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Insect wings are flexible, and the dynamically deforming wing shape influ-

ences the resulting aerodynamics and power consumption. However, the

influence of wing flexibility on the flight dynamics of insects is unknown.

Most stability studies in the literature consider rigid wings and conclude

that the hover equilibrium condition is unstable. The rigid wings possess

an unstable oscillatory mode mainly due to their pitch sensitivity to horizon-

tal velocity perturbations. Here, we show that a flapping wing flyer with

flexible wings exhibits stable hover equilibria. The free-flight insect flight

dynamics are simulated at the fruit fly scale in the longitudinal plane. The

chordwise wing flexibility is modelled as a linear beam. The two-

dimensional Navier–Stokes equations are solved in a tight fluid–structure

integration scheme. For a range of wing flexibilities similar to live insects,

all eigenvalues of the system matrix about the hover equilibrium have nega-

tive real parts. Flexible wings appear to stabilize the unstable mode by

passively deforming their wing shape in the presence of perturbations, gen-

erating significantly more horizontal velocity damping and pitch rate

damping. These results suggest that insects may passively stabilize their

hover flight via wing flexibility, which can inform designs of synthetic

flapping wing robots.
1. Introduction
Small flapping wing flyers such as insects are truly remarkable creatures.

Across the taxonomic class Insecta, they exhibit an enviable slate of character-

istics that includes highly agile flight, the ability to perform long migrations

and the ability to carry excess loads approaching their own weight. They clearly

possess the propulsion mechanisms, energy stores and control systems suffi-

cient to achieve these flying feats, as well as the sensing and processing

abilities to command them. These characteristics make insects a natural

source of biomimicry for scientists and engineers attempting to design and

construct artificial flapping wing micro-air vehicles (FWMAVs).

Many flying insects can hover. This energetically demanding flight mode is

realized by using low Reynolds number (Re) unsteady lift enhancement mech-

anisms [1]. The well-known mechanisms of delayed stall, rotational lift, added

mass forces and wake-capture characterize the hovering flight of insects.

An open research question in the flight of insects and FWMAV is the stability

of flapping wings. To maintain its position in hover, an insect not only generates

sufficient aerodynamic forces to offset its weight and drag, it also must hold its

position in an equilibrium condition. However, the hovering equilibria are

reported to be unstable for flapping wing flyers [2,3]. The most common

method of describing the stability of insects is by presenting the eigenvalues li

of the linearized system matrix [2,4,5]. Also known as open-loop poles, the litera-

ture reports on hover eigenvalues for a number of insect families, including

drone flies, fruit flies, bumblebees, hawkmoths and hover flies. The studies

include several different aerodynamic modelling techniques. Yet, they overwhel-

mingly share the same natural modes of motion, plotted on the complex plane in

figure 1. The fast and slow subsidence modes are stable. The complex pair of
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Figure 1. Open-loop poles for multiple insect species from studies that
assume rigid wings (times: hover fly [6]; open circles: dronefly [6,7]; plus:
bumblebee [8]). Simulations [9] using a Navier – Stokes aerodynamic
model and measured fruit fly pitch angles [10] with different axes of rotation
considered are blue. Flexible wings with different values of wing stiffness are
green. The open-loop poles are normalized with respect to each insect’s
flapping period and therefore have units of ( flapping period)21.
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eigenvalues representing the oscillatory mode is located on the

right half of the complex plane, indicating that the system is

unstable. In spite of the different insects studied and the differ-

ent aerodynamic models employed, these reports share a

single unifying simplification—the wings are assumed to be

rigid [2–5,11–17].

Flying insects have flexible wings [18–22], which results

from the complicated structure of thicker veins and interstitial

resilin. Recent investigations have shown that wing flexibility

reduces the power requirement by lowering torque and drag

penalties [23] and enhances the load lifting capacity of

bumblebees [18] by altering the unsteady aerodynamics

around the flapping wings [24].

