VACCINE: Using Contextual Integrity For
Data Leakage Detection

Yan Shvartzshnaider

Zvonimir Pavlinovic

Ananth Balashankar

New York University New York University New York University
yansh@nyu.edu zvonimir@cs.nyu.edu ananth@nyu.edu
Thomas Wies Lakshminarayanan Helen Nissenbaum

New York University Subramanian Cornell Tech

wies@cs.nyu.edu New York University helen.nissenbaum @cornell.edu
lakshmi @nyu.edu
Prateek Mittal

Princeton University
pmittal @ princeton.edu

ABSTRACT

Modern enterprises rely on Data Leakage Prevention (DLP) systems
to enforce privacy policies that prevent unintentional flow of sensi-
tive information to unauthorized entities. However, these systems
operate based on rule sets that are limited to syntactic analysis and
therefore completely ignore the semantic relationships between par-
ticipants involved in the information exchanges. For similar reasons,
these systems cannot enforce complex privacy policies that require
temporal reasoning about events that have previously occurred.

To address these limitations, we advocate a new design methodol-
ogy for DLP systems centered on the notion of Contextual Integrity
(CI). We use the CI framework to abstract real-world communication
exchanges into formally defined information flows where privacy
policies describe sequences of admissible flows. CI allows us to
decouple (1) the syntactic extraction of flows from information ex-
changes, and (2) the enforcement of privacy policies on these flows.
We applied this approach to built VACCINE, a DLP auditing system
for emails. VACCINE uses state-of-the-art techniques in natural lan-
guage processing to extract flows from email text. It also provides a
declarative language for describing privacy policies. These policies
are automatically compiled to operational rules that the system uses
for detecting data leakages. We evaluated VACCINE on the Enron
email corpus and show that it improves over the state of the art both
in terms of the expressivity of the policies that DLP systems can
enforce as well as its precision in detecting data leakages.

CCS CONCEPTS

* Security and privacy Usability in security and privacy;

KEYWORDS
Contextual Integrity; Data Leakage Detection; DLP; Privacy

This paper is published under the Creative Commons Attribution 4.0 International (CC-
BY 4.0) license. Authors reserve their rights to disseminate the work on their personal
and corporate Web sites with the appropriate attribution.

WWW ’19, May 13—17, 2019, San Francisco, CA, USA

© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-6674-8/19/05.

https://doi.org/10.1145/3308558.3313655

ACM Reference Format:

Yan Shvartzshnaider, Zvonimir Pavlinovic, Ananth Balashankar, Thomas
Wies, Lakshminarayanan Subramanian, Helen Nissenbaum, and Prateek Mit-
tal. 2019. VACCINE: Using Contextual Integrity For Data Leakage Detection.
In Proceedings of the 2019 World Wide Web Conference (WWW ’19), May
13-17, 2019, San Francisco, CA, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3308558.3313655

1 INTRODUCTION

Modern enterprises rely on Data Leakage Prevention (DLP) sys-
tems [12, 20, 27, 28, 39] to prevent the flow of sensitive information
such as credit card and other business data to unauthorized entities.
Rather than combating malicious behavior by end users, the goal
of these systems is to prevent unintentional data leakage. This goal
is accomplished by monitoring whether information flows (e.g. ex-
tracted from emails) adhere to a set of rules [35] that encode the
organizational data handling policies, industry-specific regulations,
and general privacy laws, and block or flag those flows that violate
the rules. This monitoring process may be performed online as data
is in motion, or offline to audit data that is in rest.

We will argue later that a key issue in the design of existing DLP
systems is that they conflate the problem of extracting information
flows from information exchanges and the problem of checking
whether these flows are admissible. As a consequence, the tremen-
dous progress made in natural language processing and machine
learning techniques had little impact on modern DLP systems. More-
over, the rules that can be expressed in these systems fail to meet
the demands imposed by the increasingly complex privacy policies
and regulations that they must enforce. Specifically, they cannot
account for contextual information such as consent, which involves
reasoning about histories of information flows. The recent General
Data Protection Regulation (GDPR) by the European Union is just
one example of a privacy policy where such contextual notions are
prevalent.

To address these limitations, we advocate a new design methodol-
ogy for DLP systems centered on the notion of Contextual Integrity
(CI) [30]. The key idea behind this methodology is to view real-
world communication exchanges as sequences of information flows

https://doi.org/10.1145/3308558.3313655
https://doi.org/10.1145/3308558.3313655

as defined by the CI framework. A CI flow represents an atomic in-
formation exchange unit identified by the sender, recipient, attribute
(i.e. data) being exchanged, and the subject associated with the at-
tribute. CI flows carry the essential information being communicated
in information exchanges while abstracting from the low-level de-
tails of these exchanges. Privacy policies are modeled as contextual
norms that describe flow sequences admissible in a particular pri-
vacy context. DLP systems based on this view allow one to take
advantage of advances in natural language processing techniques for
extracting CI flows on one hand, and advances in formal methods
for specifying and automatically enforcing privacy policies on the
other hand.

The main technical contribution of this paper is VACCINE, a
DLP auditing system for emails that follows this new CI-based
design methodology. VACCINE provides users with a simple but
expressive language for the declarative specification of complex
privacy policies. In particular, it supports policies that require a DLP
system to reason about the history of past information flows, which
is not supported by other existing DLP systems in this general form.
The policies are automatically compiled to sound-by-construction
rules, implemented as SQL queries. These queries are used to check
the admissibility of the extracted information flows.

VACCINE further leverages advanced techniques in natural lan-
guage processing [23], such as syntactic dependency parsing [13],
name entity recognizers [26], and question answering models [34],
to efficiently extract contextual flows from complex email corpora.
It combines rule-based and model-based techniques into a single
combined model learned end-to-end in a generator-discriminator
setting using distant supervision techniques.

We have evaluated VACCINE by applying it to the Enron email
corpus [9, 36]. Compared to flow extraction used in existing DLP
systems, we achieve improvements in F1 accuracy in detecting at-
tributes by 4% and subject pairs by 32%. We have also used VAC-
CINE to describe and enforce Enron privacy policies extracted from
corporate privacy handbooks on the flows extracted from the email
corpus. Our experiments demonstrate that VACCINE is effective
at detecting violations of complex privacy policies in a real-world
corporate setting.

2 DESIGN METHODOLOGY

In this section, we discuss the limits of commercial DLP systems
and outline our new design methodology. For a detailed comparison
with related work, see Section 5.

To check whether a particular information exchange such as send-
ing an email is admissible, a DLP system has to solve two subprob-
lems, as illustrated in Figure 1. First, it has to extract the (implicit)
information flows from the information exchange. For instance, sup-
pose Bob sends an email to Alice containing the phrase: “You can
find Mary’s address below. Her credit card number is...”. This email,
thus, contains the implicit flow that Bob sends Mary’s credit card
data to Alice. Once this flow has been extracted, the second sub-
problem is then to check whether it is admissible according to the
specified rules. For example, if a rule can disallow any flow of credit
card data via email whatsoever, then Bob’s email would be blocked
or flagged as a data leakage. However, a more refined rule could
include an additional relevant contextual information that, e.g., only

disallowed flows with Alice’s credit card data from Bob to Mary. In
this case, the information flow would not be blocked.

