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Abstract. Deep neural networks are vulnerable to adversarial exam-
ples. Prior defenses attempted to make deep networks more robust by
either changing the network architecture or augmenting the training set
with adversarial examples, but both have inherent limitations. Motivated
by recent research that shows that outliers in the training set have a high
negative influence on the trained model, we studied the relationship be-
tween model robustness and the quality of the training set. We propose
two methods for detecting outliers based on canonical examples and on
training errors, respectively. After removing the outliers, we trained the
classifier with the remaining examples to obtain a sanitized model. We
evaluated the sanizied model on MNIST and SVHN and found that it
forced the attacker to generate adversarial examples with much higher
distortion. More importantly, we examined the Kullback-Leibler diver-
gence from the output of the original model to that of the sanitized
model and found that this divergence is much higher for adversarial ex-
amples than normal examples. Based on this difference, we could detect
adversarial examples with accuracy between 94.67% to 99.89%. Our re-
sults show that improving the quality of the training set is a promising
direction for increasing model robustness.

1 Introduction

Deep neural networks have demonstrated impressive performance on many hard
perception problems [8,11]. However, they are vulnerable to adversarial exam-
ples [17,6,15], which are maliciously crafted to be perceptually close to normal
examples but which cause misclassification. Prior defenses against adversarial ex-
amples fall into the following categories: 1. Incorporating adversarial examples
in the training set, a.k.a. adversarial training [17,6] 2. Modifying the network
architecture or training method, e.g., defense distillation [16] 3. Modifying the
test examples, e.g., MagNet [13] The first defense requires knowledge about the
process for generating adversarial examples, while the last two defenses require
high expertise and are often not robust [2].

We propose a new direction to strengthen deep neural networks against ad-
versarial examples. Recent research showed that outliers in the training set are
⋆ Equal contribution
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highly influential on the trained model. For example, outliers may be ambiguous
images on which the model has low confidence and thus high loss [7]. Our insight
is that if we can detect and discard outliers in the training set, we can make the
model more robust against adversarial examples without changing either the net-
work architecture or training method. We call the process of removing outliers
from the training set sanitization.1

We propose two methods for detecting outliers. First, for some AI tasks, we
may find canonical examples. For example, for handwritten digit classification,
we may use computer fonts as canonical examples. We trained a canonical model
using canonical examples, and then used the canonical model to detect outliers
in the training set. We call this method canonical sanitization. Second, for AI
tasks without canonical examples, we considered examples with large training
errors as outliers. We call this method self sanitization.

After culling the training set to remove outliers, we trained a model called the
sanitized model. We compared the robustness of the unsanitized model, which
was trained on the entire training set, with the sanitized model on adversar-
ial examples using two criteria. The first criterion is classification accuracy. Our
evaluation showed that the sanitized model increased classification accuracy con-
siderably. For example, on adversarial examples generated by iterative gradient
sign method after five iterations on MNIST, the canonical sanitized model in-
creased the classification accuracy from 53.3% to 82.8%, and the self sanitized
model from 53.3% to 92.6%.

The second criterion is distortion increment. When we generated adversarial
examples on MNIST with the Carlini & Wagner attack whose confidence was
set to zero, the average L2 distortion increased from 2.1 to 2.55 in the canonical
sanitized model and to 2.63 in the self sanitized model.

More importantly, the sanitized models allowed us to detect adversarial ex-
amples. We computed the Kullback-Leibler divergence from the output of an
example on the unsanitized model to the output of the same example on the
sanitized model, and found that this divergence was much larger for adversarial
examples than for normal examples. Based on this difference, we were able to
detect the adversarial examples generated by the Carlini & Wagner attack on
MNIST and SVHN at 99.26% and 94.67% accuracy, respectively. Compared to
prior work for detecting adversarial examples (e.g., [14]), this approach requires
no knowledge of adversarial examples.

We make the following contributions.

– We propose a new direction to improve the robustness of deep neural net-
works against adversarial examples. This approach detects and removes out-
liers from the training set without changing the classifier.

– We propose two methods for detecting outliers in the training set: canon-
ical sanitization and self-sanitization. We found that the sanitized model
increased either the classification accuracy or the distortion of adversarial
examples.

