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Abstract We introduce the concept of Roe C*-algebra for a locally compact groupoid whose
unit space is in general not compact, and that is equipped with an appropriate coarse structure
and Haar system. Using Connes’ tangent groupoid method, we introduce an analytic index for
an elliptic differential operator on a Lie groupoid equipped with additional metric structure,
which takes values in the K-theory of the Roe C*-algebra. We apply our theory to derive a
Lichnerowicz type vanishing result for foliations on open manifolds.
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1 Introduction

In this article, we study the index theory of longitudinal elliptic operators on open foliated
manifolds. Our study is inspired by the longitudinal index theory on a manifold M with a
regular foliation F due to Connes and Connes—Skandalis (see for example [5,6,8]). Examples
of longitudinal elliptic operators on open foliated manifolds appear naturally, both in their
own right and also by associating non-compact manifolds to closed manifolds as in the next
two examples.
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As a first example, in order to define the transverse fundamental class on (M, F) in [6],
Connes introduced a noncompact manifold M, the space of metrics on the normal bundle
of F, together with a regular foliation Fof M. A longitudinal elliptic operator on (M, F)
has a canonical lifting to a longitudinal elliptic operator on (M, F). The lifted operator on
(M, F) plays a key role in Connes’ theory of transverse fundamental classes.

A second source of examples of longitudinal elliptic operators on open manifolds is our
efforts to incorporate the fundamental group into index theory on a foliated manifold (M, F).
Here, we consider the covering space M of M together with the lifted regular foliation F.A
longitudinal elliptic operator on (M, F) naturally lifts to a longitudinal elliptic operator on
(M, F).

To allow the possibility that the rank of F can vary on M, we develop our index theory
for elliptic differential operators on a general Lie groupoid G with unit space Gy. Our theory
applies to a manifold M with a regular foliation F when the groupoid G is the holonomy
groupoid associated to a foliation F on M = Gy.

If Gy is a closed manifold, the index of a longitudinally elliptic differential operator on
G defines an element in the K-theory of the (reduced) groupoid C*-algebra C(G) of the
groupoid G. However, this is generally not the case when Gy is not closed. In general, we
show how to use a Euclidean metric on the Lie algebroid A to define a coarse structure £
on G in the sense of [10] under a natural completeness assumption (see Proposition 2.7 for
details). Following ideas that start in [21], we then introduce a Roe C*-algebra Cg (G) for
G associated to the coarse structure &; its K -theory provides a natural home for indices of
longitudinal elliptic operators in the non-compact case. If Gy happens to be closed, C3(G)
is just C)*(G), while if G is the pair groupoid on a Riemannian manifold M, C%(G) is the
classical Roe algebra C*(M) of M [22, Chapter 3]; thus our theory generalizes both of these
cases.

Assume now that the Lie algebroid A associated to G is equipped with a Euclidean metric,
and G with the coarse structure it induces. We also associate an algebra C, (A*) of continuous
functions on A* whose K-theory provides a natural home for symbols of geometrically
defined operators. A coarse version of the groupoid C*-algebra of Connes’ tangent groupoid
TG of G (c.f. [7]) leads to the following coarse analytic index map

Ind, : Ko(Co(A%)) — Ko(CE(G)).

This approach to ‘coarse index theory’ via tangent groupoids seems to be new even in the
classical case when G is the pair groupoid associated to a Riemannian manifold.

To understand the analytic index map Ind,, we consider what we call a smooth symbol
(V1, Vo, o) representing aclass [V, V2, 0]in K, (Ce (A*)). Roughly speaking a smooth sym-
bol consists of a pair of smooth vector bundles V|, V, over Gg and a smooth endomorphism
o between their pullbacks to A* that is invertible at infinity; so far this is analogous to the
symbol data appearing in the classical Atiyah-Singer theorem, but in our non-compact setting
we need an additional assumption on boundedness of the derivatives of o (see Definition 4.1
for details). Using groupoid pseudodifferential operators as introduced in [15,16], we con-
sider a ‘quantization’ {0*(0)} 1e[0,1] of the symbol, and construct a multiplier Q (o) of the
tangent groupoid Roe C*-algebra. We prove the following theorem under a natural bounded
geometry assumption; roughly, this says that all the curvature tensors on the target fibers of G
have uniformly bounded derivatives, and injectivity radius bounded below (see Assumption
4.3 for details).

Theorem 1.1 (Theorem 4.8) Assume the Euclidean metric on A satisfies Assumption 4.3.
Given a smooth symbol (Vy, V2, 0) representing an element in Ko(C;(A*)), the opera-
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tor Q(o) defines a K-theory element [Q(0)] in KO(C;(TG)) such that evos([Q(0)]) =
[Vi, V2,0l

We apply our theorem to study positive scalar curvature metrics as a generalization of
the Lichnerowicz vanishing theorem [13]. In 1963, Lichnerowicz proved that the index of
the Dirac operator on a closed spin manifold with a positive scalar curvature metric must
vanish. Around the same time, the Atiyah-Singer theorem [2] was proved; it in particular
implies that the index of the Dirac operator is equal to the Z—genus of the manifold. The
two results together imply that non-triviality of the topologically invariant X—genus of the
manifold is an obstruction for the manifold to carry a Riemannian metric with positive scalar
curvature. These breakthroughs started much progress in the study of geometry and topology
of manifolds in the past 50 years. See [3,14,28,29] for recent developments. Our study is
inspired by Connes’ far reaching generalization [6] of the Lichnerowicz theorem to closed
foliated manifolds in the 80s. Here, we attempt to generalize Connes’ result to open foliated
manifolds. In this direction, we prove the following result; this requires the same boundedness
assumptions on the derivatives of the curvature tensors and injectivity radius as before (see
Assumption 4.3 for details).

Theorem 1.2 Let G be a Lie groupoid, and assume that the associated Lie algebroid A
has even rank, and is equipped with a spin structure such that the associated Riemannian
metric g 4 satisfies Assumption 4.3. Then the triple (ST, S™, o (D)) associated to the Dirac
operator is a smooth symbol in the sense of Definition 4.1. Moreover, if g4 has uniformly
positive scalar curvature, the analytic index of the K-theory class [ST, S™, o (IDy)] vanishes
in Ko(C5(Q)), i.e.

Ind, ([s+, S, o(lD+)]) —0.
O

Applying this theorem to the regular foliations (M, F) and (M, F), in Corollary 5.2 we
obtain obstructions to the existence of leafwise positive scalar curvature metric on (M, F)
as a generalization of the Lichnerowicz vanishing theorem, [6,28]. We would like to remark
that in the above theorem we have considered the longitudinal index of a foliation, which is
different from the study in [14,29], where the transverse index of a (singular) foliation from
a group action is considered.

The article is organized as follows. In Sect. 2, we discuss coarse structures on a locally
compact Hausdorff groupoid, and show how they arise from suitable Riemannian structures
on Lie groupoids (in particular, on holonomy groupoids). In Sect. 3, we introduce the groupoid
Roe algebra associated to a locally compact groupoid with an appropriate coarse structure
and Haar system; if the groupoid is in addition a Lie groupoid, we then use Connes’ tangent
groupoid to define an analytic index for longitudinal elliptic operators. In Sect. 4, we introduce
the notion of a smooth symbol and use the groupoid pseudodifferential operator theory to
study the analytic index of such a symbol; this is the technical heart of the paper, and overviews
of the arguments involved can be found in that section. Finally, in Sect. 5, we apply our
groupoid index theory to study (regular) foliations with leafwise positive scalar metrics.

2 Coarse structure on Lie groupoids

We fix some basic notation for groupoids. Let G = Gy be a locally compact groupoid with
unit space Go. We will always assume that such a groupoid G is paracompact and Hausdorff.
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Lets, t : G — G be the source and target maps of G, which we always assume to be open.
Throughout this paper, we think of an arrow as from the left to the right: thus a pair (g, &) of
arrows is composable if #(g) = s(h), and the composition is gh. The s-fibers and ¢-fibers of
x € Gy are denoted respectively by G, := s~ (x) and G* := r~!(x).

If G is in addition a Lie groupoid then s and ¢ are assumed to be submersions. Thus s and ¢
are open maps, and the s- and ¢- fibers are closed submanifolds of G. We will usually assume
in this case that all s-fibers (and therefore all ¢-fibers) are connected. The Lie algebroid of
G = Gpis A := kert, C TGlg,. Noting that the right action of G on itself permutes the
t-fibers, sections of A can be identified with right G-invariant vector fields on G that are
tangent to the z-fibers.

We are mainly interested in Lie groupoids (and in fact, in holonomy groupoids) in this
paper; nonetheless, some definitions and results are stated in more generality than this where
it seems potentially useful for future applications, and where the extra generality causes no
extra difficulties.

2.1 Coarse structures and metrics

In [10, Sect. 2], Higson, Pedersen and Roe introduced a notion of coarse structure on alocally
compact, Hausdorff groupoid G in the following way.

Definition 2.1 A coarse structure on alocally compact, Hausdorff groupoid G is a collection
& of open subsets E of the set of arrows of G, called entourages, that have the following
properties:

1. the inverse of any entourage is contained in an entourage;

2. the (groupoid) product of two entourages is contained in an entourage;

3. the union of two entourages is contained in an entourage;

4. entourages are proper: that is, for any entourage E and any compact subset C of the

objects Go, E N s~H(C)and ENt~1(C) are relatively compact;
5. the union of all the entourages is G.

If there is an entourage that contains the unit space Gy, the coarse structure is called unital.
Two coarse structures £ and F are equivalent if every element of £ is contained in some
element of F and vice versa.

Example 2.2 Say X is a locally compact topological space, and G = X x X is the associated
pair groupoid. Then an equivalence class of coarse structures on G in the sense above is
essentially the same thing as a coarse structure on X that is compatible with the topology as
described in [23, Definition 2.22]. More specifically, the difference between the definition
of [23, Definition 2.22] and the specialization of Definition 2.1 above to pair groupoids is
analogous to the difference between a maximal atlas and an atlas for a manifold; it does not
make any substantial difference to the resulting theory.

