4. Then,
P4-enabled devices process packets according to the specified
P4 program.
PISCES is a P4 supported software switch that allows users

to define custom protocol specifications using P4 without
modifying the internal switch code [5]. It is a modified version
of Open vSwitch (OVS) coupled with P4 compiler to support
packet processing logic in the software switch. Hyper4
virtualized the data plane based on the P4 programming
language to support parallel executions of multiple programs
in the switch [4]. H. Song introduced protocol-oblivious
forwarding to remove protocol dependency on the forwarding
elements for SDN [9]. To accelerate the use of P4, industry
has utilized this programmable data plane on various hardware
devices, using P4 software such as Xilinx SDNet [10],
P4FPGA [14], and Netronome SDK [11].
VNGuard [1] is a virtual firewall based on ClickOS [12]

using click modular routers. It virtualizes the firewall on
ClickOS while a controller manages dynamic firewall rules
and firewall placement according to high-level policy rules.
The controller creates forwarding rules into the underlying
Open vSwitch. The virtual firewall could be dynamically
created, destroyed, and updated in new states. In this paper,
we developed P4Guard using a model similar to our previous
VNGuard, replacing VNGuard’s virtualization, SDN,
OpenFlow and Open vSwitch with the P4 programming
language and P4-enabled switches.

III.� SYSTEM DESIGN OF P4GUARD

A.� Overview
Figure 1 shows the overall system architecture of P4Guard.

P4Guard has two parts: a P4 control plane and a P4 data plane.
The control plane of P4Guard dynamically provides firewall
services and monitors a network based on statistical
information. In other words, the controller plays the important
role of managing firewall rules and software firewall
placement across networks for service provisions, and also
collects statistical information from the P4 switches for
network monitoring. The software firewall in the P4 data plane
is designed to process the packets according to the firewall
rules via three main components: a packet parser, a packet
forwarder, and a packet generator. The firewall in the P4
switch also embraces a statistical subsystem to record the
number of packets. Therefore, the controller manages the
software firewalls with the firewall rules in a centralized
location, and the data plane processes packets according to
packet forwarding policies in the P4 data plane.

Figure 2 shows a brief layout of the data plane of P4Guard
inside the P4-enabled switch. The P4 switch has an Apache
Thrift RPC server to receive messages from the Thrift client
with a P4 Runtime CLI interface, as pictured in Figure 1. In
Figure 2, the two virtual interfaces (veth 0 and veth1) are

connected to the end hosts. The base P4 switch has an ingress
buffer and an egress buffer to process incoming/outgoing
packets with a basic parser and deparser.

Fig. 1.� P4Guard System Architecture

We redefine the software firewall with the new packet
processing logic in the data plane of the switch. The dotted
boxes in Figure 2 indicate the new table structures for the
firewall data plane used to create the flow-table and flow-rule
structures by using the syntax of P4 language. The target
program is compiled to generate a JSON file including the
parser, five new tables, and the deparser along with actions for
each table and controlling blocks, which define packet-
forwarding logic for each table. We upgrade the ingress
pipelines in order to forward packets by applying firewall
rules, and the egress pipelines send a frame to a destination
through an egress port.

Fig. 2.� The data plane for P4Guard

B.� The control plane of P4Guard

The P4 controller is intended for dynamic firewall placement
and networking monitoring. The controller communicates
with the P4 switches through an Apache Thrift-based remote
procedure call (RPC) channel. In other words, if the controller
sends a high-level security policy language to the P4 switch,
the policy language is translated into low-level firewall packet

