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Abstract We propose a definition of symplectic 2-groupoid which includes integra-
tions of Courant algebroids that have been recently constructed. We study in detail
the simple but illustrative case of constant symplectic 2-groupoids. We show that the
constant symplectic 2-groupoids are, up to equivalence, in one-to-one correspondence
with a simple class ofCourant algebroids thatwe call constant Courant algebroids. Fur-
thermore, we find a correspondence between certain Dirac structures and Lagrangian
sub-2-groupoids.

Keywords Dirac · Symplectic · 2-Groupoids · Courant algebroids

Mathematics Subject Classification 53D17 · 58H05

1 Introduction

Liu et al. [10] introduced the notion of a Courant algebroid, axiomatizing the brackets
studied by Courant andWeinstein [2,3] and Dorfman [4]. Recognizing the similarities
and relationships between Lie algebroids and Courant algebroids, they asked whether
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there is a groupoid-like object that can be viewed as the “integration” of a Courant
algebroid.

Ševera [15] outlined a construction by which, given a Courant algebroid, one could
formally produce a 2-groupoid as a moduli space of maps of dg-manifolds. The space
of 2-simplices of this 2-groupoid possesses a symplectic form, suggesting that the
integration of a Courant algebroid should be called a symplectic 2-groupoid. In the
case of an exact Courant algebroid, the symplectic 2-groupoid arising from Ševera’s
construction (the Liu-Weinstein-Xu 2-groupoid) was explicitly described and shown
to be smooth in [11].

In all but the most trivial cases, the 2-groupoids arising from Ševera’s construction
are infinite-dimensional, so it is reasonable to look for finite-dimensional models. In
different (but overlapping) special cases, such models were independently found in
[9,12,16], eachwith its own shortcoming. In [16], there is no 2-form constructed on the
integration. In [9], the integration has a symplectic structure but is only defined locally.1

The construction in [12] is global, but the 2-form constructed there is degenerate.
Based on the class of examples discovered there, the authors in [12] suggested a

definition of symplectic 2-groupoid where the 2-form is allowed to be degenerate,
but where the degeneracy is controlled in a certain way by the simplicial structure.
However, the definition given there fails to serve as a good general definition. Specifi-
cally, [12, Definition 6.7] implies that when the 2-form is genuinely nondegenerate at
a point x of the unit space X0, the tangent space of X1 at x is isomorphic to the tangent
space of X0 at x , which forces X1 to have the same dimension of X0. This excludes
too many interesting examples, including the case of constant symplectic 2-groupoids
to be presented in this paper. This observation suggests that the definition requires
revision.

In Definition 2.7, we give a new definition of symplectic 2-groupoid which still
includes the examples constructed in [12] (see Sect. 2.4). This definition is partly
inspired by the notion of a shifted symplectic structure [13], and we are particularly
indebted to Getzler [6], who recast many of those ideas in the concrete language of
simplicial manifolds. However, we stress that our definition is in several ways more
strict than the one coming from [13]. Specifically, our definition only includes a 2-form
on the space of 2-simplices X2, and we require this 2-form to be closed on the nose.
Additionally, our nondegeneracy requirement is more strict.

The strictness of our definition reflects the fact that the solution to the integration
problem will not be Morita invariant. For example, the notion of symplectic groupoid
[1] is not Morita invariant, and this strictness is necessary in order to obtain a Lie-
theoretic correspondence with Poisson manifolds. On the other hand, the notion of
1-shifted symplectic structure agreeswithXu’s [18]weaker notion of quasi-symplectic
groupoid.

In the second half of this article, we consider the case of constant symplectic 2-
groupoids, i.e., symplectic 2-groupoids with a linear structure with respect to which
the 2-form is constant. Besides being a basic test case for the definition, constant
symplectic 2-groupoids should be useful for understanding the general case since they

1 Recently, Ševera and Širaň [17] described a general construction for local integration and showed that
the local integrations can be glued together up to coherent homotopy.
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Constant symplectic 2-groupoids 1205

appear as first-order approximations of arbitrary symplectic 2-groupoids. Specifically,
given a symplectic 2-groupoid (X•, ω) and a point x ∈ X0, the “tangent space at x”
(T |x X•, ωx ) is a constant symplectic 2-groupoid. In this sense, constant symplectic
2-groupoids play the same role in the study of symplectic 2-groupoids as symplectic
vector spaces play in the study of symplectic manifolds.

We find that there is a relationship between constant symplectic 2-groupoids and a
certain class of Courant algebroids that we call constant Courant algebroids. Specifi-
cally, the main results are as follows:

(1) (Theorem 4.3) There is a one-to-one correspondence between constant Courant
algebroids and equivalence classes of constant symplectic 2-groupoids.

(2) (Theorem 5.6) Under the above correspondence, constant Dirac structures are in
one-to-one correspondence with wide linear Lagrangian sub-2-groupoids.

In other words, constant Courant algebroids integrate to constant symplectic 2-
groupoids, and constant Dirac structures integrate to certain Lagrangian sub-2-
groupoids. These results provide evidence in support of our definition of symplectic
2-groupoids as being the correct answer to the question posed by Liu, Weinstein, and
Xu.

Organization of the paper In Sect. 2, we define symplectic 2-groupoids and show that
the class of examples from [12] satisfies the definition. In Sect. 3, we study constant
symplectic 2-groupoids and find a minimal description of them in terms of linear
algebra data. In Sect. 4, we similarly study constant Courant algebroids and show that
they are in correspondence with constant symplectic 2-groupoids. Finally, in Sect. 5,
we consider linear Lagrangian sub-2-groupoids and describe the correspondence with
constant Dirac structures.

2 Symplectic 2-groupoids

2.1 Lie n-groupoids and differential forms

We start by recalling the definition of a Lie n-groupoid (see [5,8,19]).

Definition 2.1 A simplicial manifold is a sequence X• = {Xq}, q ≥ 0, of manifolds
equipped with surjective submersions f qi : Xq → Xq−1 (called face maps), i =
0, . . . , q, and embeddings σ

q
i : Xq → Xq+1 (called degeneracy maps), i = 0, . . . , q,

such that

f q−1
i f qj = f q−1

j−1 f qi , i < j, (2.1)

σ
q+1
i σ

q
j = σ

q+1
j+1 σ

q
i , i < j, (2.2)

f q+1
i σ

q
j =

⎧
⎪⎨

⎪⎩

σ
q−1
j−1 f qi , i < j,

id, i = j, j + 1,

σ
q−1
j f qi−1, i > j + 1.