Hence, the administrator of a DLP system has to provide two
types of inputs to the system: (1) a specification of the information
flows to be extracted from information exchanges, and (2) a specifi-
cation of the rules that determine which of these extracted flows are
admissible.

The issue with the design of current DLP systems is that, from
the perspective of the administrator, these two types of information
are conflated. The rules are specified directly in terms of the under-
lying information exchange format using combinations of regular
expressions, templates, keywords, or text patterns. This severely
limits the capabilities of these systems. In particular, the focus on
regular expressions means that these systems cannot easily deploy
more sophisticated flow extraction techniques based on natural lan-
guage processing. For instance, the fact that the credit card data sent
in Bob’s email belongs to Mary cannot be captured by a regular
expression because the flow extractor has to establish the identity
of “Mary” and the possessive adjective “her” in the two consecutive
sentences of the email, which involves a more complex analysis of
the grammatical structure of these sentences.

It is therefore not surprising that current DLP systems only con-
sider very basic notions of information flows and rules. While they
can reason about senders and receivers of information flows like
Bob and Alice, which can be easily extracted from the header of
the email, there is no notion of a subject whose information is be-
ing transmitted, like Mary in our example. This, in turn, limits the
expressivity of the rules that can be checked by these systems. For
example, a more sophisticated DLP policy could demand that the
flow from Bob to Alice is admissible as long as it is Bob’s credit
card number that Bob is sharing. Without the notion of a subject of
the transferred information, such policies cannot be expressed.

A related limitation of existing systems is that their rules can
only refer to a single information exchange (the email from Bob
to Alice in our example). This means that they can only take into
account very limited contextual information. For instance, a reason-
able privacy policy could demand that the flow from Bob to Alice
is only admissible if Mary has given explicit consent to sharing her
information. Checking such policies requires reasoning about the
history of information flows that happened in the past, which cannot
be done in existing systems. However, such policies are common in
privacy laws such as GDPR [1], which these systems are meant to
enforce.

DLP Logic
Client app communication
exchanges i
extraction phase
(email, SMS, ...)
information
allowed / v flows

A

disallowed
[checking phase]

Figure 1: Illustration of an the enforcement mechanism that
comprises two main phases: extraction and checking

2.1 Solving the Conflation Problem

Naturally, to solve the conflation problem, we need to separate the
extraction and checking phases to make way for a modular DLP
system architecture that is parameterized by the solutions to the two
phases. A key technical challenge in achieving such separation is
in defining a suitable information flow abstraction between the two
phases. This abstraction will need to support seamless integration of
customized solutions for each of the phases and needs to encompass
relevant aspects of the communication exchanges and be amendable
to different types of policies. Furthermore, the separation of extrac-
tion and checking phases in policy enforcement enables a natural
division of labor in the process of implementing rules. For instance,
on the one side, NLP experts can focus on devising techniques for
extracting information flows from communication exchanges. On
the other side, legal scholars and lawyers can focus on the task of
checking that information flows obey the policies of interest, not
worrying about the low-level details involving actual communication
exchanges.

In this regard, the account of privacy [30] as contextual integrity
offers a compelling answer to the question of how to tackle the
aforementioned issues. It offers a) a suitable abstraction to decouple
and interface between the extraction and checking mechanisms, and
b) a common language for encoding legal policy and regulations
such as FEPRA, HIPAA, and DLP rules into privacy rules. Moreover,
CI overcomes the conflation problem by enabling the use of existing
techniques tailored for the flow extraction and flow checking phases.

Next, we give a brief introduction to CI and also discuss how
the theory and framework can be used to model the data leakage
problem.

2.2 Contextual Integrity Overview

The theory of contextual integrity (CI) postulates that informational
privacy is not all about secrecy (blocking information) [31] or con-
trol [44] but about the appropriateness of information flow within
a particular context. Appropriateness of flow means flow that is
compliant with contextual norms governing informational flows. To
express an informational norm one must specify key parameters:
actors (senders, recipients and subjects), attributes (the type of infor-
mation at hand) and transmission principles (the constraints imposed
on a particular information flow). Taken together, these components
constitute context-relative informational norms. For instance, in the
health context, the patient, acting in his capacity as both the sender
and subject of an information flow, could be telling his doctor, the
recipient, about his health issues, the attribute. The information flow
would be constrained by the transmission principle of confidentiality,
which restricts the onward flow of this information to other parties.
Exchange the doctor for a friend, and the transmission principle
might be reciprocity instead, since friends tend to expect to hear
about each other’s problems. A patient, by contrast, does not ex-
pect to hear about the health issues of his doctor. This is because
the context of health and the context of friendship have different
overarching goals: the doctor is there to promote the patient’s health;
friends are there to support each other. An informational norm is
breached when an action or practice disrupts the actors, attributes, or
transmission principles within a given information flow. Contextual

integrity “is preserved when informational norms are respected and
violated when informational norms are breached” [30].

It is worth emphasizing one of the most fundamental aspects of
CI, namely that, in order to determine whether or not information
flows respect or violate privacy expectations within a given context,
one must address all three parameters: actors, information types,
and transmission principles. Omitting any one of them may lead
to an inconclusive or ambiguous description. Accordingly, any for-
mal rendering of information flows, for the purpose of assessing
their appropriateness, needs to include independent variables for
these parameters. Defining privacy [30] in terms of CI is now a
well-established approach in the privacy and computer science re-
search communities. It is used to describe contextual informational
norms, to detect infractions of these norms, and in approaches to
accountability and enforcement [5, 17].

2.3 Data Leakage Detection using CI

In its core, the theory of CI offers a way to reason about the appro-
priateness of an information exchange. An information flow is the
atomic unit of an information (attribute) exchange between actors.
Information flow is formally defined by a tuple:

[sender, recipient, subject, attribute]

Actors (sender, recipient, subject) take on different roles/objectives
that define the capacity in which they function in a given context
such as doctors, teachers, or network middleware. Appropriateness
of information flow, within a particular context, is defined using
contextual informational norms. A norm consists of:

[Sender, Recipient, Subject, Attribute,
Transmission principle]

Here Sender, Recipient, and Subject refer to roles and
Attribute to the type of information exchange under a speci-
fied Transmission principle condition. For instance, in the
educational setting, where information exchange between actors is
regulated by the FERPA policies, a teacher (sender role) would
be allowed to share grades (attribute) of a student (subject role) to
her parents (recipient role) if the student has given explicit written
permission (transmission principle) [42]. If the student has not given
such a permission, flows from the teacher to a student’s parents
involving her grades must not be allowed, i.e., such information
exchanges are not appropriate. Thus, it is important to realize that
contextual norms specify the appropriateness of a flow subject to
conditions that may depend on the history of previous information
flows.

We can use the above CI model to define a data leakage. In CI
terms, a data leakage occurs within a particular context when an
information exchange (flow sequence) is not deemed appropriate
by any of the specified contextual norms. We use the above as a
system abstraction for building real-world DLP systems that prevent
data leakage by only allowing sequences that are consistent with the
norms. More formally, we denote the flow sequences that the system
deems admissible with Ts and the contextual informational norms
of a privacy context as a set of flow sequences, T,,. A DLP system
is designed to correctly enforce a privacy context by guaranteeing
that Ts C Ty. i.e., the system exhibits flow sequences allowed by the
given norms.