��
���� ���
� �	���	��

���	�
�����	����������� ����������������

��
��������	�

Milcom 2018 Track 3 - Cyber Security and Trusted Computing

65

forwarding rules for the P4 data plane. The controller is
implemented using P4-Runtime CLI with various python
scripts. The controller activates or deactivates the firewall
remotely and provide a network monitoring function based on
a counter to keep the statistical information in the data plane.
Thus, the controller can detect various flooding attacks by
counting the number of packets with a predefined threshold at
ingress and egress points according to different protocols,
which it transmits to the controller.
We define a high-level security policy language to specify each

firewall rule without regard to the underlying infrastructure. Table 1
shows basic elements to be used for the security policy. In Table 1, a
security policy is defined as < ID, Ta, Tname, S, action>. Note that S is
a service with <IPsrc, IPdst, P, p>. Ta is an action to
add/modify/delete an entry in the table in the data plane. There are
many different tables (Tname) that we define in the data plane for the
packet processing logic. P is a protocol type, such as IP, TCP, UDP
or ARP. IP is a source or a destination IP address. p is a port number
for a particular service. For example, <1, table_add, firewall,
10.0.0.1, 10.0.0.2, TCP, 80, drop> means that switch ID 1
needs to add a new firewall rule in the firewall table in the
data plane. The specific firewall rule is to drop packets from
the source address (10.0.0.1) to the destination address
(10.0.0.2) with the port number 80. Based on the policy
language, a user can define different security policy rules in a
network and the controller transfers the policy to the switches
to follow or to reconfigure the forwarding logic in the data
plane.
The P4-controller is embedded with a Thrift software

plugin. The controller converts the high-level security policy
language into a P4 Runtime CLI by sending the RPC
messages to the Thrift server, a remote P4 switch to push these
specific security policy rules in the underlying P4 switch. The
P4 switch continuously processes incoming messages and
incorporates the firewall rule as well as flow rules into the
forwarding data plane.

TABLE I. � TABLE TYPE STYLES

 Definition Details
Ta Table actions add/modify/delete
Tname Table names The tables in the P4 data plane

P Protocols IP/TCP/UDP/ARP

IP IP address A source or destination IP address

p Port numbers A set of ports in use.

action Policy action <allow | drop>

ID Switch Data Plane ID A set of the data plane ID

C.� The data plane of P4Guard
We design a data plane for firewall services by using P4,

called a software firewall. The software firewall consists of a
packet parser, a packet forwarder, and a packet generator for
packet processing logic and forwarding table structures, as in

Figure 1. When a packet arrives in the data plane of P4Guard,
the packet is parsed and matched with the existing flow rules.
The packet is then either forwarded or dropped.
 Packet Parser: The parser generally decodes the incoming
packets in the switch ports. It defines the Ethernet and IP
structures constructed from the corresponding packet-header
values of the incoming packets. When packets come into the
switch port, it first classifies packets into an Ethernet or IP
header, which can be processed in the next step based on a
finite state machine generated from the P4 program. The
Ethernet packet header includes the Ethernet protocol type,
layer2 source, and destination addresses. The IP packet header
includes the IP version (note that we only support version 4
now), length, TTL, IP protocol type, and source and destination
addresses.

Packet Forwarder for Firewall Service: The packet
forwarder determines the next hop IPv4 and layer2 address
based on the user-define forwarding-rules in the switch tables:
ipv4_lpm and forward. The ipv4_lpm table consists of the
switch port interconnection rules that mean to set IP address
for next hop and its egress port. It checks the destination of the
IPv4 address and sets the next-hop IPv4 address as well as the
outgoing switch port as per the user-defined forwarding rules.
The forward table includes the host interconnection rules to
set a next hop of destination MAC addresses. It checks the
next-hop IPv4 address for the packet, and sets the layer2
destination address (MAC address) for the next-hop.
For match-action tables for firewall services, the firewall

table has multiple packet-forwarding tables with the match-
action format. (a) The firewall table contains the firewall
rules, which decide a particular action (allow or drop) for
packets. (b) The module_check table in the activation manager
continuously monitors firewall status to dynamically activate
or deactivate the software firewall remotely. (c) The rule
manager applies the packet-forwarding tables on incoming
packets for layer 3 and layer 4 action tables. (d) The
forwarding action manager determines the final destination of
the packets based on the send_frame table for the packet
generator. The send_frame table consists of host
interconnection rules (a relationship of an output port with its
source MAC address) to determine outgoing switch ports with
the layer 2 address.
Packet Generator: The packet generator receives packets