1 Unlike data sanitization, which commonly modifies individual datum, we modify no
example but merely remove outliers from the training set.
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– We propose an approach for detecting adversarial examples by leveraging
the Kullback-Leibler divergence from the unsanitized model to the sanitized
model.

2 Methodology

2.1 Definitions

Examples

– Normal examples are sampled from the natural data generating process. For
examples, images of handwritten digits.

– Outliers are examples in the training set of normal examples. They are dif-
ficult to classify by humans. Sanitization is the process to remove outliers
from the training set.

– Adversarial examples are crafted by attackers that are perceptually close to
normal examples but that cause misclassification.

Models

– Unsanitized models are trained with all the examples in the training set. We
assume that the training set contains only normal examples (i.e., without
adversarial examples).

– Sanitized models are trained with the remaining examples after we remove
outliers from the training set.

Our goal is to evaluate if sanitized models are more robust against adversarial
examples. A model is more robust if it increases classification accuracy or the
distortion of adversarial examples, or can be used to detect adversarial examples.

2.2 Sanitization

Sanitization is the process of removing outliers from the training set. Since man-
ual sanitization would be laborious and subjective, we propose two automatic
sanitization methods.

Canonical sanitization This approach applies to the AI tasks that have canon-
ical examples. For example, for handwritten digit recognition, most computer
fonts may be considered canonical examples.2. If a handwritten digit is similar
to a computer font, it can be easily classified by a human. Based on this obser-
vation, we use canonical examples to discard outliers in our training set X by
the following steps:
2 Some computer fonts are difficult to recognize and therefore are excluded from our

evaluation
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– Augment the set of canonical examples by applying common transforma-
tions, e.g., rotating and scaling computer fonts.

– Train a model f using the augmented canonical examples.
– Use f to detect and discard outliers in the training set X. An example x(i)

is an outlier if f(x(i)) has a low confidence on y(i), the class associated with
x(i).

Self sanitization Not all AI tasks have canonical examples. For such tasks, we
use all the examples to train a model, and then discard examples that have high
training errors.

2.3 Sanitized models

After removing the outliers from the original training set, we get a sanitized set
and use it to train a model, called the sanitized model. Then, we evaluate if the
sanitized model is more robust against adversarial examples than the unsanitized
models using two metrics: classification accuracy and distortion of adversarial
examples.

2.4 Detecting adversarial examples

We detect adversarial examples based on the Kullback-Leibler divergence [9]
from the output of an example on the unsanitized model to that of the same
example on the sanitized model. The Kullback-Leibler divergence from a distri-
bution P to Q is defined as

DKL (P ∥ Q) =
∑
i

P (i) log
P (i)

Q (i)

3 Evaluation

3.1 Set up

Data sets We used two data sets: MNIST and SVHN.

MNIST 3

MNIST contains 60 000 and 10 000 monochrome images of handwritten digits
in the training and test set, respectively. MNIST is attractive because we can
use computer fonts as the canonical examples. This allows us to apply canonical
sanitization (Section 3.2).

3 http://yann.lecun.com/exdb/mnist/
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SVHN 4

To evaluate on a data set more complex than MNIST, we selected SVHN,
which consists of color images of street view house numbers. SVHN is more
challenging because the images are much more diverse, e.g., in different colors,
orientations, and lighting conditions.

There are two formats of SVHN:
1. Original images with character-level bounding boxes.
2. MNIST-like 32-by-32 images with a single character in the center.

The second format is noisy because many images contain parts of the adjacent
digits in addition to the center digit. Therefore, we used the first format to create
images of individual digits as follows:

1. Cropping individual digits using the bounding boxes.
2. Discarding images whose either dimension is less than 10, because such tiny

images are difficult to classify even for humans.
3. Resizing the larger dimension of each each image to 28 while keeping the

aspect ratio, and then padding the image to 28 × 28. When padding an
image, we used the average color of the border as the padding color.

After the process, we obtained 40 556 images from the original training set
and 9790 test images from the original test set.

Models

MNIST We trained the Convolutional Neural Network (CNN) in Figure 1 on
MNIST and achieved an accuracy of 99.3%.

SVHN Since SVHN is more complex, we used a more complex model in Figure 2.
It achieved an accuracy of 98.62%.

Both the above models are unsanitized model.

Attacks We used two popular attacks.

