308 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 1, MARCH 2019

Fast IP Hopping Randomization to Secure
Hop-by-Hop Access in SDN

Sang-Yoon Chang

Abstract—Moving target defense (MTD) is useful for thwarting
network reconnaissance and preventing unauthorized access.
While previous research in MTD focuses on protecting the
endnodes, we leverage software-defined networking to implement
MTD on the data-plane switches, which significantly decreases
the controller communication overhead and enables quicker
defense response to reduce the attack impact. This paper not
only randomizes the IP addresses for MTD but also uses the IP
addresses for synchronization across the nodes in the networking
path by generating hash-chain-based synchronization signatures.
Our scheme is practical as it builds on and encodes the existing
IP addresses for randomization to construct a modular solution
independent to the routing/flow rule implementation and does not
incur additional networking overhead except for the seed distri-
bution (which can occur offline). Our scheme is also effective (the
attacker’s required cost to achieve timely network reconnaissance
increases by more than an order of magnitude than the previous
state-of-the-art having the controller actuate the MTD random-
ization) and scalable (the relative overhead cost of our scheme
becomes smaller as the network grows). We analyze our scheme
and implement and experiment it on an Open vSwitch-based
testbed and on CloudLab to validate these properties.

Index Terms—Moving target defense, access randomization,
network synchronization, IP address control, software-defined
network (SDN), data plane security, network security.

I. INTRODUCTION

OMPUTER networking uses the IP protocol, in which
C the IP addresses are used to address the networking nodes
and to route/forward the packets. IP addresses are generally
arbitrarily chosen and assigned to each networking nodes, and
there is significant freedom in choosing the IP addresses.

We propose encoding information to the IP address val-
ues and introduce additional functionalities using the IP
address field of the networking header. More specifically,
we use the IP addresses to construct moving target defense
(MTD) on the data-plane switches (which forward/route the
networking packets on the endnode’s behalf), providing an

Manuscript received September 23, 2018; revised December 12, 2018;
accepted December 23, 2018. Date of publication December 27, 2018; date
of current version March 9, 2019. This work was supported by the grant
from National Science Foundation (NSF-DGE-1723804). This work is an
extended version of the short paper published at IEEE/IFIP NOMS, Istanbul,
Turkey, April, 2016 [1]. The associate editor coordinating the review of this
paper and approving it for publication was M. Conti. (Corresponding author:
Younghee Park.)

S.-Y. Chang is with Computer Science, University of Colorado Colorado
Springs, Colorado Springs, CO 80918 USA (e-mail: schang2@uccs.edu).

Y. Park and B. B. Ashok Babu are with Computer Engineering, San Jose
State University, San Jose, CA 95192 USA (e-mail: younghee.park @sjsu.edu;
bhavanababu.ashokbabu@sjsu.edu).

Digital Object Identifier 10.1109/TNSM.2018.2889842

, Younghee Park

, and Bhavana Babu Ashok Babu

efficient security measure to prevent the unauthorized access
of the networking paths. In contrast to the network security
measures at the network perimeter based on filtering or intru-
sion detection/prevention, MTD provides a defense-by-depth
measure which can be effective even against the attackers who
already breached the network-perimeter defense and have the
access to the links in the networking forwarding paths. MTD
varies the networking parameters (such as the address, the
medium access, and the networking configuration) to build
path integrity. The authorized nodes who share the key knows
the varying pattern whereas the unauthorized parties who do
not share the key do not know the MTD pattern. MTD is use-
ful in preventing the unauthorized attackers from achieving
network reconnaissance, which is the process of investigating
and acquiring networking-relevant knowledge for vulnerability
discovery and is often the pre-requisite for passive eaves-
dropping and active injection threats (e.g., denial of service
(DoS) injections), because MTD significantly increases the
unauthorized attacker’s cost in probing and achieving network
reconnaissance.

While the MTD technique is generally considered effec-
tive against unauthorized attackers and used in many contexts
(such as in configuration randomization, memory protection,
and wireless/spread-spectrum, as discussed in greater detail in
Section II), a major challenge for deploying MTD defense is
the overhead cost of implementing and executing the MTD
on the legitimate parties holding the key. While the advan-
tage from the key decreases the MTD effort compared to the
attackers without the key, the MTD implementation still incurs
overhead compared to having no MTD (static configuration)
and such overhead may be large enough to limit its practi-
cality in some applications. Prior literature proposes building
MTD defense in software-defined network (SDN), in which
the trusted SDN controller actuates the MTD on the data-plane
endnodes via explicit OpenFlow-based northbound communi-
cations controlling the MTD execution [3], [4]. To address the
overhead issues, we significantly improve the prior work to
construct MTD defense in SDN by spreading the information
from the northbound communications (so that one controller
communication can start a chain and be used for many MTD
updates) and by having the data-plane switch nodes execute
the MTD.

In addition to making it lightweight for greater practicality,
our IP-address-based access randomization scheme is more
effective than the prior literature, because we implement the
defense on the switches in addition to the destination endnodes
(in contrast, prior work only protects the endnodes) in order to

1932-4537 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-5736-5823
https://orcid.org/0000-0003-0651-2384

CHANG et al.: FAST IP HOPPING RANDOMIZATION TO SECURE HOP-BY-HOP ACCESS IN SDN 309

limit the attack impact in the number of links/switches affected
by the attacker’s injections.

Because of the involvement of the switches along the
forwarding path, we also use the IP addresses for synchro-
nization to ensure that the source-destination endnodes and
the intermediate switches are in the same MTD phase. We
propose synchronization signatures, which are generated from
a one-way hash chain and will replace the IP addresses in the
networking header field.

Our schemes for access randomization and for synchro-
nization are unobtrusive and modular to the rest of the
networking operations, for example, it generally applies across
the networking implementations and does not affect or require
change to the routing protocols or the routing/flow-rule estab-
lishment. In addition, because the information is encoded in
the IP address field, it has no overhead in the data networking
throughput. In other words, our schemes for randomization
and synchronization piggyback on the data communications
and do not require separate communications. (The only extra
communication needed is for the seed distributions to reset
the randomization/synchronization pseudo-random generation
(PRG) chains, which overhead can be amortized because we
can control the chain length to spread the information from
that communication to multiple randomization/synchronization
instances.) Therefore, our overhead/cost evaluation includes
the computational latency and computational resources of the
MTD/IP hopping and analyze the control/set-up overhead in
Section VIIIL.

The lack of real-time networking overhead (no additional
communication packets) distinguishes our work from prior
research implementing MTD based on real-time controller
communications [3], [4]. Our evaluation shows that the
attacker cost to achieve network reconnaissance increases by
more than an order of magnitude against our scheme than
the prior state-of-the-art MTD randomization in SDN. We
also show that the overhead costs of our schemes (e.g., the
latency for the PRG and the writing of the IP address field) are
lightweight, e.g., one to two orders of magnitude smaller than
the data communication latency costs in our implementation
experiments.

We build our scheme on software-defined networking (SDN)
architecture, which de-couples the decision-making at the con-
trol plane and the lower-level implementation of forwarding at
the data plane. SDN offers a centralized infrastructure where
the controller resides in the control plane and supports com-
munication between the control and the data plane, e.g., via
OpenFlow, and is typically used for intra-networking appli-
cations (where the network is governed and operated by a
network manager). SDN thus facilitates the distribution of the
chain seeds in our work, in addition to its typical functionality
of establishing the routing of the networking packets.

To summarize, we make the following contributions in
this paper. First, we design an algorithm and a protocol to
construct a switch-centric MTD for securing the access of
the networking path. Second, we design a synchronization
scheme to allow synchronous MTD for the nodes in the
networking path; the synchronization uses the networking-
layer field so that it is appropriate and minimizes the overhead

to the intermediate switches. Third, we theoretically analyze
the MTD and the synchronization schemes and implement
them and evaluate the effectiveness, performances, and the cost
overheads. More specifically, for MTD, we focus on its effec-
tiveness against cognitive and reactive attacker and compare
with the prior approach of the controller-driven MTD random-
ization; for synchronization, we investigate the cost overheads
and the scalability as the nodes increase in the networking path
between the source and the destination endnode. Section II fur-
ther describes our novel contributions and contrasts them to
the prior research work.

The rest of the paper is organized as follows. We review the
relevant prior work and highlight our contributions beyond the
state of the art in Section II. Afterward, we describe the system
and threat model in Section III. Our access randomization
scheme is presented in Section IV and analyzed in Section V;
our synchronization scheme is presented in Section VI and
analyzed in Section VII. Section VIII validates its effectiveness
and the security cost overhead using an Open vSwitch-based
prototype and a CloudLab-based prototype. Lastly, Section IX
concludes our paper.

II. RELATED WORK AND OUR CONTRIBUTIONS

Networking security has traditionally placed heavier focus
on the defense at the network perimeter, e.g., filtering and
intrusion detection/prevention, so that attackers do not have
the link access within the system. In contrast, we are moti-
vated to construct a defense-by-depth measure to build security
even when the attacker compromised the network bound-
ary and have the link access within the network. Our work
is inspired by prior work in wireless security to secure
the communication link access and is similar in its goal
in preventing the unauthorized access at the first hop. In
Section II-A, we discuss the body of work in wireless security
that inspired our work (spread spectrum), related work in wired
networking that adopts randomization, and then other relevant
work that implements security at the data-plane switches. In
Sections II-B and II-C, we highlight our novel contributions
beyond prior work.