Client/App
Cl Flow Checker
- PRIVACY RULES

— (sav)
—

=
2
151
£
2
w
w
E
e
T
o
[&]

Figure 2: VACCINE: Information exchanges are processed by
the CI Parameters Extractor that forms corresponding CI flows
that are then fed into CI Flow Checker to check for violations
with respect to existing privacy norms

3 VACCINE

We next describe our Verifiable and ACtionable Contextual Integrity
Norms Engine (VACCINE), a DLP system for email communication
based on CI. As illustrated by Figure 2, VACCINE maps information
exchanges at the application level to the corresponding CI flows
and checks them against the specified CI norms. The information
flow abstraction is used to communicate the required contextual
information to the checking mechanism.

Specifying norms. Norms can originate from a combination of ex-
ternal sources such as privacy handbooks and context specifications.
Other external sources may also be used as a base for CI norms in a
specific domain, such as legal and policy documents, professional
codes of conduct, findings of empirical social scientists, privacy
advocates, ethicists, stipulations of sponsoring organizations, etc. To
express contextual norms, VACCINE provides a logic for specify-
ing what flows are admissible based on past events. For example, a
norm might state “Allow information flows from Alice to Bob with
Mary’s credit card information, provided Mary previously gave Alice
permission to do so”.

Enforcing norms. For this task, VACCINE operationalizes norms
into a set of actionable privacy rules by automatically compiling
norms into SQL queries which then check if a given flow is admis-
sible taking into account the history of previously observed flows.
To enforce the norms, VACCINE first extracts the respective flows
from the email text with the help of the CI Parameter Extractor and
then uses the CI Flow Checker to see whether the extracted flows
are admissible by running the respective SQL queries.

VACCINE's approach offers intrinsic benefits to the design of
DLP systems. First, it achieves modularity in design as a result of de-
coupling the extraction and checking phases in policy enforcement.
Second, it increases the expressiveness of privacy rules due to its
support for CI based norm enforcement. Finally, it supports obfiis-
cation of sensitive information through the use of the CI framework
that only captures the type of information being conveyed, not the
actual data.

In the following, we describe the two key components of the
system in more detail. We also briefly describe the temporal logic

that we use for expressing the CI norms that are enforced by the CI
Flow Checker.

3.1 CI Flow Extractor

The CI flows comprise the CI parameters extracted by the CI pa-
rameter extractor. As depicted in Figure 2, the parameter extractor
detects the relevant CI parameters associated with each information
exchange such as actors (sender, recipient, subject) and the type of
information (attribute) and map them onto CI flows. The extractor
retrieves the sender and the intended recipients from the underlying
protocol’s metadata. This is the straightforward bit compared to the
task of identifying attributes and the corresponding subjects, which
requires a more sophisticated approach. For example, if the policy
states that “John’s financial information” should not be transferred
without his permission, the CI extractor needs to identify all patterns
of text that correspond to financial information like, bank accounts,
SSN, etc. Similarly, for each attribute type mentioned in the privacy
policy text, the CI extractor needs to identify the CI subject, in this
case John. The resulting CI flow will comprise of the extracted
parameters:

[sender,

financial information (attribute),
John (subiject),
recipient]

To tackle the attribute-subject task, we combine a suite of natu-
ral language models using recent advances in distant supervision
techniques to identify the mentioned attributes and link them to the
appropriate subjects. We assume that the relevant CI parameters are
retrieved from the policy either manually or with the assistance of
an automatic CI parameter detection algorithm [37].

Extracting attributes. The CI extractor needs to identify the in-
stances of the abstract information types included in the rules (pol-
icy). For example, if the rule applies to financial information, the
extractor needs to detect all possible related instances in the text
such as SSN, bank information, credit card number and so forth.
This many-to-one mapping makes it difficult to use a single model to
detect all instances of a given attribute. To tackle this issue, we adopt
the Snorkel [32] framework to generate a large amount of training
data using a small number of annotators with weak supervision to
increase accuracy. This approach helps to bootstrap our model to
annotate CI parameters in emails using a small number of human
curated annotators. As Figure 3 shows, we use the labels outputs
of multiple models to train a generative annotator choice model.
Namely, we import regular expressions corresponding to each at-
tribute!. Secondly, we include name entity recognizers which use a
dictionary mapping to known types of nouns to identify numeric and
non-numeric attributes [23]. Lastly, we use the syntactic structure
to identify the nouns associated with subjects. The outputs from
each of the models is used to train a simple logistic classifier on
these labels. The resulting unsupervised annotator choice model
performs better than the majority vote of all annotators by model-
ing the agreement between various annotators. The high precision,
low coverage probabilistic labels provided by the generative model
is trained to discriminate by a fully connected feedforward neural

!There can be more than one pattern for attribute like “phone number”. See
http://regexlib.com/Search.aspx ?’k=phone

network against gold labels annotated by humans on a small set of
information flows.

Extracting subjects. For this task, similarly to attribute detection,
we use the output of a three model mixture to train a generative anno-
tator choice model for subjects. The annotator models set comprise:
1) a heuristic model that matches the entity closest in syntactical
proximity to the attribute using a name entity recognizer (NER) 2) a
model to detect matching subject-object using syntactic dependency
parse trees, 3) a state-of-the-art conversational question answering
model (BiDAF) [34] which encodes the email text and a question
whose answer is the desired subject of an attribute into an embedding
to perform semantic dimensionality reduction. For example, if the
attribute detected is a phone number, the question posed to the QA
model is "Who should we call?".

3.2 CI Logic

As explained in Section 2.2, a system execution in VACCINE can
be abstractly seen as a timed sequence of CI flows. That is, a set of
contextual informational norms describes those flow sequences that
are allowed in a given privacy context. We next introduce a logic,
TFlow, for expressing privacy norms that can be automatically con-
verted into actionable rules used to check whether given information
flows obey the specified norms.

Syntax. TFlow allows the declarative specification of CI flow se-
quences where the admissibility of a flow in a sequence can depend
on whether other flows have or have not been observed. More pre-
cisely, TFlow is a variant of metric linear temporal logic [3, 15, 22,
40], which has been used to formalize CI-based privacy frameworks
in other settings. We here adapt this logic to the specific setting
of DLP and identify several important restrictions that enable the
efficient checking of these norms in a DLP system. One important
restriction is that we allow only temporal operators that can reason
about flows that have happened in the past, which makes the logic
suitable for both offline and online monitoring. The syntax of the
logic is as follows:

¢ € TFlow ::= ¢1 and ¢ | ¢1 or 2 | not ¢ | exists x. @

| ¢1 since ¢p | flow(xy, x2,x3,x4) where P(X)

Atomic formulas flow(x1, x2, x3,x4) where P(X) are used to de-
scribe flows from a sender x; to a receiver xz concerning attribute x3
of subject x4 such that the formula P(X) holds. Here P is a Boolean
combination of basic predicates, such as equality between variables
x € Var and constants ¢ € C. In the case that P(X) is simply true,
we omit the where clause for convenience. Constants include num-
bers, strings, and other common data structures encoding agents
and attributes of the target CI context. Temporal formulas of the
form ¢ since ¢, are used to express that at some point in the past
the formula ¢ held after which all later time steps satisfied the
formula ¢1. The semantics of existential quantification (exists x.¢),
logical conjunction (and), disjunction (or), and negation (not) are
as expected.

