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We also develop a new approach, where the eigenvalue distribution is found as an equilib-
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Introduction

One of the striking predictions of string theory is the existence of a vast energy land-

scape with a multitude of vacuum states [1, 2]. The landscape can be described by a

multi-dimensional scalar potential U(¢); then the vacua correspond to local minima of this

potential. In the cosmological context, positive-energy vacua drive the inflationary expan-

sion of the universe, and transitions between different vacua occur by quantum tunneling

through bubble nucleation. The same kind of scenario is suggested by other particle physics

models with compact extra dimensions. For a review of this multiverse picture see, e.g.,



ref. [3]. The expected number of vacua in the landscape is enormous, so predictions in this
kind of theory must necessarily be statistical.

The details of the high-energy vacuum landscape are not well understood, and it is
often modeled as a random Gaussian field. The statistics of vacuum energy densities and of
slow-roll inflation in such a landscape have been extensively studied in the literature [4-18].
Another well studied model is the axionic landscape, which can also be approximated by a
random Gaussian field in a certain limit [11, 19-23]. One of the key mathematical problems
to be addressed in these models is to find the eigenvalue distribution of the Hessian matrix
Gij = 0*U/ 0¢;0¢;. The potential minima correspond to the points where 0U/d¢; = 0
and all Hessian eigenvalues are positive, and the stability of the vacuum depends on small
eigenvalue end of the Hessian spectrum. The dynamics of slow-roll inflation also depends
on the smallest eigenvalues, which determine whether or not inflation is multi-field, with
more than one field being dynamically important.

The Hessian eigenvalue distribution in a random Gaussian field has been found in
ref. [24] using the saddle point approximation in the leading order in the large-N ex-
pansion, where N is the dimensionality of the landscape. This approximation, however,
becomes inaccurate for very small eigenvalues, where sub-leading terms play a significant
role. In the present paper we extend the method of ref. [24] to account for the sub-leading

1 We also develop a new method, based on a version of Dyson Browninan

contributions.
motion [27], which can be applied in cases where the other method fails. In this new
approach, the eigenvalue distribution is obtained as an equilibrium distribution of the
Brownian stochastic process. The results of the two approaches agree in cases where both
methods are applicable. We use our results to estimate the typical magnitude of the small-
est Hessian eigenvalue at a local minimum of the potential and discuss its implications
for the vacuum stability and for the dynamics of slow-roll inflation. We also calculate the
density of minima in a random Gaussian landscape. The result is consistent with earlier
numerical calculations for N < 100 and extends them to larger values of N.

The paper is organized as follows. In the next section we specify the model of a random
Gaussian landscape, review the probability distribution of the Hessian in this model, and
clarify its relation to Wigner’s random matrix model. In section 3, we use the saddle
point approximation to calculate the Hessian eigenvalue distribution at a generic point in
the landscape, under the condition that all eigenvalues are larger than a given threshold.
In section 4, we extend the analysis to stationary points of the landscape. We find the
probability for a stationary point to be a minimum and estimate the smallest Hessian
eigenvalue at a minimum. Then in section 5 we develop a new method, based on Dyson
Brownian motion, and use it to find the eigenvalue distribution at stationary points. Some
cosmological implications of our results are discussed in section 6. Our conclusions are
summarized in section 7. In appendix A we discuss axionic landscapes and show that
under certain conditions they can be approximated by random Gaussian fields. We use the
reduced Planck units (Mp) ~ 2.4 x 10'® GeV = 1) throughout the paper.

! Alternative ways of going beyond the standard saddle point approximation have been discussed, in a
different context, in refs. [25, 26].



2 Random Gaussian fields

2.1 Correlators

We consider a random Gaussian landscape U(¢), defined in an N-dimensional field space
¢, which is characterized by the average value U = (U(¢)) and the correlation function

W)U (62)) = U = Fllds = da)) = e [ @k PERENE0) . (1)

Here, k = |k| and angular brackets indicate ensemble averages. We assume that the
correlation function rapidly decays at [¢1 — ¢2| > A and the potential has a characteristic
scale Uy. We define different moments of the spectral function P(k) as

02 = (2;)N /de;k:Z"P(k) . (2.2)

In appendix A, we show that under certain conditions this type of random fields can be

used to approximate axionic landscapes.
As an illustration, we may use the following correlation function:

F(¢) = Uge /22, (2.3)

with A playing the role of the correlation length in the landscape. In this case, the moments
are given by

2_2nr(”+%)U73

=—— =7 : 24
oy, DAy A (2.4)
In the large-N limit the moments are of the order
N n
ﬁN%(M>. (2.5)

In the rest of this paper, we do not use the above explicit form of the correlation function,
but generically assume only the dependence of eq. (2.5).

Let us consider the potential around a given point in the field space and expand it in
a Taylor series. Since the values of the potential at nearby points are correlated with one
another, the coefficients of the Taylor expansion should also be correlated. In particular

we have
{Ug) =0 (2.6)
(U¢)-0)*) =E (2.7)
(U(9)Gij(@)) = Bdij (2.8)
(Cij (@)Cri(@)) = A (0ij0k1 + 0irbj1 + Gurdi) (2.9)
mi(@)U(#)) = (ni(P)Gij (@) =0, (2.10)

where n; = U /9¢; and (;; = 0°U/0¢;0¢; is the Hessian matrix. The parameters E, B, A
are related to the moments (2.2) as

2
1
E=¢2, A=-—22 _ pB—__42, 2.11
90> N(N +2)’ N1 (2.11)

From eq. (2.5), we expect that A, B, E are O(N°) in the large N limit.



2.2 Probability distribution

The probability distribution for U and (;; can be found by taking the inverse of the corre-
lation matrix. The resulting distribution is [14, 24]

P(U,¢) x e Quec (2.12)
where
B (N +2)A 1 2 B _
QU (N T AE - NB? <2 v-0)"- (N+2)4 (U~ U) T
AE — B2

1
- _(Tr()? —Tr¢? . (213
N 1222 T > Fane s 213
Note that the combination AE — B? must be positive (or zero), since otherwise the distri-
bution cannot be normalized.
The cross term in eq. (2.13) can be absorbed by a constant shift of the eigenvalues of
the Hessian using the relations

[Tr (¢ — M) = (Tr¢)? — 2NATr¢ + N2)22 (2.14)
Tr [(g - A*I)ﬂ = Tr (¢2) — 20 Tr¢ + NAZ, (2.15)

and setting
A\(U) = % (U-0), (2.16)

where [ is the identity matrix. This implies that the eigenvalues of the Hessian are shifted
by amount of the order —U/A? for a given U, where we have used B < 0.

The Hessian matrix can be diagonalized and the distribution can be written in terms
of its eigenvalues )\;. Changing the variables from (;; to );, the probability distribution for
the eigenvalues is given by [27]

P(A) = CJIn = AjleQue (2.17)

i<j

where []|A\; — \;| comes from the Jacobian and C is a normalization factor.
We denote the average eigenvalue as A and deviations from the average as 6 \;:

Ni = A+ 0N\ (2.18)

> ox =0, (2.19)

Then Qp ¢ can be written as

1 2 E < 2



for a fixed U, where we have used

1 AE—BQN_ 1 N E
(N+2)AE - NB? 4A = 4AN 2N2(AE — B?)

1 o

-3
+O(N )><A

in the large N limit.? Note that the Jacobian that appears in eq. (2.17) is independent of \.