Remark 2.3 Note that the collection of all open relatively compact subsets of G always
constitutes a coarse structure. Moreover, conditions (3) and (5) from Definition 2.1 imply
that every relatively compact subset of G is contained in some entourage, and thus (up to
equivalence) the collection of relatively compact subsets is contained in any coarse structure.

On the other hand, if the unit space Gy is compact, then condition (4) implies that all
entourages in any coarse structure are relatively compact. Hence if Gy is compact, any coarse
structure on G is equivalent to the coarse structure consisting of all open relatively compact
subsets of G. Thus (the equivalence class of) a coarse structure gives no more information
than the topology of G when Gy is compact.
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In the remainder of this subsection we assume that G is a Lie groupoid with connected
t-fibers, and will describe how to define a coarse structure on G starting with an appropri-
ate Euclidean metric on the Lie algebroid A. The following example is an important, and
particularly straightforward, special case of the general construction.

Example 2.4 Let G be a Lie groupoid, and A the associated Lie algebroid, equipped with a
Euclidean metric {(, )x}xeG, as above. Then we may regard A itself as a Lie groupoid with
unit space Go, and all arrows having the same source and target. Write points in A as (x, v)
where x € X and v is in the fiber A, over x, and define

E,:={(x,v) € Allvlx <r}
where ||v]|y := 4/(v, v)x. Then the collection {E,},~¢ clearly defines a coarse structure on
the Lie groupoid A.

Fix a smooth Euclidean metric {{ , )r}reg, on the bundle A with base space Go. Let
s*A be the pullback of A to G via the source map. For each fixed x € Gg with associated
t-fiber G¥, the restriction (s*A)|gx identifies canonically with the tangent bundle 7G*; in
this way, the Euclidean metric on A gives rise to a Riemannian metric on each of the 7-fibers
G*. Moreover, these metrics are invariant under the right action of G on itself: precisely,
right multiplication by each g € G defines a diffeomorphism G*®) — G(®), and invariance
means that these diffeomorphisms are all isometries.

For each x € Gy, let d* denote the length metric on the ¢-fiber G* induced by the
Riemannian metric defined above; note that as each G* is assumed connected, each d* is
everywhere finite. Moreover, the family of metric spaces (G*, d*) is invariant for the right
action of G: precisely, for any g € G and g1, g» € G*®

d*® (g1, g2) = d" ¥ (g1g. 829). )

Define now a function p : G — [0, o0) by

p(g) :=d"® (g, 1(g)).

‘We will show that under one additional condition (discussed below), the sets {p ™~ L([0, r)) |r >
0} define a coarse structure on G. The bulk of the proof of this is in the next two lemmas.

Lemma 2.5 The function p is subadditive and symmetric, meaning
p(gh) < p(@) +p() and  pg™") = p(g)
forall g, h € G for which these expressions make sense.

Proof The triangle inequality and the right invariance of the metric imply
p(gh) = d" P (gh, 1(gh) < d"¢" (gh, h) +d" " (h, 1 ()
= d"®(g,1(¢) +d" P (h, 1(h) = p(g) + p(h)

and the right-invariance again implies

pe ) =d'C (g 1(g™ ) =d" ¢ D (g g, 1(g7)e) = d"®@(t(2), g) = p(g).

[}

Lemma 2.6 Let r > 0. For any g € G with p(g) < r there is an open neighborhood U of
g in G such that p(h) < r forallh € U.

@ Springer



1314 X. Tang et al.

Proof Let € > 0 be such that 2¢ < r — p(g). Fix a smooth path from ¢(g) to g in G'®
with length [ at most r — € (this is possible by definition of the length metric d’(®)). As
t : G — Gy is a submersion and this path is compact, we may cover it by finitely many open
sets (for the topology on G) that identify with product sets of the form V x W, where V is
an open neighborhood of 7(g) in G, and W is an open subset of G*®), Using smoothness
of the Euclidean metric on A and another compactness argument based on moving along the
original path through these product neighborhoods, it is not difficult to see that there is a
neighborhood U of g (for the topology on G) of the same form such that for every h € U
there is a path from ¢ (h) to & in G'™ of length at most [ + €. This completes the proof.

Proposition 2.7 Assume that the Riemannian manifolds G* constructed above from a
Euclidean metric on the Lie algebroid A are all complete. Then the collection

E :={geG|pg) <r} (@)

defines a coarse structure on G.

The assumption that each G* is complete is not automatic (Example 2.9 below), but holds
in the examples of most interest to us (Proposition 2.10 below).

Proof Symmetry and subadditivity as in Lemma 2.5 imply that E;! = E, and the product
of E, and Ej is contained in E, . Each E, is open by Lemma 2.6. To see properness, note
that completeness of each G* implies that there is a globally defined, continuous exponential
map exp : A — G. For any compact subset C of Go, we have that

"N C)NE, Cexp{(x,v) € A|x € C, ]y <)),

and the set on the right is clearly compact. The fact that s~'(C) N E, is relatively compact
follows by symmetry.

Example 2.8 Going back to Example 2.4, note that if we consider A as a Lie groupoid, then
the Lie algebroid is just A again. For each x € Gy, the metrics d* defined above just identify
with the metric on the fiber A, defined by the norm | - ||, and thus the coarse structure
defined on the groupoid A by Proposition 2.7 is the same as the one in Example 2.4.

Example 2.9 Let M be a connected Riemannian manifold, and G = M x M the associated
pair groupoid. Then the Lie algebroid A identifies naturally with the tangent bundle 7 M, and
thus inherits a Euclidean metric. The coarse structure on G defined by the process above then
identifies with the coarse structure on M induced by the original metric as in [23, Example
2.5]. Moreover, each ¢-fiber G* is isometric to M.

In particular, completeness of the ¢-fibers G* is not automatic in general (as it would be
if G were a Lie group).

For regular foliations, the construction above specializes as follows. This is the key exam-
ple of this paper.

Proposition 2.10 Let F be a regular foliation on a complete Riemannian manifold M. Let
G be the associated holonomy groupoid, which we assume is Hausdorff.

Identify the Lie algebroid A with F, and equip it with the Euclidean metric defined by
restricting the Riemannian metric from M. Then each of the Riemannian manifolds G* defined
above is complete, so we get a coarse structure on G as in Proposition 2.7.
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Proof We first claim that each leaf L is complete when equipped with the length metric dj,
induced from the restriction of the Riemannian metric on M. This is presumably well-known,
but as we could not find a proof in the literature we provide one for the reader’s convenience.

Let then (x;) be a Cauchy sequence for dy . The metric d; dominates the restriction of the
length metric dys on M to L, whence (x,) is Cauchy for djs as well, and thus convergent to
some x € M by completeness. Let U be an open foliation neighborhood (i.e. a neighborhood
of x on which the foliation is a product) of x in M such that for some € > O, the e-
neighborhood (defined using dy;) of U is still a foliation neighborhood of x. Then the metric
space (LNU, dy) splits into (possibly infinitely many) connected components, each of which
is closed in U, and all of which are all at least € apart from each other for the d; metric.
Hence all but finitely many of the x,, are in the same connected component of L N U, whence
x is also in this connected component, and so in particular in L. Hence (L, dr ) is complete
as claimed.

To finish the argument, recall that for each x € M the ¢-fiber G* is a connected covering
space of the leaf L through x, with the Riemannian metric pulled back from L. As the covering
map G* — L is a local isometry for the induced length metrics, G* is also complete.

Example 2.11 Apart from regular foliations, actions of Lie groups are another interesting
source of examples. We give a basic example here to illustrate some issues that arise, but
no doubt much more could be said. Let SO (2) act on R? by rotations in the usual way, and
let G := R? x SO(2) be the associated crossed product groupoid; we write points of the
crossed product as pairs (x, z), where x € R? and z € SO(2). One natural definition of a
coarse structure on G is just to take &, := {G}, which reflects the fact that the acting group
SO (2) is compact (.’ is for ‘compact’), and so itself has no interesting coarse geometry. On
the other hand, identifying SO (2) with the unit circle in C, we can define a different coarse
structure &,, to consist of the sets

E,:={(x,2)€G||z—1|c " |x|gz <1}

for all » > 0; the coarse structure &,, reflects the fact that the orbits of the SO (2) action get
larger as one moves away from the origin in R? (¢,,” is for ‘metric’). The coarse structures
En and &, are not equivalent, and have quite different properties.

Neither & nor &,, arises directly from a Euclidean metric on the associated Lie algebroid
A as in Proposition 2.7, but both are equivalent to coarse structures arising in that way for
appropriate choices of Euclidean metric on A. Indeed, identify A with R? x so(2), where
50(2) is the Lie algebra of SO (2), a copy of R. Fixing a metric on s0(2), a Euclidean metric
on A is essentially the same thing as a choice of smooth function s : R2 — (0, 00), which
governs how much the fixed metric on so(2) is ‘scaled’. The coarse structure &, is equivalent
to that arising from the constant scaling factor s(x) = 1, while the coarse structure &,, is
equivalent to that arising from the scaling factor s(x) = 1 + |x 12.

Remark 2.12 1In order to define a coarse structure on G, it is sufficient to specify a smooth
symmetric family of proper metrics on {G*},cg,. This observation allows one to define
coarse structures on general Lie groupoids that are not even source connected; however, to
keep in contact with our main motivation—regular foliations—we will not use this.

@ Springer



1316 X. Tang et al.

3 Groupoid Roe algebras, tangent groupoids, and the analytic index
3.1 Groupoid Roe algebra

We assume throughout this subsection that G is a locally compact, second countable, Haus-
dorff groupoid equipped with a coarse structure. The reader should bear in mind the case
that G is a pair groupoid as in Example 2.9, or that G is a holonomy groupoid with coarse
structure defined using a metric on the underlying manifold M as in Proposition 2.10.