Contextual norms are typically expressed as TFlow formulas of
the form

flow(snd, rep, att, sub) and ¢(snd, rep, att, sub)

where snd, rcp, att, and sub refer to the parameters (agents and
attribute) of the flow being checked for admissibility, and ¢ is a
formula specifying the transmission principle of the norm.

Examples. As a first example, let us consider a simple generic
norm normg stating that everybody can send their own data to them-
selves. This norm can be expressed in TFlow as

def
normg(snd, rep, att, sub) = flow(snd, rep, att, sub) where

snd = sub and snd = rcp.

As another example, suppose we want to express the norm,, stating
that an agent snd can share an attribute of an agent sub if sub has
previously given snd an explicit permission to do so, and sub has
not revoked the permission since then. This norm can be formulated
in TFlow as

normy(snd, rep, att, sub) o flow(snd, rep, att, sub) and
((not flow(sub, snd, (—, permission, att), sub)) since

flow(sub, snd, (+, permission, att), sub)).

Here, we use the term (+, permission, att) to indicate that permis-
sion of sharing att has been granted, and similarly (—, permission, att)
to indicate that this permission has been revoked.

We point out that existing DLP systems cannot handle the second
norm because it involves reasoning about flows that occurred in the
past. It is also instructive to point out that the above formulation of
the norms does not depend or involve lower-level details of com-
munication exchanges, thereby achieving the level of abstraction
needed for separating the checking phase from the extraction phase.

Formal semantics. The formal semantics of TFlow formulas can
be defined in terms of timed sequences of flows. In this work, we
take an equivalent approach where a flow sequence is modeled as a
table of flows where each row in the table contains the arguments
of one flow in the sequence together with its timestamp indicating
when the associated flow occurred. Hence, the flow sequence can be
reconstructed from the flow table using this timestamp information.

The satisfiability of a TF1ow formula ¢ is defined by a satisfiability
relation T, T, i |= ¢ which states that ¢ holds at time point i in the flow
trace given by flow table T and subject to the variable assignment T,
which maps the free variables of ¢ to values. For instance, here are
the formal definitions of the satisfaction relation for the two most
important constructs in the logic:

T,T,i |= flow(x, y, z, w) where P(X) iff f € T(i) and
Tlx = f(1).y = f(2).z2 > f3),w f(9]RF) € I(P)

T,T,i |= ¢1 since ¢ iff T,T,j [F ¢z or
i>0andT,T,i = ¢;and T,T,i— 1 |= ¢; since ¢

In the above, we use T(i) to denote the flows in T with the timestamp
i. Similar notation is used for accessing constituent elements of a
flow f. Lastly, we assume that the function I provides the interpre-
tation for basic predicates expressing constraints on variables and
constants. We omit the full details of the semantics as it is stan-
dard [15, 22]. We note that the above semantics directly supports
extensions of TFlow to metric temporal logics where formulas can
explicitly refer to time points.

Regex
— | ["I?@ AN

Syntax Dependency

Tree Labels
Generative
> Annotator Choice
Model
@2
2) .
“E’ Question Answering
I Model
ol
E — W observed
(8] Unobserved
Weakly Supervised
feraaaaaaaaaaaas
. NER
S —— -
===
—_—

Fully Connected Neural

Probabilistic Network Discriminator Cl Params
Training
Data

—

Figure 3: CI Parameters Extractor. We combine outputs from multiple models to train a generative annotator choice model, which
we subsequently use to train a fully-connected neural network discriminator for extracting relevant CI parameters.

3.3 CIFlow Checker

We have implemented our flow checker on top of an SQL database.
The database maintains a table FH of all the flows that have been
accepted so far. Checking whether a new flow f obeys the norms
expressed in TFlow amounts to checking if FH extended with f
satisfies any of the norms. Each norm ¢(¥) is automatically compiled
to an SQL query that produces a table with one column per free
variable in X as well as a timestamp column. This table contains one
row per timestamp i and valuation T for X such that FH, T, i |= ¢ holds.
Thus, if the query for any of the norms contains an entry for the
current timestamp i, then the new flow is accepted and permanently
added to FH. Otherwise, it is rejected.

The algorithm for generating the SQL queries is defined recur-
sively on the structure of formulas and closely follows from the
semantics of TFlow. However, a naive encoding into SQL yields
queries that do not scale well, in particular if we must deal with
nested since formulas and unconstrained negation. We therefore
discuss several restrictions and optimizations to a naive encoding
that considerably improves the performance.

Syntactic restrictions. In order to support the automatic compila-
tion of TFlow formulas into efficient SQL queries, we impose some
restrictions on TFlow. First, the free variables in the subformulas of
disjunctions have to be identical. Further, all variable must occur as
a parameter in some flow predicate. Finally, we require that every
negative formula not ¢; that occurs in a positive context is guarded
by a positive formula ¢2. A formula is positive if it contains no
unguarded negative formulas and a formula occurs in a positive con-
text if it occurs under an even number of not operators. A negative
formula not ¢ is guarded by ¢ if these formulas occur either as
(not ¢1) and ¢, or as (not ¢;) since ¢, where all the free variables
of ¢; also occur free in ¢;.

For instance, in the norm normy, given in § 3.2, the negative for-
mula (not flow(sub, snd, (—, permission, att), sub)) is guarded by
the positive formula flow(sub, snd, (+, permission, att), sub) below
the since operator. This restriction of the logic to a guarded fragment
is particularly important because it ensures that negative subformulas
can only be used to prune the result tables obtained from positive
subformulas. This restriction enables us to cache the evaluation of
subformulas in dedicated tables which can then be updated incre-
mentally using simple queries as new flows are added to the history
table FH. We describe this process in more detail below. Without
this restriction, the evaluation of temporal formulas involving the
since operator cannot be done efficiently (i.e. without reevaluating
the entire history of flows each time the norm is checked). For oth-
erwise, to enable caching we would have to know in advance the
entire universe of values for agents and attributes that may appear in
a future flow. We found that these syntactic restriction did not affect
the expressivity of the logic in practice.

Compiling norms to efficient SQL. Our optimized compilation
process associates a unique SQL table T with every subformula of
a norm that needs to be checked. These tables cache the satisfaction
relation for ¢ with respect to the current history table FH. Thus, when
we check a norm ¢, we can simply query the associated cache table
Ty directly. These cache tables are updated whenever a new flow is
added to the history table and time advances to a new timestamp.
The updates are computed recursively according to the structure of
the subformulas.

For instance, suppose ¢ is of the form (¢; since ¢2) and we extend
the history table FH with a new incoming flow f at time i. Then we
first update the caches for the subformulas ¢; and ¢ recursively to
account for the update. To update the cache for ¢ itself, note that
according to the semantics of since, FH extended with f satisfies ¢
at timestamp i iff either ¢, is satisfied at i or ¢, is satisfied at i and ¢

already holds at the previous timestamp i’. In effect, this means that
the table for ¢ can be updated as Ty = Ty U Ty, (i) U (nt(T¢(i’)) o
Ty, (i)). Here, o stands for inner join (on the common columns), and
7 projects out the timestamp column in a given table. The cache
table for an atomic formula ¢ = flow(x,y,z, w) where P(X) is
updated with the results of the following generic SQL query:

SELECT snd AS x, rcp AS y, att AS z, sub AS w
FROM FH WHERE P (X)

Here, we assume the case where X = (x,y, z, w). If P has free vari-
ables other than x, y, z, w, these variables are additionally added as
columns in the SELECT clause. Those columns are then populated
with all possible values in FH using appropriate subqueries. The
syntactic restrictions on free variables in norm formulas ensure that
this encoding is both sound and complete.