One may be interested in the probability distribution for the Hessian eigenvalues with-
out any condition on U. In this case, U can be integrated out and the distribution takes
the form [28§]

1 1
Q=14 [TYCQ - N+2(Tr<)2] : (2.22)
or
1 IN -
Q~ g (2; SN + N+2>\2> : (2.23)

Here we comment on the difference from the random matrix theory (RMT), where the
probability distribution for the elements of a real symmetric matrix ¢;; is given by [29]

1

_ —QRrRMT
= (\/2770RMT)N<N+1)/28 22
1
Qrur = ——Tr¢?, (2.25)
200

with a certain constant ogyr. This distribution is usually referred to as the Gaussian
Orthogonal Ensemble (GOE). When we express the eigenvalues of ¢ in terms of the average
value A and displacements from the average §)\;, the exponent Qryt is rewritten as

1 _
QrRMT = 5 (Z oA2 + NA2> . (2.26)

RMT

To compare Qu ¢ (or Q¢) and QryT We may take oZyp = 2A (~ U/A?%). We then see that
the cost of a nonzero A in the GOE is larger than that for a random Gaussian field by a
factor of N. Thus, for the GOE, the averaged value \ is strongly prohibited from being
away from zero in the large-N limit.

Let us emphasize that the Gaussian correlation function (2.3) is a rather special ex-
ample of a random Gaussian model. It has a specific property because the coefficient of
(Tr¢)? in (2.13) vanishes (AE — B? = 0). As a result, for a fixed U the Hessian distribution
is just given by the GOE with a constant shift of the diagonal terms:

B _
Gij = m4j — E(U —U)dyj, (2.27)

where m;; is a GOE matrix. However, this is not a generic property of random Gaussian
models. In what follows, we do not consider this special case, but consider a generic random
Gaussian landscape, which is specified by moments of the correlation function.

2This expansion is not a good approximation for the Gaussian correlation function (2.3) because AE —
B? = 0 in that case. We do not focus on this particular case but consider a generic situation where
AE — B? = O(1). However, eq. (2.22) is still correct for any correlation functions.



3 Saddle point approximaion

In this section we use the saddle point approximation to calculate the probability distri-
bution of Hessian eigenvalues in a random Gaussian landscape under the condition that
all eigenvalues are greater than a given threshold. We follow and extend the calculation of
refs. [30, 31], where the eigenvalue distribution was found for the case of the GOE. In sec-
tion 3.1, we calculate the distribution at a generic point in the landscape. The distribution
at local minima of the potential cannot be found with this method. However, the result of
this calculation can be used to find the probability for a stationary point of the potential
to be a minimum and to estimate the smallest Hessian eigenvalue at a minimum, as we
will see in section 4.1. The calculation of the Hessian eigenvalue distribution at potential
minima should await the introduction of our new method in section 5.
Hereafter, we generically consider the case where

Qc = 5 [T — = (1r0)?] (3.1)

which can be obtained from eq. (2.22) by rescaling \; — v2A\; with a = N/(N 4 2). Tt
can also represent (2.20) with a = 1 — 2AE/N(AE — B?) and the same rescaling, after a
shift A\; — A; + \«. The latter case will be discussed in detail in section 4.2. In both cases,
we expect 1 —a = O(N1).

3.1 Conditional probability distribution

The probability distribution for the Hessian eigenvalues can be written as

p(A) = Aexp (—H(X)) (3-2)

2

a

DN lzxi] =S (=N | (3.3)
i i i#£j

where A is a normalization constant and the logarithmic term comes from the Jacobian

factor in eq. (2.17). The conditional probability P(A.) that all eigenvalues are greater

than some value A, can then be calculated from

Z(Aer)

Z(—o0)

P(Aa) = (3-4)

Z(Aer) = / h d¥Xexp (—H(X)). (3.5)

We shall further rescale the eigenvalues as g = A/ VN and introduce a density function
of p as

1
_NZ5(M—M)~ (3.6)
In terms of this density function, we can rewrite H(\) a
1 1
HIp]/N? = Q/duu p(p a/dudﬂp (1) g

~5 [ dui ol o) i (= ). (3.7

\]



The partition function Z(Ae) can also be rewritten in terms of p(u). The Jacobian
involved in changing from pu; to p(u) was calculated in refs. [30, 31] by saddle point ap-
proximation in the large IV limit. It is given by

Jlp] = A//Hdui5 [NP(M) - ZMM - Mz’)] (3.8)

~ A"§ <7 dup(p) — 1> exp [—N / dpp(p) In p] , (3.9)

where A’ and A” are normalization constants. Thus we obtain

ZAer) = A" / dcd[ple= N3] (3.10)
Yolp] = % / dpup® () —% / dudp p(p) p(p ) !
—% /dudu’p(u)p(u/) In (ju—p'[)+C [/ dpp(p) — 1} (3.11)
Silp] = %N (1-a) / dudpd’ p(p)p(p ) + / dpp(p) In [p(p)] (3.12)
where
S[p] = Zolp] + T1[p]/N + O(1/N?), (3.13)

A" is a normalization constant, and we include a Lagrange multiplier C' to set the normal-
ization of p(u) coming from the delta function in eq. (3.9). Note that N(1 —a) = O(1).
The functional integration in (3.10) is over functions p(u) satisfying p(u) = 0 for u < per,
where fier = Aer/ V'N.

3.1.1 Eigenvalue density function

We shall now use the saddle point approximation to find the most probable density func-
tion p(p).>

We first note that the leading term Yg[p] in eq. (3.13) is independent of . We there-
fore include the subleading contribution due to the first term in 3 [p|, which breaks this
degeneracy. The second term in ¥[p] is also independent of A, and we shall neglect it here.
This term only gives O(N~7/4) corrections to AY (= X (per) — X(—00)), as we will discuss
later in this section.

Varying the functional ¥[p] with respect to p(u), we determine the critical distribution
pc(p) at the saddle point,

NQ o] 0o
B o [ w40 = [ aptnuym ). (3.14)
Taking a derivative with respect to u, we obtain
(o] o /
y— a/ A po(u )il = P/ e Pl ),, (3.15)
Ccr Cr M - M
3 An exact analytic formula for p(p) in the case of an unrestricted random matrix ensemble (fier = —00)

was derived in ref. [32].



where P indicates the Cauchy principal part. Shifting p as 4 = x + per, this can be
rewritten as

o0 /
stag=P [ da! Pl T Her), (3.16)
0 Tr — X
where we have defined
20(jter) = fier — / A pela + per) (& + prer)- (3.17)
0

The integral in the last equation is just the average eigenvalue p; hence this equation can
also be written as

To = fher — QL. (3.18)

The solution of the integral equation (3.16) has been found in refs. [30, 31]. Here we
quote the result:

pela+ Jrer) = 27T1\/§\/L(x0) 2 [L(xo) + 2 + 2] (3.19)

This solution applies in the range x € [0, L(zg)]. Otherwise pe(x + pier) = 0. The function
L(xp) is determined by the normalization

L
/ pedr = 1. (3.20)
0

Then we obtain

L(zo) = § {m - aco] . (3.21)

In the special case when j; = —v/2, we have zo = —v/2, L(z) = 2v/2 and

pw (2 + pier) =7 <2\/§x - m2) i (3.22)

or

pw () =7 (2 )% (3.23)

This is the celebrated Wigner semi-circle distribution. It has support at —v/2 < pu < /2,
and thus the requirement p > pie; With pie; = —v/2 does not impose any constraint on p(1).
For the same reason the Wigner distribution is unperturbed when pe < —v/2.