Definition 3.1 A Haar system on G is a family {i* } g, satisfying the following conditions:

1. each u” is a regular Borel measure on the corresponding ¢-fiber G* with full support;
2. the family is continuous, meaning that for each f € C.(G), the function

Go—C, «x '—>/G f(®)du*(g)
is continuous;!
3. the family is right invariant, meaning that for any g € G and any f € C.(G),

f Fdp'© () = f Flhg)du?® (h).
G!(®) Gs(®

Example 3.2 1f G is a Lie groupoid, Haar systems always exist. Indeed, take any (smooth)
Euclidean metric on the Lie algebroid A, lift it to a metric on each ¢-fiber as in the previous
section, and define u* to be the measure on G* canonically defined by the Riemannian metric.
We will use this choice for u* whenever it is convenient.

In order to define a C*-algebra C%(G), we will need to impose extra conditions on the
Haar system as follows.

Definition 3.3 Say G is a locally compact, Hausdorff groupoid with a coarse structure £. A
Haar system {u*} for G has bounded geometry if for all entourages E

sup ¥ (ENGY)

x€Go

is finite.

Example 3.4 Let G be a Lie groupoid with a fixed Euclidean metric on the Lie algebroid
A. Use this to equip each G* with a Riemannian metric as in the previous section, which
we assume complete, and let G have the associated coarse structure as in Proposition 2.7.
Let u* be the associated measure on G* as in Example 3.2. Assume that there is a global
lower bound (possibly negative) on the Ricci curvatures of the Riemannian manifolds G*,
independently of x. Then the Bishop-Gromov theorem (see for example [4, Theorem 107])
implies that the Haar system {;«*} has bounded geometry.

In particular, say M is a complete Riemannian manifold, and say G is the holonomy
groupoid associated to some regular foliation on M, the leaves of which has a global lower
bound on the Ricci curvature. Equip each G* with the associated Riemannian metric, and G
with the corresponding coarse structure, as in Proposition 2.10. Then the family of measures
{p*} associated to the Riemannian metrics has bounded geometry.

U If GisaLie groupoid, the family should be assumed smooth: just replace continuous functions by smooth
functions everywhere.
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Example 3.5 Say X is a locally finite discrete metric space, and G := X x X the associated
pair groupoid equipped with the coarse structure defined by

E ={(x,y) e X x X |d(x,y) <r}.

Taking p* to be the counting measure on G* for all x € Gy defines a Haar system. This
Haar system has bounded geometry if and only if for any r > 0, there is a uniform bound on
the cardinalities of all r-balls in X. This is the usual definition of bounded geometry in the
setting of discrete metric spaces, and one motivation for the terminology we have adopted.

Definition 3.6 Let G be a locally compact, Hausdorff groupoid equipped with a coarse
structure and a bounded geometry Haar system. The Roe x-algebra of G, denoted Cg (G), has
as underlying vector space the collection of continuous, bounded, complex-valued functions
on G that are supported in an entourage. The adjoint and multiplication on Cg (G) are defined
by

£ = Fe D, (fix f)(g) = /G e L O,

It follows readily from the properties in Definitions 2.1 and 3.1 that C¢ (G) is a well-defined
x-algebra. Indeed, note first that the adjoint is clearly a well-defined map, while condition
(4) from Definition 2.1 implies that the integrand appearing in the multiplication formula
is integrable, so this formula also make sense. On the other hand, the formulas defining the
multiplication and adjoint above are the standard ones used to define groupoid convolution
x-algebras (cf. [19, Sect. II.1]). One can therefore see that the x-algebra axioms are satisfied
by the same proofs that work for C.(G): see for example [19, Proposition II.1.1].

The following definition is the analogue in our setting of that on [19, p. 50] for the algebra
C.(G).

Definition 3.7 Let G be a locally compact, Hausdorff groupoid equipped with a coarse
structure and bounded geometry Haar system. The /-norm on Cg(G) is defined by

xeGo xeGo

ILf1l7 := max { sup / |f(@)du*(g), sup / If(g_])ldu“‘(g)} :

As elements of Cg(G) are bounded and continuous, and as inverses of entourages are con-
tained in entourages, the bounded geometry assumption implies that || f||; is finite. Moreover,
as each p* has full support, the 7-norm is an honest norm rather than a semi-norm.

We are now ready to define the family of representations that we will use to make Cg (G)
into a C*-algebra: these are based on the family of regular representations of a groupoid
algebra C.(G) as in [20, Sect. 2.3.4].

Lemma 3.8 Let G be alocally compact Hausdorff groupoid equipped with a coarse structure
and bounded geometry Haar system. Fix x € Gq and let L*>(G*, u*) be the corresponding
L? space with norm || - ||2. For & € C.(GY), f € Ce(Q), and g € G, define

(T (HHENg) = /GX f(gh™HEMm)dp* (h).

Then w* ( f) satisfies the norm estimate

I (O = ILFI11E]2

and in particular extends to a bounded operator on L*(G*, u*). Moreover, m* defines a
s-representation of Ce(G) on L(G*, u*).
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1318 X. Tang et al.

Proof Let f be an element of Cg(G) and & be an element of C.(G*). Then

2
i pei= [ ][ ren et mf i, )

Moving the absolute value inside the inner integral and applying Cauchy—Schwarz to the
product

|f(gh™HEM)| = £ (gh™ "I f(gh™ "I E(M)]

12
< (/G If(gh’l)ldu"(h)>

12
([ e empaa)

gives

‘ /G ! Flgh™Hemdu* (h)

Using right invariance of the Haar system, the first factor is bounded above by || f ||y 2, and

substituting into line (3) gives

e < 1 [ [ 171 P tdp @)

Switching the order of integration and using right invariance again bounds this above by

0 [t [ L ldn et iy

< ||f||1/GX 1111 1€ Pd () < ILFIF I3,

giving the desired bound. The fact that 7* defines a x-homomorphism follows from the same
sort of computations that show that the operations on Cg(G) or C.(G) define a x-algebra
structure: see for example [19, Proposition I1.1.1].

The following definition now makes sense.

Definition 3.9 Let G be a locally compact, second countable, Hausdorff groupoid equipped
with a coarse structure and a bounded geometry Haar system. The Roe C*-algebra of G,
denoted C%(G), is the completion of Cg (G) for the norm?

£ == sup{llx* ()l | x € Go}.

We conclude this subsection with some remarks and examples relating Definition 3.9 to
other constructions in the literature.

Remark 3.10 Say G is as in the above definition, and that Gy is compact. Then Remark 2.3
implies (whatever the coarse structure is) that C¢ (G) = C.(G), and that the Roe C*-algebra
C%(G) is equal to the usual reduced groupoid C*-algebra C;¥(G). Thus our Roe C*-algebras
only give something new when the unit space Gy is not compact.

Note in general that C¢ (G) always contains C.(G), and that the C(G)-norm on Ce (G)
restricts to the C}(G)-norm on C.(G); thus C;(G) always contains C}(G) as a C*-
subalgebra.

2 1t is a norm rather than a semi-norm as the measures ;2 have full support.
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Example 3.11 Say G = X x X is the pair groupoid associated to a discrete bounded geometry
metric space X, equipped with the coarse structure and Haar system from Example 3.5.
Then C¢(G) identifies with the *-algebra of finite propagation, bounded kernels on X, often
denoted C, [ X]. Moreover, all the representations 7* are unitarily equivalent to the standard
representation of this algebra on 12(X), and thus C%(G) can be canonically identified with
the uniform Roe algebra C;; (X) of [23, Sect. 4.4].

More generally, say G = M x M is the pair groupoid associated to a complete Riemannian
manifold M. The associated Lie algebroid identifies with 7' M, whence it inherits a Euclidean
metric from the Riemannian structure on M, and this defines a coarse structure on G as in
Example 2.9. If we assume that M has Ricci curvature bounded below, then the associated
Haar system {1} has bounded geometry. It is not too difficult to see that C(G) identifies
canonically with the usual Roe algebra C*(M) of [22, Definitions 3.3, 3.4].

Remark 3.12 As part of a study of exactness for groupoids, Anantharaman-Delaroche
recently generalized the uniform Roe algebra of a discrete group to define the uniform C*-
algebra C}}(G) of a general locally compact Hausdorff groupoid G with Haar system: see
[1, Definition 5.1]. Although both Definition 3.9 above and [1, Definition 5.1] are general-
izations of classical (uniform) Roe algebras, the ingredients involved, the end results, and
the intended applications are all quite different: in particular, [1, Definition 5.1] is a general
construction that does not assume the presence of a coarse structure of G.

Remark 3.13 The above completion of Cg(G) is an analogue of the reduced completion of
the classical convolution algebra C. (G). It might be interesting to consider other completions,
for example the natural maximal completion as was done in [9] for classical Roe algebras.
We do not currently have any applications of this, so do not pursue it here.

Remark 3.14 Skandalis et al. [25] (see also Tu’s generalization [27]) constructed a coarse
groupoid G (X) associated to a discrete bounded geometry metric space as in Example 3.11
above. It is not too difficult to check that C¢(G) identifies canonically with C.(G(X)) in
this case. It seems reasonable to expect that there should be an analogous construction of a
‘coarse groupoid’ associated to G with a coarse structure as in our current setting, but we did
not pursue this.

3.2 Tangent groupoid and associated Roe algebra

In this subsection, we recall the construction of the tangent groupoid [7, Sect. I1.5], and build a
coarse version of the associated C*-algebra. Throughout this section, G is a Lie groupoid and
A the associated Lie algebroid. A is assumed equipped with a Euclidean metric, and G and
A with the associated coarse structure and bounded geometry Haar system as in Proposition
2.7, Examples 2.8 and 3.2.

Let S be a closed submanifold of a manifold X and let v(S) := T X|s/T S be its normal
bundle. One can define a manifold with boundary Bg<, x to be the disjoint union

Bse,x :={0} xv(S)U (0, 1] x X

as a set, and use a choice of exponential map exp : v(S) — X to produce a natural smooth
structure on B that restricts to those on v(S) and (0, 1] x X, c.f. [11, Sect. 3.1] (the choices
make no difference to the resulting smooth structure).

We apply this general construction to a Lie groupoid G and the closed submanifold Gy.
Observe that the normal bundle v(Gy) is isomorphic to the Lie algebroid A as a vector bundle
over Go. We obtain the rangent groupoid of G, which as a set is given by
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T7G:={0} x AU (0, 1] x G.