The objective of this study was to test the hypothesis that

the structural flexibility of flapping wings produces a stabiliz-

ing influence on the insect while in hover. We use the data

from a computational experiment [9] to calculate the stability

derivatives of a freely flying fruit fly scale flapping model

with flexible wings while in hover. Our results show that

the real part of all system eigenvalues associated with flexible

wings are negative (figure 1), suggesting that the hover equi-

librium of flexible flapping wings is linearly stable. A flexible

wing adjusts its structural dynamic response under a pertur-

bation, a feature not available to a rigid wing. The enhanced

damping associated with wing flexibility yields a stable hover

equilibrium across a range of different values of wing

stiffness.
2. Models and methods
The flight dynamics of a flapping flyer with flexible wings is

governed by the complex three-way coupling of aerody-

namics, structural dynamics and flight dynamics [4,11]: the

aerodynamic loads, governed by the nonlinear unsteady vis-

cous Navier–Stokes equations, depend on the wing

deformation, which, at the same time, depends on the aero-

dynamic loads. Additionally, the resulting aerodynamic

loading affects the body dynamics, which, in turn, changes
the wing aerodynamics and wing shapes. Because of this

challenge, most theoretical and numerical studies in the lit-

erature [2,4,11] assume rigid wings, simulate flight in the

longitudinal plane and conclude that the hover equilibrium

is unstable.

In this study, we analyse the numerical data from an

insect flight simulator that is fully coupled to the unsteady

aerodynamics and flexible wing dynamics [9]. The detailed

discussion of the governing equations, computational meth-

odology, computational set-up and validation studies are

reported in our previous work [9]. A description of the

governing equations is summarized in appendix A for

completeness.

2.1. Flapping kinematics and passive pitch motion
We impose a bioinspired flapping motion z [25] on the

leading edge of a wing as follows:

zðtÞ ¼ Z
sin�1K

sin�1 (K cos [2p ft])þ zw, ð2:1Þ

where f is the flapping frequency, t is time and Z is the flap-

ping amplitude (figure 2a). The flapping motion can be

biased fore and aft of the body y-axis by a positive or negative

flapping offset angle zw. We set K ¼ 0.01, which keeps the

flapping motion nearly sinusoidal. The reference velocity is

the maximum translational velocity of the second moment

of wing area r2, U ¼ 2pfr2Z.

We select the flapping amplitude Z, the stroke plane angle

b and the flapping offset angle zw as control inputs that place

the insect in equilibrium based on methods used by previous

researchers [14,26]. These methods were altered to accommodate

the influence of wing flexibility in our previous work [9].

The key feature in this study is that the wing pitch angle is

not prescribed. Rather, the instantaneous wing pitch aflex

results from the dynamic balance between the wing’s inertia,

elastic restoring force and aerodynamic forces. Furthermore,

body motion is superimposed on the flapping motion, both

of which can affect the resulting wing motion. Unlike most

rigid or flexible flapping aerodynamics studies [27,28],

where the insect is fixed and only resulting forces are ana-

lysed, we allow the body to respond to the instantaneous

aerodynamic forces and moments. As a result, the leading

edge of the wing also moves through multiple degrees of free-

dom, which, in turn, affects the resulting aerodynamics and

fluid–structure interaction.

2.2. Fluid – structure – dynamic interaction
The aerodynamic forces and moments are calculated directly

by the coupled Navier–Stokes equations and structural

dynamics solvers by integrating the pressure and shear

forces on the wing. It is critical to solve the Navier–Stokes

equations to analyse the flapping wing aerodynamics.

Insect flight is characterized by the unsteady, viscous flow

features, which include wake-capture, clap and fling,

dynamic stall via leading-edge vortices and rotational forces

due to combined translation and rotation [29]. The equations

of motion are solved to yield the body accelerations for each

time step. The displacements with respect to the inertial

frame are then transformed back into the computational

frame and provided to the Navier–Stokes solver. The body

motion is combined with the change in position and angle

due to the wing motion at each time step. The computational
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Figure 2. Schematics of the considered wing kinematics. (a) Fruit fly model used in the current study with pertinent reference frames. Subscripts I, b and sp refer to
the inertial, body and stroke plane reference frames, respectively. (b) Passive pitch motion aflex due to wing flexibility and body dynamics over the dorsal to ventral
half-stroke for f/f1 ¼ 0.41. (c) Flapping and (d ) passive pitch angles resulting from changing the wing flexibility alongside observed kinematics from a fruit fly [10].
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grid is re-meshed at each time step using the radial basis

function interpolation scheme [30]. Extensive validation on

the flexible wing’s computation framework has been pre-

viously reported [28,31,32]. Also, careful validation studies

have been conducted on the open-loop stability derivatives

and power required in hover for fruit fly scale rigid [33]

and flexible wings [9].