The Gaussian orthogonal ensemble (GOE), which was studied in refs. [30, 31], corre-
sponds to a = 0; then eq. (3.24) gives xo = 0 for pe = 0. The eigenvalue distribution for
this case is shown by a green curve in figure 1.

The integral in eq. (3.17) can be done by using the explicit forms of p. and L(zp). As
a result we obtain

F($0) = (1 - a) (,Ucr + F(xO) - xO) )
(3.24)
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Figure 1. Eigenvalue distribution p(u) restricted to g > 0 in the random matrix theory (green
curve) and for the Hessian in a random Gaussian landscape (orange curve) with N = 100. The
blue curve is the distribution without any restrictions, which is given by the Wigner semi-circle.

where
1

F(x)z2—7

—a(2> +9) + (6 + 332)3/2} . (3.25)

We can numerically solve eq. (3.24) in terms of xg for given values of a and pc;. One is
often interested in the case when ue = 0, so that all eigenvalues are positive. In figure 2
we show xg as a function of (1 — a) for pue = 0. We see that —zy asymptotes to /2 (as
indicated by the red dashed line) for 1 —a — 0. To clarify the asymptotic behavior, we
Taylor expand the function F(x) about 2 = —+/2. This gives

F(x):;ﬁ(x+f2)2+.... (3.26)

Now, to the leading order in (1 — a), eq. (3.24) becomes

2\1@ (20 +v2)" = (1~ a)(per + V2), (3.27)

where we have used that F((—/2) = 0. Hence we find

1/2
1‘0 — _\/§+23/4(1 _ a)1/2 (MCI‘ _|_ \/i) / . (328)

For pie; = 0 this gives
o= —V2+2V1 —a. (3.29)

It is interesting to note that 29 = —v/2 for 1 —a = 0 and any value of pi;. In this case
eq. (3.18) gives fi = v/2 + pier. This means that the distribution p.(u) is just given by a
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Figure 2. —zo(per = 0) as a function of (1 —a). The red dashed line represents the asymptotic
value —z¢ = /2 in the limit of 1 — a — 0.

0.8 T 1
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Figure 3. Left: p.(u) as a function of u with ¢ = N/(N + 2) and N = 100, where we take
fer = —V2, —v/2/2, 0, v/2/2, /2 from left to right. The case of j, = —/2 is filled in blue color

and is given by the Wigner semi-circle. Right: AX[p] as a function of 1 — a with pe, = 0. The
asymptotic form is shown by a dashed red line.

shifted Wigner semi-circle (3.23) when we neglect the next-leading order correction ¥1[p] in
the large N limit [24]. Deviations from the Wigner semi-circle come from the next-leading
order effect.

In the left panel of figure 3, we plot the eigenvalue distribution p.(p) with g, =
—/2,-1/2/2,0,4/2/2,+/2 for the case of a = N/(N +2) (which corresponds to the Hessian
distribution (2.22) and N = 100. We also plot the distribution for p., = 0 as an orange
curve in figure 1, to compare it with the GOE distribution (plotted as a green curve). We
see that the GOE distribution is much more concentrated near the origin, reflecting the
high cost of a nonzero average eigenvalue [i in that case.

The Hessian distributions in figure 3 look like the Wigner semi-circle with an overall
shift and a slight modification at the left edge. From egs. (3.18) and (3.29), the amount of
the shift can be estimated as

p=vV2-2V1-a (3.30)

for piey = 0 and in the limit of (1 —a) < 1. The form of the distribution near the left edge,
0 < p < 241 — a, where it significantly deviates from the Wigner semi-circle, can be found
from egs. (3.19) and (3.29):

5

e 2v2(1 — a). (3.31)

pe(p) =

~10 -



The number of eigenvalues in this range is

2v/1—a 20 - 21/4
N/ pe(p)dpi ~ 03 N(1—a)3/t ~ NV (3.32)
0 T

3.1.2 Probability of g > picr

The partition function Z(ucy) can be approximated by its value at the saddle point:
Z(per) ~ exp [—N?S(pter)] - (3.33)

Using eq. (3.14), X(per) is given by

1

L(zo) 1
/0 dz(x + per)?pe( + fier) — 50. (3.34)

E(Mcr) - 4

Here, the Lagrange multiplier C' can be determined from eq. (3.14) by setting p = ficr,

1 1, a L(zo)
-5 = = — 5 Mer d cr)Pc cr
5C = JHa = 5H /0 (T + por) pe(@ + fher)
1 [L(=o)
5 dzInzpe(r + pier)- (3.35)
0

These integrals can be done explicitly by using eq. (3.19). The result is

1 —\° —\ 1l-—a
E(ﬂcr) = @ <1'07L 6+$3> <$0+3 6+-T(2)> + Wﬂcr(ucr *-TO)
1
+ﬁ [3—1—3:0 <—x0+ \/G—i—x%) +3In36 —61n <—a:0+ \/64—3:%)] , (3.36)

where we have used eq. (3.17).
Since we are interested in the case where (1 —a) < 1, we can simplify eq. (3.36) by
using eq. (3.28). The result is

Y (per) = é (34 1n4) + % (Mcr + ﬂ)Q (1—a)+O((1—a)*?). (3.37)

The probability for all eigenvalues to be greater than pc, is given by Ps(fier) =
exp[—N2AY(er)], where AY(pter) = E(ter) — X(—00) and X(—o00) = (3 + In4)/8. This
probability can be found numerically using eqgs. (3.17) and (3.36). In the right panel of fig-
ure 3, we plot A¥(0) as a function of (1—a). We also plot the asymptote AX(0) = (1—a) in
the limit of (1 —a) — 0 as a dashed red line. In the case of the Hessian distribution (2.22),
(1—a) =2/(N +2), we obtain P (0) ~ ¢ 2V*/(N+2) 4

Now we can justify that the second term of ¥ in eq. (3.12) gives a negligible contribu-
tion to AY in the large IV limit. As we already mentioned, this term is independent of the
average eigenvalue fi. Furthermore, from eq. (3.32) we see that the change in 3 due to the

“This can be derived from the result of ref. [24] if we take a limit of & — 0, where « is defined as a
fraction of eigenvalues which are negative. However, their analysis is inaccurate in that limit. See also
discussion below eq. (4.22).

- 11 -



modified distribution near p = 0 is of the order N'/4/N. Tt follows that the contribution
of the second term of ¥; to AY is O(N~7/%), which is much smaller than the other terms
in the large N limit. We checked that it is indeed O(N~7/4) by numerically calculating
N~ [duplnp as a function of N with p given by eq. (3.19). Therefore, our result for
AY. is accurate with an uncertainty of O(N~7/%). Additional support for neglecting the
second term of ¥; comes from the fact that the distribution (3.19) obtained without this
term agrees very well with the result of the dynamical method, which takes all terms into
account (see section 5).