4 EVALUATION

In this Section, we present results of evaluating the key components
of VACCINE in a corporate setting. We first evaluated the CI pa-
rameter extractors that form the basis of the combined CI extractor
individually on the emails from the Jeb Bush Presidential campaign.
We then present an end-to-end case study of data leakage protection
using VACCINE on the corpus of emails associated with the Enron
corporation [9, 36]. We detail the accuracy of VACCINE parameter
extraction techniques on the Enron email dataset, the extraction of
contextual norms (expressed in TF1low) for the Enron corporate pri-
vacy context, performance numbers on evaluating the norms using
the VACCINE SQL-based flow checker, and the benefits of using
VACCINE for real-world data leakage protection.

4.1 Extraction Microbenchmark

We compared the efficiency of the CI flow extraction against manu-
ally annotated emails from the Jeb Bush Presidential campaign [2].
We manually annotated 436 attributes and 72 subject parameters.
Table 1 summarizes the performance of the components used in the
Snorkel based CI parameter extraction. Some of the failures of the
model can be attributed to genuinely ambiguous natural language in
the email. A typical example is the following sentence: “Can you
tell me if you have plans to amend the drivers license laws, so that
as 1, Florida homeowner from the UK, can have a drivers license for
6 years as I used to have”. Here, the manually annotated subject was
“I”, but the model’s output was “Florida”. Similarly, for attribute
detection, many of the failures are due to the jargons used within
an organization which can be confused for affiliations. This makes
the case for continuous improvement of the model through active
learning once a system like VACCINE is deployed to keep up with
the evolving language patterns.

4.2 Enron Case Study

We have evaluated VACCINE’s DLP system performance for offline
auditing of email communication. For this experiment, we used the
Enron corporation email corpus [9, 36]. Specifically, we aimed to
answer the following questions:

(1) How effective is the VACCINE framework in preventing po-
tentially unauthorized flows in a real-world emulated context?

Model Type Parameter Type F1 Accuracy (%)
Regex Attribute 71.56
NER Subject 56.94
QA Subject 61.11
QA+Query Rewrite Subject 63.88

Table 1: Benchmark of CI pérameter extraction from Jeb
Bush’s emails

(2) How efficiently can CI flows be checked against the privacy
rules automatically generated from TFlow norm descriptions?

We chose the Enron corporation for our enterprise context since both
its code of ethics [43] as well its email dataset are publicly avail-
able [9, 36]. From Enron’s code of ethics we extracted CI parameters
for an enterprise context. We identified 145 agents with 12 company
roles, such as director, manager, and regular employee. We assigned
roles to employees, identified by their email addresses, using pub-
licly available data sources [18, 41]. We also identified 13 attributes,
such as social security number, visa number, address, etc. Our focus
was on emails containing the exchange of sensitive information such
as passwords, bank account information, phone numbers, etc. We
thus identified 73 emails involving exchange of such information
and extracted 87 corresponding CI flows. We used these flows to
evaluate the effectiveness and efficiency of VACCINE. All of the ex-
periments were carried out on an Intel (R) Xeon (R) machine
with eight 3.6GHz cores.

4.2.1 Norm Extraction. We identified 40 Enron contextual norms
that focus on access and disclosure of personal identifiable infor-
mation (PII) in a corporate setting. The norm creation process was
conducted over the available documentation of Enron’s code of
ethics and its organizational structure. Due to the lack of a pub-
licly available (Enron) enterprise privacy handbook that specifies
precise norms, we created norms to enforce a simulated ethical
wall on email communication between Enron employees. An ethical
wall [29] refers to establishing an environment that will prevent
information exchange between specific departments within the or-
ganization to avoid any conflicts of interest. Our norm extraction
process focused on each type of PII and how agents in the various
enterprise roles can exchange the corresponding attributes. A typical
example of a norm is: Enron employees can send their social secu-
rity number to administrative managers. This norm in our policy
language TF1low is expressed as

def « »
normssn(s,r,a,b) = flow(s, r, a, b) where s = b A a = “SSN
and in_role(s, “employee”) and in_role(r, “manager”).
Here, the in_role predicate is defined using the since construct in a
similar fashion to the predicate of having a permission in Section 3.2.
In contrast, employees are allowed to send their less sensitive in-
formation, such as phone number and addresses to anyone without
restrictions. This norm is captured in TFlow as
def
normpy(s,r,a,b) = flow(s, r, a, b) where s = b A

(a = “phone_number” vV a = “address”).

Also, the distribution of information belonging to other Enron em-
ployees can be done if the subject employee gave a permission for
the disclosure of such information. This norm specified in TF1low is
essentially the norm normg introduced in Section 3.2.

4.2.2 Identifying Contextual Information. To evaluate the ex-
traction of CI parameters, we manually annotated our corpus of
selected emails (73) with attributes such as phone number and con-
ference call codes and CI subjects corresponding to them. As a
baseline accuracy for extracting relevant attributes without taking
any contextual information into account, we used regular expres-
sion based models (regex) for detecting attributes. These models are
similar to the ones currently available in tools like Google DLP and
Microsoft Exchange.

Results Table 2 shows that by aggregating multiple regular ex-
pressions using a distant supervised framework called Snorkel [32],
gives an improvement of 4% points in F1 accuracy. For subjects
detection, it is close to 1% F1 accuracy. Combining results from
the QA model using the “Who should we call?” question with other
NER based models increases the accuracy by almost 4%. Narrowing
context by posing a question that includes an attribute, e.g., "Whose
phone number is 123-456-78907?", leads to increased accuracy by a
further 9%.

Model Type Parameter Type F1 Accuracy (%)
Regex Attribute 90.20
Snorkel Attribute 94.80
NER Subject 48.35
QA Subject 67.12
Snorkel Subject 71.83
QA-+Query Rewrite Subject 80.82

Table 2: Accuracy of CI parémeter extraction from Enron
emails

4.2.3 Leakage Detection Performance. The purpose of our
next experiment was to measure the general performance of checking
flows against the extracted norms. First, we automatically compiled
the extracted Enron norms to SQL queries that we then evaluated
against approximately 6700 Enron flows, consisting of our manually
extracted flows and initial flows used to set up the organizational
structure of the company. For instance, the fact that agent a is an
employee is modeled as the flow

(enron_inc, enron_inc, (+, in_role, employee), a).

Intuitively, this flow encodes that a has been previously given a role
of a regular employee in the Enron corporation. We also use the
initial flows to incorporate reasonable assumptions about disclosure
privileges for PII information, say, that within each department (i.e.,
role), employees can disclose each other’s phone numbers.

Our implementation of the SQL flow checking engine follows
the high-level algorithm introduced in Section 3.3 except that we
cache only since formulas in auxiliary tables. We only maintain the
rows with the latest timestamp in cache tables as they are the only
once needed for proper updating in the future. We use Sqlite3 as our
relational database. Lastly, we compressed 40 Enron norms into 12
succinct ones as many of them shared the same structure except that
they differ slightly in the specific where conditions. For instance,
consider a norm stating that managers can disclose employee phone

Time (ms)

0 2000 4000 6000

Processed flows

Figure 4: Flow checking performance (in miliseconds) through
time

numbers to CEOs and a norm stating that managers can disclose
employee phone numbers to directors. We compress these two norms
into a single one where managers can disclose employee phone num-
bers to either CEOs or directors.