(2.3)
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1206 R. A. Mehta, X. Tang

For q ≥ 1 and 0 ≤ k ≤ q, recall that a (q, k)-horn of X• consists of a q-
tuple (x0, . . . , xk−1, xk+1, . . . xq), where xi ∈ Xq−1, satisfying the horn compatibility
equations

f q−1
i x j = f q−1

j−1 xi (2.4)

for i < j . The space of all (q, k)-horns is denoted �q,k X .
The natural horn maps λq,k : Xq → �q,k X are defined as

λq,k(x) =
(
f q0 x, . . . ,

̂f qk x, . . . f
q
q x

)

for x ∈ Xq . It is immediate from (2.1) that λq,k(x) satisfies the horn compatibility
equations (2.4); in fact, the purpose of the horn compatibility equations is to axiomatize
the properties satisfied by λq,k(x).

Definition 2.2 A Lie n-groupoid is a simplicial manifold such that the horn maps λq,k

are

(1) surjective submersions for all q ≥ 1, and
(2) diffeomorphisms for all q > n.

Given a simplicialmanifold X•, we consider the bigraded space of differential forms
�•(X•). There are two natural commuting differentials on�•(X•). One is the deRham
differential d : �p(Xq) → �p+1(Xq), and the other is the simplicial coboundary

operator δ : �p(Xq) → �p(Xq+1), given by δα = ∑q+1
i=0 (−1)i ( f q+1

i )∗α.

Definition 2.3 A form α ∈ �p(Xq) is multiplicative if δα = 0. A form α ∈ �p(Xq)

is normalized if (σ i
q−1)

∗α = 0 for all i = 0, . . . , q − 1.

We note that the normalization condition holds vacuously in the case q = 0.
The space of normalized forms is denoted �•

ν(X•). It is not hard to check that
�•

ν(X•) is closed under d and δ.

2.2 The tangent complex

Let X• be a simplicial manifold. For each q > 0, let σ q : X0 → Xq be defined as

σ q = σ
q−1
0 · · · σ 0

0 . We can think of the image of σ q as being the “unit space” in Xq .
For x ∈ X0 let Tx,q X denote the tangent space Tσ q (x)Xq . There is a natural sim-

plicial structure on Tx,•X where the face and degeneracy maps are restrictions of the
differentials of f qi and σ

q
i . We note that Tx,•X is a simplicial vector space, in the sense

that each Tx,q X is a vector space and all of the face and degeneracy maps are linear.
There is a natural boundary map ∂q : Tx,q X → Tx,q−1X , given by

∂q(v) =
q∑

i=0

(−1)i ( f qi )∗v.

It follows from (2.1) that ∂2 = 0.
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Constant symplectic 2-groupoids 1207

The Dold–Kan correspondence, c.f. [7], associates a chain complex T̂x,•X to the
simplicial vector space Tx,•X . This chain complex can be explicitly described as
follows. The normalized tangent space T̂x,q X is defined to be the quotient of Tx,q X
by the sum of the degenerate subspaces:

T̂x,q X :=Tx,q X

/ q−1∑

i=0

(σ
q−1
i )∗Tx,q−1X.

In particular, T̂x,0 = Tx,0.
The boundary map ∂ descends to the normalized tangent spaces, so we have a chain

complex

· · · → T̂x,q X
∂−→ T̂x,q−1X

∂−→ · · · ∂−→ T̂x,1X
∂−→ T̂x,0X,

which is called the tangent complex of the simplicial manifold X• at x ∈ X0. Taken
together, the tangent complexes at every x ∈ X0 form a complex of vector bundles
over X0, called the tangent complex of X•.

Proposition 2.4 If X• is a Lie n-groupoid, then T̂x,q is trivial for q > n.

In this paper, we will only make use of Proposition 2.4 in the case n = 2. A proof in
this case is essentially contained in Sect. 3.1; in particular, see Remark 3.1. We leave
the general case to the reader.

Example 2.5 In the case where X• is the nerve of a Lie groupoid G ⇒ M , then the

tangent complex can be identified with the 2-term complex A
ρ−→ T M , where A is the

Lie algebroid of G and ρ is the anchor map.

2.3 Forms on Lie 2-groupoids

We will now restrict our attention to the case of Lie 2-groupoids. From Proposition
2.4, we know that the tangent complex of a Lie 2-groupoid X• is a 3-term complex

T̂2X
∂−→ T̂1X

∂−→ T0X.

Given a normalized 2-formω ∈ �2
ν(X2), we can obtain the following bilinear pairings

on the tangent complex at any x ∈ X0 (we learned of these from Getzler [6]):

(1) For v ∈ Tx,0X and w ∈ Tx,2X , let

Ãω(v,w) := ω(σ 2∗ v,w). (2.5)

It follows from the assumption that ω is normalized that Ãω descends to a well-
defined bilinear pairing Aω between Tx,0X and T̂x,2X .
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1208 R. A. Mehta, X. Tang

(2) For θ, η ∈ Tx,1X , let

B̃ω(θ, η) := ω
(
(σ 1

1 )∗θ, (σ 1
0 )∗η

)
+ ω

(
(σ 1

1 )∗η, (σ 1
0 )∗θ

)
. (2.6)

It follows from the assumption that ω is normalized that B̃ω descends to a well-
defined symmetric bilinear form Bω on T̂x,1X .

Definition 2.6 Anormalized2-formω ∈ �2
ν(X2) is called simplicially nondegenerate

if the induced pairings Aω and Bω are nondegenerate at all x ∈ X0.

Definition 2.7 A symplectic 2-groupoid is a Lie 2-groupoid X• equipped with
a closed, multiplicative, normalized, and simplicially nondegenerate 2-form ω ∈
�2

ν(X2).

Definition 2.8 Two closed, multiplicative, normalized, and simplicially nondegener-
ate 2-forms ω,ω′ ∈ �2

ν(X2) are equivalent if there exists a closed and normalized
2-form α ∈ �2

ν(X1) such that ω′ − ω = δα and Aδα = Bδα = 0.

Remark 2.9 By a straightforward calculation using (2.5) and (2.3), one can see that
Aδα = 0 if and only if

α
(
(σ 0

0 )∗v, ∂w
)

= 0 (2.7)

for all v ∈ Tx,0X and w ∈ Tx,2X . Similarly, Bδα = 0 if and only if

α
(
θ, (σ 0

0 )∗∂η
)

+ α
(
η, (σ 0

0 )∗∂θ
)

= 0 (2.8)

for all θ, η ∈ Tx,1X .

Remark 2.10 It is known [1] that any multiplicative 2-form on a Lie groupoid is
automatically normalized; thus, the normalization condition does not explicitly appear
in the definition of symplectic groupoid. However, in the case of Lie 2-groupoids,
normalization does not automatically follow from multiplicativity. For example, for
any manifold M , let Xk = M for all k, with all the face and degeneracy maps being
the identity. It is immediate that any nonzero 2-form ω on X2 = M is multiplicative
but not normalized.