with metadata (i.e. standard metadata and routing metadata)
for packet generation for egress pipeline. The packet generator
decides the next-hop IPv4 address, and determine whether
packets allow or drop. According to the results, the packet
generator assembles the packet with a modified header, and
sends out the determined output port in the switch. Lastly, the
deparser sends the packets to the output port based on the
current state of the parsed object.
Beside the basic packet processing logic for the firewall

services, we create a count table for statistical information in

Milcom 2018 Track 3 - Cyber Security and Trusted Computing

66

the data plane to keep recording the number of packets per
rule or per flow. The packet counter is also associated with the
forwarding rules in the firewall to control a rate limit. It keeps
track of packets hitting a specific flow rule for each source-
destination IPv4 address pair as well as each layer4 protocol
type, such as ICMP, UDP and TCP. The counting information
is used for network monitoring purposes to detect various flooding
attacks by fetching it periodically from the switch to the controller.

IV.�ANALYSIS OF P4GUARD
We discuss the advantages of P4Guard while presenting the
differences of VNGuard and P4Guard.
 Full Programmability in the data plane: Both P4Guard
and VNGuard implement a firewall, independent of hardware
for high scalability. However, P4Guard is implemented by the
high-level domain specific language (DSL) called P4. It
consists of the controller for dynamic management and
network monitoring and the firewall forwarding data plane for
defining the full forwarding behaviors in the data plane
without virtualization techniques. On the other hand,
VNGuard is implemented by ClickOS to virtualize the firewall
functions. Instead of defining the firewall behaviors in the data
plane, VNGuard is an application to perform a firewall
functions with the help of software switches like Open
vSwitch. It just utilizes OpenFlow in Open vSwitch which
might be efficiently defined in the kernel space for the
forwarding behavior (i.e. firewall rules) in the data plane,
which is not really related to firewall functions.
 Configurability and Flexibility: P4Guard is a
configurable protocol-independent software firewall which is
inherited by P4. After defining the packet processing logic in
the P4 data plane, any packets regardless of protocols or
platforms are processed by the specific packet forwarding
logic in the data plane. The logic can be updated with P4
compiler whenever we need to upgrade firewall
functionalities. However, VNGuard handles packets
according to the user-defined firewall rules which are
interpreted into specific packet headers and actions of
OpenFlow protocols.
P4Guard is a part of the data plane in the P4 switches that

specifies the firewall rules into flexible and reprogrammable
forwarding tables. It interprets high-level firewall policies into
low-level forwarding rules in the data plane, which are then
implemented according to the tables into the P4-enabled
switches. By contrast, our previous VNGuard is executed in a
guest domain in a virtualized domain as an application. A
virtual firewall function runs in virtualization without
involving the data plane. To use this virtual firewall, a SDN
controller with Open vSwitch needs to push the firewall rules
by using OpenFlow.
Easy Dynamic Placement: P4Guard easily and remotely

activates or deactivates the software firewall with only one bit
flag (on- or off- flag) in the module_check table of the

activation manager in the control plane. The P4Guard control
plane can remotely manage the dynamic deployment of the
firewalls by issuing one command through the P4 runtime
CLI. By contrast, VNGuard requires an efficient virtual
resource management to spawn a set of new instances and to
destroy them. For example, Xen hypervisor in ClickOS need
to initiate VNGuard, and then the Xen hypervisor needs to
manage computing resources to spawn the virtual firewall and
return the used resource when the virtual firewall is destroyed.
Thus, the efficiency of VNGuard depends on the virtualization
techniques in the host domains managing virtual guest
domains. Thus, P4Guard requires almost zero cost to activate
or deactivate as many as firewalls, but VNGaurd needs
intensive resource management cost to handle many virtual
firewall instances.

V.� EVALUATION

A.� Implementation
P4Guard is implemented with the behavioral model version

2, p4c-behavioral [13] (called bmv2) with the compiler P4_14.
The P4 bmv2 simulator is installed using the publicly available
P4 makefiles with all the dependencies and the necessary linux
packages. We implemented a firewall.p4 file that uses P4 code.
This is compiled using the P4-compiler to obtain the
firewall.json file, which is used by the simple_switch
executable on startup [15]. To start the switch, the
simple_switch executable is run on the bash and the p4-
compiled JSON file is passed to it as a CLI argument. This P4
file consists of the standard switch forwarding table definition,
firewall table definition, and match-action pairs of each type of
table.