A. Related Work

1) Spread Spectrum: As wireless communication is inher-
ently broadcast and anybody equipped with a radio can access
the communication, researchers and military experts have long
been working on securing access. In wireless medium access
control, MTD is used for building link resiliency against
jamming [5]-[8] and securing confidentiality against eaves-
dropping [9], [10]. Spread spectrum is a popular approach
to realize MTD [11], [12], and the access parameters are
time, frequency, and code. For instance, frequency hopping
spread spectrum (FHSS) in wireless communications dynam-
ically varies the carrier frequency and the frequency band in
order to prevent the attacker’s access, and fast hopping with
short hopping duration thwarts reactive attackers who sense the
channel use and adapt their strategy in real-time [13]. We emu-
late the following two properties of spread spectrum: first, the
hopping is dynamic and quick (making it difficult for attackers

310 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 1, MARCH 2019

to react to the protocol and adjust their parameters); second,
the hopping is proactive and autonomous (as opposed to being
reactive and triggered). These properties distinguish our work
from prior work that deploys MTD at the network layer, which
work we discuss later.

The aforementioned spread spectrum work assumes single-
hop network, i.e., destination nodes are directly reachable by
source nodes, and is typically applied to secure the last hop
of communication link, e.g., between the base station and the
mobile endnode. In contrast, to adopt MTD techniques is more
challenging for communication that consists of multiple hops,
in which case, the links across the hops must be synchronized,
and the implementation spills beyond the source-destination
pair (who are directly involved in the communication payoffs)
and to the intermediate switches (who merely relay the packets
using the networking header fields).

2) Address Space Randomization: We use the network
address as our randomization parameter. Dynamic host con-
figuration protocol (DHCP) is widely deployed for IP control
but is not designed for security. In the security context,
researchers have used dynamic addressing to prevent network
reconnaissance [14]-[19]. An adaptation of network address
translation (NAT) has also been proposed [20]. However, these
prior work in address space randomization build security only
at the endnodes (and not at the intermediate switches) and
thus the attackers can still access the path until the traf-
fic reaches the endnodes. In contrast, we aim to prevent
the attacker access early in the forwarding path. Beyond
networking, address randomization is also used to protect data
and memory access against software vulnerabilities such as
buffer overflow [21], [22].

3) Symmetric Encryption: Our scheme is similar to cryp-
tographic encryption in its goal to scramble the IP address
and make them unavailable without the key (the PRG seeds
in our case). However, efficiency presents a critical challenge
in using cryptographic encryption for our purpose. Symmetric
encryption such as DES or AES (which are generally superior
in processing efficiency than public-key encryption) pro-
tects application-layer information and is not appropriate for
network layer, e.g., symmetric encryption protects the message
while the network header is in cleartext (not encrypted). The
switches, on the other hand, only process up to the networking
headers and are thus inappropriate to adopt encryption as it
is designed. In addition, the dynamic nature of our scheme
would require heavy loads and overheads in key/entropy gen-
eration and distribution if trying to encrypt the IP addresses
using symmetric encryption. Key/entropy generation and dis-
tribution present challenges in cryptography in general, e.g.,
one-time pad ensuring perfect secrecy against cryptanalysts
has limited use in real-world practice due to these challenges.
Due to these challenges, we design a scheme which is more
appropriate to network-layer processing than application-layer
encryption.

4) Software-Defined Network: Since most intelligence is
on the SDN controller, e.g., routing control, much prior
work in SDN proposes to offload the security implementa-
tion to the controller (e.g., detection and filtering based on
flow analyses [23]-[25] and traffic analyses [26]-[29]) and

build on secure communication between the switches and
the controller [30], [31]. In specific, Kampanakis et al. [4]
sketches the adoption of the address space randomization tech-
nique on the SDN controller, and OF-RHM [3] describes an
instantiation of such approach.

While we also use SDN for routing control/establishment,
our work is different from these prior work in SDN-based
MTD work in three aspects. First the security implementation
scope is different, as these prior work in address random-
ization are implemented only at the endnodes and need to
tolerate the attacker traffic until it reaches the destination
endnode (much like the previously mentioned network address
randomization work in non-SDN contexts in Section II-A2.
Second, they require substantial overhead as they require
interacting with the controller whenever the network address
changes; in contrast, our work spreads the information entropy
delivered from the controller and significantly reduces the
controller communication overhead; to achieve this, we dele-
gate some intelligence (computations) to the switches (others
have also proposed to offload responsibilities to the data-
plane switches to achieve other security properties [30], [32]).
Third, in contrast to prior work, our work is proactive in hop-
ping/randomization and is resilient to adaptive attackers that
sense the traffic flow.

5) Security at Routers/Switches: Our scheme implements
security at the data-plane switches and aims to prevent unau-
thorized access at the first node that encounters the access.
Other researchers proposed orthogonal approaches to achieve
the same goal, e.g., against DoS, and adopt two classes of
approach. First, the filter-based approaches detect the unau-
thorized access based on traffic analyses (e.g., using source
identities and anomalous behaviors) and assume the abil-
ity to distinguish the unauthorized traffic and the authorized
traffic [33], [34]. Second, the capability-based approaches
involve handshaking (typically with the destination endnode
or a dedicated server) and explicit authorization for the path
access [35]-[39]. While our contribution shares similarities
with such protocols in its objective and the fact that security
is implemented at the switches, we take a different approach
and adopt MTD; our schemes also does not require the clas-
sification of malicious traffic nor explicit handshaking per
flow.

B. We Implement Randomization at the Switches

We implement our randomization and synchronization
schemes at the data plane and on the switches and thus the
implementation scope is different from the endnode-centric
prior work, described in Section II-A. In other words, prior
research builds security at the endnodes and their communi-
cation with the network representative (e.g., SDN-controller
or a DHCP server); the endnodes’ operations are orthogonal
to the data-plane networking and there is no defense at the
data-plane forwarding/routing. In contrast, our scheme imple-
mentation is at the data-plane forwarding; to provide a modular
solution (while keeping the rest of the layers intact), we con-
struct virtual switches at the nodes in Section IV. Furthermore,
since our scheme builds protection on the path itself and at the

CHANG et al.: FAST IP HOPPING RANDOMIZATION TO SECURE HOP-BY-HOP ACCESS IN SDN 311

hop-level, it enables quicker response and prevents attackers
from overwhelming the switches and multiple communication
links; our scheme is also effective against direct or indirect
link-targeted DoS [40], [41].

C. We Make Use of the IP Addresses

While it is typical to select random and arbitrary IP
addresses for addressing/routing, we encode additional infor-
mation to IP addresses so that they can be useful for random-
ization and synchronization. The nodes address the source and
the destination nodes with the correct dynamic IP addresses
(which are the outputs of the IP hopping and random to the
attacker) to access the packet forwarding path in random-
ization, and they broadcast explicit reference packets with
pseudo-random IP addresses for synchronization.

The randomization and the synchronization use separate and
independent pseudo-random generation (PRG). Therefore, we
introduce two orthogonal pseudo-random block chains.! Our
implementation uses linear-feedback-shift-register (LFSR)-
based pseudo-random generator (PRG) for the randomization
and hash-based PRG for the synchronization chain. While any
PRG can be used for the randomization and synchronization
chains in principle, our choice of the PRG implementation
is influenced by the LFSR’s/hash’s respective use in each
applications. LFSR is popularly used for real-time access
randomization (e.g., spreading spectrum) as the LFSR regis-
ter itself stores the current LFSR PRG output/state and the
computation is quick and based on bit-by-bit XOR, while
hash-based chain highlighted by its one-way property is pop-
ularly used for one-time random token/password generations
(e.g., S/Key [42], [43]). These existing functions are well-
studied in their security properties and are well-adopted for
security applications.

ITIT. SYSTEM MODEL
A. System Assumptions

We consider a connected multi-hop network and assume IP-
protocol-based forwarding. Our scheme is independent to the
routing decisions/implementations and generic across the rout-
ing protocols as long as they are IP-driven, so we assume that
they are given. While our scheme is generally applicable to
the routing protocols (including those that are primarily driven
by the destination-node address, e.g., Routing Information
Protocol (RIP) and Open Shortest Path First (OSPF)), the
switches (executing routing and forwarding) check and process
both the source IP address field and the destination IP address
field, which are included in the networking header by IPv4
and IPv6 standards. Our scheme makes use of both source IP
address and the destination IP address for randomization.

10ur PRG chains share similarities with blockchain technology in the
ledger data structure (based on one-way hash chains) and that the functions
are computed in a distributed set of nodes (in our case, the nodes along the
forwarding path). However, our PRG chains are different from the blockchain
technology because the computations, given the seeds, are deterministic and
therefore the controller (providing the seeds) drives the consensus process.
In contrast, blockchain achieves consensus in a distributed manner and often
involves a random process.

