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a b s t r a c t

A basic problem inmodernmultivariate analysis is testing the equality of twomean vectors
in settings where the dimension p increases with the sample size n. This paper proposes a
robust two-sample test for high-dimensional data against sparse and strong alternatives,
in which the mean vectors of the populations differ in only a few dimensions, but the
magnitude of the differences is large. The test is based on trimmed means and robust
precision matrix estimators. The asymptotic joint distribution of the trimmed means is
established, and the proposed test statistic is shown to have a Gumbel distribution in
the limit. Simulation studies suggest that the numerical performance of the proposed
test is comparable to that of non-robust tests for uncontaminated data. For cell-wise
contaminated data, it outperforms non-robust tests. An illustration involves biomarker
identification in an Alzheimer’s disease dataset.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In many contemporary applications, such as genomics and finance, high-dimensional data whose dimension p is
comparable to, or larger than, the sample size n are ubiquitous. For example, gene expression data commonly measure
tens of thousands of genes from a few hundred or fewer individuals. Many traditional statistical methods perform poorly or
are even no longer applicable in such ‘large p, small n’ settings.

In this paper, we study the problem of testing the equality of p-dimensional mean vectors based on random samples
independently drawn from two populations. To be specific, suppose that one collects random samples X1, . . . ,Xn1 ∼

Np(µ1,Σ) and Y1, . . . ,Yn2 ∼ Np(µ2,Σ) from which it is desired to test the hypotheses

H0 : µ1 = µ2 vs. H1 : µ1 ̸= µ2. (1)

The standard approach to testing (1) is through Hotelling’s T 2 statistic [14], viz.

T 2
=

n1n2

n1 + n2
(X̄ − Ȳ)⊤S−1

n (X̄ − Ȳ),

where X̄ and Ȳ are sample means, viz.

X̄ =
1
n1

n1∑
k=1

Xk, Ȳ =
1
n2

n2∑
ℓ=1

Yℓ,
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and Sn is the pooled sample covariance matrix, viz.

Sn =
1

n1 + n2 − 2

{ n1∑
k=1

(Xk − X̄)(Xk − X̄)⊤ +

n2∑
ℓ=1

(Yℓ − Ȳ)(Yℓ − Ȳ)⊤
}

. (2)

However, the power of Hotelling’s T 2 test is low when the dimension p is high relative to the sample size n1 + n2; see [15].
Furthermore, Hotelling’s T 2 test becomes ill-defined for p ≥ n1 + n2 since Sn is singular.

In order to address these limitations in high-dimensional settings, various parametric and nonparametric methods have
been proposed in recent years. Some nonparametric tests can be found, e.g., in [23,27]. As for parametric tests, Cai et al. [8]
noted that they often rely on sum-of-squares-type statistics which aim to estimate the Euclidean norm ∥A1/2(µ1 − µ2)∥

2
2

for some positive definite matrix A; see, e.g., [3,9,22]. These tests all require (n1 + n2) ∥µ1 − µ2∥
2
2/

√
p → ∞ in order to

distinguish between the null and alternative hypotheses with probability tending to 1. The sum-of-squares-type tests can
have good power against so-called ‘weak but dense’ alternatives where the ‘signals’, i.e., non-zero entries in µ1 −µ2, spread
over a large number of dimensions, but the signal in each dimension is weak.

In applications such as genomics, however, the alternatives are ‘sparse and strong’, i.e., the mean vectors of two
populations differ only in a few coordinates, but the magnitude of these rare signals is large. In such cases, the condition
(n1 + n2) ∥µ1 − µ2∥

2
2/

√
p → ∞ does not hold, and hence Cai et al. [8] proposed a test based on the Kolmogorov distance.

The test statistic is

MΩ =
n1n2

n1 + n2
max(Z̄2

1 /v11, . . . , Z̄2
p /vpp),

where Ω = Σ−1
= (vij)p×p is the true precision matrix, and Z̄ = (Z̄1, . . . , Z̄p)⊤ = Ω(X̄ − Ȳ). The CLIME estimator in Cai

et al. [7] can be used to estimate the precision matrix Ω.
High-dimensional data often contain a few outliers in each dimension, and hence there can be many outliers overall. A

shared drawback of the aforementioned tests is that they are sensitive to outliers and tend to have unsatisfactory power
when the multivariate distribution is heavy-tailed [25]. The goal of this paper is to develop a robust two-sample test
that performs particularly well against sparse and strong alternatives for high-dimensional cell-wise contaminated data.
Inspired by Cai et al. [8], we introduce a new test statistic based on the Kolmogorov distance, and adopt trimmed means
and robust precision matrix estimators to achieve robustness. Under the null hypothesis, our test statistic has a limiting
Gumbel distribution from which an asymptotic test can be designed for uncontaminated data. We show that in the absence
of contamination, the performance of our robust test is comparable to that of Cai et al. [8]. More importantly, we show that
our test has overwhelming power against the test in [8] for contaminated data, even if the contamination proportion is
modest in each dimension.

In Section 2, we introduce our proposed test statistic. Section 3 gives the asymptotic properties of the test statistic
under no contamination. In Section 4, we address the estimation of the precision matrix used in the test statistic when data
are contaminated. Section 5 further discusses how to determine trimming levels. Simulation studies reported in Section 6
demonstrate the numerical performance of our method for both uncontaminated data and cell-wise contaminated data. In
Section 7, our approach is applied to anAlzheimer’s disease dataset. Discussions and other relatedwork are given in Section 8.
Proofs of the main results and theoretical details are in Appendix A.

2. Methodology

We deal with the testing problem (1) against sparse and strong alternatives. In Sections 2 and 3, we consider the
uncontaminated scenario. Throughout the paper, our theoretical analysis is carried out under a normality assumption for
convenience. However, this assumption is not indispensable as long as the tails of the distributions are not too heavy. We
will first introduce our test procedure in the oracle setting where the precision matrix Ω is known. We will then present a
data-driven procedure for the general case of an unknown precision matrix Ω.

For a matrix A = (aij)p×p, we define the matrix L1-norm, the matrix infinite norm and the element-wise ℓ1-norm as

∥A∥L1 = max
1≤j≤p

p∑
i=1

|aij|, ∥A∥∞ = max
i,j∈{1,...,p}

|aij|, ∥A∥1 =

p∑
i=1

p∑
j=1

|aij|,

respectively. We also define the operator norm as the largest eigenvalue ∥A∥op = λmax(A). For two sequences an and bn, we
write an ≍ bn if there exist two constants c, C > 0 such that c ≤ an/bn ≤ C for all n ≥ 1; an = O(bn) if |an| ≤ C |bn| holds
for all sufficiently large n; and an = o(bn) if an/bn → 0 as n → ∞.

2.1. Oracle procedure

Our statistic for testing (1) is

TΩη =
n1n2

n1 + n2
max{(Z̄η1,1)2/w11, . . ., (Z̄ηp,p)

2/wpp}, (3)
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where Z̄η = (Z̄η1,1, . . . , Z̄ηp,p)
⊤

= Ωη(X̄η − Ȳη), andΩη = (wij)p×p = Σ−1
η is the common precision matrix for the η-trimmed

mean vectors
√
n1 X̄η and

√
n2 Ȳη with trimming level vector η = (η1, . . . , ηp)⊤.

Definition 1. For a random sample X1, . . . , Xn, let X(i) be the ith order statistic of the sample. For η ∈ (0, 1/2), and with ⌊·⌋

denoting the floor function, the sample η-trimmed mean is given by

X̄η =
1

n − 2⌊nη⌋

n−⌊nη⌋∑
i=⌊nη⌋+1

X(i).

Furthermore, for η1, . . . , ηp ∈ (0, 1/2) and η = (η1, . . . , ηp)⊤, the η-trimmed mean vectors of two p-variate samples are
defined by X̄η = (X̄η1,1, . . . , X̄ηp,p)

⊤ and Ȳη = (Ȳη1,1, . . . , Ȳηp,p)
⊤.

The following theorem gives the asymptotic distribution of the trimmed mean vector under normality in high-
dimensional settings.