4 Probability of u > p.. at stationary points of the potential

We shall now calculate the probability for all Hessian eigenvalues to be greater than a
given value e at stationary points, where 9;UU = 0. For ue, = 0, this is the same as the
probability for a stationary point to be a local minimum. We insert a delta function in
eq. (3.5) for the partition function to enforce the condition 9;U = 0 in the landscape:

/ Hd¢i5(8iU)|detC|. (4.1)

The Jacobian |det(| (= [[;|A\i]) gives an additional factor for the probability distribution
of the Hessian. Hence eq. (3.3) should be replaced by

2
H(\) = ;(zy?— 2 [Z)\] —;lnﬂ)\i —Aj)> Sl @)

As we did in section 3.1, we rescale the eigenvalues as p = A/v/ N and consider a
density function of w. In terms of this density function, we can rewrite H(\) as

HIp]/N? = % / dpp®p(p) — %a / dudp p(p) p(p ) st/

—% / dpd p(p)p(i') In (| — ') — % dpp(p) Inpl. (4.3)

The partition function Z(Aq) can also be expressed in terms of p(u), as in eq. (3.10), where
Yo[p] is given by eq. (3.11), while X;[p] is now given by

Silp] = %N (1-a) / dudp p(p) p(p ) + / dpp(p) In [p(p)] — / dpp(pe) In|p.
(4.4)

We can absorb the third term in (4.4) into the first term in the following way. To
the leading order in N, the distribution p.(u) at the saddle point is the shifted Wigner

semi-circle

pw () =72 = (u— ). (4.5)

- 12 —



Since X1 [p] is the next-leading order term, we can approximate it as ¥1[pw(y; 1)]. Then
we can calculate the third term in (4.4):

(1 +1log2), (4.6)

N | —

2
/dupw(u; ) lnlu = =~
for |fi| < /2. Using the definition

i = / dpp(p)p, (4.7)

we can rewrite Xq as

Yalp] =~ %[N (1—a)—1] / dpdp p(p) p(p" i’ + / dpp(p) In [p(p)] + (const.),
(4.8)

in the large N limit. Therefore, we can use the result of the previous subsection, (3.24)
and (3.36), with a replaced by a + 1/N.

4.1 Probability of minima and the smallest eigenvalue

An important characteristic of a landscape is the density of potential minima in the field
space. If the correlation length of the landscape is A, the density of stationary points,
where 9;U = 0 is ~ A= — that is O(1) points per correlation volume. The density of
minima can be obtained by multiplying this by the probability for a stationary point to be
a local minimum. This is the same as the probability for all Hessian eigenvalues at that
point to be positive,

Pain = exp(=N?AX(0)), (4.9)

where AX(0) = X(pter = 0) — E(pter = —00).

The left panel of figure 4 shows NAX(0) as a function of N for the Hessian ensemble
of eq. (2.22), where a = N/(N + 2) is replaced by a + 1/N ~ 1 —1/N. It gets close to the
asymptotic value (—1) for N > 10*, but significantly deviates from that value at smaller
values of N. The result can be well fitted by the following function, which is shown as the
green dash-dotted line in the figure:

NAX(0) ~1—0.70 exp [—0.18 (In N)"3] . (4.10)

The probability P, has been studied earlier in the literature. Bray and Dean used the
saddle point approximation in the large N limit and found the asymptotic value NAY(0) =
1 [24]. Easther et al. [13] noted that P, can significantly deviate from this value for
moderately large values of N. They calculated the probability using efficient numerical
codes for several values of N up to 100. Their results, shown by grey dots in the left panel
of figure 4, are in a very good agreement with ours. However, their fitting formula is not
consistent with ours at larger values of N. It is clear from the left panel of figure 4 that
the asymptotic behavior cannot be correctly obtained by the extrapolation from N < 100.
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Figure 4. Left: NAX(0) as a function of N for the Hessian distribution at stationary points of
the potential (solid blue line). The green dash-dotted line, which is completely overlapped with the
result, is a fitting function given by eq. (4.10). The red dashed line marks the asymptotic value of
NAY(0) in the limit of N — oco. Right: NdAYX(ucr)/dpier at per = 0 as a function of N. We used
a=1-1/N.

For some applications it is important to estimate the smallest eigenvalue of the Hessian
at potential minima (see, e.g., section 6.2). The probability that this eigenvalue is greater

than a given value pmin can be found from
P< (fimin) = exp(—N2AY), (4.11)

where now AY = X(pmin) — £(0). For small values of pini, we can approximate this as

Mmin) ) (4.12)
frer=0

The probability distribution for the smallest eigenvalue can then be estimated as

_ dP> (,Umin)
d,umin .

Z Cr

P(Hmin) = (4'13)

We plot NdAY(pcr)/dpier at pier = 0 for the case of a = 1 — 1/N in the right panel
of figure 4. We see that it is ~ 1 for N ~ 100 and is asymptotic to v/2 at N — oo, as
shown by the red dashed line, in agreement with the analytic formula (3.37). The typical
magnitude of the smallest eigenvalue can now be estimated as

1 1
Hmin ~~ N2 (i) ~ N (4.14)
dptcr —
per=0

4.2 Probability of p > per for a fixed U
We shall now use the distribution (2.20) to calculate the probability for all Hessian eigen-

values to be greater than A, at a given value of U. Eq. (2.20) can be rewritten as

Z(/\i—A*)] ) (4.15)

1 1 2AFE
Qo = M(Z(Ai_)\*)Q_ v (- vz 5)

i
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Figure 5. NAX(ji.) as a function of fi.,,. We take N = 10,50, 100, 1000 from top to bottom.
The dashed red line shows the asymptotic behavior at N — oo.

where A\, = (B/E)(U — U) and we disregard terms that are independent of \;. We define
shifted and rescaled eigenvalues \; and the parameter a as

N 1
N\ = i — s 4.16
V24 ( ) (4.16)
2AFE

=" Nar By (10

Then the resulting distribution for A; has the same form as eq. (3.1).