The manifold 7G can be viewed as a smooth family of groupoids over the interval [0, 1].
Over the point 0 € [0, 1], the fiber is A viewed as a bundle of vector groups, and over
A € (0, 1], the fiber is the groupoid G. These groupoid structures are compatible with the
smooth structure on 7 G; thus 7 G is a Lie groupoid over the unit space Gg x [0, 1].

Let A7g denote the Lie algebroid of 7G, a bundle over Gg x [0, 1]; it is isomorphic to
the Lie algebroid A x [0, 1], but in a slightly unnatural way, so we will not use this. For each
A € [0, 1], write A;, for the restriction of A7g to Go x {A}, so each A, identifies naturally
with a copy of A. For A € (0, 1], equip A, with the original Euclidean metric rescaled by a
factor of 1/A%, and equip Ao with the original Euclidean metric; thus the metric is ‘blown
up’ as A tends to zero. These structures fit together to define a smooth Euclidean metric on
A7g. We use this metric structure to equip 7 G with the coarse structure and Haar system
from Proposition 2.7 and Example 3.2. And following Example 3.4, we assume that there is a
global lower bound (possibly negative) on the Ricci curvatures of the Riemannian manifolds
G*, independently of x.

The following lemma is clear from the definitions: the basic points are that 7-fibers of 7G
(equipped with metric and measure structure) identify canonically with ¢-fibers of either G
or A, and that the ‘blow-up’ of the metric is exactly compensated for by the corresponding
blow-ups of volume.

Lemma 3.15 The Lie algebroid A always has bounded geometry with the coarse structure
from Example 2.4 and Haar structure from Example 3.2. Moreover, if G has bounded geometry
in the sense of Definition 3.1, then so too does T G. O

As in Definition 3.9 above, we thus get an associated Roe C*-algebra C (7 G). Note that
there are natural *-homomorphisms

evy i Ce(TQ) = Ce(A), evy:Ce(TQ) — Ce(G),

(where we have used the same notation for the coarse structures on G, 7 G and A) defined
by restricting to the fibers over 0 and 1 respectively in the tangent groupoid and using the
compatibility of the coarse structures involved. It is clear from the definition of the norms on
the associated Roe C*-algebras that these homomorphisms extend to the completions, giving
surjective *-homomorphisms.

evy : CE(TG) — CE(A), evy : CE(TG) — C:(G). %)

Our next task is to compute the kernel of evp. To this end, we first need a technical lemma
about the norm on C%(A).

Lemma 3.16 Let B be any C*-algebra completion of Cg(A) for a norm that is bounded
above by the I-norm as in Definition 3.7. Then the identity map on Cg(A) extends to a
surjective x-homomorphism

C%i(A) — B.

Proof Let Ig(A) denote the completion of Cg(A) for the /-norm. We will prove the lemma
by showing that C(A) is the enveloping C*-algebra of the Banach x-algebra I¢ (A).

Let U be a relatively compact open subset of Gy over which A is trivialized, and Ay the
restriction of A to U, so Ay is diffeomorphic to U x R4 where d is the fiber dimension of
A. Then it is straightforward to check that the closure of

{f € Ce(A) | flavay =0}
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inside Ig(A) identifies isometrically via the diffeomorphism mentioned above with
Co(U, LY (R?)). We will start by showing that the enveloping C*-algebra of Co (U, LY(RY))is
CoU, C *(Rd )). For this, it suffices to show that any (non-zero) irreducible *-representation
7 of Co(U, L' (R?)) extends to Co(U, C*(RY)).

We first claim that there exists x € U such that for every open set V containing x
there exists f € Co(U, LY(RY)Y) supported in V such that w(f) # 0. Indeed, as 7 is
non-zero and continuous for the /-norm there must exist g € C.(U, L'(R?)) such that
7 (g) # 0. If the claim fails, then there is an open cover U of U such that 7 () = 0 whenever
f € Co(U, L' (R%)) is supported in an element of 2/. However, as the support of g is compact,
we may use a partition of unity to write g as a finite sum of functions supported in elements
of U, which contradicts that g is non-zero.

Let then x € U satisfy the condition in the claim above. We claim next that the kernel of
m factors through the homomorphism €, : Co(U, L' (R?)) — LY (RY) defined by evaluating
at the fiber over x. If not, then there is some f € Co(U, LY (RY)) with f(x) = 0, but
w(f) # 0. As & is continuous for the /-norm, we may assume that there is a neighborhood
V > x such that f is zero when restricted to V. Let g € Co(U, L' (R?)) be supported in V
and such that w(g) # 0. As the supports of f and g are disjoint, the ideals they generate
in Co(U, L' (R?)) are orthogonal. It is therefore impossible that both 7 (f) and 7 (g) are
non-zero by irreducibility of 7; this contradiction establishes the clam.

To complete the proof that the enveloping algebra of Co(U, L' (R?)) is Co(U, C*(R?)),
note that we now know that 7 factors as a composition p o €,, where p is an irreducible
continuous -representation of L' (R?). The result follows as the enveloping C*-algebra of
L' (R%) is C*(RY), by definition of the latter algebra.

Continuing, let V be an open subset of Gg given as a disjoint union V = | |;.; U; where
each Uj is an open relatively compact subset of G over which A is trivialized. Let Ay denote
the restriction of A to V, so Ay is diffeomorphic to V x R”". Then the I-norm completion
of

{f eCs(A) ] flanay =0}

identifies with a Banach *-subalgebra, say By, of the Banach x-algebra

[[Cowi, L' ®%)

iel
of bounded sequences of elements of the different Co(U;, L' (R?)) with the norm given by
the supremum over i € [ of the norms on the individual Cy(Uj;, L'(R?)). Let 7 be any -
representation of By, and let r; denote the restriction of 7 to the i th factor. Then orthogonality
of the factors implies that for any (f;) € By € [];c; Co(Ui, LY (RYY),

7z ((Fill = sup [l7w; ()l < sup Il fill oy (v;, o (rey)
iel iel

by what we have already proven. Hence the enveloping C*-algebra of By has norm dominated
by the norm from

[ cows, c*®Yy),
icl
which is in turn clearly equal to the norm By inherits as a *-subalgebra of Cz(A).
To complete the proof, let f € I¢(A) be arbitrary, and 7 be a x-representation of Ig(A).

Say G has dimension m. Then using paracompactness, we may write Gg as a union V U
.-+ UV, where each V; has the same properties as V above. Using a partition of unity, we
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may write f = Y /-, fi, where each f; is supported in V;, and || f; ez < Ifllcgca) for
each i. Hence

Ir(HI < D Ix (il = Y fillesa < on+ DI Fllcsca.

i=0 i=0

where the second inequality follows from what we showed above about the enveloping C*-
norm on each By;. This shows every *-representation of /¢ (A) is continuous for the C£(A)
norm, completing the proof.

Proposition 3.17 There is a canonical short exact sequence
00— Co(0,1]1® C:(G) —— CH(TG) s Ci(A) ——=0
(where * ®’ denotes the spatial tensor product of C*-algebras).

Proof Write I¢ (T G) for the completion of Cg (7 G) in the I-norm, and similarly write /¢ (G)
for the completion of C¢(G) in the I-norm, and I¢(A) for the completion of Cg(A) in the
I-norm. Then it is straightforward to see that there is a short exact sequence

0 —— Co((0, 11, Ie(G)) —= Ie(TG) L [¢(A) —=0, 5)

of Banach algebras, where the ideal is defined to consist of continuous functions from [0, 1]
to I¢(G) that vanish at 0. It is clear that the C*-algebra norm that the ideal Cy((0, 1], I¢(G))
inherits from C(7 G) is given by

1A= sup [[fMllcz@.
2e(0,1]

and thus that the closure of the ideal Co((0, 1], I¢(Q)) inside C (7 G) identifies canonically
with Co(0, 11 ® C£(G).
We thus have a commutative diagram

C3(TG)

0 —= Co(0, 1]fcg(e)*>c;(fe) COATECE® 0,
0 J CHTG) — > Ci(A) ——0

where J is the kernel of the quotient map evy : C£(7G) — Cg(A), the left hand vertical
map is an injection, and the right hand vertical map a surjection. Note that the right hand
vertical map extends the identity on the dense *-subalgebra Cg (A) of the algebras involved,

CL(TG)
W@CE(G) and Cf(A) are C*-algebra

completions for norms on Cg¢ (A) that are dominated the /-norm, the surjection must be an
isomorphism by Lemma 3.16. Hence the left-hand vertical map is also an isomorphism, and
we are done.

by the existence of the diagram in line (5). As both

Using the K-theory exact sequence and Lemma 3.17, we conclude this subsection with
the following corollary.
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Corollary 3.18 The map
evos 1 Ko(C(TG)) — Ko(Cg(A))

induced on K -theory by the evaluation-at-zero map is an isomorphism. O

3.3 The analytic assembly map

We keep the notation from the previous section: G is a Lie groupoid with 7G the associ-
ated tangent groupoid and A the associated Lie algebroid; moreover, A is equipped with a
Euclidean metric making each z-fiber G* a complete Riemannian manifold, and all three
of these objects are equipped with the associated metric, coarse, and Haar structures. We
assume moreover that the Haar structure is of bounded geometry. Throughout this section,
we also write A*™ for the dual vector bundle of A, and equip it with the Euclidean metric
induced from that on A (the Euclidean metric can be used to identify A and A*, of course,
but it is perhaps more natural to keep the distinction).

Our first task in this section is to identify the Roe C*-algebra C%(A) with an algebra of
functions on A*. Let C.(A*) be the C*-algebra of continuous bounded functions from A* to
C such that:

1. for each x € Gy, the restriction fy of f to the fiber A% over x vanishes at infinity;
2. the family {fy},cq, of restrictions is ‘equicontinuous’ in the sense that for any € > 0
there exists § > O such thatif &, n € A} satisfy |§ —n|lx < 8, then | f(§) — fr(n)| < €.