– Iterative Gradient Sign Method (IGSM). Given a normal image x, fast gra-
dient sign method (FGSM) looks for a similar image x′ in the L∞ neigh-
borhood of x that fools the classifier [6]. [10] improved FGSM by using a
finer iterative optimization strategy. For each iteration, the attack performs
FGSM with a smaller step-width α, and clips the updated result so that the
updated image stays in the ϵ neighborhood of x. We ran this attack with 5,
10, and 15 iterations, respectively.

– Carlini & Wagner’s attack. For a fixed input image x, the attack looks for
a perturbation δ that is small in length, satisfies the box constraints to be
a valid image, and fools the classifier at the same time [2]. When running
this attack, we used L2 as the metric, chose several confidence levels, and
performed targeted attacks.

4 http://ufldl.stanford.edu/housenumbers/
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Fig. 1: Convolutional Neural Network for MNIST
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Fig. 2: Convolutional Neural Network for SVHN

3.2 Sanitization

Canonical sanitization We did canonical sanitization on MNIST. In canonical
sanitization, we discarded outliers that are far different from canonical examples.
We chose fonts containing digits on Windows 10 as canonical examples. After
removing nine fonts that are difficult to recognize by humans, we were left with
340 fonts. To accommodate common variations in handwriting, we applied the
following transformations to the fonts:

– Scaling. We rendered each font in 24 pt, 28 pt, and 32 pt.
– Rotation. We rotated each font from −30◦ to 30◦ in an increment of 10◦.

We did not translate the fonts because CNN is insensitive to translation.
After the above transformations, we acquired 340× 3× 7× 10 = 71 400 images,
from which we randomly chose 80% as the training set and used the remaining
20% as the test set. We trained the classifier in Figure 1 and achieved an accuracy
of 98.7%. We call this the canonical model.

We used the canonical model to test the MNIST training set. The classifi-
cation accuracy is 88%. Although this accuracy is not stellar (the state of the
art classifier achieved more than 99% accuracy on MNIST), it is nevertheless
impressive because the canonical model was trained on computer fonts while
MNIST examples were hand written. This shows that computer fonts are good
approximations of handwritten digits.



Less is More 7

(a) Confidence < 0.7 (b) Confidence > 0.999 99

Fig. 3: Examples in MNIST with low and high confidence, respectively, on the
canonical model trained with computer fonts

Using computer fonts as canonical examples, we discarded outliers in the
MNIST training set. To do this, we fed each example to the canonical model. If
the example’s confidence score (the element corresponding to the correct class
in the model’s output vector) was below a threshold, we considered it an outlier
and discarded it. Figure 3 shows examples with low and high confidence. Table 1
shows the number of examples left under different thresholds. We used these
examples to train the sanitized models.

Table 1: Size of the MNIST training set after discarding examples whose confi-
dence scores on the canonical model are below a threshold

Threshold 0 0.7 0.8 0.9 0.99 0.999 0.9999
Set size 60 000 51 241 50 425 49 128 44 448 38 230 30 618

We did not do canonical sanitization on SVHN because it is infeasible to
acquire a reasonably-sized set of canonical examples, as the digits in SVHN are
highly diverse in colors, orientations, lighting conditions, etc.

Self-sanitization We did self sanitization on both MNIST and SVHN. To dis-
card outliers in self sanitization, we trained the classifier in Figure 1 and Fig-
ure 2 for MNIST and SVHN separately, used the models to test every example
in the training set, and considered examples whose confidence scores were below
a threshold as outliers. Table 2 and Table 3 show the number of examples left
under different thresholds. We used these examples to train the sanitized mod-
els. Table 3 also shows that the sanitized models maintain high classification
accuracy when it has adequate training data to prevent overfitting.
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Table 2: Size of the MNIST training set after discarding examples whose confi-
dence scores on the self-trained model are below a threshold

Threshold 0 0.999 0.9999 0.999 99 0.999 999 0.999 999 9
Set size 60 000 56 435 52 417 45 769 36 328 24 678

Table 3: The sizes of the sanitized SVHN training set and the classification
accuracy of the sanitized models at different thresholds for discarding outliers
from the original SVHN training set

Threshold Training set size Classification accuracy (%)

0 40 556 94.26
0.7 39 330 93.68
0.8 38 929 93.22
0.9 38 153 92.74
0.99 34 408 91.30
0.999 28 420 89.41
0.9999 21 378 85.82
0.999 99 14 000 85.29
0.999 999 8043 79.56
0.999 999 9 4081 58.14

3.3 Robustness against adversarial examples

Table 4: Trained models. We trained no canonical sanitized model on SVHN
because it is infeasible to construct a reasonably-sized set of canonical examples.