Results The performance times are reported in Table 3. We provide
measurements for flow checking in general and its breakdown sub-
ject to accepted and blocked flows. We also provide information on
time spent performing cache updates while checking flows. As it
can be seen, average time spent analyzing a flow is reasonable. We
point out that rejecting a flow takes more time than accepting it. This
is because we implement a form of short-circuit evaluation of the
norms where a flow is accepted as soon as we encounter a norm that
is satisfied. The remaining norms then no longer need to be evalu-
ated. We note that the initial flows for setting up the organizational
structure are always accepted, accounting for the high number of
accepted flows. We also measured how flow checking times vary de-

total avg med min max sd

flows (6706) 184 0.027 0.027 0.004 0.054 0.012
accepted (6658) 181 0.027 0.026 0.004 0.053 0.012
blocked (48) 254 0.052 0.052 0.051 0.054 0.001
cache upd. 95 0.007 0.0003 0.0002 0.0001 0.008

Table 3: Performance times (in seconds) for SQL checking of
flows against the Enron norms

pending on how the history flow table grows. The results are shown
in Figure 4. Flow checking times grow linearly with the size of the
table, i.e., the number of accepted flows in the past. The outliers
in the graph mostly correspond to the checking of flows that occur
at the end of the experiment where we check the flows extracted
from the Enron emails containing sensitive information. On the other
hand, initial flows are always accepted by exactly the same norm,
so the performance of analyzing such flows is more stable. The re-
ported numbers can be improved by employing more sophisticated
algorithms used in work on runtime policy monitoring [15, 22].

4.2.4 Detecting Information Leakages. The flows rejected in
the previous experiment constitute data leakages subject to the iden-
tified contextual Enron norms. We note that the flow checking exper-
iment does not suffer from false positives or false negatives. This is

due to the fact that the flows used in the experiment were manually
extracted and SQL queries implementing the norms are sound by
construction (as described in Section 3.3).

In our next experiment, we have analyzed the nature of emails
from which the rejected flows were extracted.

Results Arguably, the most interesting case of rejected flows in-
volves visa information. VACCINE rejected a flow between two
Enron employees where the sender was sharing visa information
about a third party subject. More precisely, the sender was sharing
the type of the visa in question, its expiration date, and the infor-
mation that the subject was granted multiple entries to the United
States. To the best of our understanding, the subject had not previ-
ously granted the sender with a permission to share such confidential
information.

The vast majority (44) of rejected flows involves distribution of
passcodes/passwords and phone numbers for company conference
calls. Our implementation of VACCINE rejected such flows as we
did not extract or create any contextual norms governing the distribu-
tion of conference call metadata. In effect, VACCINE conservatively
treats such flows as data leakages. VACCINE also prevented a flow
where a third party resumé was shared between two Enron employ-
ees. Our current norms only allow agents to share their own resumes.
Lastly, our implementation also blocked a flow between a third party
and one of the higher-ranked Enron employees where the flow sub-
jects were Enron bank accounts. Although careful inspection of the
corresponding email did not show any actual leakage of sensitive
company information, our norms were deliberately designed to con-
tain the communication exchanges involving confidential company
data within Enron.

These experiments show that VACCINE provides an effective
tool for data leakage prevention, modulo an effective flow extractor.

4.2.5 Complexity of Email Communication Exchanges. In
our last experiment, we measured how many CI flows are typically
generated in an email conversation. We note that a single email
can generate multiple flows between different participants. This is
because an email often quotes other emails that have been sent earlier
in the same conversation. In such cases, the new email also generates
transitive flows involving subjects and attributes from the quoted
emails to the new recipients.

We grouped the emails in the Enron data set into conversations.
We then defined an email conversation as a set of emails with the
same email subject (modulo reply and forwarding prefixes, etc.). We
extracted from each email a set of quadruples (one per recipient)
consisting of the sender email address, a recipient email address, the
time the email was sent, and the recipient type which can be TO, CC,
and BCC, omitting the email content and other metadata. Here is an
example of such a tuple:

(tracy.geaccone@enron.com,
sarah.taylor@enron.com,
2001-11-27 12:48:05,TO)
We identified every unique email address with a unique participant.
For emails sent to mailing lists, we simply simulated broadcasting
the email to all of the active conversation participants.

Out of the whole Enron email data set, we randomly chose 2,000
email conversations involving approximately 80,000 emails and
11,500 participants in total, as shown in Table 4 (first and second

Total Min Avg Max

Emails 78,386 1 39 15,555
Participants 11,609 1 17 2,428
Threads 4,082 1 2 196
Flows 218,070 1 109 85,280

Table 4: Statistics for each of the 2000 Enron email conversa-
tions

50000
37500
>,
Qo
=
g 25000
&
12500
0

3 6 9 12 15

of generated flows per email

Figure 5: Email frequency distribution based on the number of
generated flows per email

row). We used the email time and recipient type fields to recreate
email threads for each conversation. There are two email threads per
conversation on average, as shown in Table 4 (third row). Due to
some missing information in the data set, we observed cases where
participants sent emails in the middle of the conversation although
they never received any emails in the conversation up to that point.
In our analysis, such emails start a new conversation thread, which
explains multiple threads per conversation. We used the extracted
email threads to generate CI information flows. To model the worst
case scenario in terms of the information flow complexity, whenever
an email is sent by some sender in a conversation, we assume the
sender creates new content and also transitively sends all of the
emails in the conversation up to that point. Also, a CI flow has a
subject and attribute. For the purposes of this experiment, the actual
subject and attribute values are not important. For transitive flows,
however, the subject is the sender of the corresponding email that is
being quoted.

Results Given the above dataset, we measure how many flows an
email yields in practice. As it can be already inferred from Table 4, a
single email yields 2.78 flows on average. Moreover, Figure 5 shows
the frequency distribution of emails depending on the number of
flows they generate. It can be seen that the flow-per-email ratio is in
general low, reaching 15 at maximum. This suggests that the load on
a DLP (auditing) system created using VACCINE will be tolerable
in practice. This is further evidenced by Figure 6 showing a linear
increase in the number of generated flows subject to a total number
of thread emails.

100000

—. 75000
=
&
IS

§ 50000
=
2

T 25000

0

3000 6000 9000 12000 15000
Thread size

Figure 6: Average number of generated flows per size of the
conversation thread

5 RELATED WORK

We already discussed how VACCINE compares to existing com-
mercial DLP solutions in Section 2. The research community has
explored sophisticated email DLP methods mostly relying on a com-
bination of machine learning and related classification techniques.
These approaches roughly fall under content- and behavior-driven
methodologies [35]. Content-based approaches [10, 11, 21, 25] de-
termine the sensitivity of a message based on textual content analysis,
either through keyword, regex pattern matching, or machine learn-
ing techniques. Behavior-based approaches [24, 38, 45] analyze the
organizational structure, common roles and duties, as well as past
interaction to identify “normal” behavior patterns and use them to
detect unlikely information flows between a pair of sender and recip-
ient. Our work is largely orthogonal to these approaches. While prior
solutions explored advancing techniques in identifying insensitive
data and malicious behavior patterns, VACCINE instead focuses on
providing a robust way to express, administer, and enforce complex
DLP policies.