We build our scheme on the SDN architecture (where a
controller establishes and communicates the routing decision
and the switches forward traffic accordingly) and focus on the
intra-domain communication applications (e.g., governed by a
single operator). We also leverage a public key infrastructure
(PKI) for the distribution of the seed values that will activate
our scheme. More specifically, we have three seeds: two for
randomization hopping (IP seed and PRG seed) in Section IV
and the hash seed for synchronization in Section VI. The secu-
rity of our work relies on the PRG seed and the hash seed. The
SDN controller distributes the seed values to the data-plane
nodes. We assume secure control communication between the
control and the data plane, e.g., [30] and [31] (for example, by
using asymmetric encryption for confidentiality and digital sig-
nature for integrity) and secure controller, e.g., [32] and [44],
and we rather focus on the threats on the data plane.

Our scheme can be used for multiple flows where each flow
is for a sender-destination pair. For multiple flows, our scheme
introduces multiple chains for randomization in Section IV
(one chain per flow and keeping tracking of PRG . and ¢ per
flow) and multiple chains for the synchronization in Section VI
(one chain per flow) . However, for storage, while the syn-
chronization requires storing multiple signatures per flow, the
randomization requires the switches and the endnodes to only
keep track of PRGje.q and t per flow and do not need to
store beyond those values for each flow, assuming that the
routing/flow rules are given as described earlier (e.g., storing
and keeping track of the endnodes’ IP addresses to identify
the flow and the corresponding routing rules). For simplicity,
we assume a single flow when describing our scheme, i.e., the
scheme is presented in a per-flow perspective.

B. Threat Model

An attacker accesses the networking path without the
legitimate authorization for the access. We also consider
compromised network with the attacker being physically con-
nected to the network and having bypassed the perimeter
filter and gateway, for example, the attacker is connected to
the network from within. Our scheme defends such attack
by thwarting network reconnaissance. Network reconnaissance
is to learn about the victim network and its vulnerability
and is a pre-requisite for many access-based attacks, such
as eavesdropping, injection-based DoS, and malware/exploit
delivery.

We do not consider the orthogonal threat of disrupting the
routing and the forwarding process, which requires a stronger
attacker with increased attacker requirements than our threat
model. Even though the attacker has access to the path links,
it does not control the switches, e.g., to take active measures
in the routing and forwarding process. For example, if a node
along the forwarding path is compromised and disrupts the
forwarding process, e.g., re-routing and packet dropping, then
the routing protocol can choose another forwarding path which
does not include that misbehaving/faulty node. Such threat
model is more difficult to implement than ours (increasing the
attack barrier) as it requires the compromise of a switch which
is a part of the networking infrastructure, as opposed to just

312 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 1, MARCH 2019

having connection to a switch or a networking link. Thus, we
do not consider compromised switches that have active control
on the forwarding and routing operations.

We consider an advanced attacker that is dynamic and adap-
tive. It can both passively monitor/analyze the traffic and
actively send queries and probe for network reconnaissance;
afterward, the attacker can use the information to facilitate
their unauthorized access. (An analogy to wireless commu-
nication is a reactive jammer where the jammer performs
cognitive-radio-like sensing of the spectrum to decide where to
focus its jamming for maximum impact.) The attacker’s traf-
fic sensing and the adaptation of the access strategy is done
in real time. To counter such sophisticated threat, we proac-
tively and rapidly update the IP address for MTD. If the MTD
randomization supports reactive trigger (e.g., IP changes when
there is a misbehavior detection) and relies on the prior state of
the art in controller-induced randomization, such attacker can
indirectly launch a MTD-specific DoS on the control commu-
nication by repeatedly and intentionally triggering misbehavior
detection and forcing the controller to continuously update the
security parameters, overwhelming the network with control
communication updates and thus blocking the actual goodput
delivery.

IV. ACCESS RANDOMIZATION SCHEME: IP HOPPING

We deploy IP randomization across all nodes (endnodes and
switches) which are involved in the forwarding path. We gen-
erate IP addresses, based on a local seed and a random seed,
and use them for randomization on the switches. The SDN
controller distributes the seeds and controls the routing opera-
tions (including the routing/flow rule updates on the switches),
as discussed in Section III-A.

Similarly to some other routing schemes [35], [36], our
work can be used to establish priority-based forwarding where
the traffic that uses our scheme has higher priority in the path
access and forwarding. The low-priority traffic which uses
the static IP address without MTD can be processed in an
unobtrusive manner to the high-priority traffic (only getting
processed when there is no higher-priority traffic) or can be
banned altogether, depending on the priority scheme design
and implementation. As discussed in Section III, we assume a
single flow and that the IP randomization is enabled (e.g., high
priority traffic) in this section for simplicity in presentation.

To provide a modular solution which can be deployed across
the networking/routing implementations, our scheme provides
a transformation between the original IP address (used for
routing and other networking decisions) and the IP address
used for MTD randomization. The process of converting from
the original to the randomized IP address is called IP hopping
and the reverse process is called /P de-hopping, and both the
source IP address and the destination IP address goes through
IP hopping/de-hopping processes. In addition, we construct
virtual switches within the nodes, so that the packets are pro-
cessed for IP hopping after the network-layer operations and
before the physical-layer mappings. The operations of the vir-
tual switches for endnode are described in Figure 1 while those
for the endnodes and the switches as well as the hopping and

Endhost
1

(Upper Layers ...)

|

Transport
Layer

|

Network
Layer

—>| IP Hopping

|

Physical
Layer

Link)

Fig. 1. Operational flow for endnodes (the source node in this case) to high-
light the modular design. Our contribution lies at the IP Hopping/De-Hopping
module between the other network layer operations and the physical-layer.

the de-hopping processes are described in Figure 2. The oper-
ations of the virtual switches at the endnodes are the same as
those at the switches, except that the source node does not per-
form IP de-hopping and the destination node does not perform
IP hopping.

A. IP Hopping: Address Generation and Randomization

Unlike other schemes which implement security at the con-
trollers [23], [24], [26]-[29] including the work that builds
MTD [3], [4], we offload the control computation to the data
plane and on the switches in our work. However, the operations
on the switches are marginal in intelligence as they perform
routine protocol and computations. The nodes along the for-
warding path (both the endnodes and the switches) locally
implement pseudorandom generator (PRG), which is uniform
and agreed across the nodes. Once the controller provides the
initial input, the switches iteratively compute the PRG func-
tion to construct a PRG chain. Each PRG function output is
used at a time, and the next iteration for computing the PRG
function corresponds to updating.

The endnodes and the switches update the IP addresses from
the two seeds: the IP address seed (unique for each nodes)
and the PRG seed (provided from the controller and used to
drive the PRG). The local IP address seeds of the nodes are
static and do not need to be private information, for exam-
ple, the static IP addresses (which have been used before the
activation of our scheme or is used to send the low-priority
traffic) can be used as this seed. All nodes involved in the
forwarding know each other’s IP address seeds. The varia-
tion for randomization comes from the PRG; the function and
the seeds are uniform across the nodes involved in the path
(including the source and the destination endnodes, equipped
with hopping-capable virtual switches). Nodes not involved in
the path forwarding do not know the PRG seed, and thus the
PRG output appears random to them.

The updated TP address (/Pypqqte) is a function (f) of the
IP seed (IP.eq) and the PRG output (PRG), which in turn
is a function of the PRG seed (PRG,.q) and the time in
packets (?):

IPupdate = f(IPseed) PRG(PRGseed ’ t)) (1)

CHANG et al.: FAST IP HOPPING RANDOMIZATION TO SECURE HOP-BY-HOP ACCESS IN SDN 313

12 1Pypdate > 1Pseed

R et .=,

£ 1Poced > Pupiaee

PRGseed t

|

PRG

Packet Packet Packet Packet

(IPupdate) N (IPseed) N (IPseed) A (IPupdate)
IP De-Hopping Forwarding IP Hopping poat
(f1) Protocol (f)
Routing/Flow
Rules
Fig. 2. IP hopping (f) and IP de-hopping (f —1y on the endnodes and

the switches. The information/time flows from left (source) to right (desti-
nation). The top describes the IP address transformation using hopping and
de-hopping of the incoming and outgoing packets, while the bottom shows
the transformations in greater detail occurring at the switches.

where both f and PRG are some deterministic functions. This
IP address transformation is also described in Figure 2 (bot-
tom right). While f~1 (given either IP,..; and PRG output)
is easy to compute, PRG ! and PRG (without PRG,,;) are
difficult to compute. While this section focuses on the use of
the functions and do not identify the functions, the following
section provides concrete functions for IP hopping. The input
t corresponds to the time in packets, as opposed to the abso-
lute time, and incrementing/changing ¢ varies the IP update.
Section VI describes the synchronization and how ¢ is shared
and agreed across the nodes.

B. IP Hopping: Our Implementation

In our implementation, we use Class A private addresses
with subnetwork address of 10.X.X.X and subnet mask of
255.0.0.0, leaving us 24 bits for randomization; because the
entropy is the same as the size of the host address space.
adopting our scheme with IPv6 will significantly increase the
randomness and the security strength. We implement the IP
hopping by applying the followings: the randomization is at
the IP addresses of the nodes; the static IP address, e.g., for
low-priority traffic, acts as the IP,,.;; we use a linear feedback
shift register (LESR)-based” PRG (with 7 increment triggering
the shift and ¢+ = 0 corresponding to no shift and being in the
state of PRG.eq); and f is cyclic addition for each decimals
(representing one byte each). Thus, both f and PRG are linear
and computationally efficient in our implementation.