The condition \; > Ao is equivalent to \; > Aer, Where A = (1/V2A)Aer — i),
Defining fiq, = Ma/V'N (a = i,cr), we obtain the relation between i, and the original
threshold value A.;:

i 1
fer = o AN

Thus we can use the same calculations and results as in section 3 for the conditional

(Aer — Ai) - (4.18)

probability at generic points in the landscape, with the replacements (4.17) and (4.18).
In particular, when we are interested in the case where all eigenvalues are positive, we
should set Ay = 0 or fiee = —A(U)/V2AN. We plot AX(jier) as a function of fie, for
N =10,50,100,1000 and (1 —a) = 1/N in figure 5. The plots asymptote to the analytic
formula (3.37) or

NAE(ﬂcr) = % ([‘cr + \/5)2 N(l - CL), (4'19)

in the limit of (1 — a) — 0, which is plotted as a red dashed line.
To calculate the probability for a stationary point at a given value of U to have
all Hessian eigenvalues greater than Ac;, we need to add a term — ), In|)\;| in eq. (3.3).
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Neglecting a constant term, the additional term can be written as — ), IH\S\,- + A\|. So
we should replace \; — X\; and — ). In|A\;| = —> . In|A; + A\,| in eq. (4.2). By using the
argument around eq. (4.5), we can replace the extra term by

- [+ p)?
—/dupw(u;u) In|fi + pa| = —MJr

(4.20)
in the leading order in the large N limit, where p, = A\i/V2AN and p(i) = p(u). As a
result, we can rewrite X1 as

1[5 ~ % [N(1—a)—1] / dadf'p(i) (i) <ﬂ - Nﬂa_l> <ﬂ/ - N(lfa)—1>

4 / A(7) In [(7)] + (const.). (4.21)

If we redefine i by shifting i — f + p./[N(1 — a) — 1], this is the same as eq. (4.8) and
we can use the same calculation and result. Therefore, the term — ), In|)\; + A,|, which
comes from the Jacobian for the stationary condition, gives two corrections: a — a + 1/N
(as we discussed below eq. (4.8)) and ft — i + ps/[N(1 —a) — 1].

In summary, the probability for a stationary point at a given value of U to have all Hes-
sian eigenvalues greater than ¢, can be found from eq. (4.19) with the above replacements:

AE + B2 1 2B? 2
N2AY (M) = N R 2| . 4.22
W) = N5 =By [m (AC AF+ B2 ) +d (422

A similar result has been derived by Bray and Dean in their eq. (23) of ref. [24], where
their £(0), f'(0), f”(0), €, are our E/N, —B, AN, U/N, respectively. There is, however, a
significant difference. Bray and Dean found the probability for a stationary point at a given
value of U to have a given index «, where the index is defined as a fraction of eigenvalues
which are negative. The average eigenvalue \ in their eq. (23) has to be expressed in terms
of a through the relation

/O dA\p(\,\) = a. (4.23)

Their A can be identified with our (Ae; + 2v/AN) in the leading order approximation. We
note, however, that Bray and Dean calculated p()\,\) only in the leading order in 1/N,
which becomes rather inaccurate near the left edge of the distribution. Hence their result
is not accurate for small values of c. We do not have this problem in our calculation, so
our result can be used for arbitrary values of ;.

We note also that even though the approximations we used here are sufficient for
calculating AY (A ), they are not accurate enough to find the distribution p.(p) at small
values of u, because the distribution strongly deviates from the Wigner semi-circle near
¢ = 0. In section 5 we shall develop a new method which is sufficiently accurate in
that regime.
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5 Dynamical method

As we already noted, the approximations we used in sections 4 and 4.1 are not sufficiently
accurate for finding the eigenvalue distribution at small values of p. In this section we
develop a numerical method, using a version of the Dyson Brownian motion [27], to dy-
namically derive the distribution of Hessian eigenvalues. This method accounts for all
terms in Xg and Y; without any approximations, apart from the limitations of numerical
resolution and computer runtime. We shall first apply the Dyson Brownian motion method
to the random matrix theory with GOE.

5.1 Random matrix theory
5.1.1 Dyson Brownian motion and Fokker-Planck equation

The Dyson Brownian motion model was introduced in ref. [27] to describe stochastic evo-
lution of random matrices. The eigenvalues \; of a random matrix are assumed to undergo
a stochastic process described by the Langevin equation

dA;(t) ow

dr = = ON; +£i(t)7 (51)

where &;(t) is a stochastic variable,

<£Z-(t)§j(t’)> =24;;6(t —t'). (5.2)

The potential W is given by

1 , 1
W:QZ)\i—Qé:ln])\i—/\j\. (5.3)
7 17)

The eigenvalues are subject to a potential force OW/0A; and a stochastic force &;. Note
that the potential W is equal to the ‘Hamiltonian’ (3.3).

The probability density P(A,t) satisfies the Fokker-Planck equation, which can be
obtained by taking the ensemble average over &; [27]:

0 0 .
aP(A,t) = —; 87)\1-‘71(}\’75) (5.4)
oP
i\ t) = =T E; P, 5.5
D) = T (55)
where T" = 1 and the potential force E; is given by
ow
Ei = — . .
On (5.6)

The equilibrium solution of eq. (5.4) is given by the Boltzmann distribution,

P o exp[-W/T"]. (5.7)
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Thus we can interpret W and T” as the potential and the temperature, respectively. We
note that the distribution (5.7) is the same as the eigenvalue distribution (3.2), (3.3) with
a = 0 for the GOE ensemble.

Since we are interested not in the individual variables A;, but in the distribution of
eigenvalues, we define a time-dependent probability density p(\,t) as

p(\t) = /Hd/\i (&Za&-&)) P, A2, AN 1) (5.8)

We can easily check that [ d\p = 1. We also rescale the variable as = \/ VN to compare
the results with those in section 3. We set the normalization condition [ dup(u,t) =1 so
we rescale the density p(\,t) — p(u,t)/v/N. Then it obeys the following equation:

Ip(p,t) _ 9j(p,1)

= 5.9
ot ou (5.9)
dp
i(p,t) = =T— + Ep, 5.10
3(p,t) on TP (5.10)
where T'=1/N is the temperature. The potential force E is given by
/

, T

E(u,t) = —,u—l—/d,u/[/;(/i u’)' (5.11)

where we have replaced the summation ; by the integral [du/p(y’) in the second term.
In what follows we shall use the Fokker-Planck equation for p(u,t), without referring
to the Langevin equation.

5.1.2 Dynamical evolution

We are interested in the equilibrium distribution under the condition that all eigenvalues
are positive. This can be realized by evolving p(u,t) by eq. (5.9) for a sufficiently long
time® with a reflecting boundary condition at 1 = 0,

F(p=0,t)=0. (5.12)

The equilibrium solution is stationary, dp/0t = 0, and it follows from eq. (5.9) that
j(u) = const. Then the boundary condition (5.12) requires that
1 9p
(W)= —-———-—"—"1FEp=0 5.13
i) =~ on T EP (5.13)
This condition is similar to the one that we used to determine the saddle point solution
(see eq. (3.15)):

1 dpe(p) / * o pe(i)
— —u+P | du =0, 5.14
Np(p) dp o« B (5:14)

5We note that the equilibrium eigenvalue distribution in a different class of models has been studied
in ref. [8], where they calculated the distribution by sampling the canonical ensemble with the Metropolis
algorithm.
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Figure 6. Left: equilibrium solution of Fokker-Planck equation for the GOE model (red curve).
We also plot the Wigner semi-circle (dashed shaded blue line) and the analytic solution for the
GOE model (dashed green line). Right: time-evolution of the distribution. We plot distributions
at t = 0.25n with n =0,1,2,...,10. The initial distribution is shown by a bell-shaped blue line.

where we set a = 0. The first term in eq. (5.14) comes from the term [ duplnp] in $q[p],
which we neglected in section 3. Thus eq. (5.9) provides a useful check for the results of
saddle point approximation.