To fully unveil all of the effects of insect wing flexibility, a

full three-dimensional structural simulation is needed that

could accurately model the interesting biological wing

shapes and structures, and simultaneously resolve the non-

linear modes of the structural response with the fluid

dynamic response. This is a tall order. Furthermore, such a

complicated model could obscure, rather than highlight the

specific influence of individual features, which would likely

make determining the mechanisms for any observed benefits

harder to identify. Insect wings are 10–100 times more com-

pliant in the chordwise direction than the spanwise direction

[19]. Therefore, this study considers only chordwise flexibility

on a two-dimensional strip of the wing, so that the influence

of the most flexible mode can be determined. The chordwise

wing deformation alters the angle of attack of the wing,

which significantly influences the unsteady flow dynamics

and the resulting forces. We model the effects of chordwise

flexibility on the resulting aerodynamics and dynamics by

transforming the three-dimensional flapping wing motion

about the wing root z to a two-dimensional plunge motion

h ¼ zr2 at the second moment of wing area r2 [9]. The r2

location accounts for the spanwise distribution of lift in an

averaged sense [34,35] and is the most appropriate location

to calculate the two-dimensional approximation of the

three-dimensional flapping wing aerodynamics [35].

The two-dimensional unsteady, viscous flow around the

chordwise flexible wing is calculated with the Navier–

Stokes equations to capture all of the unsteady and viscous

effects. In general, three-dimensional effects, such as span-

wise flow, that seem to stabilize the leading-edge vortices

(LEVs) [36], LEV–tip–vortex interaction [37], centrifugal,

Coriolis and angular accelerations [38], are notable in
flapping wings. However, earlier studies have shown that

the effects of spanwise flow on the overall aerodynamics

are less important at the fruit fly scale (considered in this

study) than at higher Reynolds numbers [36,39]. Also, the

characteristics of the LEVs in two dimensions for plunging

motions are representative of three-dimensional flapping

wings as long as the stroke-to-chord ratio is within the

range of typical insects, i.e. around four to five [40–42],

which we consider in this study. Finally, we showed that

the minor differences in the force coefficient magnitudes

between two-dimensional and three-dimensional flapping

wing aerodynamics do not qualitatively affect the stability

outcomes for fruit fly scale dynamics in our earlier work [33].
2.3. Frequency ratio
To determine the influence of wing flexibility on the flight

performance and dynamic characteristics of the FWMAV,

we adjust the Young’s modulus E of the wing to determine

its effects on the resultant wing and body motion. This

variation is reflected in the resulting frequency ratios

f
f1
¼ 2pcf

k2
1hs

ffiffiffiffiffiffiffiffiffiffiffi
12rw

E

r
, ð2:2Þ

as defined in [31], where f1 is the fundamental natural fre-

quency of the wing in the chordwise direction based on its

structural properties, c is the wing mean chord, hs is the

wing thickness and rw is the wing material density. Larger

values of frequency ratio correspond to more compliant

wings. We hold several variables constant, while varying

Young’s modulus. The coefficient k1 is based on the first natu-

ral mode of a cantilevered beam and is set to 1.875 for all of

the cases in this study [31]. The frequency is fixed at f ¼
218 Hz based on the observations of fruit flies [43]. The den-

sity of the wing is rw ¼ 1 � 103 kg m23 [31] and the thickness

ratio is hs* ¼ hs/c ¼ 1.5 � 1023, where c ¼ 0.8 mm based on

the observations of fruit flies [44,45]. Furthermore, the wing

length is R ¼ 2.39 mm and r2 ¼ 1.31 mm.