The IP seed can be found by reversing the operation and
using f~! from IP pdate, 1-€., cyclic subtraction by the PRG
output, as described in Figure 2. For the packet at time ¢, the
legitimate users that forward the packets know the PRG output
(as they are using the same PRG, PRGeeq, f, and f). The IP
seed information, requiring the correct PRG value, identifies

2LFSR is popularly used for military applications such as cryptography and
scrambling (e.g., DSSS) and is known to generate maximum entropy against
brute-force threats, as it Zproduces maximal length sequences (i.e., if the bit
length is /, it produces 2 — 1 distinct states before it repeats itself).

the source and the destination of the networking packets, as
we will discuss further in the following section.

We illustrate the f of decimal-based cyclic addition with an
example. If a user has a static address of 10.0.240.25 and the
PRG output for time ¢t = ¢ is 10.0.18.25, then the updated IP
address is IPypgqe = 10.0.2.50, and that user will use the IP
address of 10.0.2.50 at time ¢ = 7. The least significant byte is
derived from (25+25) mod 256 = 50 while the second-least
significant byte is from (240+4-18) mod 256 = 2. Other switch
nodes along the networking path also compute PRG output of
10.0.18.25 at t = ¢ and cyclic-subtract it from the received
10.0.2.50 to retrieve the IP seed of 10.0.240.25.

C. IP De-Hopping & Forwarding

The route is established based on the static /P4 addresses,
e.g., the routing table lists the routing rules and policies and
is only updated when directed by the SDN controller. The
IP header (which is network-layer information and is thus
accessed by the switches by design) enables the switches to
conduct MTD/path access validation. If the IP;,q44 Vvalues
of the source and the destination IP addresses of the received
packet do not get mapped to the correct /Pg..q from one of
the pre-stored flows, then the packet is invalid in MTD.

As depicted in Figure 2, given the routing and the flow
establishment, the forwarding nodes locally decrypt the IP
randomization by performing f~! with the PRG output to
check whether the traffic is addressed correctly (and hence
legitimate). Once packets arrive, the forwarding nodes first
check the source’s and the destination’s updated IP address;
by computing f ! of cyclic subtraction, the forwarding node
learns the IPg..qs of the addresses and identify the routing
path according to them. If the IP addresses are valid and the
corresponding route/path exists in the routing rule, the switch
locates the next-hop node based on the /P, but performs the
IP-hopping function to forward the packet with the IP,,qqe
addresses (IP seed is invisible outside of that node’s computa-
tion); if the flow/route is not established based on the [Pg..4
addresses, the packet is dropped. All switches supporting our
scheme perform this process.

V. IP HOPPING RANDOMIZATION ANALYSES
A. Hopping Collision for Multiple Flows

We consider multiple traffic flows in this section. If multiple
flows coexist and the path carries traffic from multiple sources,
there can be collisions in IPy;44¢. in Equation 1. However,
if f given IP..q is injective with PRG (i.e., different PRG
yields distinct f | IPgeeq), then we can resolve collision and
distinguish packets that are addressed to the same IP,;,qq4e
by coupling the information of IPyp44¢e and IPgeeq. In other
words, if traffic from different flows address the switch with
the same IP address at the same ¢, then the two packets can be
distinguished by computing f~1 and identifying the IP,.; of
the respective flows.

B. Security Analyses

Attackers who wish to compromise a forwarding path need
to know that the routing path based on the IP,,,, is established

314 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 1, MARCH 2019

in the routing table and the corresponding Py, Values of
the source and the destination. The security of our scheme
relies on the secrecy of PRG,..q and consequently the PRG
output. To defeat the reactive attackers who observe the packet
traffic and compromise the relevant set of IP;q4¢c, We have
the IP update more quickly than the attackers’ reaction time.
Because the IP generation and updates are being processed
within the host (as opposed to via control communication with
a separate entity, e.g., the controller [3], [4]), our scheme is
fast and significantly increases the attackers’ cost, as we will
also see in experiments in Section VIII-B.

To protect PRGyeeq, we use t > 0 for the IP randomization
to avoid using the plaintext PRG,..q as the PRG output with
the initial packet (to defeat lurking attackers who capture the
network-layer information at the first packet). However, we
do not rely on the secrecy of f and PRG themselves; both f
and PRG are public information by Kerckhoff’s principle. Our
main contribution does not involve building a secure PRG, and
we rather rely on the security properties of mature and well-
adopted functions (for example, it is difficult to compute PRG
without PRG,..q and f); because it is widely used for real-
time scrambling for security applications, we use LFSR-based
scrambling for PRG.

Our scheme is secure against an attacker that monitors the
traffic over time and gathers the history of the utilized IP
addresses to acquire the PRG..q. For such attacker, linking
the individual packets to the flow and the source-destination
pair (to learn the per-flow packet sequences) is challeng-
ing, especially when multiple users and flows are using the
link (where the attacker compromise resides). Even when the
attacker is successful in gathering and storing the history of
the IP address updates using some side channel information
(for instance, it has the assurance that there is only one traf-
fic flowing), the attacker needs to break the PRG to learn the
PRG,,.q and access the path.

VI. SYNCHRONIZATION SCHEME

Since the intermediate switch nodes serving the source and
the destination keep track of the IP addresses of the source
and the destination nodes for access/forwarding path ran-
domization, they need to be synchronized. More specifically,
the aforementioned nodes require packet-level synchroniza-
tion and the agreement of ¢ (used for MTD randomization
in Section IV) since ¢ changes/varies the IP address.

Our synchronization scheme supplements the randomization
scheme in Section IV and constructs an explicit network-layer
synchronization signature based on IP address control. The
signature is embedded in the network layer of the packet car-
rying data and therefore does not cause additional overhead in
communications, in contrast to using separate control packets
exclusively for synchronization, e.g., [45].

A. Synchronization Signature Generation Using One-Way
Hash Chain

As described in Section II-C, we introduce a separate,
independent PRG chain from the one used for randomiza-
tion in Section IV. While other PRG implementations can

Generate
____________________________ »
— H » H » H » H |—> -
€ m e e e
Use

Fig. 3. Hash chain for synchronization signature generation.

also be used for synchronization signature, we use a one-
way hash chain for the synchronization signature. We assume
two properties of the hash function A, which are typical
for many cryptographic applications; the hash A produces
random/pseudo-random output (and the attacker cannot iden-
tify a pattern on the output) and the / function has one-way
property, i.e., it is easy to compute but difficult to solve the
reverse computation of AL, (Our scheme does not require
collision resistance as discussed later in this section.) Given
a one-way hash function of h, h®(z) takes the input x and
applies 4 on that input o times, for example, 12 (z) = h(h(z)).

For each path (or for each source-destination pair), all nodes
in the path (the source, the destination, and the switches) com-
pute the hash chain of length m from h', h2,... h™ by using
the input 10, e.g., h' = h(h0) and A% = h(h') = h(h(RY))),
where h0 is shared/communicated to the nodes a priori by
the SDN controller. This provides m synchronization signa-
tures providing m synchronization instances to notify the nodes
of the time to update. From the computed and stored hash
chain, the nodes use the hash values in the opposite order
of its generation, i.e., they use A" first and then A1
and then h™ 2 and so on, as depicted in Figure 3. When
all of the m synchronization signatures are used, another
northbound communication to the SDN controller takes place
for a new h® and a new chain. m therefore provides a
design parameter to control the tradeoff between SDN con-
troller overhead, the security impact, and the switch memory.
As m grows, the synchronization-chain-refresh rate decreases
and the controller-communication overhead decreases, but the
attacker has greater impact once it does compromise the chain
and it requires greater memory on the switches for storing the
synchronization signatures (the switch needs to store all the
remaining synchronization signatures to be used and therefore
stores all m signatures when the chain is newly refreshed). Our
hash-chain-based PRG chain construction and use is inspired
by and is similar to the S/Key one-time password/token gen-
eration [42], [43] and TESLA broadcast authentication for
wireless network [46], [47].

The use of hash values in the opposite order of their
generation in the hash chain provides security due to the
one-way property of hash functions. This construction also
makes collision irrelevant as the attacker needs to find the
exact input to breach the hash chain; our scheme thus does
not require the collision resistance property, which is a typical
requirement of cryptographically secure hash functions. For
example, suppose the current synchronization signature uses
h™, then the attacker breaks the security by finding the exact
™1 and not another 4’ which generates a collision, i.e.,

CHANG et al.: FAST IP HOPPING RANDOMIZATION TO SECURE HOP-BY-HOP ACCESS IN SDN 315

h(h) = h(h™=1) = h™ K # h™~1, as the attacker using
the 4’ to generate/transmit a false synchronization packet to
break the integrity of the synchronization does not match with
the pre-stored 2™ 1. Therefore, our requirement for the hash
function has less constraints than the hash functions in other
cryptographic applications requiring collision resistance.

