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Abstract. In distributed machine learning, while a great deal of attention has been
paid on centralized systems that include a central parameter server, decentralized
systems have not been fully explored. Decentralized systems have great potentials
in the future practical use as they have multiple useful attributes such as less
vulnerable to privacy and security issues, better scalability, and less prone to single
point of bottleneck and failure. In this paper, we focus on decentralized learning
systems and aim to achieve differential privacy with good convergence rate and low
communication cost. To achieve this goal, we propose a new algorithm, Leader-
Follower Elastic Averaging Stochastic Gradient Descent (LEASGD), driven by a
novel Leader-Follower topology and differential privacy model.

We also provide a theoretical analysis of the convergence rate of LEASGD and
the trade-off between the performance and privacy in the private setting. We
evaluate LEASGD in real distributed testbed with poplar deep neural network
models MNIST-CNN, MNIST-RNN, and CIFAR-10. Extensive experimental
results show that LEASGD outperforms state-of-the-art decentralized learning
algorithm DPSGD by achieving nearly 40% lower loss function within same
iterations and by 30% reduction of communication cost. Moreover, it spends less
differential privacy budget and has final higher accuracy result than DPSGD under
private setting.

1 Introduction

With data explosion and ever-deeper neural network structures such as VGGnet [1] and
Resnet [2], distributed learning systems play an increasingly important role in training
large-scale models with big training data sources [3][4][5]. Training time can be greatly
reduced by dividing the data set into subsets and distributing them over different workers
to train the model concurrently known as data parallelism [6]. Many modern machine
learning systems extend the data parallelism concept from data center clusters to the
server-client scenario, where clients help train a global model by iterating the model
over their own private data sets.
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Most distributed learning systems have centralized parameter server(s) to maintain
a global copy of the model and coordinate information among workers/clients. How-
ever, such system topology is vulnerable in privacy because once the central server(s)
is compromised, information of the entire system can be exposed [7]. Decentralized
distributed learning systems are less vulnerable to privacy as the critical information such
as training data, model weights, and the states of all workers can no longer be observed
or controlled through a single point of the system [8], which greatly reduces the risk
of privacy leakages. Moreover, decentralized systems are more robust to problems like
communication bottleneck and single point of failure compared to the centralized design.
Despite all these advantages over centralized topology, decentralized systems usually
perform worse in convergence rate and are known to have higher communication cost
due to the multi-way communication behaviors, especially the connection across the
network is relatively intricate. In addition, most of the decentralized systems still can
not guarantee deferentially privacy [9][10]. There are several recent works try to solve
some of the above problems of decentralized learning systems. For example, DPSGD [9]
focuses on improving communication efficiency and convergence rate of decentralized
learning systems. However, it is not deferentially private. [8] is the recent work that
considers both decentralized design and differential privacy. However, it is based on
a simple linear classification task, not a good representation of the modern neural net-
works, which have much more complex and deeper structures. To this end, we propose a
new algorithm called Leader-Follower Elastic Averaging Stochastic Gradient Descent
(LEASGD), which provides differential privacy with improved communication effi-
ciency and convergence rate. To improve both the communication and training efficiency
while also facilitate differential privacy preserving, we propose a novel communication
protocol that is driven by a dynamic leader-follower design. Workers with temporal
better learning performance and can speedup the learning of followers to improve learn-
ing efficiency. The parameters are only transferred between the worker-follower pair,
which significantly reduces the communication amount. To satisfy differential privacy,
we follow the approach proposed in [11] to add stochastic noise on the information
transmitted. We calibrate the noise scale by analyzing the sensitivity of the updating
functions in our algorithm and further demonstrate the trade-off between accuracy and
privacy theoretically. LEASGD adopts the insight of the Elastic Averaging Stochastic
Gradient Descent (EASGD) algorithm [12] by exerting the elastic force between the
leader and follower at each update. Inspired by [13], we use momentum account to
quantify the privacy budget which provides a tighter bound of privacy budget e than the
classical Strong Composition Theorem [14]. Additionally, we mathematically prove the
convergence rate of LEASGD.