Lemma 3.19 The Roe C*-algebra C%(A) is isomorphic to C,(A¥).
Proof For each x € Gy recall that A, denotes the fiber of A over x, and let
F:C*(Ay) = Co(AY), fr— F()

denote the Fourier isomorphism. For each r > 0, let Cg . (A) denote the subspace of Cg(A)
consisting of functions supported in

AP = {(x,v) e A|x € Gp, v € Ay, |[v]lx <r}.
Let Cp(A*) denote the C*-algebra of bounded continuous functions on A*. Then the formula

{felreqy = {F(f))xeqy

defines a *-homomorphism
Ce(A) — Cp(A™).

Moreover, the fact that an element on the left is supported in some A" implies by standard
Fourier theory that the family {F(fy)} is equicontinuous and vanishes at infinity, whence
the image is actually in C.(A*). Standard facts about the Fourier transform imply moreover
that this map is isometric for the norm induced on the left hand side by C£(A), and thus it
extends to an injective *-homomorphism ¢ : C g (A) — C,(A*). It remains to show that the
image of ¢ is dense.

For this, let f be an element of C,(A*), which we write as a family { f;} g, of restrictions
to fibers. Let d be the fiber dimension of A, and let g be a smooth, positive function on R4
with integral one, that only depends on the norms of elements, and that has compactly
supported inverse Fourier transform. For § > 0, define gs(£) = 8¢ g(5¢). Note that as each
gs depends only on the norm on R?, we may define a function g5 : A* — C by the formula
(x,&) — gs(J&|lx) in the obvious sense, and that g5 thus defined is an element of C,(A*).
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Now, note that for each § > 0 we may define an element f * g5 of C.(A*) by taking the
fiberwise convolution. Equicontinuity of the family { f,} implies that

lim || £ * g — fllc,can = 0.
§—0

Let now hs : A — C be given fiberwise as the inverse Fourier transform of f * g, and note
that each /5 is an element of Cg(A) by compact support of the inverse Fourier transform of
g (and hence of each gs). We then have

lim [|¢(hs) — f1| = lim || f % &5 — fllc.cas) =0,
§—0 §—0
which shows that the image of ¢ is dense as claimed.

Lemma 3.19 shows that C£(A) is isomorphic to C,(A*) and thus ev,. can be lifted to an
isomorphism

Vs 1 Ko(Cz(TG)) — Ko(Ce(AY).

Combining the above map with the evaluation map evi,, we are finally able to define our
analytic index map.

Definition 3.20 Let G be a groupoid equipped with the usual additional metric, coarse, and
measure structures. The analytic index map is the homomorphism defined by

Ind, := evi, o evg, ' : Ko(Co(A%)) = Ko(CE(G))). (6)

4 Quantization and index map

Throughout this section, G is a Lie groupoid and A the associated Lie algebroid. A is assumed
equipped with a Euclidean metric, and G and A with an associated coarse structure and
bounded geometry Haar system as in Proposition 2.7, Examples 2.8 and 3.2. Moreover, 7G
is the tangent groupoid of G, equipped with the corresponding coarse and measure structures
as in Sect. 3.2.

When Gy is closed, it is well known (c.f. [24]) that elements of Ky(Co(A*)) can be
represented by smooth symbols, i.e. a pair of smooth vector bundles V| and V;» over Gg
and a smooth endomorphism o between their pullbacks to A* that is invertible at infinity.
Generalizing this idea to Ko(C,(A*)), in Definition 4.1, we introduce a special collection
of elements of Ko(C.(A*)) with particularly good representatives. Such a representative is
called a smooth symbol. As Gy is non-compact, we need an additional assumption on the
boundedness of the derivatives of o . In the rest of this section, we will study the behaviour of
the analytic index map of Definition 3.20 on elements of K((C,(A*)) with smooth symbols.
We compute the analytic index of a smooth symbol using the idea of quantization of symbols.
In particular, we construct a multiplier Q (o) of the tangent groupoid Roe C*-algebra using
groupoid pseudodifferential operators. Under a natural bounded geometry assumption we
prove in Theorem 4.8 and Corollary 4.9 that the analytic index of a smooth symbol (Vi, V3, o)
as defined in Definition 3.20 agrees with the index defined by Q (o). Throughout, we work
for simplicity with the case of K¢ only, although it should certainly be possible to extend the
results to K.
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4.1 Smooth Symbols for Ky(C,(A*))

In order to carry out our quantization program, we will need to work with a restricted class
of cycles for Ko(C.(A*)); we now describe some necessary preliminaries. Compare the
discussion in [18, Sect. 4.2] for a treatment of similar geometric issues.

Recall that the Lie algebroid A is equipped with a smooth Euclidean metric {(, )x}xeGy»
and that for each x € Gy, the tangent space TG"* to the ¢-fiber G is equipped with the
associated Riemannian structure as discussed in Sect. 2.1. Let #, : TG — TGg be the
differential of the target map and define 7,G := ker(t,), a subbundle of 7G. Let T;*G be
the dual bundle to 7;G; in other words, 7,*G is the smooth bundle over G whose restriction
to each 7-fiber G* is the cotangent bundle T7*G*. Note that G acts freely and properly on
the right of 7,*G, and the quotient identifies canonically with A*; on the other hand, A* also
identifies canonically with the restriction 7;*G|g, of 7;*G to the unit space.

Let7 : TG — Go be the map that takes each cotangent bundle 7*G* to x, and note
that 7 is a smooth submersion as t : G — Gy is. Let F be the integrable subbundle of
T TG corresponding to the regular foliation of 7,;*G by the fibers of 7; in other words, each
restriction F|7«gx is the tangent bundle to 7*G*.

Let now W;, W, be smooth vector bundles over A* equipped with Euclidean metrics,
and let o : Wi — W, be a bundle endomorphism. Using that the quotient of 7;*G for the
G-action is A*, we can lift this data to G-equivariant bundles and a G-equivariant bundle
map o : W1 — W2 over T*G note that the Euclidean metrics on Wy and W, also lift to
Euclidean metrics on W1 and Wz Let I'(V) denote the space of smooth sections of a vector
bundle V. For each x, note that 7*G* inherits a Riemannian structure from G*, and let V*
be the associated Levi-Civita connection, so in particular V* defines a map

V' D (Flr-gr) ® I (Hom(Wi, Wa)lr-ge) — I (Hom(Wi, Wa)l7+av),
recalling that F|7+gx = TT*G". Let V be the map
V : T'(F) ® ['(Hom(W;, W»)) — T'(Hom(W;, Ws))
induced by combining all the maps V*. We use VX to denote the kth-order directional
derivatives of the symbol &, which is a bundle map

ViG :=Vo..-0VG: @F — Hom(W,, Wa).
—————
k

Let S(®*F) denote the unit sphere bundle of ®FF, and for m € N define

Nu(@) = sUpocpzm  SUP VG ) lomew,. i)
veS(®KF)
where the norm on Hom(Wl, Wg) is induced by the G-invariant Euclidean metrics on Wl
and Wg.

We now define the symbol data we will use. Let A% denote the Gelfand spectrum of the
commutative C*-algebra C,(A*), which is a locally compact Hausdorff space. Note that
C.(A™) contains Co(A™) as an essential ideal, and therefore A% contains A* as a dense open
subset. Let w4+ : A* — G denote the bundle projection for A*. Abusing notation, if V
is a bundle over Go, we will write V for the G-equivariant bundle n/j*\\/ over T;*G defined
above.

Definition 4.1 A smooth symbol for C,(A*) is atriple (Vi, V,, o) that satisfies the following
conditions.
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1. Vj and V> are smooth complex vector bundles over G such that the pullbacks 7. V;
and 7}, V> are restrictions of bundles over the one point compactification of A%.

2. There exists 7 : ;. V2 — 7. Vi, such that o : . Vi — 7. V> and t are both bundle
endomorphisms that come as restrictions of bundle endomorphisms on the one-point
compactification of A%.

3. Thinking of o and 7 as bundle endomorphisms on the one-point compactification of A%,
the compositions o o T and 7 o ¢ are equal to the identity in some neighbourhood of the
point at infinity.

4. The norms N,,(¢) and N,,(7) are finite for all m.

We will need the following remarks about these symbol classes.

Remark 4.2 Let (V1, Va2, o) denote a smooth symbol.

1. Using standard techniques in topological K-theory (compare for example [24, Propo-
sition (A. I)] or the discussion in [2, pp. 491-492]), we see that any smooth symbol
(V1, V2, 0) defines a class [V1, Vo, 0] in Ko(C.(A*)). We do not know if any class in
Ko(C.(A*)) can be represented by a smooth symbol, but this seems unlikely.

2. The choice of ‘partial inverse’ T does not affect the resulting K -theory class.

3. As o and t are mutually inverse on some neighbourhood of the point at infinity, they are
mutually inverse outside some neighbourhood of the zero section in A* which has com-
pact closure in the one-point compactification of A%. Replacing o and T with functions
that are homogeneous of degree zero on the fibers of A* outside of this neighbourhood
does not affect the resulting K -theory class (compare [2, pp. 491-492] again); we will
sometimes assume homogeneity of this sort.

4. Let Gg denote the closure of Gy in the one-point compactification of A%, so Gy is some
compact Hausdorff space. Writing V for V| or V2, we know that 7%,V is the restriction
of some bundle on the one-point compactification of A%, and therefore V = . Vg, is
the restriction of some bundle on the compact space Gg. In particular, there is a (smooth)
bundle W on Gg with V @ W trivializable.

4.2 Quantization

Let (Vi, V2, 0) be a smooth symbol with associated class [V, V2, 0] € Ko(C.(A*)). Our
goal is to describe a geometric realization of Ind, ([V1, V2, o]) by the idea of quantization.

We will need to make the following assumptions on the family {G*},cg, of Riemannian
manifolds, which will be in force throughout this subsection. As the Riemannian metrics on
this family are determined by the Euclidean metric on A, they are (indirectly) just assumptions
about the latter structure.

Assumption 4.3 1. The associated metric spaces (G, d*) are proper for every x € G.