Theorem 1. Let X1, . . . ,Xn be a random sample of a p-variate random vector X = (X1, . . . , Xp)⊤ ∈ Rp from a multivariate
normal distribution Np(µ,Σ) with µ = (µ1, . . . , µp)⊤ and Σ = (σij)p×p, where K−1

0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ K0 for some
constant K0 > 0. Suppose that for all i ∈ {1, . . . , p}, ηi ∈ [b1, b2] for some 0 ≤ b1 < b2 < 1/2, and ηi → b1 as p → ∞. If
{ln(pn)}7/n → 0 as n, p → ∞, then

√
n (X̄η − µ) ⇝ N (0,Ση), where Ση = (σ ∗

ij )p×p. Furthermore, if for each i, j ∈ {1, . . . , p}
with i ̸= j, Fi denotes the cdf of Xi and Fij denotes the cdf of the pair (Xi, Xj), then the ith diagonal entry of Ση is

σ ∗

ii =

⎧⎨⎩
σii if ηi = 0,

1
(1 − 2ηi)2

[∫
(x − µi)21{F−1

i (ηi) < x < F−1
i (1 − ηi)}dFi(x) + 2ηi{F−1

i (ηi) − µi}
2
]

if ηi > 0, (4)

where 1(A) is the indicator function of the set A. Moreover, the (i, j)th off-diagonal entry of Ση is

σ ∗

ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σij if ηi = ηj = 0,[
{F−1

j (ηj) − µj}

∫
x1{y < F−1

j (ηj)}dFij(x, y)

+

∫
(x − µi)(y − µj)1{F−1

j (ηj) < y < F−1
j (1 − ηj)}dFij(x, y)

+ {F−1
j (1 − ηj) − µj}

∫
x1{y > F−1

j (1 − ηj)}dFij(x, y)
]
/(1 − 2ηj) if ηi = 0, ηj > 0,[

2{F−1
i (ηi) − µi}{F−1

j (ηj) − µj} Pr{x < F−1
i (ηi), y < F−1

j (ηj)}

+ 2{F−1
i (ηi) − µi}{F−1

j (1 − ηj) − µj} Pr{x < F−1
i (ηi), y > F−1

j (1 − ηj)}

+ µ̃1 + µ̃2 + µ̃3 + µ̃4 + ρ̃

]
/{(1 − 2ηi)(1 − 2ηj)} if ηi, ηj > 0,

(5)

where µ̃1, µ̃2, µ̃3, µ̃4 contain integrals related to truncated means, viz.

µ̃1 = {F−1
j (ηj) − µj}

∫
x1{F−1

i (ηi) < x < F−1
i (1 − ηi), y < F−1

j (ηj)}dFij(x, y),

µ̃2 = {F−1
j (1 − ηj) − µj}

∫
x1{F−1

i (ηi) < x < F−1
i (1 − ηi), y > F−1

j (1 − ηj)}dFij(x, y),

µ̃3 = {F−1
i (ηi) − µi}

∫
y1{x < F−1

i (ηi), F−1
j (ηj) < y < F−1

j (1 − ηj)}dFij(x, y),

µ̃4 = {F−1
i (1 − ηi) − µi}

∫
y1{x > F−1

i (1 − ηi), F−1
j (ηj) < y < F−1

j (1 − ηj)}dFij(x, y),

and ρ̃ contains an integral related to truncated correlations,

ρ̃ =

∫
(x − µi)(y − µj)1{F−1

i (ηi) < x < F−1
i (1 − ηi), F−1

j (ηj) < y < F−1
j (1 − ηj)}dFij(x, y).

For Theorem 1, the bound [b1, b2] on the trimming levels ηi guarantees, togetherwith the condition that ηi → b1, that the
high-dimensional trimmed mean vector admits a Bahadur type presentation based on the influence functions of trimmed
means as p → ∞. Given that the vector of influence functions of trimmedmeans belongs to the class of all hyperrectangles in
Rp of the form {w = (w1, . . . , wp)⊤ ∈ Rp

: ai ≤ wi ≤ bi for all i ∈ {1, . . . , p}}, we can establish the asymptotic distribution



W. Wang et al. / Journal of Multivariate Analysis 169 (2019) 312–329 315

of the high-dimensional trimmed mean vector based on the Central Limit Theorem for hyperrectangles. The condition that
{ln(pn)}7/n → 0 as n, p → ∞ is needed for that purpose.

Remark 1. Throughout the proof of Theorem 1 given in Appendix A, we only used specific properties of normal distributions
in (A.8)–(A.9), i.e., moments of the standard normal and the moment generating function of the standard half-normal.
Actually, it also works for distributions with a sub-exponential tail, i.e., the tail of Xki satisfies Pr(|Xki| ≥ t) ≤ 2 exp(−t/K1)
for all t ≥ 0 and some constant K1 > 0. If a distribution has a sub-exponential tail, its first four absolute moments
are finite and the moment generating function of |Xki| is bounded; see Proposition 2.7.1 in [24]. Thus, normality is not
indispensable. Essentially, the assumption of sub-exponential tails results from the requirement of the Central Limit Theorem
for hyperrectangles in the high-dimensional setting (Lemma A.4), which is the core of the proof for Theorem 1. Conditions
(M.2)–(M.3) in Lemma A.4 are related to finite moment requirements on the first four absolute moments and a bounded
moment generating function of |Xki|, respectively.

Note that X̄η and Ȳη in (3) share the same trimming level vector η. If two populations share the common covariance
matrix Σ and trimming level vector η, then it follows directly from Theorem 1 that the trimmed mean vectors

√
n1 X̄η and

√
n2 Ȳη share a common covariance matrix Ση, and hence have the same precision matrix Ωη. The linear transformation

of the data by the precision matrix Ωη in (3) magnifies the signals, owing to the dependence within the data, and hence
improves distinguishing the null and alternative hypotheses [8].

2.2. Data-driven procedure

Inmost applications, the precisionmatrixΩη is unknown and needs to be estimated. The CLIME estimator proposed by Cai
et al. [7] is suitable for sparse precision matrix estimation. Their numerical analysis demonstrated that the CLIME estimator
has desirable performance for estimating non-sparse precision matrices as well.

The CLIME estimator is a solution of the optimization problem

min∥Ω∥1, subject to ∥SnΩ − I∥∞ ≤ λn, (6)

where λn = C ln(p)/n for some sufficiently large constant C . In practice, the tuning parameter λn can be chosen through
cross-validation. The matrix Sn is the pooled sample covariance matrix given by (2).

To estimate Ωη in our test statistic (3), we replace Sn in (6) by Σ̂η, an estimator of the asymptotic covariance matrix for
the trimmed mean which solves

min∥Ω∥1, subject to ∥Σ̂ηΩ − I∥∞ ≤ λn. (7)

Let Ω̂1 be a solution of the optimization problem in (7), and ŵ1
ij be the (i, j)th entry of Ω̂1. The CLIME estimator of the precision

matrix Ωη is defined to be Ω̂η = (ŵij)p×p, where

ŵij = ŵji = ŵ1
ij1(|ŵ

1
ij| ≤ |ŵ1

ji|) + ŵ1
ji1(|ŵ

1
ij| > |ŵ1

ji|).

To obtain Σ̂η, by Theorem 1, it suffices to solve the cdfs Fi and Fij. Since each variable is normally distributed, given that
the data are uncontaminated, we can use the sample mean and the sample covariance matrix to determine each Fi and Fij in
(4) and (5).

For testing the equality of two mean vectors, we apply the above procedure to Xk and Yℓ separately, and then get the
estimators of the asymptotic covariance matrices of the trimmed mean vectors

√
n1 X̄η and

√
n2 Ȳη. Let Σ̂X

η and Σ̂Y
η be these

two estimators. The robust alternative Σ̂η used in (7) is given by

Σ̂η =
1

n1 + n2 − 2
{(n1 − 1)Σ̂X

η + (n2 − 1)Σ̂Y
η }.

By solving the optimization problem (7), we obtain an estimator Ω̂η of the precision matrix Ωη. For testing the hypothesis
(1), our final test statistic TΩ̂η

is given by

TΩ̂η
=

n1n2

n1 + n2
max{(Ẑη1,1)2/ŵ11, . . ., (Ẑηp,p)

2/ŵpp},

where Ẑη = (Ẑη1,1, . . . , Ẑηp,p)
⊤

= Ω̂η(X̄η − Ȳη), and Ω̂η = (ŵij)p×p. Note that when η = 0, this test boils down to the test
proposed by Cai et al. [8].

The current estimator of Σ̂η relies on the assumption of normality to guarantee the optimal convergence rate because the
estimation is based on the sample covariancematrix Sn. For non-normal distributions,we need tomodify the estimation ofΣ.
Avella-Medina et al. [2] presented three pilot covariancematrix estimatorswhich perform better than the sample covariance
matrix when the sub-Gaussian assumption fails. The adaptive Huber estimator therein only requires the existence of the
fourth moments. As long as we have consistent estimators of means and variances, all the calculations involving Fi and Fij in
(4) and (5) can be carried out.
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3. Theoretical analysis

3.1. Asymptotic distribution of the oracle test statistic

In the following sections, we assume that n1 ≍ n2, and n = n1n2/(n1 + n2). Let D = diag(v11, . . . , vpp) and Dη =

diag(w11, . . . , wpp), where vii is the diagonal entry of the precision matrix Ω, and wii is the diagonal entry of the precision
matrixΩη. Define R = (rij)p×p = D−1/2ΩD−1/2 and Rη = (r∗

ij )p×p = D−1/2
η ΩηD

−1/2
η . To obtain the null distributions of the test

statistics, we assume the following conditions:

Condition 1: K−1
0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ K0 for some constant K0 > 0.