To conclude the comparison, we comprehensively evaluate our algorithm and com-
pare it with the state-of-the-art approach DPSGD [9] on three main aspects: the con-
vergence rate, the communication cost, and the privacy level. The theoretical analysis
shows LEASGD converges faster than DPSGD after enough iterations. The experimental
results on MNIST-CNN, MNIST-RNN, and CIFAR-10 show LEASGD achieves higher
accuracy within the same iterations and within the same communication than DPSGD in
the non-private setting. Also, it outperforms DPSGD by spending less privacy budget
and reaching higher accuracy in the private setting.
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2 Related Work

Decentralized Distributed Learning Algorithm. Different from centralized distributed
learning algorithms, decentralized algorithms do not need any central entity. Every
workers maintains its own copy of the training model and directly communicates with
other workers. Many decentralized algorithms aim at solving distributed consensus
problems [15][16][17], which is also the goal of our paper. Lian et al. [9] proposed
DPSGD, which outperforms centralized algorithms by achieving the same convergence
rate with lower communication complexity. All the decentralized algorithms mentioned
above depend on a double stochastic matrix to organize the communication, which is
hard to obtain and tune in real-life applications and they also do not implement their
algorithms in a privacy-preseving setting. Moreover, adversarial attackers who reveal this
matrix can easily obtain the model information by doing a simple linear combination,
and even worse, to reveal the private data. Yan et al. [10] developed a scheme to prevent
such attack, but the scheme depends on a specific communication topology. Our privacy-
preserving scheme is not limited by any specific communication topology and we
coordinate the communication in a random manner to reduce vulnerability.

EASGD. EASGD is first proposed by Zhang et al. [12] to solve the distributed
consensus optimization problem. The basic idea is to let multiple workers pull a single
master to the global optimum and the movement of model parameters is proportional to
the distance between workers and master, which is so-called elastic force. They show
EASGD can achieve final better accuracy than the DOWNPOUR [18] and other parallel
algorithms and converge even faster in its momentum version EASGD. However, the
communication topology in EASGD highly resembles a centralized one. The master in
its algorithm plays a similar role as the central node. Moreover, they did not consider
any privacy constraints in their algorithm.

Differential Privacy in Machine Learning Differential Privacy (DP), first pro-
posed by Dwork, provides a specific quantitative method to measure and protect privacy
[11]. It was then studied and applied to fields in Machine Learning. For instance, Kairouz
et al. [19] studied utility and privacy trade-off of different mechanisms under local DP
setting. Abadi et al. [13] proposed differential privacy SGD and suggested the momen-
tum account method to compute a much tighter bound of ¢, § privacy budget (which we
also adopt in this paper) than classical strong composition theorem [14]. For distributed
machine learning, Bellet et al. [8] proposed a completely decentralized and asynchronous
algorithm to solve personalized optimization problem and also use DP in their privacy-
preserving method. However, they did not compare with other parallel algorithms in
the private setting and their experiment only focused on simple linear classification task
and light-weight dataset, MovieLens-100K, rather than a more complex data set such as
CIFAR-10 on which we conduct the experiment for our method. Furthermore, the model
in their experiment is a simple p-dimensional vector. It is not clear whether their method
could be applied for deeper neural networks, which we demonstrate in our experiments.

In [20], the basic idea of LEASGD is outlined and some preliminary analysis and
evaluation results are present. The current extended version of this paper provides a
more detailed description of the LEASGD approach, as well as a more comprehensive
theoretical analysis and experimental evaluation.
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3 Non-private Leader-Follower Elastic Averaging Stochastic
Gradient Descent Algorithm

In this section, we introduce LEASGD in a non-private setting. The proposed algorithm
includes both the model update at each worker and the communication protocol among
workers. We start with the synchronous version (Algorithm 1) and then extend it to the
asynchronous version (Algorithm 2), which is more commonly used in practice.

3.1 Problem Setting

Without loss of generality, we follow the problem setting of distributed decentralized
autonomous learning in [10]. We assume there are m workers each with a set of local
data S; and i € {1,2......m}, which can only be accessed locally by worker 4. To solve
consensus problem, we assume all data sets .S; are homogeneous but can have different
data distributions. Along the training process, each worker ¢ computes a parameter
vector w; at each iteration ¢ to represent the learning outcomes and then computes the
corresponding loss function f{(w') = I(w{, 2%, yi) with the input z¢ and given labels
yi. It is worth noting that fed data {xi,y!} C S,. After learning from the data, each
worker has two ways to contribute to the global learning progress: 1) Update its model
parameters by local gradient descent; 2) Communicate with other workers to update
each other’s model parameters. To reduce the communication cost, communication is
not always required at the end of each iteration. We define a communication interval 7
to represent how many iterations between each update in our learning algorithm. When
the training process is done, each worker has its own variation of the same model (i.e.,
performing the same task but with different trained model parameters w®). This is quite
different compared to the personalized distributed learning [8], where different workers
have completely different models to solve personalized problems. It is also different
from [9], where all workers have the same version of the model.