We solve the Fokker-Planck equation numerically by discretizing the differential equa-
tion. Numerical methods for solving the Fokker-Planck equation with the boundary condi-
tion (5.12) have been extensively studied [33-35]. The grid size Au, the volume of u-space
L, and the step size At are taken to be 0.02, 5, and 0.005, respectively. We checked that
our results are not affected by these parameters by varying their values. The results are
presented in figure 6, where we take N = 1/7 = 100. The initial condition is taken to be a
Gaussian function with a peak at 4 = 2 and a width of 0.5, as indicated by a blue line. We
see that the evolution converges to a stationary distribution, which agrees very well with
the semi-analytic solution of section 3, with only a slight deviation at the right edge.

Here we comment on this slight deviation. It comes from the fact that we neglected the
second term of ¥ [p] in eq. (3.12) to calculate the semi-analytic solution while we do not use
any approximation to calculate p in the dynamical method. To check that this deviation is
physical and is consistent with the results in the literature, we calculated the distribution
for the case of pe < —v/2 (i.e., for the case without the boundary) using the dynamical
method. We found that the tails of the distribution at the right and left edges agree very
well with the well-known Tracy-Widom distribution [36, 37] Therefore, the smooth tail of
the distribution at the right edge in figure 6 can be attributed to the spread of the largest
eigenvalues ¢ la Tracy-Widom beyond the edge of the semi-analytic distribution.

5.2 Hessian eigenvalue distribution in RGF model

The same method can be applied to find the Hessian eigenvalue distribution in a random
Gaussian field, except in this case we should use a = N/(N + 2) in eq. (3.3). Then the
potential (5.3) is replaced by

2
W:;;A%—;j\f (ZA) —%Zhﬂ)\i—)\ﬂ, (5.15)

i i#]
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Figure 7. Left: equilibrium solution of Fokker-Planck equation for Hessian eigenvalue distribution
at a generic point in RGF (shaded solid red line). We plot also the Wigner semi-circle and the
analytic solutions for the GOE and RGF models (dashed green and orange lines, respectively).
Right: time-evolution of the distribution. We plot distributions at ¢ = 5n with n =0,1,2,...,10.

and the potential force in the Fokker-Planck equation becomes

p(p'st)
p—

E(u,t) = —u+a/du’p(u’,t)u/+/dx/ (5.16)
The equilibrium distribution p.(u) is again equivalent to the saddle point solution of (3.15)
with the term coming from [ dpplnfp] included. We find this distribution by evolving
p(u,t) via the Fokker-Planck equation.

We solve the Fokker-Planck equation numerically and show the result in figure 7. We
take N = 1/T = 100 and a = N/(N+2). The initial condition and other parameters are the
same as we used in section 5.1.2 for the case of GOE. Once again, we see that the endpoint
of the evolution is very close to the analytic solution. This justifies the approximation of
neglecting the term [ dupln[p] in ¥ [p] that we made in section 4.

5.3 Hessian eigenvalue distribution at stationary points of the potential

We finally consider the Hessian eigenvalue distribution at stationary points, where 0;U = 0,
under the condition that all eigenvalues are positive. We found in section 4 that in this
case Y1[p] has an additional term, — [ p(p)In|u|. This adds an extra term 1/Np to the
potential force (5.16) in the Fokker-Planck equation,

p(p'st) 1
p—p  Np

E(pu,t) = —u+a/du'p(u’,t)u’+/du’ (5.17)

We solve the equation numerically using the same parameter values and initial condi-
tion as before. The results are presented in figure 8. The equilibrium distribution is shown
by the solid shaded red line. For comparison we also show, by a dashed orange line, the
semi-analytic distribution calculated in section 4 for Hessian eigenvalues at generic points
(not necessarily potential minima). We see that the two distributions are very close to
one another, except near y = 0. The semi-analytic solution diverges as p~'/2, while our
equilibrium distribution drops sharply to zero. This is the effect of the strong repulsive

force due to the last term in eq. (5.17).
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To illustrate the behavior of the distribution at small values of u, we plot p.(u) near
p = 0 for the cases of N = 20 (blue line) and 100 (yellow line) in figure 9. For p < 1/N,
we can approximate F(u) ~ 1/Np, and eq. (5.13) gives

pe(p) = Cp (< 1/N) (5.18)

with C' = const. This is in agreement with the plots in figure 9. We find that C is about
0.5N from our numerical results.

It should be noted, however, that our method may not be accurate in the range 0 <
i < 1/N. The average number of eigenvalues in this range is N fol/N pe(p)dp ~ 1, and thus
replacing discrete eigenvalues by a continuous distribution is not justified.® One can expect
nevertheless that this approximation gives correct order-of-magnitude results near the limit
of its applicability, u ~ 1/N. We can then use it to estimate the typical magnitude of the
smallest eigenvalue of the Hessian, fimin:

Hmin d 1
. ~ —. 1
/0 pe(p)dp ~ (5.19)

The plots in figure 9 suggests that p.(u) ~ 0.3 for 4 2 1/N. Hence we find

1
min ™ 37 2
I I (5.20)

The same estimate is obtained by numerically integrating the distribution in eq. (5.19). It
is in agreement with a more accurate estimate (4.14) in section 4.1.

6 Some applications in cosmology
In this section we consider some applications of our result to the landscape models.

6.1 Vacuum stability

Vacuum stability in landscape models has been studied numerically in refs. [12, 39]. A
simple analytic treatment was given by Dine and Paban in ref. [40]. They assume (i) that
the most probable decay channels are typically in the directions of the smallest Hessian
eigenvalues and (7i) that the vacuum decay rate is controlled mainly by the quadratic and
cubic terms in the expansion of U(¢) about the potential minimum. Then the tunneling
(bounce) action in the direction of the Hessian eigenvalue \; can be estimated as

s
Bi~ K—;, (6.1)

Y
where v ~ Up/A3? is the typical coefficient of a cubic expansion term and K ~ 50 is a
numerical coefficient. The highest rate corresponds to the smallest Hessian eigenvalue Apip.
Dine and Paban considered a quartic potential with a random distribution of coefficients

5We believe, however, that the sharp drop of the distribution to zero at p = 0 is a real feature. A similar
feature was found in refs. [38] and [8], where the eigenvalue distribution was calculated for different models
without using the continuous approximation.

- 21 —



2.0 : 1.0
1.5} t 08
1
= 1.0 \ =
‘ Qo4
02 \
0.0
4 0 1 2 3 4

Figure 8. Left: equilibrium solution of Fokker-Planck equation for Hessian eigenvalue distribution
in RGF at local minima of the potential (solid red shaded line). We plot also the Wigner semi-circle
and analytic solutions for the GOE and RGF model (dashed green and orange lines, respectively).
Right: time-evolution of the distribution. We plot distributions at ¢ = 10n with n =0,1,2,...,10.
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Figure 9. Hessian eigenvalue distribution for small values of p in RGF at local minima of the
potential. We plot the cases of N = 20 (blue line) and 100 (yellow line).

and found that in this case Amin ~ (1/N)(Up/A?) and B ~ (K/N)(A*/Uy). With Ug/A* ~
0.1 — 1 and N ~ 100, this can be rather small, B ~ 1, suggesting that most of the vacua
in the landscape are very unstable.