2.4 Example: an integration of A ⊕ A∗

Liu et al. [10] constructed aCourant algebroid A⊕A∗ associated to anyLie bialgebroid
(A, A∗). This construction leads to a large and important class of Courant algebroids.
In [12], the authors described a method of integrating Courant algebroids of the form
A ⊕ A∗ by first integrating (if possible) the Lie bialgebroid (A, A∗) to a symplectic
double Lie groupoid D and then applying the bar functor to obtain a Lie 2-groupoid
WND equipped with a closed 2-form. The fact that this 2-form is degenerate was the
first clue that the correct notion of symplectic 2-groupoid should allow for 2-forms
that have some degeneracy.
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Constant symplectic 2-groupoids 1209

We will now prove that the integration of the standard Courant algebroid2 T M ⊕
T ∗M in [12] satisfies Definition 2.7.

We first recall the Lie 2-groupoid obtained in [12] as integration of T M ⊕ T ∗M .
For any k ≥ 1, let T ∗

(k)M denote the direct sum of k copies of T ∗M . For each q ≥ 0,
define Xq as

Xq = M × T ∗M × · · · × T ∗
(q)M.

Let τ qi : T ∗
(q)M → T ∗M be the projection onto the i-th component, let pq : T ∗

(q)M →
M denote the bundle projection map, and let ιq : M → T ∗

(q)M be the zero section
map. We will omit the index q in pq and ιq when q = 1. Finally, for i = 1, 2, let
ι2i : T ∗M → T ∗

(2)M be defined as

ι21(ξ) = (ξ, ι(p(ξ))) , ι22(ξ) = (ι(p(ξ)), ξ) .

The face and degeneracy maps between X0 = M and X1 = M × T ∗M are defined
as

σ 0
0 (x) = (x, ι(x)), f 10 (x, ξ) = x, f 11 (x, ξ) = p(ξ),

for x ∈ M and ξ ∈ T ∗M . The degeneracy maps σ 1
i : X1 → X2 are defined as

σ 1
0 (x, ξ) = (x, ξ, ι21(ξ)), σ 1

1 (x, ξ) = (x, ι(x), ι22(ξ)),

and the face maps f 2i : X2 → X1 are defined as

f 20 (x, ξ, ξ2) := (x, ξ),

f 21 (x, ξ, ξ2) := (x, τ 21 (ξ2) + τ 22 (ξ2)),

f 22 (x, ξ, ξ2) := (p(ξ), τ 22 (ξ2)),

for x ∈ M , ξ ∈ T ∗M , and ξ2 ∈ T ∗
(2)M .

As we will only need the structure maps up to level 2, we stop here and refer the
reader to [12] for the general definitions of the simplicial structure maps.

There is a natural map d : X2 = M × T ∗M × T ∗
(2)M → T ∗M × T ∗M given by

d(m, ξ, ξ2) := (ξ, τ 21 (ξ2)).

Let ω0 be the canonical symplectic form on T ∗M . Then the 2-form ω ∈ �2(X2) is
defined as the pullback by d of (ω0,−ω0). It is clear that ω is closed, we proved in
[12, Proposition 6.2] that ω is multiplicative, and it can be easily checked that ω is
normalized.

2 The extension of the proof to the general case WND, where D is a symplectic double Lie groupoid, is
similar.
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1210 R. A. Mehta, X. Tang

Proposition 2.11 The 2-form ω on X2 = M × T ∗M × T ∗
(2)M is simplicially nonde-

generate. Therefore, (X•, ω) is a symplectic 2-groupoid.

Proof We start by describing the tangent spaces Tx,q X . We observe that Tx,0X =
TxM , that Tx,1X can be identified with TxM ⊕ TxM ⊕ T ∗

x M , and that Tx,2X can be
similarly identified with TxM ⊕ TxM ⊕ T ∗

x M ⊕ TxM ⊕ T ∗
x M ⊕ T ∗

x M . Using these
identifications, we can describe the degeneracy maps (σ 0

0 )∗ : Tx,0X → Tx,1X and
(σ 1

i )∗ : Tx,1X → Tx,2X as

(
σ 0
0

)

∗ (v) = (v, v, 0),
(
σ 1
0

)

∗ (v1, v2, ξ) = (v1, v2, ξ, v2, ξ, 0), (σ 1
1 )∗(v1, v2, ξ) = (v1, v1, 0, v2, 0, ξ),

for v, v1, v2 ∈ TxM and ξ ∈ T ∗
x M .

At σ 2(x), the 2-form ω is given in terms of the above identifications by

ω
((

v1, v2, ξ1, v3, ξ2, ξ3
)
,
(
v′
1, v

′
2, ξ

′
1, v

′
3, ξ

′
2, ξ

′
3

))

= ξ ′
1(v2) − ξ1(v

′
2) − ξ ′

2(v3) + ξ2(v
′
3).

From this, we can compute the pairing Ãω between Tx,0X and Tx,2X to be

Ãω

(
v,

(
v1, v2, ξ1, v3, ξ2, ξ3

)) := ξ1(v) − ξ2(v)

and the pairing B̃ω on Tx,1 to be

B̃ω

(
(v1, v2, ξ), (v′

1, v
′
2, ξ

′)
)

:= ξ ′(v1 − v2) + ξ(v′
1 − v′

2).

One can now see that the kernels of Ãω and B̃ω consist of sums of vectors in the
images of (σ

q
i )∗. Thus the induced pairing Aω between Tx,0X and T̂x,2X and the

induced bilinear form Bω on T̂x,1X are both nondegenerate. 	

Remark 2.12 The fact that T̂x,2X pairs nondegenerately with Tx,0X = TxM means
that T̂x,2X is isomorphic to T ∗

x M . The isomorphism is explicitly given by composing
themapT ∗

x M → Tx,2X , ξ �→ (0, 0, ξ, 0, 0, 0)with thequotientmapTx,2X → T̂x,2X .
Similarly, T̂x,1X is isomorphic to TxM ⊕T ∗

x M , with the isomorphism given by the
map TxM ⊕ T ∗

x M → Tx,1X , (v, ξ) �→ (v, 0, ξ). Under this isomorphism, the pairing
Bω agrees with the standard symmetric pairing on T M ⊕T ∗M , which is an important
part of the Courant algebroid structure.

3 Constant symplectic 2-groupoids

A constant symplectic 2-groupoid is a symplectic 2-groupoid (V•, ω) where V• is a
simplicial vector space and ω ∈ �2

ν(V2) is constant. In this section, we will study
constant symplectic 2-groupoids and obtain a fairly simple description of them. We
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Constant symplectic 2-groupoids 1211

will later see that there is a correspondence between constant symplectic 2-groupoids
and a certain class of Courant algebroids that we call constant Courant algebroids.