Given each worker has its own local version of the model, it is necessary to assemble
all local models by averaging the loss function. We formulate it as an optimization
problem as follows:

w* = {w!, ..., w™}, (1)
- 1 <
argmin F(w,T) = — Zf%(w’),s.t.ﬂ CR"andT € R, (2)
wieQ m i—1

where T presents the predefined number of iterations in 7.

3.2 Decentralized Leader-Follower Topology

To support the decentralized design, we categorize all workers into two worker pools -
leader pool with workers of higher loss function values and follower pool with workers
of lower loss function values, see Figure 1(a). The core idea is to let followers to pull
so that better performing can guide the followers in the right direction to improve the
learning. Specifically, we use an elastic updating rule to regulate the learning updates in
each leader-follower pair as follows:
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Algorithm 1: Synchronous Follower Elastic Averaging Stochastic Gradient De-
scent Gradient Descent
1: Require: number of workers m, number of followers L, categorization interval k,
communication interval 7, elastic factor p, learning rate n

2:
3: fort=1,2,...... ;T do
4:  ift mod kT is O then
S: if ¢t = 0O then
6: randomly select L followers [, ...... L
7: else
8: sort m based on loss f and select top L
9: Iy L = argmazL fi(w")
i=1,....m
10: end if
11:  endif
12:  if t mod 7 is O then
13: for workers: i € {l1,......,I.} do
14: local SGD updating
15: end for
16: for workers: ¢ ¢ {1, ...... i} do
17: randomly select a follower f from follower pool
18: transmit parameter vector with f and do elastic updating
19: end for
20:  else
21: for all workers: ¢ € {1, ...... ,m} do
22: local SGD updating
23: end for
24:  endif
25: end for

whyy = wi —ngi +np(w! —wj) and wlyy =w] —ng] +np(wj —w]). 3

We use 7 to denote a leader; f is a follower; k is the categorization interval; p is elastic
factor; g is gradient; and 7 is learning rate. Given learning is a dynamic process, the two
worker pools are dynamically updated based on the learning progress. The pools are
recategorized each k7 time interval. This protocol enables the convergence rate of our
algorithm to have a limited upper bound, which will be discussed in detail in Section 5.
To avoid over-fitting to one worker’s model during the training process, we add the
L2-normalization on the training loss function:

fi(w') = Uwi, o, 5;) + A w' |2 S

We also randomly pair the leaders and followers after each learning updates to
avoid one follower’s model having excessive influence on others. This randomization
mechanism also benefits the privacy-preserving as randomized communication can
confuse the attacker and make it more difficult to trace the information source.
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Fig. 1: The dynamic Leader-Follower topology. (a) shows the structure of leader pool
and follower pool. (b) shows a recategorization phase where one of the workers is elected
as recategorized worker and gathers the latest loss function values from all other workers.
(c) shows the new structure of leader pool and follower pool after recategorization (note
the randomization used for avoiding over-fitting).

3.3 Algorithm Hyperparameters

Next, we discuss in details of the hyperparameters in our algorithm.

Elastic factor p : This hyperparameter adjusts the exploration and exploitation trade-off
in our learning algorithm. A large p represents more exploitation, which leads to a
faster convergence rate at the beginning of training process especially in a convex case.
However, workers can fall into a local optimum easily because the tight relations of
the follower prevent them from further exploring the parameter space and this may
compromise the final accuracy. On the the other hand, a rather small p leans towards
exploration which could avoid this to some extent, but it also causes a much slower
convergence rate and thus compromises the accuracy within the predetermined number
of iterations. Selecting a well-balanced p is therefore important for the final accuracy.