Data set Number of models
Unsanitized Canonical sanitized Self sanitized

MNIST 1 6 5
SVHN 1 — 9

Table 4 shows all models that we trained. We ran the IGSM and Carlini &
Wagner attacks on both the unsanitized and sanitized models.

IGSM attack Figure 4 compares the classification accuracy of the unsanitized
and sanitized models on the adversarial examples generated by the IGSM attack
on MNIST, where Figure 4a and Figure 4b correspond to canonical sanitization
and self sanitization, respectively.

Figure 4 shows that a higher threshold of sanitization increases the robustness
of the model against adversarial examples. For example, on adversarial examples
generated after five iterations of IGSM, the classification accuracy is 82.8% with a
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Fig. 4: Classification accuracy of models on the adversarial examples generated
by the IGSM attack. We trained these models using the examples in MNIST
after sanitization based on different thresholds, where the threshold 0 represents
the full original data set.

threshold of 0.9999 in canonical sanitization, and is above 92.6% with a threshold
of 0.999 999 9 in self sanitization. Although the accuracy decreases after more
iterations of IGSM, higher thresholds still significantly improve classification
accuracy.

Carlini & Wagner’s attack We ran Carlini & Wagner’s L2 target attack
to generate adversarial examples on our sanitized models on both MNIST and
SVHN. Although this attack generated adversarial examples that fooled all of
our models, Figure 5 and Figure 6 show that the sanitized models forced the
adversarial examples to have larger distortions. The higher the threshold, the
larger the distortion.
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Fig. 5: Average L2 distortions of adversarial examples generated by Carlini &
Wagner’s attack on models trained using the examples in MNIST after san-
itization based on different thresholds, where the threshold 0 represents the
unsanitized model.
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Fig. 6: Average L2 distortions of adversarial examples generated by the Carlini &
Wagner attack on models trained using the examples on SVHN after sanitization
based on different thresholds, where the threshold 0 represents the unsanitized
model.

3.4 Detecting adversarial examples

We evaluated the effectiveness of using the Kullback-Leibler divergence to detect
adversarial examples (Section 2.4).

MNIST We generated adversarial examples on two sanitized models on MNIST:

– A canonical sanitized model. We collected the training examples of this san-
itized model from the MNIST training set after discarding all the examples
whose confidence levels on the canonical model (trained on computer fonts)
were below 0.9999.

– A self sanitized model. We collected the training examples of this sanitized
model from the MNIST training set after discarding all the examples whose
confidence levels on the original model (trained on the entire training set)
were below 0.999 999 9.

We computed the Kullback-Leibler divergence from the output of the unsan-
itized model to that of each of the sanitized models.

Figure 7 compares the CDF of the Kullback-Leibler divergence between nor-
mal examples and adversarial examples generated by IGSM after different itera-
tions. It shows that the majority of normal examples have very small divergence,
while most adversarial examples have large divergence where more iterations
generated examples with higher divergence. Figure 8 compares the CDF of the
Kullback-Leibler divergence between normal examples and adversarial examples
generated by the Carlini & Wagner attack using different confidence levels. The
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Attack IGSM (iterations) Carlini & Wagner (confidence)
Attack parameter 5 10 15 0 0.1 0.5 1 3 5

Detection accuracy (%) 33.80 85.47 96.31 99.26 99.26 100.00 99.26 98.52 95.56

Table 5: MNIST: Accuracy of detecting adversarial examples based on the
Kullback-Leibler divergence from the unsanitized model to a canonical sanitized
model when detection accuracy for normal examples is 98%.

difference is even more prominent, which motivated us to detect adversarial ex-
amples by this difference.