3.1 Linear 2-groupoids

A linear 2-groupoid is a Lie 2-groupoid V• such that each Vq is a vector space, and
where the face and degeneracy maps are all linear. Linear 2-groupoids are known to
be equivalent, via the Dold–Kan correspondence, to 3-term chain complexes of vector
spaces. Since there are different possible choices of convention and we will require
explicit formulas, we will give a brief description of this correspondence.

Suppose that V• is a linear 2-groupoid. A 3-term chain complex (W•, ∂) is con-
structed as follows.

First, we set W0:=V0. Next, we observe that f 10 : V1 → W0 is a surjection with
right inverse σ 0

0 . Thus we have a split short exact sequence

W1 V1
f 10

W0

σ 0
0

, (3.1)

where W1:= ker f 10 , giving us the natural decomposition V1 = W1 ⊕ W0. Using this
decomposition, we define a linear map ∂1 : W1 → W0 given by ∂1w1 = − f 11 (w1, 0).
(The sign is chosen to agree with the tangent complex; see Remark 3.1.) We then have
the following formulas for the face and degeneracy maps between V1 and V0:

f 10 (w1, w0) = w0, f 11 (w1, w0) = w0 − ∂1w1, σ 0
0 (w0) = (0, w0).

Nowconsider the horn space�2,2V , consisting of pairs (v1, v
′
1) ∈ V1×V1 such that

f 10 (v1) = f 10 (v′
1). Given such a pair, we may use the decomposition V1 = W1 ⊕ W0

to write v1 = (w1, w0), v′
1 = (w′

1, w0). This allows us to make the identification
�2,2V = W1 ⊕ W1 ⊕ W0, where the pair (v1, v

′
1) is identified with (w1, w

′
1, w0).

Let �2 : �2,2V → V2 be defined by

�2(v1, v
′
1) = σ 1

0 v1 + σ 1
1 (v′

1 − v1). (3.2)

One can see that �2 is a right inverse of the horn map λ2,2, so we have a split short
exact sequence

W2 V2
λ2,2

�2,2V
�2

, (3.3)

where W2:= ker λ2,2, giving us a natural decomposition V2 = W2 ⊕ �2,2V = W2 ⊕
W1 ⊕ W1 ⊕ W0. Under this decomposition, we have by construction that

f 20 (w2, w1, w
′
1, w0) = (w1, w0),

f 21 (w2, w1, w
′
1, w0) = (w′

1, w0).
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1212 R. A. Mehta, X. Tang

Using (3.2), we also see that

σ 1
0 (w1, w0) = �2(w1, w1, w0) = (0, w1, w1, w0), (3.4)

σ 1
1 (w1, w0) = �2(0, w1, w0) = (0, 0, w1, w0). (3.5)

To obtain a formula for f 22 , we first define a map ∂2 : W2 → W1, given by

f 22 (w2, 0, 0, 0) = (∂2w2, 0). (3.6)

Note that (3.6) well-defines ∂2, since f 10 f 22 (w2, 0, 0, 0) = f 11 f 20 (w2, 0, 0, 0) = 0.
We then make the following calculation:

f 22 (0, w1, w
′
1, w0) = f 22 �2(w1, w

′
1, w0)

= f 22 σ 1
0 (w1, w0) + f 22 σ 1

1 (w′
1 − w1, 0)

= σ 0
0 f 11 (w1, w0) + (w′

1 − w1, 0)

= (w′
1 − w1, w0 − ∂1w1). (3.7)

Putting (3.6) and (3.7) together, we have

f 22 (w2, w1, w
′
1, w0) = (∂2w2 + w′

1 − w1, w0 − ∂1w1).

We observe that ∂1∂2w2 = − f 11 f 22 (w2, 0, 0, 0) = − f 11 f 21 (w2, 0, 0, 0) = 0, so

W2
∂2−→ W1

∂1−→ W0

is a 3-term chain complex.
Now consider the horn space �3,3V , consisting of triples (v2, v

′
2, v

′′
2 ) ∈ V2 ×

V2 × V2 such that f 20 v2 = f 20 v′
2, f 21 v2 = f 20 v′′

2 , and f 21 v′
2 = f 21 v′′

2 . In terms of the
decomposition V2 = W2⊕W1⊕W1⊕W0, wemaywrite v2 = (w2, w1, w

′
1, w0), v′

2 =
(w′

2, w1, w
′′
1 , w0), v′′

2 = (w′′
2 , w

′
1, w

′′
1 , w0). This allows us to make the identification

�3,3V = W2 ⊕ W2 ⊕ W2 ⊕ W1 ⊕ W1 ⊕ W1 ⊕ W0, where (v2, v
′
2, v

′′
2 ) is identified

with (w2, w
′
2, w

′′
2 , w1, w

′
1, w

′′
1 , w0).

Let �3 : �3,3V → V3 be given by

�3(v2, v
′
2, v

′′
2 ) = σ 2

0 v2 + σ 2
1 (v′

2 − v2) + σ 2
2 (v′′

2 − v′
2 + v2 − σ 1

0 f 21 v2).

One can see that�3 inverts the horn map λ3,3, which is assumed to be an isomorphism
since V• is a Lie 2-groupoid. Implicitly using �3 to identify V3 with �3,3V , we then
obtain the following formulas for the face maps:
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Constant symplectic 2-groupoids 1213

f 30 (w2, w
′
2, w

′′
2 , w1, w

′
1, w

′′
1 , w0) = v2 = (w2, w1, w

′
1, w0), (3.8)

f 31 (w2, w
′
2, w

′′
2 , w1, w

′
1, w

′′
1 , w0) = v′

2 = (w′
2, w1, w

′′
1 , w0), (3.9)

f 32 (w2, w
′
2, w

′′
2 , w1, w

′
1, w

′′
1 , w0) = v′′

2 = (w′′
2 , w

′
1, w

′′
1 , w0), (3.10)

f 33 (w2, w
′
2, w

′′
2 , w1, w

′
1, w

′′
1 , w0) = (w′′

2 − w′
2 + w2, ∂2w2 + w′

1 − w1,

∂2w
′
2 + w′′

1 − w1, w0 − ∂1w1). (3.11)

We have seen that, given a linear 2-groupoid V•, we can obtain a 3-term chain
complex (W•, ∂). Conversely, given a 3-term chain complex, one can construct a linear
2-groupoid by setting V0 = W0, V1 = W1 ⊕ W0, etc., with the face and degeneracy
maps given in low degrees by the above formulas. As V• is a Lie 2-groupoid, the higher
simplicial maps are completely determined by the data in low degrees.