Condition 2:max1≤i<j≤p|rij| ≤ r1 < 1 for some constant r1 ∈ (0, 1).
Condition 3: For any i ∈ {1, . . . , p}, the trimming proportion in the ith dimension ηi ∈ [0, b2], where b2 ∈ (0, 1/2),
and as p → ∞, the sequence ηi converges to 0.
Condition 4: {ln(pn)}7/n → 0 as n, p → ∞.
Condition 5: sup1≤i≤p1/|F

−1
i (ηi)| = o(1/

√
ln p), where for each i ∈ {1, . . . , p}, Fi is the cdf of Xi or Yi.

Remark 2. Condition 1 states that the eigenvalues of the covariance matrix Σ are bounded from below and above, which
is a common assumption in high-dimensional settings [7,8]. Condition 2 is a mild requirement preventing Ω from being
singular. Conditions 3 and 4 are used in Theorem 1 to derive the asymptotic normality of the trimmed mean vector.

The result below, proved in Appendix A.3, shows that when constraints on the upper bound b2 of trimming levels are
imposed under Condition 5, Conditions 1–2 on Σ and Ω imply parallel conditions on their counterparts Ση and Ωη.

Lemma 1. Suppose that Conditions 1, 3, 4 and 5 hold. Then,

(a) C−1
0 ≤ λmin(Ση) ≤ λmax(Ση) ≤ C0 for some constant C0 > 0 as n, p → ∞.

(b) Furthermore, if Condition 2 holds, then ∥Rη∥∞ ≤ r2 < 1 for some constant r2 ∈ (0, 1) as n, p → ∞.

The limiting null distribution of the statistic TΩη in (3) is given next.

Theorem 2. Suppose that Conditions 1–5 hold. Then under H0 in (1), for any x ∈ R, as n, p → ∞,

PrH0 [TΩη − 2 ln(p) + ln{ln(p)} ≤ x] → exp{−π−1/2 exp(−x/2)} = exp[− exp[−{x + ln(π )}/2]].

Remark 3. Based on the asymptotic normality in Theorem 1 for the trimmed means, the asymptotic properties of our test
will be the same to those of the test in [8] so long as the conditions on Σ and Ω for asymptotic properties of the test in [8]
can imply similar conditions on Ση and Ωη. It follows by Lemma 1 that the proof of Theorem 2 is very similar to Theorem
1(a) in [8]; thus it is omitted. For the subsequent asymptotic properties, we will only point out their counterparts in [8], and
verify the congruence between conditions. One can refer to [8] for details of the proof.

Based on the null distribution, an asymptotically α-level test can be defined as

Πα(Ωη) = 1[TΩη ≥ 2 ln(p) − ln{ln(p)} + qα],

where qα is the (1− α)th quantile of the Gumbel distribution, viz. qα = − ln(π )− 2 ln{ln(1− α)−1
}. The null hypothesisH0

is rejected if Πα(Ωη) = 1. The critical value of the α-level test is

2 ln(p) − ln{ln(p)} + qα. (8)

3.2. Asymptotic properties of the test

Let δ = (δ1, . . . , δp) = µ1 − µ2. Define the set of kp-sparse vectors by

S(kp) = {δ : 1(δ1 ̸= 0) + · · · + 1(δp ̸= 0) = kp}.

We analyze the power of our new test under the alternative hypothesis

H1 : δ ∈ S(kp) with kp = pr for some r ∈ [0, 1), and the non-zero locations are randomly drawn from {1, . . . , p}.

The following theorem shows that, the asymptotically α-level test Πα(Ωη) distinguishes H0 and H1 with probability
tending to 1, which parallels Theorem 2 in [8].

Theorem 3. Suppose that Conditions 1, 3, 4 and 5 hold. Under the alternative hypothesisH1 with r < 1/4, if maxi|δi/(σii)1/2| ≥
√
2β ln(p)/n with β ≥ 1/mini(σiivii) + ε for some constant ε > 0, then, as n, p → ∞, PrH1{Πα(Ωη) = 1} → 1.
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Remark 4. It follows by Lemma 1(a) that σii ≍ σ ∗

ii and wii ≍ vii. Therefore, the lower bound on the maximum normalized
signal maxi|δi/(σii)1/2| implies the similar bound on maxi|δi/(σ ∗

ii )
1/2

|.

The next theorem shows that, under certain assumption on Ωη, Πα(Ω̂η) based on the CLIME estimator Ω̂η performs
equivalently well as Πα(Ωη) asymptotically.

Theorem 4. Let Ω̂η be the CLIME estimator of Ωη. Suppose that Conditions 1–5 hold, and

Ω ∈ U(Mp) =

{
Ω ≻ 0 : ∥Ω∥L1 ≤ Mp, max

j∈{1,...,p}

p∑
i=1

1(|vij| > 0) ≤ Mp

}
,

with M2
p = o[

√
n/{ln(p)}3/2]. Then, as n, p → ∞,

PrH0{Πα(Ω̂η) = 1} ≤ α + o(1). (9)

Furthermore, if maxi|δi/(σii)1/2| ≥
√
2β ln(p)/n with β ≥ 1/mini(σiivii) + ε for some constant ε > 0, then, as n, p → ∞,

PrH1{Πα(Ω̂η) = 1} → 1. (10)

Remark 5. Condition 4 implies that
√
n/{ln(p)}3/2 → ∞ as n, p → ∞, so the sparsity assumption on Ω, i.e.,

max
j∈{1,...,p}

p∑
i=1

1(|vij| > 0) ≤ Mp,

is a mild condition in the sense that it would not significantly narrow the class of the precision matrices.

4. Cell-wise contamination case

We have so far focused on the uncontaminated scenario. In this section, we turn to the cell-wise contamination case. We
start with the definition of the cell-wise contamination model [1]. The model is defined, for all k ∈ {1, . . . , n}, as

Xk = (I − Bk)Uk + BkVk,

whereXk ∈ Rp is the observed contaminated randomvector. The unobserved randomvectorsUk,Vk andBk are independent.
The majority or ‘core’ of the data is Uk, and Vk represents the outlier that deviates from the core behavior of the data.
Furthermore, Bk = diag(Bk1, . . . , Bkp) is a diagonal matrix, where Bk1, . . . , Bkp are independent Bernoulli random variables
with Pr(Bki = 1) = εi, for all i ∈ {1 . . . , p}.

Suppose that the contamination proportion εi = ε > 0 for all i ∈ {1, . . . , p}. That is, the expected percentage of outlying
cells in each dimension is ε. The probability that any particular observation would be contaminated is 1 − (1 − ε)p. As the
dimension p → ∞, this probability goes to 1. Therefore, with high probability, all observations could be contaminated for
high-dimensional data. This critical problem of cell-wise contaminated data highlights the appeal of our robust test based
on the original data rather than the cleaned data after simply excluding outlying observations.

Throughout this section, we will work under the cell-wise contaminated models, and assume that, for all k ∈

{1, . . . , n},

Xk = (I − Bk)Uk + BkVk and Yk = (I − Bk)U′

k + BkV′

k,

where Uk ∼ N (µ1,Σ), and U′

k ∼ N (µ2,Σ). There is no distributional assumption about the contamination components Vk
and V′

k. Our goal is to test H0 : µ1 = µ2 from the uncontaminated normal component.
To deal with cell-wise contamination in the high-dimensional setting, more strategies for robustification are added to the

procedure of estimating the precision matrixΩη for the trimmedmean. We use a trimmedmean X̄η and a robust covariance
matrix estimator Σ̂ = (σ̂ij)p×p to estimate the mean, variance or covariance of each Fi and Fij in (4) and (5). To summarize,
we follow the following procedure to obtain the estimated covariance matrix Σ̂η:

(a) We obtain the trimmed mean X̄η and the robust covariance matrix estimator Σ̂ for the original data X.
(b) We plug X̄η and Σ̂ into (4) and (5) to get the covariance matrix Σ̂η.

To get a robust estimate Σ̂, we adopt the approach in Öllerer and Croux [21]. The robust covariance matrix estimation
is based on pairwise correlations. For all i, j ∈ {1, . . . , p}, let σ̂ij be the entry of the covariance matrix Σ̂, and write it as
σ̂ij = σ̂iσ̂jρ̂ij, where σ̂i, σ̂j are suitable estimators of standard deviations of ith and jth variables, respectively, and ρ̂ij is a
suitable estimator of their correlation. For each standard deviation, let, for all i ∈ {1, . . . , p},

σ̂i = {Φ−1(0.75)}−1d̂i,
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where d̂i is the median absolute deviation from the median (MAD), given, for all i ∈ {1, . . . , p}, by

d̂i = median1≤k≤n
{
|Xki − median1≤ℓ≤n(Xℓi)|

}
, (11)

and the factor {Φ−1(0.75)}−1 is chosen to make the estimator consistent under normality.
For each rij, let, for all i, j ∈ {1, . . . , p},

ρ̂ij = sin(πrij/2),

where rij is Kendall’s τ , defined, for all i, j ∈ {1, . . . , p} with i ̸= j, by

rij =
2

n(n − 1)

∑
1≤k<ℓ≤n

sign(Xki − Xℓi)sign(Xkj − Xℓj).