The hash values are converted to IP addresses, for exam-
ple, given the hash outputs, the least significant bits (LSB) of
the length of the IP address becomes the IP address. These
IP addresses, which we denote with IPsyy., are used as the
synchronization signature.

B. Synchronization Signature Propagation

Whenever the source node wants to increment ¢ to
update/change the IP addresses for the randomization, it
embeds the synchronization signature IP address (IPsync) on
the source address field of the networking header. In other
words, while the destination node is still referred to by the
IP,pgqte in Equation 1 so that the switches know the rout-
ing paths, IPgyn. replaces the source [P, Because the
path-unique destination’s /P4, can be used to identify the
path and the next-hop switch, the synchronization packet can
travel the same path as the data packets and therefore the syn-
chronization packet can still be used for data communication.
While the data gets communicated, there will be occasional
synchronization signatures (/Psyn.) embedded in the source IP
address field, indicating the synchronization/update instance,
while the other non-synchronization data packets use IP;pqq4¢c
for the source IP address.

For verification of the synchronization packet, each node in
the forwarding path checks the destination IP field (IP,pqqte
from Equation 1 for the access randomization) and the source
IP field (IPsync from the synchronization chain); the two IP
addresses are from separate PRG chains and are independently
generated to each other, and all nodes have the capabilities to
compute both IP addresses while they remain random to the
attackers.

Once the synchronization packet is transmitted to notify the
update in the access randomization, the current synchroniza-
tion signature can be broadcasted as it is designed for notifying
the nodes in the forwarding path. Our construction and the
analyses in Section VI-A assume insecure channel and that the
attacker can compromise the current synchronization signature
once it is transmitted by the source endnode; if the attacker
repeats the packet and conduct replay attack, then it actually
helps the cause for synchronization. In fact, in the cases of
lossy channel, e.g., a faulty link or switch sporadically drops
the packets, then the source endnode can repeat the synchro-
nization signatures in the IP address field in order to ensure
the delivery of the synchronization signature. We leave such
redundancy control to resolve lossy packets as future work;
our implementation testbeds in Section VIII had no issues with
lossy packets.

VII. SYNCHRONIZATION OVERHEAD ANALYSIS

We analyze the overhead of our IPsyy.-based synchroniza-
tion scheme in computation and storage and more specifically

its scalability with respect to m (the number of randomization
updates supported per randomization PRG chain) and n (the
number of endnodes, and not the switches, which can become
source or destination, depending on their communication needs
at the time). The networking overhead (additional communi-
cation needed) is zero since the synchronization packet can
also be used for data communications without needing sep-
arate synchronization-exclusive packets. The overhead costs
apply to all nodes including the switch nodes.

Our synchronization scheme requires the computations of
the hash chain, which involves exactly m hash computations
per path. At bootstrapping (when n nodes get activated), there
can be n - (n — 1) paths (there are ,Cy = n(n — 1) pos-
sible source-destination combinations, and we assume single
path per source-destination pair for our scheme), resulting
in mn (n — 1) hash computations. The initial bootstrap-
ping overhead (when n endnodes are first introduced) is thus
mn (n — 1).

After the bootstrapping, the nodes will generate synchro-
nization signatures as is needed and on a per-path basis and
therefore the computational overhead is actually m hash com-
putations to generate a m-long hash chain. Therefore, per
chain update, it requires m hash computations. We imple-
ment the hash chain and measure the hash computational cost
in Section VIII-E in order to demonstrate the relatively low
computational overhead of hash chain construction.

While each chain requires m hash computations, for stor-
age, all computation outputs for all possible paths need to be
stored, and therefore the storage overhead has the the com-
putation cost of O(mn (n — 1)) ~ O(mn2) where O(.) is
the big O notation. The exact storage overhead also increases
with the length of the IP address; for example, in our imple-
mentations in Section VIII, we use 24-bit host address for
randomization and synchronization, so the storage overhead is
24 mn (n — 1) bits.

Choosing m provides a tradeoff between multiple design
factors. Increasing m decreases the frequency for the north-
bound controller communication but increases both the com-
putational and storage overhead. m also affects the freshness
of the chain and smaller m may provide stronger security in
principle, especially if the PRG generator function has ques-
tionable security (currently, in computational security, there is
no known attacks that break the PRG generators we use for
our instantiation). However, as a constraint for m for security
purpose, we recommend having m smaller than the period of
the PRG used for the randomization, e.g., the maximal length
of LFSR which is 2/ — 1 where is the bit-length of the LFSR
registers, to avoid repetition (and the corresponding security
weakness) in the PRG.

VIII. IMPLEMENTATION EVALUATION

To evaluate our scheme, we build an Open vSwitch-
based [48] testbed prototype (Section VIII-A describes the pro-
totype implementation) and a CloudLab-based [2] prototype
(for analyses with varying networking size and topologies).
In a single-flow environment (no other networking traffic),
after the seed distribution, we take benchmark measurements

316 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 1, MARCH 2019

E’ Controller

[—= = 1
s1 s2
H1 H2

Fig. 4. Our experimental setup in the Open vSwitch testbed.

to show the performance gain of our scheme and the increased
security against a reactive attacker, described in Section III-B.
Section VIII-B measures the packet delivery latency and com-
pares our IP randomization/hopping scheme with the prior
state-of-the-art IP randomization scheme (which involves com-
munication with the controller for every IP update), and
Section VIII-C discusses how our fast IP hopping defeats the
network reconnaissance attack. In Section VIII-D, we analyze
the impact of the size of the network and, more specifi-
cally, the length of the path, e.g., the number of intermediate
switches between the source and the destination, and in
Section VIII-E, we study the computational latency overhead
of the synchronization when the forwarding path resets the
synchronization-hash chain.

Because we study the scalability and the dependence on
network topology, we implement our scheme on CloudLab [2].
CloudLab is an open-cloud platform to provide Infrastructure
as a Service (IaaS), supported by National Science Foundation
(NSF), and enables greater control in the networking topol-
ogy. Since the performance values are sensitive to the system
implementation details [49], [50], e.g., we also see differ-
ent measurement values between the Open vSwitch- and
CloudLab-based testbeds, we describe the performance in
gains over reference measurements. The delay measurements
are taken over 10,000 samples for both OVS-based testbed and
the CloudLab environment; this number of samples provided
a small confidence intervals from the mean values displayed
in this section and support the statistical significance of the
behavior presented in this section.

A. Open vSwitch-Based Prototype Implementation

To construct a local network for our experiment, we use
five computers (Intel Core 2 Duo, 2x2.20GHz CPU with
2.0GB RAM) and an Ethernet switch for the physical devices.
There are two endnodes (the source and the destination), two
switches, and a controller server; each computer emulates dis-
tinct roles. The switches are software-based in Open vSwitch
2.3.0 [48], and the controller is based on OpenDaylight Helium
supporting OpenFlow 1.3. Unlike the switches, the physical
Ethernet switch device does not support any virtualization
and has the sole purpose of bridging the wired connections.
Figure 4 depicts the network topology and the roles of the
computer hosts; we focus evaluating our scheme given a
forwarding path.

We implement a prototype for our scheme. As PRG has
comparable data format as IP addresses, we use DHCP pro-
tocol for the PRG seed distribution with the DHCP server
implemented at the controller. Then, the nodes locally ran-
domize their IP addresses, as described in Section IV-B, and
send packets with the updated IP addresses. Only when the IP
addresses are correct do the packets go through, as discussed in
Section IV-C. For example, when the host H1 directs its pack-
ets to other hosts with incorrect IP addresses, e.g., because it
is unauthorized and does not have the correct IP update, then
the packets get dropped at the next hop at S1.

B. IP Hopping Randomization vs. Controller-Driven
Randomization

We compare our scheme to a baseline reference. The
baseline scheme is to involve the SDN controller for the
IP randomization of the nodes, which is adapted from the
state-of-the-art mechanism to build MTD on the hosts in
SDN [3], [4]. However, the baseline scheme differs from these
prior work in that they randomize the addresses of all nodes
on the forwarding path as opposed to just the endnodes.

The gain of our scheme over the baseline comes from
the fact that the randomization operations are done locally
within the nodes as opposed to involving the controller (the
baseline). After the PRG seed is distributed to the endnodes
and the switches, we generate 64-byte ICMP packets (ping),
apply randomization for each packet, and compare the packet
latency between the two different MTD approaches. We also
isolate the operations and measure the latency when the ran-
domization/update is done locally via LFSR computation and
when it is done via the interactions with the controller. The
latency performance for our scheme is 0.2680 milliseconds
per packet delivery (averaged over 10,000 measurements) and
the LFSR computation (which output will be used for the IP
update) takes 14.58 nanoseconds (averaged over 10 cycles or
10x (224 —1) =~ 1.678 % 108 IP addresses), which accounts for
a marginal 0.0054% of the total packet latency. On the other
hand, the controller-involved baseline scheme has an aver-
age latency of 3.7159 milliseconds per packet delivery where
the controller overhead for IP update accounts for 93% of
the latency. The latency distribution of our measurements are
shown in Figure 5. Thus, our scheme compares favorably to
the baseline, as the attacker needs to improve its reaction time
by more than an order of magnitude to successfully breach the
updated IP address.