Remark 3.1 From the short exact sequences (3.1) and (3.3), we can see that the 3-
term chain complex (W•, ∂) is naturally isomorphic to the tangent complex of V•. As a
result, we obtain an alternative description of the tangent complex of a Lie 2-groupoid
X•, where T̂x,2X = ker(λ22)∗ ⊆ Tx,2X , T̂x,1X = ker(λ11)∗ = ker( f 10 )∗ ⊆ Tx,1X , and
where the boundary map is ∂q = (−1)q( f qq )∗.

3.2 Constant multiplicative 2-forms

Let V• be a linear 2-groupoid. In this subsection, we will obtain a description of
constant multiplicative 2-forms ω ∈ �2

ν(V2) in terms of data on the associated 3-term
complex (W•, ∂).

Recall from Sect. 3.1 that V2 can be naturally decomposed asW2⊕W1⊕W1⊕W0.
With respect to this decomposition, we may write any constant ω ∈ �2(V2) as a
sum of bilinear forms C11 ∈ ∧2W ∗

2 , C12,C13 ∈ W ∗
2 ⊗ W ∗

1 , C14 ∈ W ∗
2 ⊗ W ∗

0 ,
C22,C33 ∈ ∧2W ∗

1 , C23 ∈ W ∗
1 ⊗ W ∗

1 , C24,C34 ∈ W ∗
1 ⊗ W ∗

0 , and C44 ∈ ∧2W ∗
0 . Then

we can write ω in the form of a block matrix

ω =

⎡

⎢
⎢
⎣

C11 C12 C13 C14
C21 C22 C23 C24
C31 C32 C33 C34
C41 C42 C43 C44

⎤

⎥
⎥
⎦ ,

where Ci j (w,w′) = −C ji (w
′, w).

Now suppose that ω is normalized. From (3.5), we immediately see that C33, C34,
and C44 vanish. From (3.4), we then see that C24 = 0, since

0 = ω((0, w1, w1, w0), (0, 0, 0, w
′
0)) = C24(w1, w

′
0)

for all w1 ∈ W1 and w0, w
′
0 ∈ W0, and that

0 = ω((0, w1, w1, 0), (0, w
′
1, w

′
1, 0)) = C22(w1, w

′
1) + C23(w1, w

′
1) + C32(w1, w

′
1)
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1214 R. A. Mehta, X. Tang

for all w1, w
′
1 ∈ W1. Thus, ω is of the form

ω =

⎡

⎢
⎢
⎣

C11 C12 C13 C14
C21 C22 C23 0
C31 C32 0 0
C41 0 0 0

⎤

⎥
⎥
⎦ , (3.12)

where
C22 + C23 + C32 = 0. (3.13)

Conversely, it is straightforward to check that, if ω is of the form (3.12) and satisfies
(3.13), then ω is normalized.

Now suppose that ω is normalized and multiplicative. In the following series of
lemmas, we find further relations that hold between the bilinear forms Ci j . The proofs
utilize the decomposition V3 = W2 ⊕ W2 ⊕ W2 ⊕ W1 ⊕ W1 ⊕ W1 ⊕ W0 constructed
in Sect. 3.1, as well as the formulas (3.8)–(3.11) for the face maps f 3i .

Lemma 3.2 C13(w2, w1) = C32(w1, ∂w2) for all w2 ∈ W2 and w1 ∈ W1.

Proof Let u, v ∈ V3 be defined as u = (w2, 0, 0, 0, 0, 0, 0) and v = (0, 0, 0, 0, 0,
w1, 0). Then

0 = δω(u, v) =
3∑

i=0

(−1)iω
(
f 3i u, f 3i v

)

= −ω ((w2, ∂w2, 0, 0), (0, 0, w1, 0))

= −C13(w2, w1) − C23(∂w2, w1)

= −C13(w2, w1) + C32(w1, ∂w2).

	

Lemma 3.3 C12(w2, w1) = C32(∂w2, w1) for all w2 ∈ W2, w1 ∈ W1.

Proof Let u, v ∈ V3 be defined as u = (0, w2, 0, 0, 0, 0, 0) and v = (0, 0, 0, 0, w1,

0, 0). Then
0 = δω(u, v) = −ω

(
(−w2, 0, ∂w2, 0), (0, w1, 0, 0)

)

= C12(w2, w1) − C32(∂w2, w1).

	

Lemma 3.4 C11(w2, w

′
2) = −C32(∂w2, ∂w′

2) for all w2, w
′
2 ∈ W2.

Proof Let u, v ∈ V3 be defined as u = (0, 0, w2, 0, 0, 0, 0) and v = (w′
2, 0, 0, 0, 0,

0, 0). Then

0 = δω(u, v) = −ω
(
(w2, 0, 0, 0), (w

′
2, ∂w′

2, 0, 0)
)

= −C11(w2, w
′
2) − C12(w2, ∂w′

2).

By Lemma 3.3, we see that C11(w2, w
′
2) = −C12(w2, ∂w′

2) = −C32(∂w2, ∂w′
2). 	
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Constant symplectic 2-groupoids 1215

Lemmas 3.2–3.4, together with (3.13), show that ω is completely determined by
C41 and C32.

Theorem 3.5 Let V• be a linear 2-groupoid with associated 3-term chain complex
(W•, ∂). There is a one-to-one correspondence between constant multiplicative 2-
forms ω ∈ �2

ν(V2) and pairs (C41,C32), where C41 is a bilinear pairing of W0 with
W2 and C32 is a bilinear form on W1, such that

C41(∂w1, w2) = C32(∂w2, w1) + C32(w1, ∂w2) (3.14)

for all w2 ∈ W2 and w1 ∈ W1.

Proof In the discussion above, we have already seen how to obtain C41 and C32 from
ω. To see that (3.14) holds, let u, v ∈ V3 be defined as u = (0, 0, 0, w1, 0, 0, 0) and
v = (0, 0, w2, 0, 0, 0, 0). Then

0 = δω(u, v) = −ω
(
(0,−w1,−w1,−∂w1), (w2, 0, 0, 0)

)

= −C12(w2, w1) − C13(w2, w1) + C41(∂w1, w2). (3.15)

Equation (3.14) then follows from Lemmas 3.3 and 3.4.
In the other direction, given C41 and C32 satisfying (3.14), we can construct ω

of the form (3.12), with the other components given by (3.13) and Lemmas 3.2–
3.4. The skew-symmetry of C22 follows from (3.13), and the skew-symmetry of C11
follows from Lemma 3.4 and (3.14). We have already observed that such an ω will be
normalized. It is long but straightforward to check that ω is multiplicative. 	


3.3 Simplicial nondegeneracy

Let V• be a linear 2-groupoid equipped with a constant 2-form ω ∈ �2
ν(V2). We will

now describe the pairings Aω and Bω from Sect. 2.3 in terms of the components in
(3.12).