Here, sign(x) is the signum function defined as sign(x) = −1, 0 or 1 according as x < 0, = 0 or > 0, respectively.
For testing the equality of two mean vectors, we get the estimators of asymptotic covariance matrices for the trimmed

mean vectors X̄η and Ȳη. Let Σ̂X
η and Σ̂Y

η be these two estimators. Define

Σ̂η =
1

n1 + n2 − 2
{(n1 − 1)Σ̂X

η + (n2 − 1)Σ̂Y
η }.

Then, Ω̂η is obtained by plugging Σ̂η into (7).

Remark 6. Compared to the data-driven procedure in Section 2.2, the only difference here is the use of the trimmed means
and robust covariancematrix estimators instead of samplemeans and pooled sample covariancematrices to determine each
Fi and Fij in (4) and (5).

Remark 7. Theorem1 in Loh and Tan [19] gives the statistical error rate of the robust covariancematrix estimator Σ̂ based on
Kendall’s τ correlations. Although the estimator Σ̂ is not equal to the sample covariance estimator Sn in the uncontaminated
case, it converges nonetheless to the true covariance matrix Σ at the optimal rate. For cell-wise contaminated data, if the
contamination proportion ε = O{

√
ln(p)/n}, then the robust covariance estimator Σ̂ still enjoys the same error rate as

the optimal covariance estimator in the uncontaminated setting, i.e., ∥Σ̂ − Σ∥∞ = OP {
√
ln(p)/n}. Furthermore, we have

E(Xki) − E(Yki) = δi + O{
√
ln(p)/n}. Therefore, under the same conditions in Theorem 4, we have that (9) and (10) hold as

n, p → ∞.

5. Trimming level

Another practical issue is how to determine the trimming level vector η. We consider two situations, one with outliers
on both sides, the other with outliers on one side.

If outliers appear in both tails, we can use the modified Z-score to detect them. The modified Z-score of an observation
Xki for the ith feature is defined, for all i ∈ {1, . . . , p}, by

Φ−1(0.75){Xki − median1≤ℓ≤n(Xℓi)}/d̂i,

where d̂i is themedian absolute deviation from themedian (MAD) defined in (11). Observations that havemodified Z-scores
with an absolute value greater than3.5 are labeled as potential outliers [16]. Lettingηi,L andηi,R be theproportions of detected
outliers in the ith dimension on two sides, the ith trimming level is defined as ηi = max(ηi,L, ηi,R).

If outliers appear only in one tail, wemay adopt the approach proposed byDhar and Chaudhuri [12]. Let F be a distribution
with density f . In the model F (x) = (1 − β)H(x) + βG(x), where H is symmetric and G is stochastically larger than H , an
estimation of the contamination proportion β is given by

β̂ = argmax
η∈[b1,b2]

Vn(x),

where 0 < b1 < b2 < 1/2, and

Vn(η) =
2

1 − 2η

[
x̄η −

1
2
{F̂−1

n (η) + F̂−1
n (1 − η)} −

1
2

[
1

f̂ {F̂−1
n (η)}

−
1

f̂ {F̂−1
n (1 − η)}

]]
is a natural estimate of the second derivative of the η-trimmed mean. Here, x̄η is the sample η-trimmed mean, F̂n is the
empirical distribution function, and f̂ is some suitable estimate of the density f . We use the kernel density estimate based
on the standard Gaussian kernel provided in the R package ks [13].

Note that in our new test statistic, X̄η and Ȳη share the same trimming level vector η. Suppose that the trimming
level vector determined by the samples from X is η̂

X
= (η̂X

1 , . . . , η̂X
p )

⊤, and the trimming level vector determined by the
samples from Y is η̂

Y
= (η̂Y

1 , . . . , η̂Y
p )

⊤. Then the final trimming level η̂ = (η̂1, . . . , η̂p)⊤ is given, for all i ∈ {1, . . . , p}, by
η̂i = max(η̂X

i , η̂Y
i ).
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Table 1
Size and power of CLX and RCLX: non-contaminated scenario.

m Signal Model 1 Model 2 Model 3

CLX RCLX CLX RCLX CLX RCLX

p = 50

Size 0.037 0.025 0.041 0.027 0.061 0.047

Power

0.05p fixed 0.669 0.599 0.462 0.407 0.478 0.435
√
p fixed 0.978 0.964 0.886 0.845 0.873 0.837

0.05p varied 0.720 0.698 0.625 0.596 0.638 0.612
√
p varied 0.986 0.983 0.964 0.949 0.969 0.964

p = 100

Size 0.042 0.023 0.034 0.022 0.056 0.040

Power

0.05p fixed 0.954 0.930 0.839 0.774 0.728 0.676
√
p fixed 0.995 0.992 0.965 0.946 0.924 0.896

0.05p varied 0.971 0.967 0.922 0.908 0.907 0.896
√
p varied 0.998 0.996 0.993 0.990 0.985 0.980

6. Simulation study

The numerical performance of our test was investigated, and the simulation results are summarized in this section. We
compare it with the test in Cai et al. [8]. For convenience, we name the test therein CLX, and our test RCLX.

Without loss of generality, we will always set µ2 = 0 in the simulation. Under the null hypothesis, we set µ1 = µ2 = 0,
while under the alternative hypothesis, µ1 = (µ1,1, . . . , µ1,p) has m non-zero entries with support S = {ℓ1, . . . , ℓm : 1 ≤

ℓ1 < · · · < ℓm ≤ p} uniformly and randomly drawn from {1, . . . , p}.
Take µ1,k = 0 for k ̸∈ S∁. This setup is the same as in Cai et al. [8].
Suppose that n1 = n2 = n. Two settings of the magnitude of the nonzero entry ℓj ∈ S are considered, namely

(a) Fixed magnitude: Take µ1,ℓj = ±
√
2 ln(p)/n with equal probability;

(b) Varied magnitude: Draw µ1,ℓj uniformly from the interval [−
√
8 ln(p)/n,

√
8 ln(p)/n].

Data are generated from the following three models having precision matrix Ω with different structures:

Model 1 (block diagonal Ω): Σ = (σi,j) where σi,i = 1, and σi,j = 0.8 for any i, j ∈ {2k − 1, 2k} with i ̸= j,
k ∈ {1, . . . , [p/2]}, and σi,j = 0 otherwise.
Model 2 (bandable Σ): σi,j = 0.6|i−j|.
Model 3 (banded Ω): Ω = (vi,j) with vi,i = 2 for i ∈ {1, . . . , p}, vi,i+1 = 0.8 for i ∈ {1, . . . , p − 1}, vi,i+2 = 0.4 for
i ∈ {1, . . . , p − 2}, vi,i+3 = 0.4 for i ∈ {1, . . . , p − 3}, vi,i+4 = 0.2 for i ∈ {1, . . . , p − 4}, vi,j = vj,i and vi,j = 0
otherwise.

6.1. Comparison with the CLX test under normal distributions

Under eachmodel, uncontaminated dataXk and Yℓ are generated fromN (µ1,Σ) andN (µ2,Σ), respectively. To generate
cell-wise contaminated data, we randomly select 10% of the entries in each dimension, then draw 5% of them from a normal
N (5, 1) and the other 5% fromN (−5, 1). The sample size n is always 100. The dimension p takes value p = 50 and 100. The
size and the power at significance level 5% are then calculated from 1000 replicates.

For uncontaminated data, the CLX test used in the simulations is exactly the same as that in [8]. Since the RCLX test reduces
to the CLX test when η = 0, the two tests perform in exactly the same way in this case. Therefore, in order to investigate
how trimming would affect the performance, we carry out the RCLX test based on 5%-trimmed means. Table 1 presents the
results for the non-contaminated scenario.

For cell-wise contaminated data, we replace sample means with trimmed means in the CLX test statistic to reduce the
deviation from the true mean. The contamination is on both sides, so the modified Z-scores are used to detect outliers and
determine the trimming levels used in the RCLX test. Table 2 presents the results for the 10% contamination scenario.