In addition, Figure 5 shows greater variance/randomness in
the measurements when the controller is involved (baseline)
than having the randomization performed within the nodes
(our scheme) even in our controlled lab environment; the
baseline involves multiple nodes for MTD execution while
our scheme involves intra-node computation. This corrobo-
rates with our findings that the variance increases as there are
greater number of nodes involved in Section VIII-D.

C. IP Hopping Against Attacker Network Reconnaissance

To understand the attacker’s perspective against our scheme,
we instantiate a network reconnaissance threat by having a

CHANG et al.: FAST IP HOPPING RANDOMIZATION TO SECURE HOP-BY-HOP ACCESS IN SDN 317

0.9]
—— Our scheme

----- Baseline
0.7 —-

0.8

0.6

CDF

Il
|
1
]
!
0.5 f
1
]
1
0.4 H
|
i

0.3

0.2

0.1 g

-

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Packet latency (milliseconds)

Fig. 5. The measurement distribution in cumulative distribution function
(CDF) of our scheme and the controller-driven baseline. For baseline (with
greater variance), we also show the average in a vertical line.

OA; r
|

0.8

0.7

0.6

0.5

CDF

0.4
0.3
0.2

//

00 0.5 1 15 2 2.5 3 3.5 4 4.5 5
Reconnaissance cost (milliseconds)

Fig. 6. The measurement distribution in cumulative distribution function
(CDF) of attacker’s cost in achieving network reconnaissance. The horizontal
axis is aligned to Figure 5.

malicious node inquire for the node’s IP address via tracer-
oute once it encounters the traffic. This approach provides an
immediately feasible implementation of the attack and pro-
vides an estimate of the attacker’s cost in our experiment.
Further analyses or optimization of such attack implementation
(e.g., enabling traceroute is not compulsory, although often
enabled by default, and the switch can decide not to engage
with the attacker) or other attack implementation approaches
are not the focuses of our work and are out of scope of this
paper. As discussed in the following, our scheme can defend
against such network reconnaissance attack.

Figure 6 shows the delay cost of the attacker, which
is 1.5462 milliseconds on average. In contrast, our scheme
costs 14.58 nanoseconds for IP generation, as the update is
locally computed within the node (without requiring commu-
nication with outside of that node), and the average packet
latency is 0.2680 milliseconds, as discussed in Section VIII-B.
Therefore, the attacker’s reconnaissance delay is more than
five times greater than the packet delivery latency when using
our scheme. In other words, in this networking scenario, if we

restrict the liveness of the IP update hop by five packets or less,
then the information becomes outdated by the time the attacker
achieves reconnaissance (and begins exploiting the reconnais-
sance for further attacks). However, unlike our IP-hopping
scheme, the controller-driven IP randomization (the baseline
scheme in Section VIII-B) is not fast enough to defend against
the implemented reconnaissance attack even if the IP address
is changed for every packet, leaving about 1.9 milliseconds
for the attacker to use and exploit the vulnerability from
reconnaissance.

D. Network Topology Dependence

While Sections VIII-B and VIII-C demonstrated our
scheme’s superior efficiency over the controller-relying state-
of-the-art baseline scheme and the effectiveness against
attacker reconnaissance, respectively, we analyze our scheme’s
dependence on the network topology (and more specifically
the path length between the source and the destination nodes)
in this section. To support greater level of control in network
topology, we implement and experiment in CloudLab [2],
comprised of Intel Xeon E5530 processors at 2.4GHz; our
implementations in CloudLab corroborate with our findings in
Sections VIII-B and VIII-C and thus we focus on the network
topology dependence in this section.

Figure 7 shows the measurement results for the process-
ing delay of our randomization scheme while varying the path
length in hops, excluding the propagation delay (which we dis-
play separately in Figure 8). We measure the processing/CPU
latencies for the following tasks: “Randomization update” (IP
address update based on LFSR PRG), “Delivery w/o ran-
domization” (processing the networking without IP-address-
based access randomization), and “Delivery w/ randomization”
(processing the networking with the IP-address-based access
randomization). ‘“Delivery w/ randomization” measurement
already includes the task of “Randomization update”.

Randomization update (which includes running the LFSR
PRG and the IP address update) takes 35.36us and does
not vary with the path length, as all nodes are computing
them separately and independently to each other. Within the
randomization update (comprised of running LFSR and writ-
ing/updating the IP address), the time to update the IP address
took the most of the time, as the time to run the LFSR PRG
takes merely 1.353us, which accounts for less than 4% of the
randomization-update process.

The processing for the networking delivery varies with
the number of switches in between and is larger than the
randomization-update overhead. When the hop length is one
and the source and the destination are directly connected with
no switch in between, the networking processing time with-
out randomization scheme (“Delivery w/o randomization™) is
4x greater than the randomization update; such difference in
the processing overhead between that for networking and that
for randomization update continues to grow as there are more
switches in between, e.g., when 8 hops between the source
and the destination, the difference grows by 6.41x. Therefore,
the CPU/processing overhead of adding our IP randomization

318 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 1, MARCH 2019

0.25

[l Randomization update
[Delivery w/o randomization

.k [IDelivery w/ randomization |

0.15 1

0.1F 1

Latency (millisecond)

0.05 | 1

1 2 4 8
Path length (hop)

Fig. 7. The processing latency measurement with respect to the path
length. This measures the average CPU time/latency over 10,000 samples
without the packet propagation time, and the 95% confidence intervals are
sub-microseconds, i.e., within 0.001 milliseconds (the propagation variance
is greater as we will observe when discussing Figure 8). The horizontal axis
shows the number of hops or the number of switches involved, e.g., 1 hop (on
the far left) corresponds to direct link between the source and the destination
involving 0 switches.

4

3.5F

3+

251

2L

15¢F

Latency (milliseconds)

1 =

0.5

1 2 4 8 16
Path length (hop)

Fig. 8. The packet/path propagation time measurement with respect to the
path length. This figure shows the average propagation delay over 10,000
samples.

scheme (which increment corresponds to the randomization-
update cost) is small compared to the normal networking
cost (without implementing our scheme), and the overhead
becomes even relatively smaller as there are more nodes/hops
in the path.

Propagation overhead, compared to the processing over-
head, has a more of a dramatic increase as the path length
increases and more nodes get involved in the packet delivery.
Figure 8 studies the propagation delay, which is the time it
takes for a packet to travel from the source to the destina-
tion. While the latency overhead with randomization grows
by 40% for processing from 1 hop to 8 hops in Figure 7, the
propagation latency grows by 1522% from 1 hop to 8 hops
and by additional 1205% from 8 hops to 16 hops. Also, the
variance/randomness of the latency measurements increase as
there are more switches involved in the path. From 1 hop

to 16 hops, the 95% confidence interval bound (assuming
symmetric distribution) monotonically grows from 0.908us to
3.45us with 10,000 samples and from 5.9us to 30.4us with
100 samples. With 10,000 samples, the confidence intervals
are 0.908, 0.945, 1.66, 2.59, and 3.45 (all in ps) with 1 hop,
2 hops, 4 hops, 8 hops, and 16 hops, respectively. Even within
our network scenario, which has a single data traffic flow,
the randomness increases as more nodes are involved in the
forwarding.

In addition to the network topology, the latency performance
is highly dependent on the system implementation, such as
the SDN implementation [49], [50], and the networking envi-
ronment and state, e.g., the number of simultaneous traffic
flow and the switch queue state. While we analyze the latency
dependence of our scheme on the path length, our performance
measurements are conservative and the actual overhead of
implementing our IP-hopping scheme is even lower relative to
the networking delivery costs because there is no other traffic
in our setup. In contrast, real-world networking with multiple
traffic flow, introducing queuing delays on the switches will
increase not only the delivery/propagation latency magnitude
itself but also the randomness in the delivery/propagation
latencies across different packets within the same flow, while
the additional overhead incurred by our scheme is independent
to such factors.

E. Synchronization Overhead

Using machines based on Intel Xeon E5530 at 2.4 GHz
in CloudLab, we study the overhead of our IP synchroniza-
tion scheme. More specifically, we measure the computational
overhead in latency for pre-computing m synchronization sig-
natures for each node. Our implementation uses SHA-256 hash
function because the maturity of its one-way property and the
wide use for security applications; as explained in Section VI,
our synchronization scheme relies on the hash function’s
one-way property to prevent the attacker from breaching the
synchronization by knowing about the future synchronization
signatures before their use. To provide a reference, SHA-256
is used for Bitcoin (cryptocurrency), which mining is based
on finding the reverse of a hash function and the miners has a
global-scale computing resource (with the crowd-sourced min-
ers competing around the world); successful mining, accepting
multiple solutions/collisions, happens once every ten minutes;
having such computational resource (equivalent to pooling
the global-scale miners) is very difficult and expensive but,
even against a hypothetical attacker with such computational
resource, breaking the hash chain designed for our synchro-
nization is more difficult than Bitcoin mining because our
synchronization chain does not allow collisions (whereas col-
lisions are allowed in Bitcoin mining to control the difficulty
of the mining process).