Fig. 3.� A network toplogoy in CloudLab for evaluating P4Guard

We compare P4Guard to VNGuard [1] in CloudLab [16], a
cloud-based open platform. Figure 3 shows a network topology
for our experiments. We linearly connected three hosts (virtual
machines) in CloudLab. The three hosts run on two Intel E5-
2630 v3 8-core CPUs with 2.4GHz and 128 GB RAM and two
1.2 TB Disks. The link capacity is 10GB. The switch node is
located in the middle position between two end hosts. The
switch node is installed with P4Guard (P4 bmv2 simulator) or
VNGuard (ClickOS). The switch node has bare linux Ubuntu
4.9.1 for P4Guard and Ubuntu 4.8.2 for VNGuard with Xen
hypervisor.

P4 controller (or SDN controller)

Host 1
Host 2

P4 Switch with P4Guard
(or VNGuard with ClickOS)

CloudLab

Milcom 2018 Track 3 - Cyber Security and Trusted Computing

67

B.� Experimental Results
We evaluate P4Guard, comparing it to VNGuard in terms of
packet processing time and roundtrip time using various
settings in CloudLab.
Instance Initiation: We first measured the time to execute

the software firewall (P4Guard) and the virtual firewall
(VNGuard). Because P4Guard is a package of the P4
application after compiling, the deployment of the P4Guard
consumed only 0.181 seconds. VNGurad took 0.4615 seconds
to run one firewall network function on ClickOS. The time for
VNGuard excluded the time it took to initiate the Xen
Hypervisor execution time since the Xen Hypervisor was
already installed for ClickOS. Additionally, the usage of CPU
for VNGuard was 46.8 %, but P4Guard used only 0.3% of
CPU for the execution of the software firewall. Therefore,
P4Gurad was much more easily and quickly activated (or
deactivated) than VNGaurd with very minimal overhead.
 Processing Time: We evaluated the packet processing

time for P4Guard and VNGuard as shown in Figures 3 and 4.
In Figure 4, according the number of packets, we measured the
packet processing time for P4Guard and VNGuard. The
baseline indicated a regular switch function without P4Guard
and VNGuard. When the number of packets was below 1,000,
P4Guard had a faster packet processing time than VNGuard.
However, over 1,000 packets, VNGuard had a faster
processing time. Figure 5 shows the results for packet
processing time at different transmission rates. Similarly,
below the 10 MBps rate, P4Guard had a faster packet
processing time than VNGuard. However, as the transmission
rate increased, VNGuard had a faster packet processing time
than P4Guard.

Fig. 4.� Packet processing time according to the number of packets

Fig. 5.� Packet processing time according to different transmission rates

There are multiple reasons for the differences in processing
time. While the p4c-behavioral model for P4Guard is not
optimized yet in the packet buffering, the Open vSwtich for
VNGuard is optimized in the kernel space. In other words, we

ran our P4Guard on Linux, which might not have sufficient
buffer space to hold many packets at one time. By contrast,
VNGuard used Open vSwitch, which was already optimized in
the kernel space for packet buffering and processing. If we
implemented P4Guard inside the switch code instead of in an
application domain, the faster processing time for P4Guard that
were seen in experimental results for processing under 1000
packets would remain faster than VNGuard for higher packet
numbers as well.