2. There is ¢ > 0 such that for all x € Gy, the injectivity radius of G* is bounded from
below by ¢.

3. Let va be the Riemannian curvature tensor associated to the Riemannian metric on G*.
For any £k > 0, there is k4 > 0 such that kth-order directional derivatives of Rxv are
bounded by ki for all x € G, i.e.

v
sup  |IVERY (v)||geregr < Kk, ¥x € Go
veS(RFTGY)

(note that this implies via the discussion of Example 3.4 that the Haar system on G has
bounded geometry in the sense of Definition 3.3).
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The above Assumption 4.3 on uniformly bounded derivatives of the Riemannian curvature
tensor implies that there is ¥ > 0 such that for all x € Gy, all sectional curvatures of G* are
in[—«,«].

Choose R > Oandr € (0, ¢) such thatr + R < ¢; these constants will be fixed throughout.
Lemma 6.1 and Assumption 4.3 (more precisely the boundedness of the sectional curvature)
imply that there is an integer m > 0 such that for each x € Gy there is an open cover U* of
G* by balls of radius r such that for any Uy € U* there are at most m balls U € U~ with

U N NgUy) # 2,

where Np(Up) = {y € G* | d(y,Up) < R}. Note that as r < ¢, every U € U* is
diffeomorphic to R4, where d is the dimension of G*.

For each x € G, consider the exponential map exp, : Ay — G* with respect to the
Riemannian metric {, ). Choose R’ witht > R > R’ > 0. We can find a smooth function
x A — Rso which is zero outside {(x,v) € A | |[vlly < R} and equal to one on
{(x,v) € A | |lv|lx < R’}. By the exponential map exp, x lifts to a smooth function ¥ on G
with the property that for any x € Go, X |G+ is supported inside the R-ball centered at x in
the 7-fiber G*. Let I'(T'G*) denote the sections of 7G* and let

V¥ T(TGY) ® C™(GY) — C™(GY)

be the usual directional derivative operator on the Riemannian manifold G*; recalling that
T,G :=ker(t, : TG — TGp), let

V:I(T;,G) ® C®°(G) - C®(G)

be defined by combining the various V*. Then if d is the dimension of G* (equivalently, the
rank of A*), we can use the fact that R and R’ are fixed constants and Assumption 4.3 on
uniformly bounded derivatives of the Riemannian curvature tensor, to assume that vk X is
uniformly bounded on the unit sphere S(QKT;G) of T;G fork = 1,...,2d + 1.

Given a smooth section & of A*, define e¢ : G — C by

ec(g) = () exp (27 V/=T1((1 (). exp; }y (8)) ). )

By the definition of X, e¢ is a smooth function on G such that for each x € G, the restriction
eg|gr is supported within the R-neighborhood of x € G*.

Let now (Vy, V2, o) be a smooth symbol as is defined in Definition 4.1. With the above
preparation, we are ready to define the quantization Q* (o). Recall first the definitions of the
metric and measure structures on 7 G from Sect. 3.2, which depend on A. We will write (, )
for the Euclidean metric on the fiber A, ; of the Lie algebroid of 7G over (x, A) € Go x [0, 1],
and p** for the measure on the ¢-fiber 7G**. Note that this ¢-fiber 7G** is naturally a
diffeomorphic copy of the corresponding ¢-fiber G* of G and we will often use this identifi-
cation; however, the identification is not isometric (or volume preserving).

Definition 4.4 The quantization of a smooth symbol (V1, V;, o) is defined as follows. For
i =1,2,let Hix”\ be the space of L?-sections of the bundle s*Vi|lgx on G*, defined with
respect to the measure p**.

For a function f € Cg(G), define a bounded operator pf’)‘(f) (i=1,2)on Hix"\ by the
formula

0 (NENE) = /G [ ghThEmd ()
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where £ is in Hix * and g € G* (the same proof as of Lemma 3.8 above shows that this is
well-defined and bounded independently of x and 1).
For (x, A) € Go x (0, 1] define 0** (o) : H]x’)‘ — Hg’}“ by the formula

1
0@ = g [ [ ethe 6@, ot e,

s(8).h

where g € G*, ¢ € Hf’)‘, dé& is the volume element on A;‘(g) , associated to the metric

(', )x,n0n Agg), s, and e} is defined in the same way as Eq. (7) with the A-scaled metric (we
will see below that the formula does indeed define a bounded operator).

In the rest of this section, we will prove that the analytic index of (Vj, V,, o) defined
by Definition 3.20 agrees with the one defined by {Q* ’1(0)}):560- We achieve this in the
following three steps.

1. The operators {0**(0)} xeGo,0¢(0, 17 are uniformly bounded for all A and x. (Lemma 4.5,
Proposition 4.6).

2. The operators {Q**(0)}reGy.0c0.1] patch together to define a multiplier Q(c) of
Ci(7TG). (Lemma 4.7).

3. The multiplier Q(c) defines an element in Ko(C%(7'G)) such that evos([Q(0)]) =
[V1, Vi, o], and the analytic index Ind, ([ V1, V2, o]) agrees with [Q] (0)]in KO(C;E G)).
(Theorem 4.8, Corollary 4.9).

To study the norm properties of the operators Q** (o), we will need the following result
from [26, Lemma 3.9].

Lemma 4.5 Let p(x, y, £) be a continuous function on R x R? x R? such that

Vi "'Vivfl ...v]%'vlfl "'sz,,l?(xsyvé)l

t

is bounded on R? x R¢ x R? for
0<iy,...,igyjiseeesjiskiyoo o ky <d, 0<s,t <k, 0<u<d+1,
where k = [d/2]+ 1. Let N(k, k, d + 1)(p) be the norm of the function p defined as follows

NERAF (py = max sup [(V)* (V) (VE) p(x, y, &)I.
0<s <k
0 <t < k
O0<u<d+1

In the above definition oka’k’d'H (p), the term |(V*)* (V-")’(VE)“p(x, v, &)| is defined by

(V) (V) (VE) plx, y, )
D SR\ AR A AR AN
0<iy,...,ig<d

O<ji,....j1=d
0<ki,....ky <d
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Let Op’x(p) be a linear operator on L*(R?) defined by

1\¢ ir—y.8)
00w = (57 ) [ e [ ave™F pxy ey
TA Rd R4
for any function u on L*>(R?) of Schwartz type.
The operator Op* (p) is a bounded operator on L*(R?) such that there is a constant C > 0

satisfying
| Op*(p)|| < CNFRAH (),

for 0 < A < 1. The constant C only depends on the dimension d.

Proposition 4.6 Let (Vi, V2, 0) be a smooth symbol. Then under Assumption 4.3, there is
a positive constant C > 0 such that for any (x, ») € Go x (0, 1] the operator Q** (o) :
Hf”\ — H;’)“ satisfies

A
10" g1 sy =
ie. Q% (o) is uniformly bounded for all A and x.

Proof Remark 4.2 Part (4) tells us that each of V1, V5 is complemented; using these comple-
ments, we may assume that we are working with trivial bundles. For notational simplicity,
however, we assume that V| and V; are the trivial /ine bundle on Gy; the straightforward gen-
eralization of the following proof to matrix valued versions of C.(A*), C¢(7 G), and C3(G)
leads to the result for general Vi, V;; we leave the details to the reader. Moreover, using
Remark 4.2 Part (3) we may assume that o is a C-valued function on A* that is homogeneous
of degree zero outside some neighborhood of the zero section. Fix now (x, A) € Gg x (0, 1].
When V = V; = V, is the trivial line bundle, the Hilbert spaces H. lx ** and H; “* both identify
with L2(G*, u**).

According to its definition, Q*-* (¢') has the Schwartz kernel &(c) (g, 1) defined for g, h €
G* by

1 _
RO = o [ e, e

s(g),A
From its expression, we can see that Q*** (o) is a pseudodifferential operator on H with
symbol o (s(g), &). As eg\(—) is supported within the R-neighborhood of x in G* for the

scaled metric, the kernel &(o) of Q** () is supported within the subset {(g, 1) € G* x G* |
d**(g, h) < R} of G¥ x G*.

Using Assumption 4.3 and Lemma 6.1, there is an open cover U~ of G* with the properties
listed there with respect to the constants r and R; note that ¢/* is necessarily countable.
Let {;}ien be a smooth partition of unity on G* subordinate to the cover U*. Let u €
L*(G*, u**) and write u = Y, g;u, where g;ju € L*>(G*, u**). As0 < ¢ < 1,

o2 12, X0
il o = [ P

Therefore,

2 2 A 2
> ligiul s}j/e ilu 2 < Jlul?.
i i
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The conditions in Lemma 6.1 imply that given U; € U* there are at most m other open sets
U; in U/* that intersects U; nontrivially. Accordingly, we compute

> g 2 <Z<piu, > ‘Pj”>

i>N i>N =N

1
> N gju)| < > Uleul® +lgul®)

i,j=N UinU;j#9, i,j=N

m+1 m+1
<= Mgl = —— 3 lgwul?

i>N i>N

1
m+ /Z(p|u|2 X)L

i>N

IA

From the above estimate, we see that ), _ ¢ju — u as N — oo in L2(G*, pu*™).

Note that Q** (o) is an order zero pseudodifferential operator on G*, and therefore is a
bounded linear operator on L?(G*, 1**) by essentially the same argument as used in the
proof of [12, Theorem 18.1.11]. Hence, foru, v € L2(G*, u**), we can compute Q** (o) ()
by

0" (o) (w) =) 0" (o) (piu),

and so we have that (Q%* (o) (1), v) equals
<Z 0" (o) (piw), Zw, > D {0 o) (giw), jv).
ij

The inner product (Q** (o) (@;u) , @ jv) is non-zero only when the supports of 0%*(0) (pin)
and ¢ ;v have non-trivial intersection. We continue the above computation by

Y@ @)@ gv)| < D2 HQ @) i), g

i ij
= > Q™ (o) (@iu). V)|
supp(Q*-* (o) (¢;u))Nsupp(p v) # S
1 1
< > 3 (L||QW<:)<W)||2+znq),-vnz)

supp(Q¥+* (o) (i) Nsupp(@; v) # S

for any L > 0.