As is shown in Table I, each hash computation based on the
SHA-256 function takes 2.499us on average, which is smaller
by two orders of magnitude than the networking delay in the
small-size OV S-networking-prototype in Section VIII-B and
smaller by three orders of magnitude than the propagation time
of a reasonably sized network (with a hop length of greater

CHANG et al.: FAST IP HOPPING RANDOMIZATION TO SECURE HOP-BY-HOP ACCESS IN SDN 319

TABLE I
THE COST OVERHEAD (TIME) OF GENERATING SHA-256-BASED
SYNCHRONIZATION SIGNATURE

Mean (us) | Standard deviation (us)
Hash computation 2.499 1.889
Hash and IP update 3.309 2.539

than four) in CloudLab in Section VIII-D. The hash computa-
tion, along with the IP address field update, takes 3.309us on
average. When the synchronization signatures get exhausted
(and a new batch of m synchronization signatures are needed)
or there is an update in the path (e.g., by flow-rule or routing
change), each node needs 2.499mus to compute the m-long
hash chain and generate m synchronization signatures. Such
computation for synchronization signature generation can also
be done off-line or pre-computed, as the remaining hash chain
gets shorter and there is an impending need for a new chain.

IX. CONCLUSION

We propose IP-address-hopping-based MTD in SDN to
secure the forwarding path access against unauthorized access
and network reconnaissance. The defense is implemented
at the data plane (making it lightweight in networking and
latency overheads) and at the hop level (thus preventing
the unauthorized access from the first switch it encounters)
and therefore outperforms the prior state of the art (hav-
ing the controller randomize the endnodes’s addresses) in
both the defense impact and the processing/networking effi-
ciency. Because our defense involves not only the endnodes
but also the intermediate switches, we also build a IP-address-
based synchronization scheme that uses a one-way hash chain
and piggybacks on the data communications without incur-
ring additional networking overhead. Considering an advanced
attacker monitoring and probing the network for reconnais-
sance, we observe that our scheme increases the attacker’s
requirement cost for timely reconnaissance by more than an
order of magnitude in our controlled lab environment. In
CloudLab, we also show that the overhead of our scheme
becomes even smaller relative to the data networking cost as
the network size and the path length increases.

ACKNOWLEDGMENT

The authors extend their previous work [1] by introducing
the IP-based synchronization scheme and implementing a pro-
totype in CloudLab [2] to evaluate the proposed schemes in
various networking topologies. The authors would like to thank
the anonymous reviewers and the Associate Editor, Mauro
Conti for their feedback.

REFERENCES

[11 S. Y. Chang, Y. Park, and A. Muralidharan, “Fast address hopping at
the switches: Securing access for packet forwarding in SDN,” in Proc.
IEEE/IFIP Netw. Oper. Manag. Symp. NOMS, Apr. 2016, pp. 454—460.

[2] R. Ricci and E. Eide, “Introducing CloudLab: Scientific infrastruc-
ture for advancing cloud architectures and applications,” USENIX
Login, vol. 39, no. 6, pp. 36-38, Dec. 2014. [Online]. Available:
https://www.usenix.org/publications/login/dec 14/ricci

[3] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “OpenFlow random
host mutation: Transparent moving target defense using software
defined networking,” in Proc. Ist Workshop Hot Topics Softw.
Defined Netw. (HotSDN), 2012, pp. 127-132. [Online]. Available:
http://doi.acm.org/10.1145/2342441.2342467

[4] P. Kampanakis, H. Perros, and T. Beyene, “SDN-based solutions for
moving target defense network protection,” in Proc. IEEE 15th Int.
Symp. World Wireless Mobile Multimedia Netw. (WoWMoM), Jun. 2014,
pp. 1-6.

[5] B. Awerbuch, A. Richa, and C. Scheideler, “A jamming-resistant MAC
protocol for single-hop wireless networks,” in Proc. PODC, Aug. 2008,
pp. 45-54.

[6] S.-Y. Chang, Y.-C. Hu,

and N. Laurenti, “SimpleMAC: A

jamming-resilient ~ MAC-layer protocol for wireless chan-
nel coordination,” in Proc. 18th Annu. Int. Conf. Mobile
Comput. Netw. (Mobicom), 2012, pp. 77-88. [Online]. Available:

http://doi.acm.org/10.1145/2348543.2348556

[71 S. Y. Chang and Y. C. Hu, “SecureMAC: Securing wireless medium
access control against insider denial-of-service attacks,” IEEE Trans.
Mobile Comput., vol. 16, no. 12, pp. 3527-3540, Dec. 2017.

[8] S. Lakshminarayana et al, “Signal jamming attacks against
communication-based train control: Attack impact and counter-
measure,” in Proc. 11th ACM Conf. Security Privacy Wireless
Mobile Netw. (WiSec), 2018, pp. 160-171. [Online]. Available:
http://doi.acm.org/10.1145/3212480.3212500

[9]1 B. Muntwyler, V. Lenders, F. Legendre, and B. Plattner, “Obfuscating
IEEE 802.15.4 communication using secret spreading codes,” in
Proc. 9th Annu. Conf. Wireless On-Demand Netw. Syst. Services
(WONS), Jan. 2012, pp. 1-8.

[10] S.-Y.Chang, J. Lee, and Y.-C. Hu, “Noah: Keyed noise flooding for wire-
less confidentiality,” in Proc. 11th ACM Symp. QoS Security Wireless
Mobile Netw. (Q2SWinet), 2015, pp. 141-148. [Online]. Available:
http://doi.acm.org/10.1145/2815317.2815329

[11] R. Pickholtz, D. Schilling, and L. Milstein, “Theory of spread-spectrum
communications—A tutorial,” IEEE Trans. Commun., vol. COM-30,
no. 5, pp. 855-884, May 1982.

[12] M. K. Simon, J. Omura, R. Scholtz, and B. K. Levitt, Spread Spectrum
Communications Handbook. New York, NY, USA: McGraw-Hill,
Mar. 1994.

[13] M. Wilhelm, I. Martinovic, J. B. Schmitt, and V. Lenders, “Short paper:
Reactive jamming in wireless networks: How realistic is the threat?” in
Proc. 4th ACM Conf. Wireless Netw. Security (WiSec), 2011, pp. 47-52.
[Online]. Available: http://doi.acm.org/10.1145/1998412.1998422

[14] M. Atighetchi, P. Pal, F. Webber, and C. Jones, “Adaptive use of network-
centric mechanisms in cyber-defense,” in Proc. 6th IEEE Int. Symp.
Object Oriented Real Time Distrib. Comput., May 2003, pp. 183-192.

[15] E. Al-Shaer, Q. Duan, and J. H. Jafarian, “Random host mutation for
moving target defense,” in Security and Privacy in Communication
Networks—SecureComm (Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering),
vol. 106. A. D. Keromytis and R. D. Pietro, Eds. Heidelberg, Germany:
Springer, 2012, pp. 310-327.

[16] P. Mittal, D. Kim, Y.-C. Hu, and M. Caesar, “Mirage: Towards deploy-
able DDoS defense for Web applications,” CoRR, vol. abs/1110.1060,
Oct. 2011. [Online]. Available: http://arxiv.org/abs/1110.1060

[17] S. Antonatos, P. Akritidis, E. P. Markatos, and K. G. Anagnostakis,
“Defending against hitlist worms using network address space ran-
domization,” in Proc. ACM Workshop Rapid Malcode (WORM),
2005, pp. 30-40. [Online]. Available: http://doi.acm.org/10.1145/
1103626.1103633

[18] M. Dunlop, S. Groat, W. Urbanski, R. Marchany, and J. Tront,
“MT6D: A moving target IPv6 defense,” in Proc. Mil. Commun. Conf.
(MILCOM), Nov. 2011, pp. 1321-1326.

[19] M. Albanese, A. De Benedictis, S. Jajodia, and K. Sun, “A moving
target defense mechanism for MANETSs based on identity virtualiza-
tion,” in Proc. IEEE Conf. Commun. Netw. Security (CNS), Oct. 2013,
pp. 278-286.

[20] D. Kewley, R. Fink, J. Lowry, and M. Dean, “Dynamic approaches
to thwart adversary intelligence gathering,” in Proc. DARPA Inf.
Survivability Conf. Exposit. 1 (DISCEX), vol. 1, 2001, pp. 176-185.

[21] J. Xu, Z. Kalbarczyk, and R. Iyer, “Transparent runtime randomization
for security,” in Proc. 22nd Int. Symp. Rel. Distrib. Syst., Oct. 2003,
pp. 260-269.

[22] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code,” in
Proc. ACM Conf. Comput. Commun. Security (CCS), 2012, pp. 157-168.
[Online]. Available: http://doi.acm.org/10.1145/2382196.2382216

320

[23]

[24]

[25]

[26]

(271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 1, MARCH 2019

H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “FLOWGUARD: Building
robust firewalls for software-defined networks,” in Proc. 3rd Workshop
Hot Topics Softw. Defined Netw. (HotSDN), 2014, pp. 97-102. [Online].
Available: http://doi.acm.org/10.1145/2620728.2620749

K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and
V. Maglaris, “Combining OpenFlow and sFlow for an effec-
tive and scalable anomaly detection and mitigation mechanism
on SDN environments,” Comput. Netw., vol. 62, pp. 122-136,
Apr. 2014. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1389128613004003

Y. Park, S.-Y. Chang, and L. M. Krishnamurthy, “Watermarking for
detecting freeloader misbehavior in software-defined networks,” in Proc.
Int. Conf. Comput. Netw. Commun. (ICNC), 2016, pp. 1-6.