Fig. 6.� Roundtrip time with 64-byte packets

Fig. 7.� Roundtrip time with various packet sizes

Roundtrip Time: Figure 6 shows the roundtrip time of
Ping packets between the two end hosts with P4Guard or
VNGuard. Each experiment was run ten times and Figure 6
shows the median value was selected instead of the average
value with minimum and maximum values. The experiment
also measures packet processing time for 64-byte packets. As
shown in Figure 6, we can say that P4Guard has lower
network latency in processing 64-byte packets. P4Guard
generally showed a smaller network delay in roundtrip time
than VNGuard. Figure 7 shows the roundtrip time increases as
the packet size increases. The P4Guard showed less network
delay than VNGuard for smaller packets and VNGuard
performed better with large packet sizes. It is the same reason
with the case of packet processing times as shown in Figure 4
and 5.
Rule Installation Time: We evaluated the installation time

of firewall rules for P4Guard and VNGuard, as in Figure 8.
The rule installation time for VNGuard was much faster than
the time for P4Guard. This shows that the high-level firewall
policy language in the P4 controller is not efficiently
translated into the low-level policy rules in the P4-enabled
switches. We need to develop a more cost-effective policy
translation framework to improve the installation of firewall
rules.

0

2000

4000

6000

8000

10000

12000

14000

100 500 1000 5000 10000

��

���

��	
���

��
���

��
��

of Packets

P4Guard Basline VNGuard

0

20

40

60

80

���
	�� ������� �������

Pr
oc
es
sin
g T
im
e (
m
s)

10 Mpbs 20 Mpbs

0

0.2

0.4

0.6

0.8

1

1.2

Baseline P4Guard VNGuard

Ro
un
dt
rip
 T
im
e (
m
s)

Median Value

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

100 500 900 1200 1500 5000 10000

Packet size(Bytes)

P4Guard Baseline VNGuard

R
ou
nd
tr
ip
Ti
m
e (
m
s)

Milcom 2018 Track 3 - Cyber Security and Trusted Computing

68

Fig. 8.� Installation time according to the number of firewall rules

One of the reasons that P4Guard had slower processing
time than VNGuard for large numbers and sizes of packets is
that VNGuard handles the switching actions and the
forwarding behaviors of the switch using the highly efficient
Open vSwitch. On the other hand, to implement P4Guard, we
used an experimental software switch (p4c-bmv2) with the old
compiler (P4_14) and all processing was handled by the
processor, thus the network buffers were limited. Thus, such
issues might explain why P4Guard’s packet processing times
increased specifically with high transmission rates or large
number of packets. The behavioral model (bmv2) of P4 for
P4Guard is a single-threaded application, meaning it processes
the ingress and egress packets using a single thread. Hence, P4
is not able to process two-way traffic in parallel for high
throughput and is not able to fully utilize system resources.

We observed that P4Guard is faster in processing packets
when there is a relatively small number of packets and small
sizes of packets. Therefore, we need to optimize our
implementation to maximize the performance of P4Guard for
all cases. First, we can optimize P4Gaurd with the new release
compiler (p4c-bm2-ss with P4_16). We tested the performance
of the previous and updated compilers with the
simple_router.p4 example in the GitHub [15]. Following the
experimental design shown in Figure 3, we verified that the
new compiler performed almost 30% better than the old
compiler in processing packets at a speed of 10 Mbps.
Additionally, P4Gaurd has many advantages discussed in
Section IV.

VI.�CONCLUSION
This paper proposes a new software firewall without

virtualization. In P4Guard, we defined the forwarding behavior
for the firewall in the data plane to parse and deparse packets
according to header information and predefined policies. To
implement the software firewall, we defined various tables in
the data plane to process packets according to the firewall
rules. We compared the designed new software firewall to
VNGuard. The experimental results demonstrated that
P4Guard showed faster packet processing time and lower
network latency when the packet size was small. As future
work, we will modify the software firewall to consistently
yield high-speed processing time by developing various
optimization techniques for the design of our P4 software-
based firewall.

ACKNOWLEDGMENT
This work was supported by NSF SaTC #1723804. Dr. Park is a
corresponding author.

REFERENCES
[1]� Deng et al., "VNGuard: An NFV/SDN combination framework for

provisioning and managing virtual firewalls," In Proceedings of IEEE
Conference on Network Function Virtualization and Software Defined
Network (NFV-SDN), San Francisco, CA, 2015.

[2]� D. Hu et al., "Design and Demonstration of SDN-Based Flexible Flow
Converging with Protocol-Oblivious Forwarding (POF)," In Proceedings
of IEEE Global Communications Conference (GLOBECOM), San
Diego, CA, 2015.