We have assumed that V¥ § is uniformly bounded on the unit sphere S(®* T G¥) of ®* T G*
for 0 < k < 2d + 1. Furthermore, we have assumed that V¥5 is uniformly bounded on
S(TT*G*) for0 < k < 2d+1.1tisnot hard to check from this that the function 5 (g, /, §) :=
F(hg~Na (s(g), &) satisfies the assumption of Lemma 4.5, once we restrict its support to any
suitably small ball diffeomorphic to Euclidean space. The support of ¢; u is contained inside
some ball U; of radius r with center z;. As the function )Z(gh‘l) is zero if d(g, h) > R,
the support of Q%*(o)(¢;u) is inside the geodesic ball centered at z; with radius at most
r + R < 1. We can then use Lemma 4.5 (plus a change of variables to take into account the
dependence of the metric and volume on A) to conclude that
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Nk,k,2d+l

10" * (@) (i)l 2 (Gr iy < D @llgiull2Gr yxiy < Mligiullp2Gr pxys

where M is an absolute constant, depending only on the size of V¥G and V¥ %, and the
kth-order derivatives of the Riemannian curvature tensor and dimension of G* (and not on
1). Hence we can bound L | Q** (o) (g;iu)||* + %Ilgojvll2 from above by

1
LM llgiul® + ~llg;oll”

By the assumption on the cover U*, the support supp(Qx'A((r)((piu)) (and supp(e;v) )
intersects at most m of the supports supp(¢;v) (and supp(Q* *(0)(giu))). We can continue
the above estimate of

1 1
> 3 (L||Q"’*<a)<go,-u)||2 + znwjan)
supp(Q*+*(0) (@i u))Nsupp(p; v)#J

by the following inequalities

1 1
> 5 (LIIQX’*(G)(wiu)Ilz + Zn«»jvn"‘)

supp(Q*-* (o) (g;u))Nsupp(p v) # 2
<32 (LI @@ + Mlgni?) < 3 1 (mLlgil® + P igvl?)
T2 L ) L
! 1
I m
< = (mLM*|u|®> + = v 2),
< 5 (mLMul? + 2 o]

In summary, we have proved that for fixed A,

1 m
Q" @)@ )| = 5 (mLM?[ulP + Tl
where M and m are constants independent of A, and L > 0. This implies by taking L = m,
10" (@)l < mM,

and we are done.

Our next goal is to patch these operators Q*** together in a suitable sense to give a globally
defined multiplier of C(7 G). For notational simplicity, we will keep to the case where V;
and V; are trivial, leaving the (minor) extra details necessary in the matricial case to the
reader.

Define

H=@ e H LG .uh
xeGo (x,2)€Gpx(0,1]
and let

p:Ce(TG) — B(H)

be the direct sum of the representations defining the norm on C¢ (7 G) (see Definition 3.9), so
p extends to a faithful representation of the Roe algebra C(7 G). Let Q (o) be the operator
on H which acts as Q**(¢') on each summand L%(G*, u**), and by fiberwise convolution
by the fiberwise Fourier transform F(c*) of ¢ on each L?(A,). Combining Proposition
4.6 with basic estimates on the norms of the convolution operators, we see that Q (o) is a
well-defined, bounded operator on H.
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Lemma 4.7 We have following inclusions,
Q(0) - p(Ce(TG)) C p(Ce(TG)),  p(Ce(TQ)) - Qo) C p(Ce(T0G)).

Proof For simplicity, we just look at the product Q (o) p(f) for f € Ce(7T G); the other case
is similar. We now start computing.
First consider A > 0, and let

1
@)@ ) = g / ¢ o (hg ™o (s(g), £)dt
J()A

denote the Schwartz kernel of Q**(¢); here the function ¢* £ (—) is defined in the same way
as the function e_g(—) in Eq. (7), but using the A-scaled metric on A. Then the Schwartz
kernel of the operator Q(o)p(f) acting on L2(G*, u™) is given by

L5 o) (g, h) = / fvwa)(g,k)f(kh”)du***(k)

_ / A (k) £ (e / ¢t (kg™ (5(g), £)d.

).k

@m)?

Set k' = kh™", allowing us to rewrite the above integral as

[, aw ™ sy
Gt

f ¢ (K'hg ™o (s(9), )

5(8),2

@n)

Define a function ¢, : G — C by

ex(g)=/ AU S ) )df e (K'g o (s(g). £)dE.

).k

Atthis point, we know that the restriction of Q (o) p(f) to each L?(G*, u**) has Schwartz
kernel (g, h) — ¢, (hg’1 ). We claim that ¢, actually belongs to C¢ (G), which follows from
the next two observations.

1. As f|zg~. is supported in a compact set, the Fourier transform
fG A K ye (K g™ K

is a function of & decaying rapidly at infinity. Therefore,

1

o / o (s(g), £)de / A K)o (kg™ f(K)

S(g) A

is a continuous (actually, smooth) function of g.

2. As f (k) is supported within an S(> 0) tube of the unit space, when g is outside the
S + R tube of the unit space, e* £ (k'g=1) f (k") = 0. Therefore ¢, is supported within the
S + R tube of Gy.

Define now ¢ : 7G — C by stipulating that the restriction £, of £ to the fiber over A is
given by

0.(8) = Jou d M KD [k g [ €heKg™ Do (5(9), §)dE 2> 0
0.(x,v) == F(o(x)) * f(x)(v) 1 =0,
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where F (cr (x)) is the fiberwise Fourier transform of o (x, —). From our work so far, if £ can
be shown to be continuous, then it is in C¢ (7 G) and we will have Q(o)p(f) = p(£). The
continuity of £|G,x (0,17 and £G, x {0y follow directly from the formulas and our work above,
so we are left to check the compatibility of these two cases.

Let {g}re,17 be a family in 7G such that g, — (x,v) € A as A — 0, where A is
identified with the fiber of 7G over 0. More explicitly, this means that as A — 0, g, — x,
and expt_( }lm (g») — v (itis important here that the exponential maps are defined with respect
to the A-scaled metrics). We want to show that £, (g,) converges to £o(x, v). Indeed,

1
6(g1) = / dp' S 1) £, ) = f (K g; o (s(82), £)dE.
1(g2) Q) Jaz,

Write k& = exp, () (w), and let J be the Jacobian of this exponential exponential map. We
can rewrite £, (g,) as

1 _
£(8x) 2/ dewf(esz(gA)(w))ﬁ/ eh L (eXPy (g, (W) g5 N (5(82), §)dE.
Ar(gy). @m) Jazg, ).
As fisin Cg(7TQ), f(exp,(g_A)(w)) — f(x,w)asr — 0. Asx — 0, J,, — 1. And as
A — 0,

e L (expy g (W)g; ) = expQrv/—1{w — v, &)).

From the above estimate, we can conclude ¢, (g5) — £o(x, v), A — 0, completing the proof.

Theorem 4.8 Assume the Euclidean metric on A satisfies Assumption 4.3. Given a smooth
symbol (Vy, Va, o) associated to an element in Ko(C.(A*)), the operator Q (o) defines a
K -theory element [Q(0)] in Ko(CE(T Q) such that evp([Q(0)]) = [V1, V2, o].

Proof Following the proofs of Proposition 4.6 and Lemma 4.7, we assume for notational
simplicity that V| and V, are the trivial line bundle on Gy and o is a C-valued function on
A* that is homogeneous of degree zero and invertible outside of some neighborhood of the
Zero section.

Lemma 4.7 combined with boundedness of Q (o) shows that Q (o) identifies canonically
with an element of the multiplier algebra of C%(7'G) (see for example [17, Sect. 3.12]).
Now, say t is the partial inverse to o that appears in the definition of a smooth symbol.
Consider the operators Q(0) o Q(t) — I and Q(t) o Q(o) — I. Using the symbolic calculus
of pseudodifferential operator theory, c.f. [12, Theorem 18.1.23], [18], given any x € Gy
and & € (0, 1], Q%M (o) o Q¥ (1) — I is a pseudodifferential operator on G* of order 0
with principal symbol the appropriate restriction of 0t — 1. By Definition 4.1, ot — 1 is the
Fourier transform of a function supported in some tube around the zero section of uniform
width. From this, together with similar (and simpler) arguments when A = 0, we can derive
that both Q(0) o Q(r) — I and Q(7) o Q(0) — I belong to CE(T Q).

At this point, we have that Q(o) is an element of the multiplier algebra of C3(7G),
which is invertible modulo the ideal C; (7 Q). It thus defines an element of KO(C:; (TG)):
precisely, if [Q(o)]; is the element of the K-group of the multiplier algebra of Cz (7 QG),
then the element [Q ()] € Ko(C%(7 G)) we get is the image of [ O (0')]; under the boundary
map. The identity that evg «[W (o)] = [V1, V2, o] follows easily from the definition of Q (o)
and of the latter class.

Observe from Theorem 4.8 that at A = 1, Q(o) restricts to 0*:!1(¢') on each z-fiber G*.
Accordingly, evi:[Q(c)] = [Q'(0)] € Ko(C%(G)), where [0 (0)] is the K-theory class

@ Springer



1334 X. Tang et al.

defined by the invertible multiplier Q' (o) of C%(G), having identified G with the fiber of
7G for . = 1. We conclude this section with the following corollary, which says that the
analytic index of a [V], V;, o] with smooth symbol is given by the (higher, or K -theoretic)
index of the associated pseudodifferential operator in the classical sense.

Corollary 4.9 Under Assumption 4.3, the analytic index Ind,([Vi, V2, 0]) of the class
[V1, Va, o] in Ko(Ce(A*)) with a smooth symbol is computed by [Q'(0)] € Ko(C5(G)). O

Remark 4.10 When the unit space Gy is closed, i.e. compact without boundary, Assumption
4.3 holds automatically. Furthermore, every element in Ko(C.(A*)) has a representative that
is a smooth symbol as in Definition 4.1. Therefore, Corollary 4.9 applies to equate the analytic
index of a K-theory class o of A* with the index of its quantization Q (o). In this section,
we have extended this result to groupoids with noncompact unit space under Assumption 4.3
on bounded geometry.

5 Scalar curvature obstructions

In this section, we apply the theory developed above to study (regular) foliations with leaf-
wise positive scalar metrics. We will discuss some specific instances of regular foliations;
nonetheless, we develop the theory in a more general setting than this as the extra generality
does not cause any extra difficulties.