As we can see from Tables 1 and 2, the estimated sizes are close to the nominal level 0.05 for our RCLX test in all settings.
Table 1 shows that the RCLX test has slightly lower but comparable power compared to the CLX test for the no contamination
scenario. For the cell-wise contaminated data, Table 2 shows that the CLX test breaks down with almost zero power in all
settings; in contrast, the RCLX test maintains its power.

6.2. Comparison with the CLX test under non-normal distributions

For Model 3, we generate two independent random samples Xk and Yk multivariate models Xk = Γ Z(1)
k + µ1 and

Yk = Γ Z(2)
k + µ2, with Γ Γ ⊤

= Σ , where the components of Z(i)
k are iid standard G(5, 1) random variables. The results
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Table 2
Size and power of CLX and RCLX: 10% contamination scenario.

m Signal Model 1 Model 2 Model 3

CLX RCLX CLX RCLX CLX RCLX

p = 50

Size 0 0.032 0 0.027 0 0.048

Power

0.05p fixed 0 0.190 0 0.162 0 0.257
√
p fixed 0 0.492 0 0.411 0 0.567

0.05p varied 0.003 0.396 0.002 0.340 0.003 0.457
√
p varied 0.006 0.817 0.008 0.769 0.007 0.848

p = 100

Size 0 0.043 0 0.053 0 0.066

Power

0.05p fixed 0 0.421 0 0.387 0 0.505
√
p fixed 0 0.705 0 0.603 0 0.756

0.05p varied 0.008 0.741 0.004 0.689 0.003 0.778
√
p varied 0.013 0.941 0.023 0.899 0.014 0.950

Table 3
Size and power of CLX and RCLX for Model 3: G(5, 1) scenario.

Size Power

0.05p fixed
√
p fixed 0.05p varied

√
p varied

p = 50

CLX 0.044 0.085 0.210 0.128 0.375
RCLX 0.064 0.105 0.236 0.156 0.396

p = 100

CLX 0.043 0.178 0.265 0.273 0.488
RCLX 0.066 0.224 0.312 0.333 0.522

are summarized in Table 3. As we can see from this table, under the heavy tailed distribution G(5, 1), our test is still slightly
and uniformly more powerful than the CLX test in all settings.

6.3. Comparison with the CLX test on cleaned data

Under cell-wise contamination, although removing the entire observation results in a huge loss of information, it seems
appropriate to remove those outlying cells in observations, and then non-robust tests can be carried out on the cleaned
data after excluding outlying cells. In other words, the CLX test based on the cleaned data after excluding outlying cells in
observations is an alternative to our robust test procedure on the contaminated data. In [20], an unbiased estimator of the
covariance matrix was proposed when the dataset contains missing cells in observations. Suppose that δ ∈ (0, 1] is the
proportion of observed cells. Given observations X1, . . . ,Xn with underlying covariance matrix Σ, the unbiased estimator
of Σ is given by

Σ̃ = (δ−1
− δ−2)diag(S(δ)n ) + δ−2S(δ)n ,

where S(δ)n = (X1 ⊗ X1 + · · · + Xn ⊗ Xn)/n, and ⊗ denotes the outer product. Based on this empirical covariance matrix
estimator, we can carry out the CLX test on the cleaned data after deleting outlying cells in observations. For convenience, we
name such a test procedure DCLX. Table 4 presents the size and power of the DCLX test for the 10% contamination scenario.
Although the power of the DCLX test is higher compared to the RCLX test, the size of the DCLX test is much higher than
the nominal level 0.05. That is, the type-I error is not controlled, because the asymptotic null distribution of the max-norm
typed test statistic on the cleaned data after deleting those outlying cells can be more complicated, which deserves further
exploration.

7. Real data

Alzheimer’s disease (AD) is a cognitive impairment disorder characterized by memory loss and a decrease in functional
abilities above and beyond what is typical for a given age. Potential low-cost fluid biomarkers can help with early diagnosis
of AD. For instance, protein levels of particular forms of the Aβ and Tau proteins, and the Apolipoprotein E genotype. These
biomarkers could be obtained from plasma or cerebrospinal fluid (CSF) [18].

The AlzheimerDisease data in the R package ‘AppliedPredictiveModeling’ [17] contains CSF measurements from 333
subjects, including some with mild cognitive impairment (class ‘Impaired’) as well as healthy individuals (class ‘Control’).
The dataset used here is a subset that contains 106 high-risk patients with the Apolipoprotein E genotype E3E4. Among
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Table 4
Size and power of DCLX: 10% contamination scenario.

m Signal Model 1 Model 2 Model 3

p = 50

Size 0.100 0.083 0.095

Power

0.05p fixed 0.359 0.318 0.393
√
p fixed 0.730 0.680 0.779

0.05p varied 0.505 0.466 0.551
√
p varied 0.902 0.867 0.924

p = 100

Size 0.122 0.130 0.166

Power

0.05p fixed 0.670 0.603 0.393
√
p fixed 0.886 0.832 0.919

0.05p varied 0.834 0.816 0.879
√
p varied 0.969 0.955 0.925

Fig. 1. Correlation matrix for the AD data. Each row and column represents a biomarker; they were sorted using clustering methods.

them, n1 = 41 subjects are impaired, and n2 = 65 subjects are healthy. Protein measurements of p = 124 exploratory
biomarkers are collected on each subject, and standardized to the same scale. Fig. 1 shows the 124 × 124 correlation matrix
of the exploratory biomarkers, which is quite sparse.

The goal of the experiment is to determine if subjects in the early states of impairment can be differentiated from cogni-
tively healthy individuals via these biomarkers. One effective way is to compare the means of the biomarker measurements
of the two groups. We want to investigate how the CLX test and our RCLX test behave on the contaminated data. To reveal
the benchmark for the mean equality, we assume that the AlzheimerDisease data is a rather clean dataset, and apply the CLX
test to the original data. The critical value calculated from (8), is 12.86 at the 5% significance level. The CLX test statistic is
22.16, so we should reject mean equality between the impaired group and the healthy group.

To generate cell-wise contaminated data, we randomly select 10% of the cells from each biomarker, and replace them by
random values independently drawn from the normal distribution N (3, 1). Since the outliers are on one side, the trimming
level ηi in each dimension i ∈ {1, . . . , 124} is obtained by solving the optimization problem in . Results are based on 1000
replicateswhere different sets of outliers are generated. Fig. 2 shows the distribution of test statisticswith the 5% significance
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Fig. 2. Histogram of test statistics: CLX (dark gray), RCLX (white), overlapping (light gray) and critical value (vertical line).

level under contamination. The percentage of rejection among 1000 replicates based on our RCLX test is 74.3%, while the
percentage of rejection based on the CLX test is only 11.8%.

8. Conclusion and discussion

In this paper, we proposed a robust two-sample test of high-dimensional means under dependence against sparse and
strong alternatives based on trimmedmeans and robust precisionmatrix estimators, which robustifies the CLX test from Cai
et al. [8]. Our test maintains comparable power compared to the CLX test for the uncontaminated scenario. Meanwhile, for
cell-wise contaminated data, our RCLX test significantly outperforms the CLX test. Numerical studies show that while the
CLX test is almost powerless under contamination, the RCLX test still achieves high power.

As mentioned in Remark 1, the result on the asymptotic distribution of a trimmed mean vector in Theorem 1 can be
extended to non-normal distributions with sub-exponential tails. Therefore, the proposed test is applicable to data from
heavy-tailed distributions. Numerical results show the adequacy of our method for such distributions.

The asymptotic properties in Section 3 rely on the assumption that {ln(pn)}7/n → 0 as n, p → ∞. It is a stronger
assumption than that in Cai et al. [8], i.e., ln(p)/n → 0 as n, p → ∞, and is merely resulted from the requirement for the
Central Limit Theorem on hyperrectangles in high-dimensional settings [10], which to our knowledge, is the latest result
available. This assumption might be weakened as high-dimensional probability theory develops.

Our proposed test could also be applied to datasets withmissing values by treatingmissing data as outliers, if themissing
data mechanism is completely at random.

Acknowledgments

The authors are grateful to the Editor-in-Chief, Christian Genest, to an Associate Editor and two referees for comments
and suggestions that led to amuch improved version of this paper. The work of Xiang Tangwas supported by NSF, USA grant
1363250.

Appendix. Proof of main results

A.1. Lemmas

Lemma A.1 is Fact 9.9.59 in [4].

Lemma A.1. Let A and B ∈ Rn×n, assume that A and A+B are nonsingular, and let ∥ · ∥ be a normalized submultiplicative norm
on Rn×n. Then ∥A−1

− (A + B)−1
∥ ≤ ∥A−1

∥ × ∥(A + B)−1
∥ × ∥B∥.

Lemma A.2, see DasGupta [11], shows that the univariate trimmed mean is asymptotically linear in the sense that it
admits a Bahadur type linear representation.