R. Jin and B. Wang, “Malware detection for mobile devices using
software-defined networking,” in Proc. 2nd GENI Res. Edu. Exp.
Workshop (GREE), 2013, pp. 81-88, doi: 10.1109/GREE.2013.24.

J. Li, S. Berg, M. Zhang, P. Reiher, and T. Wei, “Drawbridge:
Software-defined DDoS-resistant traffic engineering,” in Proc. ACM
Conf. SIGCOMM (SIGCOMM), 2014, pp. 591-592. [Online]. Available:
http://doi.acm.org/10.1145/2619239.2631469

M. Shtern, R. Sandel, M. Litoiu, C. Bachalo, and V. Theodorou,
“Towards mitigation of low and slow application DDoS attacks,” in
Proc. Cloud IEEE Int. Conf. Eng. (IC2E), Boston, MA, USA, Mar. 2014,
pp. 604-609.

M. Yu, L. Jose, and R. Miao, “Software defined traffic measure-
ment with OpenSketch,” in Proc. 10th USENIX Conf. Netw. Syst.
Design Implement. (NSDI), 2013, pp. 29-42. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2482626.2482631

S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-
GUARD: Scalable and vigilant switch flow management in
software-defined networks,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Security (CCS), 2013, pp. 413—424. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516684

R. Braga, E. de Souza Mota, and A. Passito, “Lightweight DDoS flood-
ing attack detection using NOX/OpenFlow,” in Proc. IEEE 35th Conf.
Local Comput. Netw. (LCN), Oct. 2010, pp. 408—415.

S. Matsumoto, S. Hitz, and A. Perrig, “Fleet: Defending SDNs from
malicious administrators,” in Proc. 3rd Workshop Hot Topics Softw.
Defined Netw. (HotSDN), 2014, pp. 103-108. [Online]. Available:
http://doi.acm.org/10.1145/2620728.2620750

X. Liu, X. Yang, and Y. Lu, “To filter or to authorize: Network-layer
DoS defense against multimillion-node Botnets,” SIGCOMM Comput.
Commun. Rev., vol. 38, no. 4, pp. 195-206, Aug. 2008. [Online].
Available: http://doi.acm.org/10.1145/1402946.1402981

K. Argyraki and D. R. Cheriton, “Active Internet traffic filtering:
Real-time response to denial-of-service attacks,” in Proc. Annu. Conf.
USENIX Annu. Tech. Conf. (ATEC), 2005, p. 10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1247360.1247370

T. Anderson, T. Roscoe, and D. Wetherall, “Preventing Internet
denial-of-service with capabilities,” SIGCOMM Comput. Commun.
Rev., vol. 34, no. 1, pp. 39-44, Jan. 2004. [Online]. Available:
http://doi.acm.org/10.1145/972374.972382

A. Yaar, A. Perrig, and D. Song, “SIFF: A stateless Internet flow filter to
mitigate DDoS flooding attacks,” in Proc. IEEE Symp. Security Privacy,
Berkeley, CA, USA, May 2004, pp. 130-143.

X. Yang, D. Wetherall, and T. Anderson, “A DoS-limiting network
architecture,” in Proc. Conf. Appl. Technol. Archit. Protocols Comput.
Commun. (SIGCOMM), 2005, pp.241-252. [Online]. Available:
http://doi.acm.org/10.1145/1080091.1080120

B. Parno et al., “Portcullis: Protecting connection setup from
denial-of-capability attacks,” SIGCOMM Comput. Commun. Rev.,
vol. 37, no. 4, pp.289-300, Aug. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1282427.1282413

D. Kim, J. T. Chiang, Y.-C. Hu, A. Perrig, and P. R. Kumar, “CRAFT:
A new secure congestion control architecture,” in Proc. 17th ACM
Conf. Comput. Commun. Security (CCS), 2010, pp. 705-707. [Online].
Available: http://doi.acm.org/10.1145/1866307.1866404

M. S. Kang and V. D. Gligor, “Routing bottlenecks in the Internet:
Causes, exploits, and countermeasures,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Security (CCS), 2014, pp. 321-333. [Online].
Available: http://doi.acm.org/10.1145/2660267.2660299

M. S. Kang, S. B. Lee, and V. D. Gligor, “The crossfire attack,” in
Proc. IEEE Symp. Security Privacy (SP), Berkeley, CA, USA, 2013,
pp- 127-141, doi: 10.1109/SP.2013.19.

L. Lamport, “Password authentication with insecure communication,”
Commun. ACM, vol. 24, no. 11, pp. 770-772, Nov. 1981. [Online].
Available: http://doi.acm.org/10.1145/358790.358797

[43]

[44]

[45]

[46]

[47]

[48]

[49]

(501

N. Haller, “The S/KEY one-time password system,” in Proc. Internet
Soc. Symp. Netw. Distrib. Syst., 1994, pp. 151-157.

H. Padekar, Y. Park, H. Hu, and S.-Y. Chang,
dynamic access control for controller applications in software-
defined networks,” in Proc. 2Ist ACM Symp. Access Control
Mod. Technol. (SACMAT), 2016, pp. 51-61. [Online]. Available:
http://doi.acm.org/10.1145/2914642.2914647

J. Elson, L. Girod, and D. Estrin, “Fine-grained network time
synchronization using reference broadcasts,” SIGOPS Oper.
Syst. Rev., vol. 36, pp. 147-163, Dec. 2002. [Online]. Available:
http://doi.acm.org/10.1145/844128.844143

A. Perrig, R. Canetti, J. D. Tygar, and D. Song, “Efficient authentication
and signing of multicast streams over lossy channels,” in Proc. IEEE
Symp. Security Privacy (S&P), Berkeley, CA, USA, 2000, pp. 56-73.

D. Liu and P. Ning, “Multilevel W TESLA: Broadcast authentication for
distributed sensor networks,” ACM Trans. Embedded Comput., vol. 3,
pp. 800-836, Jan. 2003.

B. Pfaff et al, “The design and implementation of Open
vSwitch,” in Proc. 12th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2015, pp. 117-130. [Online]. Available: https://
www.usenix.org/conference/nsdil 5/technical-sessions/presentation/pfaff
A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and
R. Sherwood, “On controller performance in software-defined networks,”
in Proc. 2nd USENIX Conf. Hot Topics Manag. Internet Cloud
Enterprise Netw. Services (Hot-ICE), 2012, p. 10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2228283.2228297

A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky,
“Advanced study of SDN/OpenFlow controllers,” in Proc. 9th Central
Eastern Eur. Softw. Eng. Conf. Russia (CEE-SECR), 2013, pp. 1-6.
[Online]. Available: http://doi.acm.org/10.1145/2556610.2556621

“Enabling

Sang-Yoon Chang received the B.S. and Ph.D.
degrees from the Department of Electrical and
Computer Engineering, University of Illinois at
Urbana—Champaign in 2007 and 2013, respectively.
He was a Post-Doctoral Fellow with the Advanced
Digital Sciences Center. He is an Assistant Professor
with the Computer Science Department, University
of Colorado Colorado Springs. His research is
in networking, wireless/mobile, systems security,
and applied cryptography with focuses on cyber-
physical systems, software-defined networking, and

distributed consensus protocols/blockchain.

Younghee Park received the Ph.D. degree in com-
puter science from North Carolina State University
in 2010. She is an Assistant Professor of com-
puter engineering with San Jose State University.
She has served as the Kordestani Endowed Chair
with the College of Engineering with SJSU in
2016 and 2017 as a Distinguished Research
Professor. She is a Coordinator for the Cybersecurity
Certificates Program with the Computer Engineering
Department, SJSU, supported by the National
Information Assurance Education and Training

Program. Since 2016, she has been serving as the Center Executive at the
Center for Smart Technology, Computing, and Complex Systems, a multidis-
ciplinary research group of faculty and researchers in the area of the Smart
City. Her main research is network and system security with an emphasis on
malware detection, insider attacks, botnets, and traceback to detect attacks.
She was a recipient of the Best Paper Award at ACM SIGCSE 2018, the Best
Paper Award-Honorable Mention Award at the 21st ACM SACMAT in 2016,
and the Faculty Excellence Award in Scholarship in College of Engineering
at SJSU in 2018.

Bhavana Babu Ashok Babu received the bach-
elor’s degree from Visveswaraiah Technological
University, India. She is currently pursuing the mas-
ter’s degree in computer engineering with San Jose
State University, where she is a Research Assistant.
Her research is based on security in software-defined
networking. She has worked on projects, such as
moving target defense using IP randomization and
currently working on queue configuration and band-
width control using Ryu controller. She was also
with Societe Generale Global Solution Center, a

software company in India.

http://dx.doi.org/10.1109/GREE.2013.24
http://dx.doi.org/10.1109/SP.2013.19