Recall from Remark 3.1 that the 3-term complex (W, ∂) associated with V• is iso-
morphic to the tangent complex of V•. Thus we can view Aω and Bω as the restrictions
of (2.5) and (2.6), respectively, to Wi . Therefore

Aω(w0, w2) = ω
(
(0, 0, 0, w0), (w2, 0, 0, 0)

) = C41(w0, w2),

Bω(w1, w
′
1) = ω

(
(0, 0, w1, 0), (0, w

′
1, w

′
1, 0)

) + ω
(
(0, 0, w′

1, 0), (0, w1, w1, 0)
)

= C32(w1, w
′
1) + C32(w

′
1, w1),

for w0 ∈ W0, w1, w
′
1 ∈ W1, and w2 ∈ W2. The following result is immediate.

Proposition 3.6 ω is simplicially nondegenerate if and only if C41 and the symmetric
part of C32 are both nondegenerate.

Remark 3.7 Proposition 3.6 allows us to clearly see the difference between simplicial
nondegeneracy and the ordinary notion of nondegeneracy for 2-forms. From (3.12),
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1216 R. A. Mehta, X. Tang

it is clear that ω is nondegenerate in the ordinary sense if and only if C41 and C32
are both nondegenerate. Thus the difference is that ordinary nondegeneracy considers
C32 in its entirety, whereas simplicial nondegeneracy only considers the symmetric
part of C32. In the case where C32 is symmetric, the two notions agree; however, since
C32 need not be symmetric in general, it is easy to find examples of 2-forms that are
simplicially nondegenerate but not nondegenerate, and vice versa.

3.4 A minimal description of constant symplectic 2-groupoids

Putting Theorem 3.5 and Proposition 3.6 together, we see that there is a one-to-one
correspondence between constant symplectic 2-groupoids and 3-term chain complexes
(W•, ∂) equipped with a nondegenerate bilinear pairing C41 of W0 with W2 and a
bilinear form C32 on W1 whose symmetric part is nondegenerate, satisfying (3.14).
Using the nondegeneracy of the pairings, we can further simplify the description.

Theorem 3.8 There is a one-to-one correspondence between constant symplectic 2-
groupoids and tuples (W1,W0, 〈·, ·〉, ∂, r), where

• W1 and W0 are vector spaces,
• 〈·, ·〉 is a nondegenerate symmetric bilinear form on W1,
• ∂ : W1 → W0 is a linear map such that the image of ∂∗ in W ∗

1
∼= W1 is isotropic,

and
• r is an element of ∧2W ∗

1 .

Proof Given the data (W1,W0, 〈·, ·〉, ∂, r), the corresponding 3-term chain complex
is

W ∗
0

∂∗−→ W1
∂−→ W0, (3.16)

where we are implicitly using 〈·, ·〉 to identify W1 with W ∗
1 . Equation ∂ ◦ ∂∗ = 0 is

equivalent to the requirement that the image of ∂∗ be isotropic. We take C41 to be
the canonical pairing of W ∗

0 with W0, and we set C32:= 1
2 〈·, ·〉 + r . Equation (3.14)

automatically holds. One can easily check that this gives a one-to-one correspondence.
	


3.5 Equivalences

In this subsection, we will describe equivalences between constant symplectic 2-
groupoids in terms of the description given in Theorem 3.8.

From Definition 2.8 and Remark 2.9, we can see that any equivalence between
constant symplectic 2-groupoid structures on a linear 2-groupoid V• is given by a 2-
form α ∈ �2

ν(V1) satisfying (2.7) and (2.8). Since the simplicial coboundary operator
δ is linear, we may assume without loss of generality that α is constant.

Let α be a constant normalized 2-form on V1. In terms of the decomposition V1 =
W1 ⊕ W0, we can write α in block form as

α =
[
B11 B12
B21 0

]

,
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Constant symplectic 2-groupoids 1217

where B12(w1, w0) = −B21(w0, w1). The vanishing of the lower right block is a
consequence of the assumption that α is normalized. A straightforward calculation
then shows that (2.7) and (2.8) reduce in this case to the conditions

B21(w0, ∂w2) = 0, (3.17)

B21(∂w1, w
′
1) + B21(∂w′

1, w1) = 0, (3.18)

for all w2 ∈ W2, w1, w
′
1 ∈ W0, and w0 ∈ W0.

Since δα is obviously multiplicative, it has block form

δα =

⎡

⎢
⎢
⎣

A11 A12 A13 A14
A21 A22 A23 0
A31 A32 0 0
A41 0 0 0

⎤

⎥
⎥
⎦ .

By Theorem 3.5, δα is completely determined by A41 and A32. We calculate

A41(w0, w2) = δα
(
(0, 0, 0, w0), (w2, 0, 0, 0)

)

= α
(
(0, w2), (∂w2, 0)

)

= B21(w0, ∂w2),

A32(w1, w
′
1) = δα

(
(0, 0, w1, 0), (0, w

′
1, 0, 0)

)

= α
(
(w1, 0), (−w′

1,−∂w′
1)

)

= −B11(w1, w
′
1) − B12(w1, ∂w′

1).

From this, we see that Eq. (3.17) holds if and only if A41 = 0, and that (3.18) holds if
and only if A32 is skew-symmetric. Furthermore, we observe that there is no restriction
on B11, so every skew-symmetric pairing on W1 appears as A32 for some choice of α

satisfying (3.17) and (3.18).
It is clear from the above discussion that, in terms of the data of Theorem 3.8,

equivalences between constant symplectic groupoids act transitively on r and do not
affect any of the other data. Thus we have the following result.

Theorem 3.9 There is a one-to-one correspondence between equivalence classes of
constant symplectic 2-groupoids and tuples (W1,W0, 〈·, ·〉, ∂), where

• W1 and W0 are vector spaces,
• 〈·, ·〉 is a nondegenerate symmetric bilinear form on W1, and
• ∂ : W1 → W0 is a linear map such that the image of ∂∗ in W ∗

1
∼= W1 is isotropic.

Remark 3.10 In each equivalence class of constant symplectic 2-groupoids, there is
exactly one representative for which C32 is symmetric (or equivalently, in terms of the
data ofTheorem3.8,where r = 0). In this case,wewill say that the constant symplectic
2-groupoid is symmetric. From Remark 3.7, we can see that if (V•, ω) is a symmetric
constant symplectic 2-groupoid, then ω ∈ �2(V2) is genuinely nondegenerate, and
therefore V2 is genuinely symplectic.
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1218 R. A. Mehta, X. Tang

4 Integration of constant Courant algebroids

In this section, we will describe a simple class of Courant algebroids that we call
constant Courant algebroids. We will see that constant Courant algebroids are in
correspondence with equivalence classes of constant symplectic 2-groupoids.