Lemma A.2. Let X1, . . . , Xn be a random sample from a distribution F which is symmetric about θ . Let η ∈ (0, 1/2) be fixed.
Then the trimmed mean X̄η admits the representation

X̄η = θ +
1
n

n∑
i=1

IF(Xi) + oP (n−1/2),
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where for each i ∈ {1, . . . , n}, IF(Xi) is the influence function of the trimmed mean given by

IF(Xi) =

⎧⎨⎩{F−1(η) − θ}/(1 − 2η) if Xi < F−1(η),
(Xi − θ )/(1 − 2η) if F−1(η) ≤ Xi ≤ F−1(1 − η),
{F−1(1 − η) − θ}/(1 − 2η) if Xi > F−1(1 − η).

Lemma A.3. Suppose that X1, . . . ,Xn form a random sample from a p-variate multivariate normal distribution Np(µ,Σ) such
that K−1

0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ K0 for some constant K0 > 0. Let X̄η = (X̄η1,1, . . . , X̄ηp,p)
⊤ and µ = (µ1, . . . , µp)⊤ be the

trimmed mean vector and the true mean vector, respectively.

(a) If 0 < p < ∞, then, as n → ∞,

√
n (X̄η − µ) −

1
√
n

n∑
k=1

IF(Xk)
p

→ 0, (A.1)

where for each k ∈ {1, . . . , n}, IF(Xk) = (IF(Xk1), . . . , IF(Xkp))⊤ with Xk = (Xk1, . . . , Xkp)⊤.
(b) Suppose that for any i ∈ {1, . . . , p}, ηi ∈ [b1, b2], where 0 ≤ b1 < b2 < 1/2 and ηi → b1 as p → ∞. If {ln(pn)}7/n → 0

as n, p → ∞, then (A.1) stills holds.

Proof. It follows from Lemma A.2 that, for each i ∈ {1, . . . , p},

√
n (X̄ηi,i − µi) −

1
√
n

n∑
k=1

IF(Xki)
p

→ 0. (A.2)

as n → ∞. Furthermore, it is known that if 0 < p < ∞, then as n → ∞,

√
n (X̄η − µ) −

1
√
n

n∑
k=1

IF(Xk)
p

→ 0.

Next, we shall show (A.1) still holds as p → ∞. For all i ∈ {1, . . . , p}, from (A.2), we have that, as n → ∞,

√
n

⎡⎣ 1
n − 2⌊nηi⌋

n−⌊nηi⌋∑
k=⌊nηi⌋+1

X(k)i − µi
√

σii

⎤⎦ −
1

√
n

n∑
k=1

IF(Xki)
√

σii

p
→ 0.

Set Φ−1(η) = infx{x : Φ(x) ≥ η} and Φ−1(1 − η) = supx{x : Φ(x) < 1 − η}. Note that

IF(Xki)/
√

σii =

⎧⎨⎩Φ−1(ηi)/(1 − 2ηi) if (Xki − µi) /
√

σii < Φ−1(ηi),
(Xki − µi) /{

√
σii (1 − 2ηi)} if Φ−1(ηi) ≤ (Xki − µi) /

√
σii < Φ−1(1 − ηi),

Φ−1(1 − ηi)/(1 − 2ηi) if (Xki − µi) /
√

σii ≥ Φ−1(1 − ηi).

LetWki = (Xki − µi) /
√

σii ∼ N (0, 1). Then we have, as n → ∞,

√
n

⎧⎨⎩ 1
n − 2⌊nηi⌋

n−⌊nηi⌋∑
k=⌊nηi⌋+1

W(k)i −
1
n

n∑
k=1

IF(Wki)

⎫⎬⎭ p
→ 0, (A.3)

where

IF(Wki) =

⎧⎨⎩Φ−1(ηi)/(1 − 2ηi) if Wki < Φ−1(ηi),
Wki/(1 − 2ηi) if Φ−1(ηi) ≤ Wki < Φ−1(1 − ηi),
Φ−1(1 − ηi)/(1 − 2ηi) ifWki ≥ Φ−1(1 − ηi).

Therefore, (A.2) and (A.3) are equivalent. Now let

Ti =
√
n (X̄ηi,i − µi) −

1
√
n

n∑
k=1

IF(Xki), Qi = Qn(ηi) =
√
n

⎧⎨⎩ 1
n − 2⌊nηi⌋

n−⌊nηi⌋∑
k=⌊nηi⌋+1

W(k)i −
1
n

n∑
k=1

IF(Wki)

⎫⎬⎭ .

Set T = (T1, . . . , Tp)⊤ =
√
n (X̄η − µ) − {IF(X1) + · · · + IF(Xn)}/

√
n. It follows from the definition of η-trimmed mean that

the process Qn(η) for η ∈ [b1, b2] lies in the space of real functions on [b1, b2] that are right continuous, and have left-hand
limits [6].

Since {ln(pn)}7/n → 0 as n, p → ∞, we must have {ln(p)}7/n → 0 as n, p → ∞. Therefore, there existM1,N1 > 0, such
that for all p > M1, and for all n ≥ N1, p/en

1/7
< 1. Also, since ηi → b1, it follows from the right continuity of the process

Qn(η) that for all ε > 0, there exists M2 > M1, such that for all i > M2, |Qn(ηi) − Qn(b1)| < ε/(2eN
1/7
1 ). Then, for all n > N1,



324 W. Wang et al. / Journal of Multivariate Analysis 169 (2019) 312–329

and for all p > M2,
p∑

i=M2+1

|Qn(ηi) − Qn(b1)| < pε/(2eN
1/7
1 ) < ε/2.

Thus, as n, p → ∞,

Pr

⎧⎨⎩
p∑

i=M2+1

|Qn(ηi) − Qn(b1)| > ε/2

⎫⎬⎭ → 0. (A.4)

Since for any i, Qn(ηi)
p

→ 0, as n → ∞, we deduce that

Pr

{ M2∑
i=1

|Qn(ηi)| > ε/4

}
→ 0. (A.5)

Also, there exists N2 > N1, such that for all n > N2,

Pr{|Qn(b1)| > ε/(4eN
1/7
1 )} < ε/(4eN

1/7
1 ).

Thus,

Pr

⎧⎨⎩
p∑

i=M2+1

|Qn(b1)| > ε/4

⎫⎬⎭ ≤ p × Pr{|Qn(b1)| > ε/(4eN
1/7
1 )} < pε/(4eN

1/7
1 ) < ε/4. (A.6)

Let

σmax = max(
√

σ11, . . .,
√

σpp) < ∞. (A.7)

Combine (A.4)–(A.6). Given that we have√
T 2
1 + · · · + T 2

p ≤ |T1| + · · · + |Tp|

and |Qi| ≥ |Ti|/σmax, one has

Pr {∥T∥ > εσmax} ≤ Pr

{ p∑
i=1

|Ti| > εσmax

}
≤ Pr

{ p∑
i=1

|Qi| > ε

}

≤ Pr

{ M2∑
i=1

|Qn(ηi)| > ε/2

}
+ Pr

⎧⎨⎩
p∑

i=M2+1

|Qn(ηi) − Qn(b1)| > ε/4

⎫⎬⎭
+ Pr

⎧⎨⎩
p∑

i=M2+1

|Qn(b1)| > ε/4

⎫⎬⎭ → 0.

Thus, (A.1) still holds as p → ∞. □

Let U1, . . . ,Un be mutually independent random vectors in Rp, where p ≥ 3 may be larger, or even much larger, than n.
Denote the ith coordinate of Uk by Uki, so that Uk = (Uk1, . . . ,Ukp)⊤. We assume that each Uk is centered, i.e., E(Uki) = 0, and
E(U2

ki) < ∞ for all k ∈ {1, . . . , n} and i ∈ {1, . . . , p}. Let V1, . . . ,Vn be independent centered Gaussian random vectors in Rp

such that each Vk has the same covariance matrix as Uk, i.e., Vk ∼ N [0, E(UkU⊤

k )]. Define the normalized sums

SUn =
1

√
n

n∑
k=1

Uk and SVn =
1

√
n

n∑
k=1

Vk.

Let Are be the class of all hyperrectangles in Rp, which consists of all sets A of the form

A =
{
w ∈ Rp

: ai ≤ wi ≤ bi for all i ∈ {1, . . . , p}
}

for some −∞ ≤ ai ≤ bi ≤ ∞ for all i ∈ {1, . . . , p}. One’s interest is to bound

ρn(A) = sup
A∈Are

|Pr(SUn ∈ A) − Pr(SVn ∈ A)|.