Table 5 shows the accuracy of detecting adversarial examples based on the
Kullback-Leibler divergence from the unsanitized model to a canonical sanitized
model. We used a threshold of KL divergence to divide normal and adversarial
examples: all the examples below this threshold were considered normal, and all
above adversarial. We determined the threshold by setting a target detection
accuracy on normal examples. For example, when we set this target accuracy
to 98%, we needed a threshold of KL divergence of 0.0068. At this threshold,
the accuracy of detecting all the Carlini & Wagner adversarial examples at all
the confidence levels is high (all above 95%). The accuracy of detecting IGSM
adversarial examples is high when the number of iterations is high (e.g., 10 or 15).
When the number of iterations is low (e.g., 5), the detection accuracy decreases;
however, since the false negative examples have low KL divergence, they are
more similar to normal examples and therefore can be classified correctly with
high probability as discussed next.

To take advantage of both the KL divergence for detecting adversarial exam-
ples and the sanitized models for classifying examples, we combined them into
a system shown in Figure 9. The system consists of a detector, which computes
the KL divergence from the unsantized model to the sanitized model and rejects
the example if its divergence exceeds a threshold, and a classifier, which infers
the class of the example using the sanitized model. The system makes a correct
decision on an example when

– if the example is normal, the detector decides the example as normal and
the classifier correctly infers its class.

– if the example is adversarial, the detector decides the example as adversarial
or the classifier correctly infers its true class.

Table 6 shows the accuracy of this system on adversarial exampled generated
by the IGSM attack on a canonical sanitized model on MNIST. At each tested
iteration of the IGSM attack, the accuracy of this system on the adversarial
examples is above 94%. The accuracy of this system on the normal examples is
94.8%.
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(a) KL divergence from unsanitized model to canonical sanitized models
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(b) KL divergence from unsanitized model to self sanitized models

Fig. 7: MNIST: CDF of Kullback-Leibler divergence from the output of the un-
sanitized model to the output of a sanitized model. We generated the adversarial
examples using the IGSM attack after 5, 10, and 15 iterations, respectively.
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Fig. 8: MNIST: CDF of Kullback-Leibler divergence from the output of the un-
sanitized model to the output of a sanitized models. We generated the adversarial
examples at different confidence levels.

SVHN Figure 10 compares the CDF of the Kullback-Leibler divergence of
normal examples and adversarial examples generated by the Carlini & Wagner
attack at different confidence levels. We trained the sanitized model after dis-
carding the examples in the training set whose confidence on the original model
was below 0.9 (self sanitization).

Table 7 shows the impact of sanitization threshold on the detection accuracy
on adversarial examples generated by the Carlini & Wagner attack at different
confidence levels. We automatically determined the threshold of KL divergence
by setting the detection accuracy on normal examples to 94%. Table 7 shows that
as the sanitization threshold increases from 0.7 to 0.9, the detection accuracy
increases. However, after the sanitization threshold increases even further, the
detection accuracy decreases. This is because after the sanitization threshold
exceeds 0.9, the size of the training set decreases rapidly, which causes the model
to overfit.
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using sanitized model
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Fig. 9: A system combining a detector, which detects if an example is adversarial
based on the KL divergence from the unsantized model to the sanitized model,
and a classifier, which classifies the example using the sanitized model.

Table 6: Accuracy of the system in Figure 9 on adversarial examples generated by
the IGSM on a canonical sanitized model on MNIST. The column “detection”,
“classifier”, and “combined” shows the accuracy of the detector, classifier, and
system overall. The overall accuracy on normal examples is 94.8%.

IGSM iterations Accuracy (%)
Detector Classifier Overall

5 33.80 99.84 99.89
10 85.47 72.72 96.03
15 96.31 1.71 94.68

3.5 Canonical vs. self sanitization

We proposed two methods for detecting outliers: canonical sanitization and self
sanitization. Section 3.3 and Section 3.4 show that their effectiveness differs
somewhat on classification accuracy and adversarial example detection. Here we
compare how many outliers they detect in MNIST. Figure 11 shows the propor-
tion of each digit in the remaining images after removing outliers according to
different thresholds.

Figure 11a and Figure 11b show similarities between canonical and self san-
itization. For example, as the threshold increases, the proportion of both 0 and
6 increases while the proportion of both 1 and 9 decreases. However, the fig-
ures also show differences. As the threshold increases, the portion of 8 decreases
in canonical sanitization but increases in self sanitization. We conjecture that
the difference between average computer fonts and average handwritten fonts is
higher for 8 than for the other digits.
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Fig. 10: SVHN: CDF of the KL divergence from the output of the unsanitized
model to that of a sanitized models. Normal examples have small divergence,
while all the Carlini & Wagner adversarial examples under difference confidence
levels have large divergence.