Early work by Armour et.al., looked at designing a privacy com-
pliance engine for emails [4, 7] to prevent privacy violations in large
enterprise settings. Similar to our system, their engine comprises an
information extraction and violation detection module. The infor-
mation extraction module relied on an enterprise domain ontology,
part-of-speech and semantic tagging to find relevant information in
the email text. While the work positions itself as a privacy compli-
ance tool, it does not go beyond facilitating role-based access control
to information. Namely, the implicit assumption here is that roles
and ownership determine the right to access. In particular, it does
not support complex policies involving e.g. notions of consent that
require reasoning about the history of observed emails. Furthermore,
VACCINE takes advantage of the advances in NLP techniques since
this pioneering work. We are not aware of other work that took the
ideas in [4, 7] and developed them beyond the preliminary proposal
explored there.

Related Work using CI. Defining privacy [30] in terms of CI is
now a well-established approach in the privacy and computer science
research communities. It is used to describe contextual informational

norms, to detect infractions of these norms, and in approaches to
accountability and enforcement [5, 17]. Much of the prior work in
this space has focused on sophisticated formal logics for describing
CI norms that involve complex temporal properties of sequences of
information flows such as those involved in HIPAA [6, 14, 16, 19].
We build on these earlier works and adapt them to the specific needs
of the DLP setting. Our observation is that in this setting, a simpler
logical framework is sufficient to express the relevant norms. With
these restrictions, norms can be automatically compiled into SQL
queries. The encoding into SQL enables the use of our system in
applications where both robustness and efficiency of the DLP engine
are important factors.

Compliance-based Approaches. Numerous approaches have been
invented to map system constraints to privacy policies that are gen-
erated external to these systems. Two examples, are due to Sen,
et al. [33] and Breaux and Anton [8]. Sen, et al. have developed
LEGALEASE, a language with precise semantics that enables en-
terprises to express privacy policies against which practices can
be checked for compliance. With similar goals, Breaux and Anton
have proposed a methodology for extracting implementable software
requirements from privacy and security regulatory requirements ex-
pressed in legal language that is sometimes vague and ambiguous.
The intention in both systems is similar to our own in that it seeks
to translate privacy requirements expressed in natural language (as-
suming this covers legal language) into formally expressed rules that
allow for compliance checking. The threat scenarios, however, are
quite different.

6 CONCLUSIONS

We presented a new design methodology for building DLP systems
based on the theory of Contextual Integrity that offers more precise
and modular detection of information flow violations compared to
traditional DLP systems.

Using our methodology, we built VACCINE, a system for au-
diting email communication corpora. VACCINE supports a power-
ful declarative language for specifying expressive privacy policies
that are automatically compiled to sound-by-construction action-
able rules, implemented as SQL queries. Furthermore, VACCINE
leverages advanced NLP techniques to efficiently extract relevant
information omitted by the existing DLP systems.

In our evaluation, we used VACCINE to audit the Enron emails
corpus and achieved significant improvement compared to the meth-
ods used by state-of-the-art systems.

7 ACKNOWLEDGEMENTS

We thank Paula Kift and Schrasing Tong for their help in the ini-
tial stage of this work. This work is supported by the following
National Science Foundation (NSF) under grants CCF-1350574,
CNS-1514422, CNS-1801501, CNS-1704527, SES-1537324, SES-
1650589, the National Security Agency grant H98230-18-D-006 and
the Cisco CG-653005 Research Award. We are also grateful to the
NSF I-CORPS 1650769 grant that allowed us to discuss the data
leakage problem with large number of companies and ultimately
helped us with articulating the VACCINE problem.

REFERENCES

[1]
[2]

3

[4

[5]

[6]

[7]

[8]

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

2018. General Data Protection Regulation. https://gdpr-info.eu/issues/consent/.
2018. Jeb Bush’s Gubernatorial Email Archive. http://americanbridgepac.org/
jeb-bushs- gubernatorial-email-archive/.

Rajeev Alur and Thomas A. Henzinger. 1993. Information and Computation 104,
1(1993), 35-77. https://doi.org/10.1006/inco.1993.1025

Quintin Armour, William Elazmeh, Nour El-Kadri, Nathalie Japkowicz, and Stan
Matwin. 2005. Privacy compliance enforcement in email. In Conference of the
Canadian Society for Computational Studies of Intelligence. Springer, 194-204.
Adam Barth, Anupam Datta, et al. 2006. Privacy and contextual integrity: Frame-
work and applications. In Proceedings of the Symposium on Security and Privacy.
IEEE, 15-pp.

David Basin, Felix Klaedtke, and Samuel Miiller. 2010. Monitoring security
policies with metric first-order temporal logic. In Proceedings of the 15th ACM
symposium on Access control models and technologies. ACM, 23-34.

Narjes Boufaden, William Elazmeh, Yimin Ma, Stan Matwin, Nour El-Kadri, and
Nathalie Japkowicz. 2005. PEEP-An Information Extraction base approach for
Privacy Protection in Email. In Proceeding of the Second Conference on Email
and Anti-Spam.

Travis D Breaux, Annie Antén, et al. 2008. Analyzing regulatory rules for privacy
and security requirements. Software Engineering, IEEE Transactions on 34, 1
(2008), 5-20.

Carnegie Mellon University. 2016. Enron Email Dataset. https://www.cs.cmu.
edu/~./enron/.

Vitor R Carvalho, Ramnath Balasubramanyan, and William W Cohen. 2009.
Information leaks and suggestions: A case study using mozilla thunderbird. In
Sixth Conference on Email and Anti-Spam (CEAS).

Vitor R Carvalho and William W Cohen. 2007. Preventing information leaks in
email. In International Conference on Data Mining. SIAM, 68-77.

Checkpoint. 2017. Data Loss Prevention Software Blade. https://www.checkpoint.
com/products/dlp-software-blade/.

Dangi Chen and Christopher Manning. 2014. A Fast and Accurate Dependency
Parser using Neural Networks. In Proceedings of the 2014 Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP). Association for Compu-
tational Linguistics, 740-750. https://doi.org/10.3115/v1/D14-1082

Omar Chowdhury, Andreas Gampe, et al. 2013. Privacy promises that can be
kept: A policy analysis method with application to the HIPAA privacy rule. In
Proceedings of the 18th SACMAT. ACM.

Omar Chowdhury, Limin Jia, Deepak Garg, and Anupam Datta. 2014. Temporal
Mode-Checking for Runtime Monitoring of Privacy Policies. In Computer Aided
Verification - 26th International Conference, CAV 2014, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. 131-149.
https://doi.org/10.1007/978-3-319-08867-9_9

Omar Chowdhury, Limin Jia, Deepak Garg, and Anupam Datta. 2014. Tempo-
ral mode-checking for runtime monitoring of privacy policies. In International
Conference on Computer Aided Verification. Springer, 131-149.

Natalia Criado and Jose M Such. 2015. Implicit Contextual Integrity in Online
Social Networks. Information Sciences: an International Journal 325 (2015),
48-69.

Andrew Fiore and Jeff Heer. 2004. UC Berkeley Enron email analysis. http:
//bailando.sims.berkeley.edu/enron_email.html.

Deepak Garg, Limin Jia, and Anupam Datta. 2011. Policy auditing over incomplete
logs: theory, implementation and applications. In Proceedings of the 18th ACM
conference on Computer and communications security. ACM, 151-162.