The following lemma is one of the main results from Chernozhukov et al. [10].
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Lemma A.4. Let b > 0 be a constant, and Bn ≥ 1 be a sequence of constants, possibly growing to infinity as n → ∞. Assume
that the following conditions are satisfied:

(M.1)
∑n

k=1E(U
2
ki)/n ≥ b for all i ∈ {1, . . . , p},

(M.2)
∑n

k=1E(|Uki|
2+γ )/n ≤ Bγ

n for all i ∈ {1, . . . , p} and γ ∈ {1, 2}.
(M.3) E{exp(|Uki|/Bn)} ≤ 2 for all k ∈ {1, . . . , n} and i ∈ {1, . . . , p}.

Then we have ρn(A) ≤ C[B2
n{ln(pn)}

7/n]1/6, where the constant C depends only on b.

The following lemma shows the relationship between the diagonal entry of Σ and the diagonal entry of Ση.

Lemma A.5. There exist some constants C1, C2 > 0 such that C1 ≤ σ ∗

ii /σii ≤ C2.

Proof. Obviously, for any i ∈ {1, . . . , p}, we have σ ∗

ii /σii ≤ 1/(1−ηi)2 ≤ 1/(1−b2)2. In fact by Theorem 4.1 in [5], the upper
bound could be tighter, viz. σ ∗

ii /σii ≤ (1 + 4ηi) ≤ (1 + 4b2) < 3 = C2. For the lower bound, note that

σ ∗

ii =
1

(1 − 2ηi)2

[
σii + 2ηi{F−1

i (ηi) − µi}
2
− 2

∫ F−1
i (ηi)

−∞

(x − µi)2dFi(x)

]
.

Let h(ηi) = 2ηi{F−1
i (ηi) − µi}

2
− 2

∫ F−1
i (ηi)

−∞
(x − µi)2dFi(x). Then, h(ηi) ≤ 0 and h′(ηi) = 4ηi{F−1

i (ηi) − µi}/f {F−1
i (ηi) − µi}.

That is, h(ηi) is strictly decreasing on [b1, b2], and hence for any i, σ ∗

ii ≥ σii + hi(b2), where

hi(b2) = 2σii

[
b2{Φ−1(b2)}2 −

∫ Φ−1(b2)

−∞

x2dΦ(x)

]
> hi(0.5) = −σii.

Therefore, σ ∗

ii /σii is bounded below by some constant C1 > 0 which only depends on b2. □

A.2. Proof of Theorem 1

We first show that the three conditions in Lemma A.4 are satisfied.

(M.1): For all i ∈ {1, . . . , p},

1
n

n∑
k=1

E{|IF(Xki)|2} = E{|IF(X1i)|2} = σ ∗

ii ,

where σ ∗

ii is defined in (4). If K−1
0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ K0 for some constant K0 > 0, by Lemma A.5, σ ∗

ii must be uniformly
bounded below by some positive constant. Let b = min1≤i≤pσ

∗

ii > 0. Then, for all i ∈ {1, . . . , p},

1
n

n∑
k=1

E{|IF(Xki)|2} ≥ b.

(M.2): For all i ∈ {1, . . . , p} and γ ∈ {1, 2},

1
n

n∑
k=1

E{|IF(Xki)|2+γ
} = E{|IF(X1i)|2+γ

}.

Note that

(1 − 2ηi)−1
{F−1

i (ηi) − µi} ≤ IF(X1i) ≤ (1 − 2ηi)−1
{F−1

i (1 − ηi) − µi}.

Since ηi ∈ [b1, b2], and Fi(x) is a symmetric distribution about x = µi, we have |IF(X1i)| ≤ (1−2b2)−1
|F−1

i (b1)−µi|. If b1 = 0,
then (1 − 2b2)−1

|F−1
i (b1) − µi| = ∞, and hence so far, we cannot find a finite constant to uniformly bound |IF(X1i)| for any

i. Therefore, the following two cases are considered.

Case 1: b1 > 0. Let C1(i) = 2(1 − 2b2)−1
|F−1

i (b1) − µi| and C2(i) = (1 − 2b2)−(2+γ )/γ
|F−1

i (b1) − µi|
(2+γ )/γ

. Let Bn =

max{C1(1), . . ., C1(p), C2(1), . . ., C2(p)}. Then, for all i ∈ {1, . . . , p},

1
n

n∑
k=1

E{|IF(Xki)|2+γ
} ≤ Bγ

n .

Note that for any i ∈ {1, . . . , p}, σii ≤ λmax(Σ) ≤ K0, so Bn < ∞ and is independent of n.
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Case 2: b1 = 0. Since IF(Wki) is right continuous and ηi → 0, then, for all ε > 0, there exist δ, N > 0 such that, for all i > N ,
we have 0 ≤ ηi < δ and |IF(Wki) − Wki| < ε. Since Wki ∼ N (0, 1),

E{|IF(Wki)|3} = E{|IF(Wki) − Wki + Wki|
3
}

≤ ε3
+ 3εE(|Wki|

2) + 3ε2E(|Wki|) + E(|Wki|
3) = ε3

+ 3ε + 3ε2
√
2/π + 2

√
2/π, (A.8)

and hence E{|IF(Wki)|3} is bounded. Similarly, E{|IF(Wki)|4} is bounded. Thus, there existsM > 0 such that

E{|IF(Wki)|2+γ
} < M

for γ ∈ {1, 2}. Then, for any i > N , E{|IF(Xki)|2+γ
} < Mσ

2+γ
max , where σmax is defined in (A.7). The behavior of the sequence

ηi does not change when we rearrange its terms, so, without loss of generality, we can assume that for any i ≤ N , we have
ηi ≥ δ and hence |F−1

i (ηi) − µi| ≤ |F−1
i (δ) − µi|.

Let

C ′

1(i) = 2(1 − 2b2)−1
|F−1

i (δ) − µi| < ∞, C ′

2(i) = (1 − 2b2)−(2+γ )/γ
|F−1

i (δ) − µi|
(2+γ )/γ

< ∞,

and

Bn = max{C ′

1(1), C
′

1(2), . . ., C
′

1(N), C ′

2(1), C
′

2(2), . . ., C
′

2(N),M1/γ σ (2+γ )/γ
max }.

Then, for all i ∈ {1, . . . , p},

1
n

n∑
k=1

E{|IF(Xki)|2+γ
} ≤ Bγ

n .

Note that Bn < ∞ and is independent of n.

(M.3): Note that in Case 1, for all k ∈ {1, . . . , n} and i ∈ {1, . . . , p}, 2|IF(Xki)| ≤ C1(i) ≤ Bn. Hence,

E{exp(|IF(Xki)|/Bn)} ≤ exp(1/2) < 2.

In Case 2, for all k ∈ {1, . . . , n} and i ∈ {1, . . . ,N}, 2|IF(Xki)| ≤ C ′

1(i) ≤ Bn, so

E{exp(|IF(Xki)|/Bn)} < 2.

For all k ∈ {1, . . . , n} and i > N , Bn ≥ M1/γ σ
(2+γ )/γ
max . Then, choose sufficiently large M and sufficiently small ε, such that

M1/γ σ
2/γ
max ≥ 1 and exp(ε) ≤ 2/3, then

E{exp(|IF(Xki)|/Bn)} ≤ E
{
exp

(
|IF(Xki)|

M1/γ σ
(2+γ )/γ
max

)}
≤ E

{
exp

(
|IF(Wki) − Wki + Wki|

M1/γ σ
2/γ
max

)}
≤ E

{
exp

(
|IF(Wki) − Wki|

M1/γ σ
2/γ
max

)
× exp

(
|Wki|

M1/γ σ
2/γ
max

)}
≤ exp(ε) × E{exp(|Wki|)} ≤ 2.

(A.9)

The last inequality follows from the fact that |Wki| is a standard half-normal distribution, and E{exp(|Wki|)} ≈ 2.77 < 3.
Let Are be the class of all hyperrectangles in Rp, i.e., it consists of all sets A of the form

A =
{
w ∈ Rp

: ai ≤ wi ≤ bi for all i ∈ {1, . . . , p}
}
.

Here, ai = {F−1
i (ηi) − µi}/(1 − 2ηi) and bi = {F−1

i (1 − ηi) − µi}/(1 − 2ηi).
Let V1, . . . ,Vn be iid observations drawn from Np

[
0, E{IF(X)}{IF(X)}⊤

]
. Since all three conditions in Lemma A.4 are

satisfied, we have

sup
A∈Are

|Pr(S IF(X)n ∈ A) − Pr(SVn ∈ A)| ≤ C[B2
n{ln(pn)}

7/n]1/6.

That is, as n, p → ∞, if {ln(pn)}7/n → 0, then

1
√
n

n∑
k=1

IF(Xk) ⇝ N [0, EX{IF(X)}{IF(X)}⊤].

Together with the result from Lemma A.3, by Slutsky’s Theorem,
√
n (X̄η − µ) ⇝ N [0, EX{IF(X)}{IF(X)}⊤]. There remains for

us to compute the asymptotic covariance matrix EX{IF(X)}{IF(X)}⊤. □
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A.3. Proof of Lemma 1

For convenience, we enumerate the four conditions as follows.