4.1 Constant Courant algebroids

We first recall the definition of Courant algebroid.

Definition 4.1 A Courant algebroid is a vector bundle E → M equipped with a
nondegenerate symmetric bilinear form 〈·, ·〉, a bundle map ρ : E → T M (called the
anchor), and a bracket �·, ·� (called the Courant bracket) on �(E) such that

(1) �e1, f e2� = ρ(e1)( f )e2 + f �e1, e2�,
(2) ρ(e1)(〈e2, e3〉) = 〈�e1, e2�, e3〉 + 〈e2, �e1, e3�〉,
(3) ��e1, e2�, e3� = �e1, �e2, e3�� − �e2, �e1, e3��,
(4) �e1, e2� + �e2, e1� = D〈e1, e2〉,
for all f ∈ C∞(M) and ei ∈ �(E), where D : C∞(M) → �(E) is defined by

〈D f, e〉 = ρ(e)( f ).

A well-known but important consequence of Definition 4.1 is that, for any Courant
algebroid E → M , the sequence

T ∗M ρ∗
−→ E∗ ∼= E

ρ−→ T M (4.1)

is a 3-term chain complex of vector bundles over M . One should expect that a sym-
plectic 2-groupoid integrating E should be such that its tangent complex is isomorphic
(or at least quasi-isomorphic) to (4.1).

Definition 4.2 A constant Courant algebroid is a Courant algebroid of the formW1×
W0 → W0, where W0 and W1 are vector spaces, such that

(1) the pairing 〈·, ·〉 is independent of the basepoint in W0,
(2) the anchor ρ : W1 × W0 → TW0 = W0 × W0 is independent of the basepoint,

and
(3) �w1, w

′
1� = 0 for all w1, w

′
1 ∈ W1, viewed as constant sections.

Let E = W1 × W0 → W0 be a constant Courant algebroid. The space of sections
�(E) can be naturally identified with C∞(W0)⊗W1. Any bilinear pairing on �(E) is
completely determined by its restriction to constant sections, which gives a symmetric
map W1 ⊗ W1 → C∞(W0). The requirement that the pairing be independent of
basepoint implies the image of this map consists of constant functions; in other words,
the pairing is given by a nondegenerate symmetric bilinear form onW1. Similarly, the
requirement that the anchor be independent of basepoint implies that it is given by

ρ(w1, w0) = (∂w1, w0) (4.2)
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for some linear map ∂ : W1 → W0.
The fact that ρ ◦ρ∗ = 0 (see 4.1) implies that ∂ ◦∂∗ = 0 or, equivalently, the image

of ∂∗ in W ∗
1

∼= W1 is isotropic.
The vanishing of the bracket of constant sections, together with axioms (1) and (4)

in Definition 4.1, imply that the bracket is completely determined by the pairing and
anchor. Specifically,

� f w1, gw
′
1� = fρ(w1)(g)w

′
1 − gρ(w′

1)( f )w1 + g〈w1, w
′
1〉D f (4.3)

for f, g ∈ C∞(W0) and w1, w
′
1 ∈ W1.

Theorem 4.3 There is a one-to-one correspondence between constant Courant alge-
broids and equivalence classes of constant symplectic 2-groupoids.

Proof Given a constant Courant algebroid, we have seen how to obtain the data
(W1,W0, 〈·, ·〉, ∂) for an equivalence class of constant symplectic 2-groupoids, as
described in Theorem 3.9. On the other hand, given the data (W1,W0, 〈·, ·〉, ∂), we
can construct the constant Courant algebroid E = W1 × W0 → W0, where the pair-
ing on �(E) agrees on constant sections with the pairing on W0, and the anchor and
bracket are given by (4.2) and (4.3). It is a long but straightforward check that the
conditions of Definition 4.1 hold. (We note that, alternatively, the Courant algebroid
axioms can be checked quickly using the supergeometric formulation of [14] in local
coordinates.) 	


5 Integration of constant Dirac structures

5.1 Linear sub-2-groupoids

Let V• be a linear 2-groupoid. A linear sub-2-groupoid of V• is a simplicial subspace
L• ⊆ V• that is also a 2-groupoid.

Let L• ⊆ V• be a linear sub-2-groupoid. Set U0:=L0, U1:= ker f 10 |L1 , and
U2:= ker λ2,2|L2 . By comparing with the constructions of Sect. 3.1, we can see that
U• is a subcomplex of (W•, ∂). Conversely, given a subcomplex U• ⊆ (W•, ∂),
we can form a linear sub-2-groupoid L•, where L0 = U0, L1 = U1 ⊕ U0, and
L2 = U2 ⊕U1 ⊕U1 ⊕U0. This gives us the following result.

Proposition 5.1 There is a one-to-one correspondence between linear sub-2-
groupoids L• ⊆ V• and subcomplexes U• ⊆ (W•, ∂).

5.2 Linear Lagrangian sub-2-groupoids

Now suppose that (V•, ω) is the symmetric constant symplectic 2-groupoid cor-
responding (via Theorem 3.9) to the data (W1,W0, 〈·, ·〉, ∂). In this case, V2 =
W ∗

0 ⊕ W1 ⊕ W1 ⊕ W0, and the block form (3.12) is such that C41 is the natural
pairing of W ∗

0 with W0 and C32 is the pairing 〈·, ·〉. It follows that ω is a genuine
symplectic form on V2 (see Remark 3.10).
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If U• is a subcomplex of (W•, ∂), then we can consider the space Lω
2 ⊆ V2 that is

symplectic orthogonal to L2 = U2 ⊕U1⊕U1⊕U0. The following gives a description
of Lω

2 in terms of U•.

Lemma 5.2 Lω
2 = Ann(U0) ⊕U⊥

1 ⊕U⊥
1 ⊕ Ann(U2).

Proof For any w2 ∈ W ∗
0 , w1, w

′
1 ∈ W1, w0 ∈ W0, and (u2, u1, u′

1, u0) ∈ L2, we use
(3.13) and Lemmas 3.2–3.4 together with the symmetry of C32 to derive the formulas

ω((w2, 0, 0, 0), (u2, u1, u
′
1, u0)) = C11(w2, u2) + C12(w2, u1)

+C13(w2, u
′
1) + C14(w2, u0)

= C32(∂
∗w2, u1 + u′

1 − ∂∗u2)
−C41(u0, w2)

= 〈∂∗w2, u1 + u′
1 − ∂∗u2〉 − w2(u0)

= w2(∂u1 + ∂u′
1 − u0), (5.1)

ω((0, w1, 0, 0), (u2, u1, u
′
1, u0)) = C21(w1, u2) + C23(w1, u

′
1)

= −C32(∂
∗u2, w1) − C32(u

′
1, w1)

= −〈w1, u
′
1 + ∂∗u2〉, (5.2)

ω((0, 0, w′
1, 0), (u2, u1, u

′
1, u0)) = C31(w

′
1, u2) + C32(w

′
1, u1)

= −C32(w
′
1, ∂

∗u2) + C32(w
′
1, u1)

= 〈w′
1, u1 − ∂∗u2〉, (5.3)

ω((0, 0, 0, w0), (u2, u1, u
′
1, u0)) = C41(w0, u2)

= u2(w0). (5.4)

From (5.1)–(5.4) it is immediate that Ann(U0) ⊕U⊥
1 ⊕U⊥

1 ⊕ Ann(U2) ⊆ Lω
2 .