4 Discussion and future work

Section 3.4 showed that the Kullback-Leibler divergence from the unsanitized
model to the sanitized model is much larger on adversarial examples than on
normal examples. This suggests that the distribution of adversarial examples is
much closer to the outliers in the normal examples than to the rest (non-outliers)
of the normal examples. This supports our initial hypothesis that outliers distort
the model’s learned distribution and facilitate adversarial examples.

Section 3.4 showed that we can use the Kullback-Leibler divergence as a
reliable metric to distinguish between normal and adversarial examples. The
threat model was that the attacker can access both the unsanitized and the
sanitized models as white boxes. She could generate adversarial examples on
either model, but she did not know that we used the Kullback-Leibler divergence
to detect adversarial examples. In our future work, we plan to evaluate if the
attacker can generate adversarial examples to evade our detection if she knows
our detection method.

5 Related work

Most prior work on machine learning security focused on improving the network
architecture, training method, or incorporating adversarial examples in train-
ing [1]. By contrast, we focus on culling the training set to remove outliers to
improve the model’s robustness.
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Sanitization Training KL divergence Detection accuracy (%)
threshold set size threshold Attack confidence

0 0.5 1

0.7 39 330 0.7295 93.50 94.56 94.67
0.8 38 929 0.5891 93.56 94.67 95.72
0.9 38 153 0.7586 94.67 94.78 95.78
0.99 34 408 1.0918 90.00 91.17 92.56
0.999 28 420 1.6224 83.22 85.78 87.33

Table 7: SVHN: the impact of sanitization threshold on the accuracy of detecting
adversarial examples based on the KL divergence from the unsanitized model to
sanitized models

5.1 Influence of training examples

Influence functions is a technique from robust statistics to measure the esti-
mator on the value of one of the points in the sample [5,18]. Koh et al. used
influence functions as an indicator to track the behavior from the training data
to the model’s prediction [7]. By modifying the training data and observing its
corresponding prediction, the influence functions can reveal insight of model.
They found that some ambiguous training examples were effective points that
led to a low confidence model. Influence Sketching [19] proposed a new scalable
version of Cook’s distance [3,4] to prioritize samples in the generalized linear
model [12]. The predictive accuracy changed slightly from 99.47% to 99.45%
when they deleted approximately 10% ambiguous examples from the training
set.

5.2 Influence of test examples

Xu et al. [20] observed that most features of test examples are unnecessary for
prediction, and that superfluous features facilitate adversarial examples. They
proposed two methods to reduce the feature space: reducing the color depth of
images and using smoothing to reduce the variation among pixels. Their feature
squeezing defense successfully detected adversarial examples while maintaining
high accuracy on normal examples.

6 Conclusion

Adversarial examples remain a challenging problem despite recent progress in
defense. We studied the relationship between outliers in the data set and model
robustness, and proposed methods for improving model robustness and for de-
tecting adversarial examples without modifying the model architecture. We pro-
posed two methods to detect and remove outliers in the training set and used



18 Y. Liu et al.

0.7 0.8 0.9 0.99 0.999 0.999 9 0.999 99

Threshold

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

P
ro

p
o

rt
io

n

0

1

6

8

9

0

9

8

1

6

(a) Font sanitization

0.9 0.99 0.999 0.999 9 0.999 99 0.999 999 0.999 999 9

Threshold

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

P
ro

p
o

rt
io

n

0

1

6

8

9

0

6

8

1
9

(b) Self sanitization

Fig. 11: Composition of examples from different classes in the remaining training
set after removing outliers based different sanitization methods and thresholds

the remaining examples to train a sanitized model. On both MNIST and SVHN,
the sanitized models significantly improved the classification accuracy on adver-
sarial examples generated by the IGSM attack and increased the distortion of
adversarial examples generated by the Carlini & Wagner attack. Furthermore,
we used the Kullback-Leibler divergence from the unsanitized model to the san-
itized model to detect adversarial examples reliably. Our results show that im-
proving the quality of the training set is a promising direction for increasing
model robustness.
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