We assume throughout that G is an s-connected Lie groupoid with a Lie algebroid A,
and that A is equipped with a Euclidean metric g4 that satisfies Assumption 4.3. We first
consider two natural examples with this structure that arise from regular foliations on closed
manifolds.

5.1 Two examples

Let M be a closed (compact without boundary) manifold with a regular foliation F. In this
subsection, we discuss two examples of groupoids naturally associated to F with Riemannian
metrics on the Lie algebroids satisfying the above properties.

1. Letw : M — M be the universal covering space. As 7 is a local diffeomorphism, 7 lifts

to a regular foliation FonM.Let Hz 7 and H r be the holonomy groupoids on M and M
defined by holonomy equivalent paths along leaves of Fand F. Let gbea Rlemanman
metric on M. Accordingly, g induces Euclidean metrics g7 and gz on F and F.
By Proposition 2.10, H 7 is equipped with a right-invariant system of metrics {d*)} cii-As
M is compact, on every leaf of F and also of F, directional derivatives of the Riemannian
curvature tensor of any order are uniformly bounded and injectivity radii are uniformly
bounded away from zero. For every x € M, by the right invariance of the metrics on
Hz, H - is an isometric covering space of the leaf £, of F containing x. As leaves of F
have Rlemanman curvature tensors with uniformly bounded directional derivatives and
injectivity radii uniformly bounded below, (H z, {d}) . satisfies Assumption 4.3.

2. Let Ny = T M /F be the normal bundle of 7 in T M. Define a fiber bundle 7 : M — M
by stipulating that the fiber 7 =1 (x) over x € M is the space of euclidean metrics on the
normal space Nr|y.

The normal bundle N is equipped with the Bott connection, which is a flat connection
along the direction of the foliation 7. The Bott connection induces a partial Ehresmann
connection on the fiber bundle M along the direction of F. As the Bott connection is flat
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along F, the Ehresmann connection on the fiber bundle M defines a foliation Fon M,
where every leaf of the foliation Fisa covering space of the corresponding leaf of F on
M with 7 the covering map.

Choose a Rlemanman metric g on M, which induces Riemannian metrics g and gz
on F and F. The leaves of F have uniformly bounded directional derivative (of any
order) Riemannian curvature tensor and injectivity radii uniformly bounded from below.
Since the restriction of 7 to each leaf of F is a covering map, the leaves of F also have
uniformly bounded directional derivative Riemannian curvature tensor and injectivity
radii uniformly bounded from below. Let H # be the holonomy groupoid of the regular
foliation 7 on M. For every x € M, each ¢-fiber H% of H # is an isometric covering
space of the corresponding leaf £, on M. Therefore, the ¢-fibers of H # have Riemannian
curvature tensors with uniformly bounded directional derivatives and injectivity radii
uniformly bounded below.

In either case, as the leaves of F are all complete, the leaves of Fand F , which are
covering spaces of the leaves of F, are also complete. Therefore the ¢-fibers H% and H:
are all complete and proper metric spaces. With the above properties of leafwise bounded
geometry, Assumption 4.3 holds true on the groupoids H 7 and H #. Therefore, we can use
Definition 3.9 to define the Roe C*-algebras C(Hz) and C;(H ) and study the analytic
indices of longitudinal elliptic differential operators.

5.2 Leafwise positive scalar metric

In this subsection, we study the analytic index of a spin Dirac operator 3.

Let g4 be a metric on the Lie algebroid A. The right translation of the groupoid G on itself
is proper and free. The right translation of the metric g4 defines a G-invariant Riemannian
metric on each ¢-fiber G* for x € X. The Levi-Civita connection V on each G* is invariant
under the G-action. The associated curvature of V is also G-invariant. Therefore, the scalar
curvature k is a smooth function on G and G-invariant. Therefore the scalar curvature k is
the pullback of a smooth function on X.

We now restrict attention to a Lie groupoid G whose 7-fibers {G*} are even dimensional
and equipped with G-invariant spin structure. Moreover, we assume that there is a constant
€ > 0 satisfying k,, (x) > € for every x € Go. Let SXi be the even and odd parts of the
spinor bundles on G* for x € X (the spinor bundle splits into even and odd parts by our
even-dimensionality assumption). On each G*, consider the leafwise spin Dirac operator
D T(SH) — I(S;) and its (formal) adjoint I : T'(S;) — I'(S;). The Lichnerowicz
formula combined with our assumption on scalar curvature implies that

DIDy =3 and DiDf =]
forall x € X. It follows that (/0 10, )~'/% makes sense, and that P;" := B+, p1)~"/%is
an invertible order zero operator from the Hilbert space completion H7 of S to the Hilbert
space completion H* of S*.

Note that all this structure is G-invariant, and therefore in particular S; and S_ are
pullbacks of bundles on X. Abusing notation, write o (I))) for the symbol of P;. It is
straightforward to check using the pseudodifferential calculus, the standard description of
the symbol of the Dirac operator and Assumption 4.3 on uniformly bounded directional
derivatives of the Riemannian curvature tensor that (Sy, S—, o (/1)) is a smooth symbol in
the sense of Definition 4.1, and thus defines a K -theory class for Ko(C(A*)). Using Assump-
tion 4.3 allows us to apply Theorem 4.8 and Corollary 4.9. We conclude that the analytic
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index Ind, ([ST, 8™, o (104)]) is equal to the index defined by Q' (o (/3)) in Ko(C£(G)).
Note that we have that [Q' (o (1§))] = [P4]in Ko(C%(G)),and as P, is invertible, [P ] = 0.
Thus we can conclude that

Ind, ([5%, 87,0 (B)]) =
To summarize, we have the following theorem.

Theorem 5.1 Let G be a Lie groupoid, and assume that the associated Lie algebroid A
has even rank, and is equipped with a spin structure such that the associated Riemannian
metric g4 satisfies Assumption 4.3. Then the triple (ST, S™, o (ID+)) associated to the Dirac
operator is a smooth symbol in the sense of Definition 4.1. Moreover, if g4 has uniformly
positive scalar curvature, the analytic index of the K-theory class [ST, S™, o (I0+)] vanishes
in Ko(CE(Q)), i.e.

Inda([5+, S, 0(D+)]) —0. i

Consider now the two groupoids H 7z and H # associated to a regular foliation F on a
closed manifold M as in Sect. 5.1. If we assume that F is equipped with a leafwise spin
structure and has positive scalar curvature at every point of M, the Lie algebroids of the
groupoids ‘H 7 and H # in Sect. 5.1 are equipped with spin structures such that the associated
Riemannian metrics have uniformly positive scalar curvatures. As a corollary of Theorem
5.1, we have the following vanishing result about the indices of the leafwise Dirac operators.

Corollary 5.2 Assume that the regular foliation F on a closed manifold M has even rank and
a spin structure with uniformly positive scalar curvature k > € > 0. Let ID; be the leafwise
Dirac operator on M, so B)+ lifts to the corresponding leafwise spin Dirac operators D+ and
E)+ on M and M. Let J(D+) and o (D) be the associated symbol classes in Ko(Co(F*))
and Ko(C, (]-' *)) as defined above. The analytic indices of these symbols vanish, i.e.

ind,(0(P1)) =0, Indy(0(B)) =0
(where we abuse notation by omitting the bundles involved).

Proof As was explained before, if F is equipped with a spin structure with positive scalar
curvature k > € > 0, Assumptions 4.3 holds on H 7z and 'H %. We conclude from the above
discussion that all the assumptions of Theorem 5.1 hold for both ID+ and ID+, so the desired
vanishing property follows from Theorem 5.1.
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6 Appendix

In this Appendix, we prove the following lemma. Such a result is known to experts, but we
could not find a suitable reference so include a proof here for the reader’s convenience.
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Lemma 6.1 Let (, «, r, and R be positive constants, and d a positive integer. Then for any
R > 0, there exists m € N depending only on , k, r, R, and d with the following property.
Let M be a d-dimensional complete Riemannian manifold with all sectional curvatures in
the interval [—k, k] and injectivity radius bounded below by 1. There exists a cover U of M
by balls of radius r such that for any U € U there are at most m balls V € U with

VN NW) # 2,

where Np(U) :={y € M|d(y, U) < R}. Moreover, if r < (, then each U € U is diffeomor-
phic to R,

Proof Using Zorn’s lemma, we can choose a maximal subset Z of M such thatd(x,y) > r
forall x,y € Z. Let

U:={B(zr)|zeZ}

where B(z; r) is the geodesic ball center at z with radius r. If r < ¢, each B(z; r) is diffeo-
morphic to an open ball in R? via the exponential map. Note that as Z is maximal, the union
of B(z; r) in U must cover the whole M, and so U/ is an open cover of M.

Fix U = B(z;r) € U, and let S, be the set of y € Z such that

B(y;r)NB(z; R+r) # @.

We consider the collection of B(y; r/2) for y € S;. The triangle inequality shows that for all
y €S,

B(z; R+3r) 2 B(y;r) 2 B(y;r/2).

Furthermore, as the points in S, are at least r-distance apart, the sets {B(y;r/2) | y € S;}
are mutually disjoint. Hence we have the following inclusion

B(ziR+3r)2 | | BGiir/2).

Zi €S,

By the Bishop-Gromov theorem [4, Theorem 107, P. 310], there is a constant C > 0
depending only only «, d, and R + 3r such that

Volume(B(z; R +3r)) < C.

On the other hand, a standard result in comparison theory [4, Theorem 103, P. 306] gives us
a constant ¢ > 0 depending only on r, «, ¢ and d such that

Volume(B(y; r/2)) > Volume(B(y; min(r/2, 1)) > c,

foreach y € §;.
Combing these two volume bounds, we see that

C > Volume(B(z; R + 3r)) > Volume |_| B(y;r/2) | = |S;|c.
YES;

We conclude that | S;| < C/c, and note that C/c only depends on ¢, x, R, r, and d. We choose
m to be an integer greater than or qual to C/c, and therefore complete the proof.
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