For a random Gaussian landscape the situation is different. In this landscape, an
accurate estimate of \pi, can be obtained from eq. (4.14) or eq. (5.20),

1
min ™ 37 6.2
1 7 (6.2)
This corresponds to
VN
Amin ~ Lﬂmin ~ UO ) (6'3)
A? A2V/N
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and thus the tunneling action is
KA
VN Uy
This is /N times larger than the estimate of ref. [40], so the vacuum stability is significantly

enhanced. (We note that if we used eq. (5.19) with the GOE eigenvalue distribution
(eq. (3.19) with g = 0), we would have pmp, ~ 1/N?, which would suggest a much

B (6.4)

lower stability.)

6.2 Multi-field inflation

In this section we assume that the landscape is small-field, which means that the correlation
length is A < 1 in Planck units. Slow-roll inflation in such a landscape occurs in rare flat
regions, where the first and second derivatives of the potential in some direction are much
smaller than their typical values. It was argued in refs. [14-16, 18] that inflation in such
regions tends to be single-field, with the inflaton field rolling in a nearly straight line along
the flat direction. Other fields (corresponding to orthogonal directions) can be excited and
significant deviations from a straight trajectory can occur only if some of the fields have
masses smaller than the Hubble parameter during inflation, m < /U in Planck units.
This is much smaller than the typical mass mg ~ /Up/A. However, with a large number
of fields N some of the masses may be < mg and may get as small as v/Uj. We shall now
investigate this possibility.

Flat inflationary tracks are likely to be found in the vicinity of inflection points, where
one of the Hessian eigenvalues vanishes (this corresponds to the flat direction), the rest of
the eigenvalues are positive, and the potential gradient vanishes in the directions orthogonal
to the flat direction. Let us choose the ¢; axis in the flat direction. Then we have A\; =0
and A\; > 0, 0U/0¢; = 0 for i = 2,..., N. The mass spectrum in the directions orthogonal
to the flat direction is determined by the Hessian eigenvalues, m? = \; (i > 1). We now
want to estimate the smallest of these eigenvalues.

The probability distribution for Hessian eigenvalues A = (A2, Az, ..., Ax) at inflection
points can be derived along the same lines as we derived eq. (4.2). It is given by

P = Aexp(—H(N) (6.5)
2
H(\) = ;(zg - X;[ZM] -2 ) In(|n —Ajy)> —2) In|xl. (6.6)
i>2 i>2 i>5>2 i>2

This is similar to eq. (4.2), but with a few differences. First, the coefficient of the last
term is not unity but is 2. An additional — ) In|\;| term comes from the last term in
parentheses of eq. (4.2) with i =1 or j = 1. Second, the number of eigenvalues is N — 1.
We can now use the method of section 4.1 to find the probability distribution for the
second smallest Hessian eigenvalue uy at inflection points (the first smallest being 1 = 0).
We note that the number of eigenvalues is now N — 1 and rewrite the coefficient of the
second term in the parenthesis of (6.6) as a/N = d'/(N — 1), where o/ = a(N —1)/N, so
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this term becomes

, 2
—N“_ : [Z)\] : (6.7)
i>2

As we explained in section 4, the last term of eq. (6.6) can be absorbed into a’ by the
replacement of ' — a’ + 2/N, where the factor of 2 comes from the coefficient of the
last term. As a result, we should replace a with a(N — 1)/N + 2/N in the calculation of
section 3.1. Since a(N — 1)/N +2/N ~ a + 1/N, the result should be the same with the
one obtained in section 4 in the large N limit. Therefore the distribution of eigenvalues at
an inflection point is given by p.(u) with 1 —a ~ 1/N and pe = 0. The probability for
all eigenvalues to be positive is given by exp[—N?AY], and the typical value of us can be
estimated as in eq. (4.14),

1 1
N2 9= (ker) TN
frer=0

iy ~ (6.8)

d/J«cr

The asymptotic value of Nd%(per)/dpicr| =0 i V2 in the limit N — oco.

The distribution of eigenvalues at inflection points can be found using the dynamical
method of section 5. The Fokker-Planck equation has the same form as before, but with
slightly different parameters and coefficients. The temperature 7" in eq. (5.10) is given by
1/(N — 1) and the potential force E(u,t) is given by

!/

E(u,t)=—p+ a(]\g\;l)/dﬂlf)(u/at)ﬂl + /du//;(li’;/) + & _2 i (6.9)
where 4 = A/v/N — 1. The change in the last term of F(u,t) modifies the form of the
distribution at g — 0. In this limit, the Fokker-Planck equation reduces to dp/du = 2p/pu,
with the solution

pe(p) = Cp®  (p < 1/N) (6.10)

where C = const.

The distribution obtained by numerically evolving the Fokker-Planck equation is shown
in figure 10. We find that the constant C in eq. (6.10) is ~ 0.1N?2 from our numerical results.
As in section 5.3, the average number of eigenvalues in the range 0 < p < 1/N is O(1), so
we cannot expect our distribution to be accurate in this range.

As before, the second smallest eigenvalue of the Hessian, uo, can also be estimated

from
H2 d 1 1
c ~ — 11
/0 pe()dp ~ (6.11)
which gives
1
Ho ™ 5 (6.12)

in agreement with (6.8).

The rescaled eigenvalue (6.12) corresponds to Ay ~ Up/(v/NA2). If this is smaller than
about H? ~ Up, then the associated field ¢9 will undergo significant fluctuations and may
play a dynamical role during inflation. This is unlikely if v/ NA2? < 1. Thus we conclude
that multifield inflation is not likely for A < N=1/4 ~ 0.3 (for N = 100).
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Figure 10. Equilibrium solution of Fokker-Planck equation for Hessian eigenvalue distribution in
RGF at inflection points of the potential (solid red shaded line). We plot also the Wigner semi-circle
(dashed blue shaded line) and analytic solutions for the GOE and RGF model (dashed green and
orange lines, respectively).

7 Conclusions

The main focus of this paper was to investigate the Hessian eigenvalue distribution at local
minima of a random Gaussian landscape. Bray and Dean used the saddle point approxi-
mation to calculate this distribution and the density of local minima in the leading order
of the large N expansion. We found, however, that the next-to-leading order corrections
modify the distribution at the lower edge of the domain. This is particularly important
for the smallest Hessian eigenvalues, which we need to estimate for assessing the vacuum
stability and the multi-field nature of inflation in the landscape.

We extended the saddle point method to account for the sub-leading in 1/N contri-
butions and used it to calculate the density of local minima in the landscape and the
probability distribution for the smallest eigenvalue. This method can also be used to de-
termine the Hessian eigenvalue distribution at a generic point in the landscape, but it fails
to find the distribution at potential minima with the desired accuracy. For that we had to
develop a completely new approach.

In our new approach, the Hessian eigenvalue distribution is calculated as the asymp-
totic endpoint of a stochastic process, called Dyson Brownian motion. The distribution is
evolved via a suitable Fokker-Planck equation, and the equilibrium distribution is obtained
after a sufficiently large number of iterations. We have verified that this method agrees
with the saddle point method in cases where the latter method is applicable.