Google. 2016. Scan your email traffic using data loss prevention. https://support.
google.com/a/answer/6280516?hl=en.

Tanya Goyal, Sanket Mehta, and Balaji Vasan Srinivasan. 2017. Preventing
Inadvertent Information Disclosures via Automatic Security Policies. In Pacific-
Asia Conference on Knowledge Discovery and Data Mining. Springer, 173-185.

[22]

[23]

[24]

[25]

[26]

[27]
[28]
[29]
[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]
[43]

[44]
[45]

Hsi-Ming Ho, Joél Ouaknine, and James Worrell. 2014. Online Monitoring of Met-
ric Temporal Logic. In Proceedings of the Runtime Verification - 5th International
Conference. 178-192. https://doi.org/10.1007/978-3-319-11164-3_15

Matthew Honnibal and Ines Montani. 2018. SpaCy 2: Natural language under-
standing with Bloom embeddings, convolutional neural networks and incremental
parsing. https://spacy.io.

Chetan Kalyan and Krithika Chandrasekaran. 2007. Information leak detection
in financial e-mails using mail pattern analysis under partial information. In
Proceedings of the 7th WSEAS International Conference on Applied Informatics
and Communications (AIC). Citeseer, 104—109.

Gilad Katz, Yuval Elovici, and Bracha Shapira. 2014. CoBAn: A context based
model for data leakage prevention. Information sciences 262 (2014), 137-158.
Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,
and Chris Dyer. 2016. Neural Architectures for Named Entity Recognition. CoRR
abs/1603.01360 (2016). arXiv:1603.01360 http://arxiv.org/abs/1603.01360
McAfee. 2017. Total Protection for Data Loss Prevention (DLP). https://www.
mcafee.com/us/products/total- protection- for-data- loss-prevention.aspx.
Microsoft. 2017. Data loss prevention in Exchange 2016. https://support.google.
com/a/answer/6280516?hl=en.

Microsoft. 2017. title = Understanding Ethical Walls.
https://technet.microsoft.com/en-us/library/aa996850(v=exchg.141).aspx.
Helen Nissenbaum. 2010. Privacy in Context: Technology, Policy, and the
Integrity of Social Life. Stanford Law Books.

Richard A Posner. 1977. Right of privacy, the. Ga. L. Rev. 12 (1977).

Alexander Ratner, Stephen H. Bach, Henry R. Ehrenberg, Jason Alan Fries, Sen
Wu, and Christopher Ré. 2017. Snorkel: Rapid Training Data Creation with Weak
Supervision. CoRR abs/1711.10160 (2017). arXiv:1711.10160 http://arxiv.org/
abs/1711.10160

Satyaki Sen, Saikat Guha, et al. 2014. Bootstrapping privacy compliance in big
data systems. In Proceedings of the Symposium on Security and Privacy. IEEE.
Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. 2016.
Bidirectional Attention Flow for Machine Comprehension. CoRR abs/1611.01603
(2016).

Asaf Shabtai, Yuval Elovici, and Lior Rokach. 2012. Data Leakage Detection/Pre-
vention Solutions. Springer. 17-37 pages.

Jitesh Shetty and Jafar Adibi. 2004. The Enron email dataset database schema and
brief statistical report. http:/citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
296.9477.

Yan Shvartzshanider, Ananth Balashankar, Thomas Wies, and Lakshminarayanan
Subramanian. 2018. RECIPE: Applying Open Domain Question Answering
to Privacy Policies. In Proceedings of the Workshop on Machine Reading for
Question Answering. T1-77.

Salvatore J Stolfo, Shlomo Hershkop, Chia-Wei Hu, Wei-Jen Li, Olivier
Nimeskern, and Ke Wang. 2006. Behavior-based modeling and its application to
email analysis. Transactions on Internet Technology (TOIT) 6, 2 (2006), 187-221.
Symantec. 2017. Data Loss Prevention. https://www.symantec.com/products/
information-protection/data-loss-prevention.

Prasanna Thati and Grigore Rosu. 2005. Monitoring Algorithms for Metric
Temporal Logic Specifications. Electronic Notes in Theoretical Computer Science
113 (2005), 145-162. https://doi.org/10.1016/j.entcs.2004.01.029

The University of Edinburgh. 2017. http://www.inf.ed.ac.uk/teaching/courses/tts/
assessed/roles.txt.

US Department of Education. 2016. Family Educational Rights and Privacy Act
(FERPA). https://www2.ed.gov/policy/gen/guid/fpco/ferpa/index.html.

Curtis C Verschoor. 2002. It isn’t enough to just have a code of ethics.(Ethics).
Strategic Finance 84, 6 (2002), 22-24.

F Westin Alan. 1967. Privacy and freedom. Atheneum. New York.

Polina Zilberman, Shlomi Dolev, Gilad Katz, Yuval Elovici, and Asaf Shabtai.
2011. Analyzing group communication for preventing data leakage via email. In
International Conference on Intelligence and Security Informatics (ISI). IEEE,
37-41.

url =

https://gdpr-info.eu/issues/consent/
http://americanbridgepac.org/jeb-bushs-gubernatorial-email-archive/
http://americanbridgepac.org/jeb-bushs-gubernatorial-email-archive/
https://doi.org/10.1006/inco.1993.1025
https://www.cs.cmu.edu/~./enron/
https://www.cs.cmu.edu/~./enron/
https://www.checkpoint.com/products/dlp-software-blade/
https://www.checkpoint.com/products/dlp-software-blade/
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.1007/978-3-319-08867-9_9
http://bailando.sims.berkeley.edu/enron_email.html
http://bailando.sims.berkeley.edu/enron_email.html
https://support.google.com/a/answer/6280516?hl=en
https://support.google.com/a/answer/6280516?hl=en
https://doi.org/10.1007/978-3-319-11164-3_15
https://spacy.io
http://arxiv.org/abs/1603.01360
http://arxiv.org/abs/1603.01360
https://www.mcafee.com/us/products/total-protection-for-data-loss-prevention.aspx
https://www.mcafee.com/us/products/total-protection-for-data-loss-prevention.aspx
https://support.google.com/a/answer/6280516?hl=en
https://support.google.com/a/answer/6280516?hl=en
http://arxiv.org/abs/1711.10160
http://arxiv.org/abs/1711.10160
http://arxiv.org/abs/1711.10160
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.296.9477
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.296.9477
https://www.symantec.com/products/information-protection/data-loss-prevention
https://www.symantec.com/products/information-protection/data-loss-prevention
https://doi.org/10.1016/j.entcs.2004.01.029
http://www.inf.ed.ac.uk/teaching/courses/tts/assessed/roles.txt
http://www.inf.ed.ac.uk/teaching/courses/tts/assessed/roles.txt
https://www2.ed.gov/policy/gen/guid/fpco/ferpa/index.html

	Abstract
	1 Introduction
	2 Design Methodology
	2.1 Solving the Conflation Problem
	2.2 Contextual Integrity Overview
	2.3 Data Leakage Detection using CI

	3 VACCINE
	3.1 CI Flow Extractor
	3.2 CI Logic
	3.3 CI Flow Checker

	4 Evaluation
	4.1 Extraction Microbenchmark
	4.2 Enron Case Study

	5 Related Work
	6 Conclusions
	7 Acknowledgements
	References