Number of Followers L : Similar to p, this hyperparameter reflects learning aggres-
siveness. Small L enables more to guide followers to improve the convergence rate, the
formal analysis is provided in Section 5.1. However, if L is too small, the communication
between and followers would increase. More importantly, workers with bad learning
progress can be incorrectly categorized as leaders and thus could not receive help from
workers with good learning progress, which can eventually result in worse final accuracy.
Categorization Interval k: It represents how frequently we recategorize and followers.
A rather frequent categorization can ensure that and followers are timely identified.
However, each categorization comes with a communication cost as the loss function
values need to be collected and so a smaller £ means higher communication cost. Our
key insight here is that k£ can be set smaller at the beginning of the training process
as workers’ local models usually change more dramatically during that time and have
more variance between them. As the training progresses, the loss function values tend
to be more stable and we can decrease the recategorization frequency to reduce the
communication overhead.

3.4 Asynchronous LEASGD Algorithm
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Algorithm 2: Asynchronous Follower Elastic Averaging Stochastic Gradient De-
scent Algorithm

1: Require: all workers have the same follower list F', this worker index w,
current iteration t;, communication interval 7, categorization interval k

2:
3: if w is a follower then
4:  compute local SGD
5: else
6:  ift; mod 7 is O then
7: randomly select follower f € F'
8: transmit parameter vector to f and do elastic updating
9: else
10: compute local SGD
11:  endif
12: if t; mod k7 is O then
13: for all f € F'do
14: get f’s loss function value [ f
15: get w’s loss function value [,,
16: if find [y < [, then
17: recategorize all workers’ follower pool by replacing f with w
18: break
19: end if
20: end for
21:  endif
22: end if

Next, we introduce LEASGD in the asynchronous manner as shown in Algorithm 2.
To make our learning system fully asynchronous and decentralized, there is no global
clock to coordinate all workers nor a global supervisor to master all workers. We set
the number of wake up iterations as ¢; for different workers according to a Poisson
Stochastic Process with different arrival rate \; based on local clock time ¢, that is
Plt;(t + At) — t;(t) = k] = M The larger the )\;, the more frequently
the worker updates its model. Moreover, the worker pools also updated asynchronously
as shown in Line 17-24 in Algorithm 2. Such mechanism may not guarantee all the
leaders and followers are identified timely, but it reduces the communication cost of
recategorization.

Note that the stochastic gradient descent in the algorithm can be replaced by other
gradient descent optimization methods such as the mini-batch gradient descent without
affecting the theoretical results.

4 Private-preserving Scheme

In this section, we consider the privacy-preserving setting of the proposed algorithm. We
first explain the notion of differential privacy, which serves as the theoretical foundation
for our scheme. We then introduce our privacy-preserving scheme and the privacy budget
€ spent along the iterations.
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4.1 Differential Privacy Model

Despite there is no direct exchange of raw data in the communication, the risk of leaking
the data still exists when we transmit the parameter vectors. If the two consecutive
transmitted vectors w] and w}_ ; are from same worker i, the attacker can easily derive
the gradient by subtracting one vector from the other and due to the gradient g; is
proportional to the raw data z¢. More details about this type of attack can be referred
to [10].

There are several methods proposed to preserve the privacy of distributed learning
systems and prevent eavesdropping in the communication network. For example, Yan
et.al. proposed a series of communication topologies to prevent the sensitive message
from leaking to malicious workers [10]. In this work, we rely on a more general and
flexible theory that does not depend on specific topology specified in the differential
privacy theory in [11]. The basic property of differential privacy mechanism is that under
a little perturbation of the input of the algorithm, the change of its output’s probability
distribution is within a limited bound. The specific definition is as below:

Definition 1 A randomized mechanism M with domain D and range R satises (e, )-
differential privacy if for any two adjacent inputs D, D' € D and for any subset of
outputs S C R it holds that

Pr(M(D) € 8) < e“Pr(M(D') + 4. 5)

When differential privacy applied in the machine learning, adjacent inputs D, D’
refer two datasets that are only different at one training sample and the randomized
mechanism M is the training update algorithm. In our setting we use elastic updating
rule in Eq. 3. The factor € in Eq. 5 denotes the privacy upper bound to measure an
algorithm and ¢ denotes the probability of breaking this bound. The ¢ is generally set
smaller than the reciprocal of the number of samples in the local data set S;, which
ensures that none of the samples can be revealed by the differential private attack.