Table 1. The frequency ratio and the Young’s modulus considered in this
study [9]. The flapping amplitude Z and the reduced frequency k are
determined to achieve hover equilibrium [9].

f/f1 Young’s modulus (N m22) Z (88888) k

0.368 7.0 � 108 75 0.235

0.390 6.5 � 108 73.5 0.239

0.414 6.0 � 108 72 0.244

0.441 5.5 � 108 71.5 0.249

0.452 5.3 � 108 70.7 0.250

0.455 5.25 � 108 70.1 0.251

0.461 5.15 � 108 69.8 0.252
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We parametrically vary the stiffness from relatively stiff

( f/f1 ¼ 0.368) to more compliant ( f/f1 ¼ 0.461) to assess the

effects of the frequency ratio on the insect hovering dynamics.

We were unable to find the frequency ratio range for fruit flies

in the literature; however, dragonflies are reported to fly at

frequency ratios from 0.31 to 0.46 [46]. Most insects flap

their wings with a flapping frequency f well below f1 [22],

and the values of f/f1 used in the current study are also less

than unity. The values of Young’s modulus that correspond

to these frequency ratios are listed in table 1.

2.4. Stability derivatives
We restrict our analysis to the longitudinal degrees of free-

dom in the pitch plane around hover equilibrium. The state

vector is x ¼ [u,w,q,Ixcg,Izcg,u]T, where u and w are the body

velocities at the body centre of gravity (CG) along the xb

and zb axes, respectively, and q is the pitch velocity about

the yb axis. The body CG positions Ixcg and Izcg and the

pitch attitude u are measured in the inertial frame of refer-

ence. To find the trimmed state at hover and determine the

stability derivatives, we express the nonlinear, time-varying

equations of motion (appendix A) as a set of coupled, linearized

equations of motion

_x ¼ Axþ Bu, ð2:3Þ

where A is the system matrix and B is the control matrix that

translates changes in the applied control vector u 5 [Z,b,zw]T

to the changes in the rate vector _x.

The aerodynamic forces and moments on the flapping

wing flyer do not depend on the position of the body CG.

As a consequence, the open-loop dynamics of a flapping

wing flyer then is described by a 4 � 4 matrix A [2], typically

written as

A ¼

1

m
Xu

1

m
Xw

1

m
Xq g

1

m
Zu

1

m
Zw

1

m
Zq 0

1

Iyy
Mu

1

Iyy
Mw

1

Iyy
Mq 0

0 0 1 0

2
666666664

3
777777775

ð2:4Þ

where the stability derivatives Xu/m, Xw/m, Xq/m, Zu/m,

Zw/m, Zq/m, Mu/Iyy, Mw/Iyy and Mq/Iyy describe the aver-

age response (over a single flapping period) of a flyer in

equilibrium to a perturbation in a particular degree of free-

dom. X and Z are the aerodynamic forces acting on the

body CG in the body frame in the xb and zb directions,

respectively. M is the pitch moment about the body CG.

The total mass is m ¼ 0.97 mg, and the body inertia about

the yb axis is Iyy ¼ 5.1 � 1029 kg m22. For example, the

horizontal velocity damping Xu/m is defined as

Xu

m
¼ D _u

du
¼

�_u(u0 þ du, w0, q0, u0)� �_u(u0, w0, q0, u0)

du
, ð2:5Þ

where the overbar indicates a cycle average of the acceleration in

each degree of freedom and du is a horizontal velocity pertur-

bation. The hover equilibria are determined numerically [9],

implying that the cycle-averaged velocities and accelerations

are zero. Hover solutions are indicated with the subscript

0. The pitch rate damping Mq/Iyy is defined in a similar way as

Mq

Iyy
¼

�_q(u0, w0, q0 þ dq, u0)� �_q(u0, w0, q0, u0)

dq
, ð2:6Þ
where q is the body pitch rate in the body frame and dq is a pitch

rate perturbation and so on. The control matrix B is obtained by

perturbing each control in a similar fashion and determining its

effect on the average of the rate vector.
3. Results and discussion
3.1. Passively pitching flexible flapping wings
To explain the stabilizing influence of flexible flapping wing

dynamics, we systematically vary the flapping wing ampli-

tude Z, stroke plane angle b and stroke mean angle zw

(figure 2a), so that the insect is in a hover equilibrium with

zero cycle-averaged body velocities and accelerations [9].

Once in equilibrium flight, the open-loop poles can be

assessed by perturbing the dynamical system in the horizon-

tal, vertical and pitch degrees of freedom as described in §2.4.

and more in detail in our previous work [9].