(a) K−1
0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ K0 for some constant K0 > 0.

(b) C−1
0 ≤ λmin(Ση) ≤ λmax(Ση) ≤ C0 for some constant C0 > 0 as n, p → ∞.

(c) ∥R∥∞ ≤ r1 for some constant r1 ∈ (0, 1).
(d) ∥Rη∥∞ ≤ r2 for some constant r2 ∈ (0, 1) as n, p → ∞.

First, we want to show that (a) implies (b). It suffices to show that there exists some constant K1 > 0 such that for any
λ < K−1

1 or λ > K1, λI − Ση is invertible. Let λ ∈ R such that λ > K−1
0 − ε0 or λ < K0 + ε0 given any 0 < ε0 < K−1

0 . Then
(a) implies that λ is not the eigenvalue of Σ. Equivalently, λI − Σ is invertible. Observe that

λI − Ση = λI − Σ + Σ − Ση = (λI − Σ){I + (λI − Σ)−1(Σ − Ση)}.

Let ∥ · ∥op denote the operator norm. Then

∥(λI − Σ)−1(Σ − Ση)∥op < 1 ⇒ I + (λI − Σ)−1(Σ − Ση) is invertible ⇒ λI − Ση is invertible.

Since

∥(λI − Σ)−1
∥op = sup

i
|λ − λi(Σ)|−1 < 1/ε0,

it suffices to show that ∥Σ − Ση∥op < ε0.

Without loss of generality, assume that the data are centered at 0, i.e., µ = 0. Let X̃ = IF(X) = (IF(X1), . . . , IF(Xp))⊤. Then
Σ = E(XX⊤) and Ση = E(X̃X̃⊤). Note that

X̃i = min{|Xi|,
√

σii |Φ
−1(ηi)|}Xi/{|Xi|(1 − 2ηi)}.

Let v ∈ Sp−1, and Sp−1 is (p− 1)-dimensional Euclidean unit sphere. Let η̃ = (1/(1− 2η1), . . . , 1/(1− 2ηp))⊤, and ⊙ denote
the element-wise product. Then,

vT (Σ − Ση)v = E{(v⊤X)2 − (v⊤X̃)2} ≤ E
{
(v⊤(η ⊙ X))2 − (vT X̃)2

}
= E

[{
(v⊤(η ⊙ X))2 − (v⊤X̃)2

}
1{∀i |Xi| ≤

√
σii |Φ

−1(ηi)|}
]

+ E
[{

(v⊤(η ⊙ X))2 − (v⊤X̃)2
}
1{∃i |Xi| >

√
σii |Φ

−1(ηi)|}
]

= E
[{

(v⊤(η ⊙ X))2 − (v⊤X̃)2
}
1{∃i |Xi| >

√
σii |Φ

−1(ηi)|}
]

≤ E
[
{v⊤(η ⊙ X)}21{∃i |Xi| >

√
σii |Φ

−1(ηi)|}
]

≤

√
1

(1 − 2b2)4
E{(v⊤X)4} Pr

{
∃i |Xi| >

√
σii |Φ

−1(ηi)|
}

Since Xi has bounded fourth moment for any i, one has E{(v⊤X)4} ≤ C ′ for some constant C ′ > 0. Moreover,

Pr
{
∃i |Xi| >

√
σii |Φ

−1(ηi)|
}

≤

p∑
i=1

Pr
{
|Xi| >

√
σii |Φ

−1(ηi)|
}

≤

p∑
i=1

E(X2
i )

σii |Φ
−1(ηi)|

2 =

p∑
i=1

1

|Φ−1(ηi)|
2 .

Since the sequence ηi converges to 0, there exists M > 0, we can have for any i > M , |Φ−1(ηi)| > en
1/7

, and hence when
p > eM , for any i > ln p > M ,

p∑
i=1

1

|Φ−1(ηi)|
2 =

∑
i≤ln p

1

|Φ−1(ηi)|
2 +

∑
i>ln p

1

|Φ−1(ηi)|
2 ≤

ln p

|Φ−1(b2)|
2 +

p
en1/7 .

Therefore,

vT (Σ − Ση)v ≤

√
C ′

(1 − 2b2)4

{
ln p

|Φ−1(b2)|
2 +

p
en1/7

}
.

Since {ln(pn)}7/n → 0 as n, p → ∞, we have p/en
1/7

= o(1). Furthermore, if 1/|Φ−1(b2)| = o(1/
√
ln p), then, as n, p → ∞,

v⊤(Σ − Ση)v = o(1). That is, ∥Σ − Ση∥op < ε0.
Next, we want to show that (a) and (c) imply (d). Let A = Σ and B = Ση − Σ. Then by Lemma A.1,

∥Ωη − Ω∥op ≤ ∥Ωη∥op∥Ω∥op∥Ση − Σ∥op ≤ λ−1
min(Ση)λ−1

min(Σ)∥Ση − Σ∥op, (A.10)



328 W. Wang et al. / Journal of Multivariate Analysis 169 (2019) 312–329

and similarly,

∥D−1
η − D−1

∥op ≤ ∥D−1
∥op∥D−1

η ∥op∥Dη − D∥op = ∥D−1
∥op∥D−1

η ∥op∥Dη − D∥∞

≤ ∥D−1
∥op∥D−1

η ∥op∥Ωη − Ω∥op ≤ ∥D−1
∥op∥D−1

η ∥opλ
−1
min(Ση)λ−1

min(Σ)∥Ση − Σ∥op. (A.11)

Note that

∥Rη − R∥∞ ≤ ∥Rη − R∥op

= ∥(D−1
η ΩηD−1

η − D−1ΩηD−1
η ) + (D−1ΩηD−1

η − D−1ΩD−1
η ) + (D−1ΩD−1

η − D−1ΩD−1)∥op

≤ ∥D−1
η − D−1

∥op∥Ωη∥op∥D−1
η ∥op + ∥D−1

∥op∥Ωη − Ω∥op∥D−1
η ∥op

+ ∥D−1
∥op∥Ω∥op∥D−1

η − D−1
∥op. (A.12)

Combine (A.10)–(A.12). Since ∥Ση − Σ∥op < ε0, and all the remaining terms are uniformly bounded above by (K−1
0 − ε0)−1,

we have ∥Rη − R∥∞ ≤ 3(K−1
0 − ε0)−6ε0. So, we can make ε0 sufficiently small such that ∥Rη − R∥∞ ≤ (1− r1)/2. Therefore,

∥Rη∥∞ ≤ r1 + (1 − r1)/2 = (1 + r1)/2. Let r2 = (1 + r1)/2 < 1. Then, (d) holds as desired.

A.4. Proof of Theorem 4

First note that

∥Σ̂η − Ση∥∞ = ∥Σ̂η − Sn∥∞ + ∥Sn − Σ∥∞ + ∥Σ − Ση∥∞.

It is known from [7] that ∥Sn − Σ∥∞ = OP {
√
ln(p)/n} and from the proof of Lemma 1 that ∥Σ − Ση∥∞ = o(1). By the

definition of Σ̂η, ∥Σ̂η − Sn∥∞ = o(1) given Sn. Thus, we can have ∥Σ̂η − Ση∥∞ = OP {
√
ln(p)/n}. Then, by the proof of

Theorem 5 in [8], it suffices to show ∥Ωη∥L1 ≤ Mp withM2
p = o{

√
n/(ln p)3/2}.

Observe that

∥Ωη∥L1 = max
j∈{1,...,p}

p∑
i=1

|wij| = max
j∈{1,...,p}

p∑
i=1

|r∗

ij |

√
σ ∗

ii σ
∗

jj

≤ C max
j∈{1,...,p}

p∑
i=1

|r∗

ij − rij + rij|
√

σiiσjj because for any i, σ ∗

ii ≍ σii

≤ C max
j∈{1,...,p}

p∑
i=1

|rij|
√

σiiσjj + C max
j∈{1,...,p}

p∑
i=1

|r∗

ij − rij|
√

σiiσjj

≤ C∥Ω∥L1 + CK0 max
j∈{1,...,p}

p∑
i=1

|r∗

ij − rij|.

It is known from [26] that the population Winsorized covariance σ ∗

ij is 0 if σij = 0 . Since

max
j∈{1,...,p}

p∑
i=1

1(|vij| > 0) ≤ Mp,

we have

max
j∈{1,...,p}

p∑
i=1

|r∗

ij − rij| ≤ ∥Rη − R∥∞ max
j∈{1,...,p}

p∑
i=1

1(|vij| > 0) ≤ Mp.

Together with ∥Ω∥L1 ≤ Mp, we have ∥Ωη∥L1 ≤ Mp, as desired. □

Appendix B. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jmva.2018.09.013.
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