We discussed some implications of our results for vacuum stability and slow-roll in-
flation in the landscape. We found that metastable vacua in a Gaussian landscape are
more stable than a naive estimate would suggest. Slow-roll inflation at inflection points in
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the landscape is likely to be single-field when the smallest nonzero Hessian eigenvalue at
a typical inflection point is greater than the energy scale of the landscape Uy. We found
that this condition is satisfied if the correlation length in the landscape is A < N —1/4 For
N ~ 100, this means that inflation is essentially single-field in a landscape with A < 0.3 in
Planck units.

In appendix A we discussed the relation between a random Gaussian landscape and
an axionic landscape. We specified the conditions under which an axionic landscape can
be approximated by an isotropic random Gaussian field. We expect that our results should
be applicable to such axion models.

We note finally that the problem of Hessian eigenvalue distribution in a random field
arises in many areas of condensed matter physics (see, e.g., [41-43] and references therein).
Our methods and results may be useful in these areas as well.
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A Axion landscape

In this appendix we extend the argument of ref. [23] to show that under certain conditions
the axion landscape can be approximately described by an isotropic random Gaussian
field model.

Axions develop a periodic potential due to non-perturbative effects. (For a review of
axions see, e.g., [44].) In general the potential has the form

P
U(0) = S AL fu(Xo +84), (A1)
a=1

where
Xo=4q,-0, (A.2)

A, are the energy scales of non-perturbative effects, 6 is an N-component vector, its
components #; being the axion fields, q, is a vector with integer components q,;, and
fa(X) are periodic functions with a period 27,

Ja(X +2m) = fo(X). (A.3)

The phase constants J, are assumed to be random parameters with a flat distribution in the
range from 0 to 27, and q,; are independent random variables with a specified distribution
P,(qai). Following ref. [23], we shall assume for simplicity that all these distributions are
identical: P,(q) = P(q) (although this can be easily generalized).
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Since the functions f,(X) are periodic, they can be represented as
fa(X) = D" fane™, (A.4)

with fo—n = fi,. In ref. [23], they assume f,(X) = [1 — cos X|, in which case fo0 = 1,
fa+1 = 1/2, and fqn, = 0 for all |n| > 1. In what follows, we consider a generic periodic
function f,(X). For example, the strong dynamics of QCD results in a complicated periodic
function for the QCD axion [46] (see also ref. [47] for a recent work).

String theory predicts the existence of a large number of axions, N 2 100 (e.g., [45]).
In ref. [23] it was shown that interesting alignment effects can arise in the axionic landscape
if the number of terms in the potential (A.1) is N < P < 2N. They also noted that for
P > N the potential approaches that for a random Gaussian field, as a consequence of the
central limit theorem. The statistical properties of this field depend on the choice of the
distribution P(q).

The integers q,; define a lattice in the ¢g-space with a spacing Aq = 1. We shall assume
that the variance of the distribution P(g) is ¢*> > 1, which means that the correlation
length of U(@) is small compared to the periodicity length 2. Then the distribution P(q)
can be approximated as continuous.

We will be interested in the two-point correlation function for the potential U(8).
After averaging over the random phases, this function should depend only on the difference
0, — 6,. Then, without loss of generality, we can choose one of the points to be at 8 = 0.
Thus, we consider

UOUWO) = 3 37 AN fun fue (750), (eimnnaa”y (A5)

4

a,a’ n,n’

where (---),, (@ = g¢,9) represents the ensemble average over random variables . We use

<€in5aein/5a/ >5 g 5@&’ n+7’b/ (A'6)
and
<einXa>q = HF(TLGZ), (A?)
where
F(0)= Y P(ge. (A.8)
qg=—00
Substituting this in (A.5), we have
UO)U(0) =0 = Y Adlfanl* [[ F(n). (A.9)
a,n#0 i

Now we consider some possible forms of P(q). The first is

P(q) o exp (_2‘1:2> . (A.10)
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In this case, the combined distribution for all ¢,; components is
q
P(q.) x exp <—a) . (A.11)
q

This depends only on q2 = > qu’ and thus is rotationally invariant in the g-space. Note
that eq. (A.11) is the only factorized distribution, P(qa) = [[; Pi(¢ai), that has this prop-
erty. We can expect the two-point function to also be rotationally invariant in the 8-space.
Indeed, from eq. (A.8) we have

0 2
q .
F(0) x Z exp <_2q2 + zq@) . (A.12)
q=—00
Since we assume that ¢ > 1, the sum over ¢ can be approximated by an integral, so
we obtain
1
F(0) x exp (—2q262> (A.13)
and
_ 1
(U@)U(0)) — U?* ZAg|fan|26Xp (2(]211202) . (A.14)
a,n

Note that if § depends on the index a, ¢ in this equation should simply be replaced by g,.
Now let us consider the form of P(q), which was adopted in ref. [23]: P(q) = const for
|| < gm and P(q) = 0 otherwise. In this case,

F(6) Sm(gme) (A.15)
Hence,
U(O)U(0)) — U o [ 22l (A.16)

i 0i
Unlike eq. (A.14), this correlation function is not rotationally invariant. The reason is that
rotational invariance is violated by the probability distribution for q.

It may be instructive to compare the correlators of the potential U (@) and its deriva-
tives for different choices of P(q). We find

U= (U0))y5 = LA s (A1)
(UO)=0)),5 = DA ((fa = (Fa))) (A.18)
(U(0)6;(9)) 5 = Z A% (Gaittg)y (fafd)s: (A.19)
(€3 (0)Gk(60)),,5 = iAi (i kot (S22 (A.20)
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where primes denote derivatives with respect to X. The gradient n; = 9U/90; is not
correlated with the potential nor the Hessian. The ensemble average over qg,; gives

(qaidaj), = 0ijds (A.21)

(¢aiqajdakdal), = G (8350k1 + k01 + 68k — 7a0:i0;50k1) (A.22)
3G, — <q3i>

Ta = Tq, (A.23)

where q_g is the variance of random variable ¢q4;.
If we identify

B=3 N ((fa=(2), (A.24)
B = SN (1l (A.25)

A= Z A3qa (1) (A.26)

we see that the resulting correlation functions have the same form as egs. (2.6)—(2.10),
except for the additional term (76;;0;,0k) in (A.22). This additional term breaks the
rotational invariance of the model and vanishes when the random variables ¢,; have a rota-
tionally invariant distribution (A.11). In ref. [23], the authors assumed a flat distribution
for gq; as an example (which breaks rotational invariance) and obtained r = 6/5.

The extra term in (A.22) also indicates a deviation from Gaussian statistics. However,
it affects only the statistics of the diagonal components of the Hessian. There are only N
diagonal components and N(N — 1)/2 non-diagonal ones, so we can expect this term to
be unimportant at large N. The same discussion applies to correlators for higher-order
derivatives. Thus we expect that Gaussian random fields give a good approximation for
this type of landscape in the limit of N > 1 and P > N.

Finally, we comment that the cancellation for the coefficient of (Tr()? (AE — B? =
0) occurs when fo(X) = [1 — cos X]|, which was adopted in ref. [23]. In this case, the
Hessian distribution is just given by the GOE with a constant shift of the diagonal terms
as eq. (2.27). However, this is not a generic property of axion landscape with a generic
choice of functions f,(X).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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