4.2 Privacy-preserving Scheme

The general idea to preserve differential privacy is to add noise on the output of the
algorithm and the noise scale is based on the sensitivity of the output function as defined
in[11].

Definition 2 - For f : D — R%, the L2 — sensitivity of f:
Af =maz |l f(D) = £(D2) |12 (6)
for all Dy, Ds differing in at most one element.

For different input data, Eq. 3 only differs in the gradient g} part. In other words, the
sensitivity of the updating rule of LEAGSD is same as the gradient g:. Thus we use
the similar scheme as the differentially private SGD algorithm in [13]. To limit the
sensitivity of gradient, we clip the gradient into a constant C. The clipped gradient

7. = g /max(1, %) Then, we add Gaussian noise on the clipped gradient

g =9, + N(0,03C%). ™
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By using i to replace g} in equation 3, we obtain the differential-privacy preserving
scheme of LEASGD as:

Wiy, =W —ngi +np(w] — @) and W], =) —ng; +np(wi —@p).  (8)

When we choose the variance of Gaussian noise oo = 7”2ln(€1'25/6), we ensure that each
communication step of LEAGSD is (¢, §)-DP. Using the property of DP-mechanism
in [14], the composition of a series of DP-mechanisms remains DP, which guarantees
that for each worker 4, its training algorithm M; at each iteration is DP. To compute
the total (e, d), we don’t use the strong composition theory [14]. Instead, we use the
momentum account method [13], which provides a much tighter bound of € to evaluate
the privacy-preserving performance of our algorithm.

5 Analysis

5.1 Convergence Rate Analysis

In this section, we conduct a convergence rate analysis for Synchronous LEASGD in
a strongly-convex case and also compare it with the DPSGD theoretically. Before we
show the result of the convergence rate, we first introduce some assumptions held in the
analysis.

Assumption 1 These assumptions are held throughout the analysis:

1. i.i.d. Assumption: We divide our system into several sub-systems with only 1 follower
and p leaders. And all the variables in these sub-systems are i.i.d.

2. Correct Categorization: Assume that since the categorization step in Algorithm 1 is
implemented, the identity of all workers will not change until the next categorization

3. Bounded Stochastic Gradient: Assume that the variance of all the local gradients is
bounded for any w for any workers from 1, ..., m and input . There exist constant oy
such that

Elgi = f(w)] =0 and E[|gi—f(w}) ] <of. 9)

4. Strongly Convex Condition: We focus on the strongly-convex case in this analysis.
Correspondingly, there exists 0 < p < L for all the loss functions described in Eq. 4, we
have:

p | wi = w;i [P< AT fwi), 7 f(wy)) < L wi —w; || (10)
We define that
EYY || wi—w |2 +E | wf —w* |2
dy = : (11)
p+1
Proposition 1 (Convergence rate of Algorithm 1) If0 < n < % and 0 < a =

np < 1,0 < B = pa < 1, then we obtain the convergence of d; as follows:
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2 2 t
oy ¢ D\t 2 21—h
d; < htdy + (co — 1— 1—(—)Y+nc )
¢+ < h'do + (co ) =) (p+1)) T
1-— 1-— L
whev"60<h:p(7’y)<1,k:77,'y:277’ui7 (12)
p+1 p+1 w+ L
andcy = mazr || wh —w* ||*.
1=1,....p,f

Under the Assumption 1.1, we simplify our system by dividing it into several subsystems
and each includes only 1 follower and p leaders. We assume that the convergence rate of
each subsystem is same as that of the whole system. To obtain this convergence rate, we
rely on the following theorem.

2

Theorem 1 Letyt:% P whar=FE |y —w* ||% b = 1 P LE | wi—w* |

"% a=mnp B =pay =2t 1f0<77<2(1’3)0<a<

_Eluf -
1,0 < B < 1, then

bt+1 < (1 -y — O[)bt + acy + 77 0'1, (13)
Ct+1S(1f’}/fﬂ)Ct+ﬁat+T] 0'1. (14)

Proof of Proposition I: from the sorting rule and the Assumption 1.1, we can easily
obtain the inequality relation of a;,b:,c; and d

ar <dy < oand by <dp <y (15)
Applying (15) in (14) and iterating through ¢ times, we have