[3]� Hamid Farhadi, Ping Du, and Akihiro Nakao, “User-defined actions for
SDN,” In Proceedings of The Ninth International Conference on Future
Internet Technologies (CFI '14). ACM, New York, NY, USA 2014.

[4]� Sándor Laki, Dániel Horpácsi, Péter Vörös, Róbert Kitlei, Dániel Leskó,
and Máté Tejfel, “High speed packet forwarding compiled from protocol
independent data plane specifications,” In Proceedings of the ACM
SIGCOMM Conference (SIGCOMM '16). ACM, New York, 2016.

[5]� Muhammad Shahbaz, Sean Choi, Ben Pfaff, Changhoon Kim, Nick
Feamster, Nick McKeown, and Jennifer Rexford, “PISCES: A
Programmable, Protocol-Independent Software Switch,” In Proceedings
of the ACM SIGCOMM Conference (SIGCOMM '16). ACM, New
York, NY, USA 2016.

[6]� Barefoot Networks. https://www.barefootnetworks.com/resources/
[7]� Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,

Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker, “P4: programming protocol-independent
packet processors,” SIGCOMM Comput. Commun. Revview, 2014.

[8]� David Hancock and Jacobus van der Merwe, “HyPer4: Using P4 to
Virtualize the Programmable Data Plane,” In Proceedings of the 12th
International on Conference on emerging Networking EXperiments and
Technologies (CoNEXT '16). ACM, New York, NY, USA 2016.

[9]� Haoyu Song, “Protocol-oblivious forwarding: unleash the power of SDN
through a future-proof forwarding plane,” In Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined
networking (HotSDN '13). ACM, New York, NY, USA 2013.

[10]� G. Brebner. “Programmable Target Architectures for P4,” In the 2nd P4
Workshop by Stanford/ONRC, 2015.

[11]� J. T¨onsing, “P4/PIF + C Programmable Intelligent NICs: Requirements
and Implementation Notes,” In the 2nd P4 Workshop by
Stanford/ONRC, 2015.

[12]� Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu,
Michio Honda, Roberto Bifulco, and Felipe Huici, “ClickOS and the art
of network function virtualization,” In Proceedings of the 11th USENIX
Conference on Networked Systems Design and Implementation
(NSDI'14). USENIX Association, Berkeley, CA, USA 2014.

[13]� P4 Language Consortium. Behavioral Model (bmv2)
https://github.com/p4lang/behavioral-model.

[14]� Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee, Vishal
Shrivastav,Nate Foster, and Hakim Weatherspoon, “P4FPGA: A Rapid
Prototyping Framework for P4,” In Proceedings of the Symposium on
SDN Research (SOSR '17).ACM, New York, NY, USA 2017.

[15]� Simple_router.p4.
https://github.com/p4lang/tutorials/blob/master/SIGCOMM_2015.

[16]� CloudLab. https://www.cloudlab.us
[17]� Network Virualization and Security Platform.

https://www.vmware.com/products/nsx.html
[18]� T. Benson, A. Akella, A. et. al., “CloudNaaS: Networking Platform for

Enterprise Applications,” In Proceedings ACM SOCC, June 2011.
[19]� H. Ballani, P. Costa, et. al., “Towards Predictable Datacenter

Networks,” in Proceedings ACM SIGCOMM, August 2011.
[20]� C. Guo, G. Lu, H. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y.

Zhang, “SecondNet: A Data Center Network Virtualization Architectur
with Bandwidth Guarantees,” in Proceedings of the ACM CoNEXT,
December 2010.

[21]� Syed Akbar Mehdi, Junaid Khalid, and Syed Ali Khayam, “Revisiting
traffic anomaly detection using software defined networking,” In
Proceedings of international conference on Recent Advances in
Intrusion Detection (RAID), Springer-Verlag, Berlin, Heidelberg 2011.

0

0.05

0.1

0.15

0.2

100 500 1000
of Firewall Rules

P4Guard VNGuard
In
sta
lla
tio
n
Ti
m
e
(m
s)

Milcom 2018 Track 3 - Cyber Security and Trusted Computing

69