Conversely, if (w2, w1, w
′
1, w0) ∈ V2 is in Lω

2 , then from (5.1)–(5.4) we have

0 = ω((w2, w1, w
′
1, w0), (0, 0, 0, u0)) = −w2(u0)

for all u0 ∈ U0, so it follows that w2 is in Ann(U0). Similarly,

0 = ω((w2, w1, w
′
1, w0), (0, 0, u

′
1, 0)) = w2(∂u

′
1) − 〈w1, u

′
1〉 = −〈w1, u

′
1〉

and

0 = ω((w2, w1, w
′
1, w0), (0, u1, 0, 0)) = w2(∂u1) + 〈w′

1, u1〉 = 〈w′
1, u1〉

for all u1, u′
1 ∈ U1, so it follows that w1 and w′

1 are in U
⊥
1 . Finally,

0 = ω((w2, w1, w
′
1, w0), (u2, 0, 0, 0)) = −〈w1 + w′

1, ∂
∗u2〉 + u2(w0) = u2(w0)

for all u2 ∈ U2, so it follows that w0 is in Ann(U2). 	

The following is an immediate consequence of Lemma 5.2.
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Corollary 5.3 (1) L2 is isotropic if and only if U0 ⊆ W0 and U2 ⊆ W ∗
0 pair to zero

and U1 ⊆ W1 is isotropic.
(2) L2 is coisotropic if and only if the annihilator of U2 is contained in U0, the

annihilator of U0 is contained in U2, and U⊥
1 ⊆ U1.

(3) L2 is Lagrangian if and only if U2 = Ann(U0) and U⊥
1 = U1.

We can now obtain a description of linear Lagrangian sub-2-groupoids in terms of
the data of Theorem 3.9.

Theorem 5.4 Suppose that (V•, ω) is the symmetric constant symplectic 2-groupoid
corresponding to the data (W1,W0, 〈·, ·〉, ∂). There is a one-to-one correspondence
between linear Lagrangian sub-2-groupoids L• ⊆ V• and pairs (U1,U0), where
Ui ⊆ Wi for i = 0, 1 are such that U⊥

1 = U1 and ∂(U1) ⊆ U0.

Proof It is immediate from Proposition 5.1 and Corollary 5.3 that, if L• is Lagrangian,
then the corresponding subspaces Ui ⊆ Wi satisfy U⊥

1 = U1 and ∂(U1) ⊆ U0. In the
other direction, we set U2 = Ann(U0). For any u2 ∈ U2 and u1 ∈ U1, we have

〈∂∗u2, u1〉 = u2(∂u1) = 0

for all u1 ∈ U1, so ∂∗u2 is in U⊥
1 = U1. Therefore, U• is a subcomplex, and by

Corollary 5.3 the corresponding L2 is Lagrangian. 	


5.3 Constant Dirac structures

A Dirac structure in a Courant algebroid E → M is a subbundle D → M such
that D⊥ = D and �(D) is closed under the Courant bracket.3 The restriction of the
Courant bracket �·, ·� to any Dirac structure D is a Lie bracket, making D → M into
a Lie algebroid.

LetW1 ×W0 → W0 be a constant Courant algebroid. We will restrict our attention
to constant Dirac structures, i.e., Dirac structures of the form U1 × W0, where U1 is
a subspace of W1.

Lemma 5.5 Let U1 be a subspace of W1. Then U1 ×W0 is a constant Dirac structure
if and only if U⊥

1 = U1.

Proof Since the pairing onW1×W0 → W0 is constant, it is immediate thatU⊥
1 = U1

if and only if (U1 × W0)
⊥ = U1 × W0. The nontrivial part of the lemma is the

observation that, in this case, closure under the Courant bracket is a consequence of
the isotropic property. To see this, suppose that U1 ⊆ W1 is isotropic. Then, from
(4.3), we have

� f u, gu′� = fρ(u)(g)u′ − gρ(u′)( f )u + g〈u, u′〉D f

3 We note that we are using the condition D⊥ = D in place of the usual requirement that D be maximally
isotropic. In most cases of interest, E has signature (n, n), and the two conditions are equivalent. However,
if E does not have signature (n, n), then, according to the definition we are using, there do not exist any
Dirac structures in E .
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for f, g ∈ C∞(W0) and u, u′ ∈ U1. The last term vanishes, and the other two terms
are clearly in �(U1 × W0). 	


Given U1 ⊆ W1 such that U⊥
1 = U1, we may apply Theorem 5.4 to the pair

(U1,W0) to obtain a linear Lagrangian sub-2-groupoid L• ⊆ V• that is wide, in the
sense that L0 = V0. It is clear from the correspondence of Theorem 5.4 that every
wide linear Lagrangian sub-2-groupoid arises in this manner. Using Lemma 5.5, we
then obtain the following result.

Theorem 5.6 Suppose that (V•, ω) is the symmetric constant symplectic 2-groupoid
corresponding to the data (W1,W0, 〈·, ·〉, ∂), and let W1 × W0 → W0 be the corre-
sponding constant Courant algebroid. There is a one-to-one correspondence between
constant Dirac structures U1 × W0 ⊆ W1 × W0 and wide linear Lagrangian sub-2-
groupoids L• ⊆ V•.

Remarks 5.7 (1) From part (3) of Corollary 5.3, we can see that a linear Lagrangian
sub-2-groupoid corresponding to the subcomplex U• ⊆ (W•, ∂) is wide if and
only ifU2 = {0}. Therefore, a wide linear Lagrangian sub-2-groupoid is actually
a 1-groupoid U1 ⊕ W0 ⇒ W0. It is straightforward to check that this is the Lie
groupoid that integrates the Lie algebroid U1 × W0 → W0.

(2) We stress that there are many complications involved in extending the result of
Theorem 5.6 to the nonlinear situation. In particular, we expect that a weaker
definition of Lagrangian sub-2-groupoid, using some of the ideas of derived sym-
plectic geometry [13], will be required.
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