1—(1—n)
et < (1 —7)lteg + 1720%(77). (16)

Now replacing d; = 2 Z;fft in (13), (14), we have
dy < hdy_1 + keo_y + 10l (17)

Applying (15) in (16), we have:

n?o? k
dy < hdy—1 + k(co — L=+ (1 + 7)77205. (18)
Iterating ¢ times though this inequality, we have
7701 (1—7~)t—ht k. 5 o1 —nht
di < h'dy+k 14— N 19
¢ < h'do + k(co ) [— +(+7)n011—h (19)
To simplify (19), we note that
k+h=1-7, (20)
VNS R 55 +14+12 +1
Y — Y — b Y — b Y — l (21)
I1—h 2= ptl-p(l-9) 14+py =~

p+1
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So (19) can be rewritten as

2 2
n-oi

dt S htdo + (CO —

1—nht
A=) (1= I Hafet = @)

This concludes the proof.

Under this proposition, it implies that the average gap between all workers and
optimum in a subsystem includes three parts, which could also be applied to the whole
system based on Assumption 1.1. The first part is a shrinkage part of itself by a constant
factor 0 < h < 1, which shows a exponential decreasing relationship between the gap
and iteration . The second part is tend to be 0 with the increase of ¢. The third part is a
inherent noisy part with the variance of n?c3. If we ignore the influence of the inherent
noise on the gradient and extend ¢ — oo, we can obtain an purely exponential decline of
the gap, thatis F[d;y1] < hE[d;]. Note that the shrink factor & is negatively correlated
to p, which implies that, when our system is operating in a strongly convex setting, the
larger worker scale can correspondingly result in a faster convergence rate of the system,
which is in line with the hyperparameter analysis above.

According to the convergence rate analysis in DPSGD [9], its convergence rate is
O(1/[(p + 1)t]) with our denotation in the strongly-convex setting. Compared with our
O(h') rate, the convergence rate of DPSGD is relatively slower when we extend the
t — oo.

5.2 Privacy Trade-off Analysis

In this section, we provide the trade-off analysis between the accuracy and privacy.
Following the convergence rate analysis above, we can obtain the modified convergence
rate of d; after adding the extra noise as the only part that needs to be changed is the
third part of equation 12. In the private setting, the noise is composed of two different
parts. First, the inherent noise, which is the same as defined in Assumption 1.3. Second,
the differential-privacy preserving noise, which is defined in the equation 7.

We assume that the two noise is independent of each other. Thus, the variance of
the composed noise is the sum of the two independent noise variances and it satisfies
0% < 0} 4+ C?03. Finally, the convergence rate in the private setting is as below:

Proposition 2 (Trade-off for privacy) With the limits held in the Proposition 1, we can
obtain the convergence of d; after adding the Gaussian Noise:

2 2 1— ht

de < Wdo - (co = ) (1 =) [ = (1) ] 0P =

2 2 t
1—-h
<hdo+ (eo = ) (1 =) = L) T+ nfol = +0*CPo3

L pt (23)

According to this proposition, the extra trade-off for privacy is n?C?c3 1’7}” and

when ¢t — oo, this trade-off can be formulated as M. Note that this trade-off remains
the same when p grows, which implies that our algorithm has stable scalability when
applied in the private setting. In other words, despite the group of workers become
larger, the noise in the communication is not accumulated to further compromise the
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Fig. 2: Comparison between LEASGD, DPSGD, and PS. Training Loss VS Iterations
for (a) MNIST-CNN, (b) MNIST-RNN, and (c) CIFAR 10. Training Loss VS Number of
Transmitted vectors for (d) MNIST-CNN, (e) MNIST-RNN, and (f) CIFAR 10.

performance. Additionally, this analysis is under the assumption of strongly-convex
setting. In fact, when applied in a non-convex setting, the adding noise in an appropriate
scale could improve the performance as the noise motivates workers to explore more
space and it becomes easier for those workers in the local optimum to get out of it.

6 Experimental Evaluation

6.1 Experiment Setup

Non-private setting setup. In this setting, we perform experiments using MNIST-CNN,
MNIST-RNN, and CIFAR-10. The structure of MNIST-CNN is a 3-layer Multi-layer
Perceptron (MLP), and the MNIST-RNN has 32 hidden layers. For CIFAR-10, we use
the ConvnetJS [21] as the model.

Private setting setup. In this setting, the neural network models and hyper-parameters
are the same as in non-private setting. We test two algorithms of different worker sizes
of m = 5, 15, respectively shown in Table 1 . Additionally, we tune the elastic factor
p = 10 for MNIST-CNN and p = 100 for CIFAR-10. For the private factors, we set
Gaussian noise variance o = 4, clipping constant C' = 4, and fixed & budget § = 1075,

6.2 Non-private Setting Comparison

Accuracy Comparison. We first conduct experiments on a cluster of 15 nodes to com-
pare our LEASGD against DPSGD in the non-private setting for MNIST-CNN and
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Fig. 3: Scalability of LEASGD (m is the total number of nodes).

CIFAR 10 models. For the MNIST-RNN model, we compare against Parameter Server
(PS) as DPSGD does not support RNN models.

DPSGD has various communication topologies when communication matrix is set

differently. We only test the ring topology for simplicity, which allows each worker to
accept the information from two other neighbor workers. The training loss as a function
of iterations is shown in Figure 2 (a)(b)(c), which demonstrate that LEASGD converges
faster than DPSGD and PS at the beginning of the training process and also achieves a
lower loss function at the end across all models.
Communication Cost. To quantitatively evaluate the communication cost, we track the
average training loss of all workers with regard to the number of transmitted vectors as
shown in Figure 2 (d)(e)(f). The results verify that LEASGD also outperforms DPSGD
and PS in the efficiency of communication usage as within the same number of transmit-
ted vectors, the loss function of LEASGD almost always under that of DPSGD and PS
across all models.

Theoretically, in each iteration, LEASGD has less transmitted vectors compared to

DPSGD and PS even though communication in LEASGD is two-way instead of one-way
in DPSGD. In LEASGD, the number of transmitted vectors per iteration is (m — L) x 2
(14 in this experiment). In DPSGD, the number of transmitted vectors per iteration
is the sum of numbers of neighbors of all workers, which is typically 2m (20 in this
experiment) in a ring network.
Scalability. We also evaluate the scalability of LEASGD using MNIST-CNN and
MNIST-RNN by varying the number of total nodes from 10 to 20 while keeping the
percentage of leaders at 75%. The results are organized in Figure 3, where we can
see LEASGD outperforms PS across all cases. We also observe that the training loss
becomes slightly worsen when the number of nodes increases, but the degrading speed
becomes slower, i.e., the gap between 20 nodes and 15 nodes are much smaller than the
gap between 15 nodes and 10 nodes. This indicates that LEASGD scales well.

6.3 Differential Private Comparison

In the private setting, we use the momentum account to compute the totally spent e
and the adding noise scales are the same for two algorithms. As shown in Table 1,
LEASGD achieves better accuracy with less € than DPSGD. More importantly, the final
accuracy of our algorithm does not vary greatly when the worker scale m increases.
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MNIST - CNN | | CIFAR-10 - CNN
Algorithm Final accuracy Total € Algorithm Final accuracy Total €
LEASGD (m=5) 0.97 4.183 LEASGD (m=5) 0.74 4.655
DPSGD (m=5) 0.97 4.505 DPSGD (m=5) 0.71 4.925
LEASGD (m=15) 0.97 4.651 LEASGD (m=15) 0.72 4.116
DPSGD (m=15) 0.95 4.843 DPSGD (m=15) 0.68 4.56

Table 1: Private setting result of final accuracy and e.

We believe this result benefits from two attributes of LEASGD: 1) the DP noise helps
improve the accuracy by encouraging space exploration and helping workers trapped
in local optimum to get out [22]; 2) the great scalability that prevents DP noise from
accumulating when the worker scale expands.

7 Conclusion

In this paper, we propose a new decentralized algorithm LEASGD for training deep
neural network with differential privacy. LEASGD ensures differential privacy with
improved convergence rate and communication efficiency, thanks to the novel leader-
follower protocol and privacy-preserving schemes. We theoretically prove its exponential
decreasing convergence rate as a function of iterations and good scalability. We also
provide a thorough analysis of the performance and privacy trade-off. The real distributed
testbed evaluation results show LEASGD outperforms the state-of-the-art decentralized
learning algorithm DPSGD in both convergence rate and privacy budget.
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