The passive deformation of flexible wings (figure 2b)

arises from the dynamic balance of the wing inertia from flap-

ping (figure 2c), the aerodynamic forces and the wing’s

stiffness. The wing deformation results in a passive pitch

angle aflex (figure 2b,d ) as well as significant wing camber.

Previous studies [24,47] have shown that the passive pitch

angles are large enough to generate enough lift to remain

aloft. By contrast, most rigid wings must actively rotate to

achieve similar kinematics and produce enough lift. The

extent to which insects actively rotate their wings is not

fully known. Although they possess the musculature to

achieve pitch rotation [48], experiments have also observed

tip-to-root torsion waves and other evidence that insects typi-

cally rely on passive deformation of their wings to fly [21,48].

Furthermore, being able to pitch does not necessarily imply

that they always actively pitch the wing. Dynamic aspects

of active and passive pitch will be considered in the future.

Figure 2b includes the pitch angle time history, exper-

imentally observed for hovering fruit flies by Fry et al. [10].

There are some differences, which are expected due to mod-

elling and experimental uncertainties. Nevertheless, we show

in our previous work [9] that the resulting pitch motion

resembles that of fruit flies and the effects of these differences

on the resulting aerodynamics and flight dynamics are small:

(i) we solve for the flapping amplitude and stroke plane angle

to place the system in hover equilibrium. The flapping ampli-

tude and stroke plane angle solutions are similar to those

observed for fruit flies [9]. (ii) The resulting time-averaged
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lift produced by the obtained wing motion including the pas-

sive pitch angles is similar to those of fruit flies [9]. In hover,

the time-averaged lift offsets the weight and time-averaged

drag is zero. (iii) The resulting specific power including the

aerodynamic and inertial terms is also within the range that

is reported for fruit flies [9].
3.2. Hover equilibrium is unstable for rigid wings
The primary reason for the instability of the rigid wing

models is the large magnitude of the stability derivative Mu

relative to the others [8,12,43]. The derivative Mu is the rate

at which an insect tends to pitch up in the presence of a hori-

zontal velocity perturbation. In spite of the various sources of

damping that exist in the system, this large pitch rate causes

the insect to diverge away from equilibrium, albeit at a rate

that ranges from 29 (for hawkmoths) to 114 times (for

hover flies) slower than the flapping frequency across insect

types [13].

The physical sources of the large speed derivative experi-

enced by a rigid wing extend directly from several of the

unique unsteady force production mechanisms. Insects use

these low Reynolds number flight mechanisms, i.e. transla-

tional lift from delayed stall, rotational lift and wing–wake

interaction, to fly using flapping wing motion [1]. Each of

these mechanisms destabilizes the hover equilibrium of an

insect with rigid wings. The net rearward translational drag

force, acting above the body CG, induces nose-up pitch [8].

Also, the stronger rotational lift during stroke reversal from

the advancing to retreating strokes causes a larger nose-up

pitch moment than in the opposite half-stroke [5,33]. Finally,

the wing–wake interaction, where the wing gains momen-

tum from the near-field vortex structures immediately

following stroke reversal, creates a fore-to-aft lift imbalance

and induces a nose-up tendency under a gust [33].
3.3. Flexible wings stabilize the unstable mode
When wing flexibility is considered, the unstable oscillatory

mode becomes stable (figure 1). The least stable mode has

now become the slow subsidence mode associated with the

heave dynamics, i.e. the vertical motion of the insect. The

fast subsidence mode has become much more stable than

for the rigid wings.

To assess the collective effect that each individual stability

derivative has on the overall system dynamics, we change the

values of the stability derivatives individually, while keeping

other stability derivatives constant. The resulting variation

in the locations of the poles (figure 3) illustrates the sensi-

tivity of the natural response of the insect to each stability

derivative [12]. We consider a representative flexible wing

system ( f/f1 ¼ 0.41).

Only the stability derivatives Xu, Mu and Mq have a

notable impact on the system poles. Similar to the dynamics

reported for rigid flapping wings [12], increasing the magni-

tudes of Xu and Mq have a stabilizing influence on the

oscillatory mode, which has become stable for flexible

wings. By contrast, Mu is destabilizing, as it has been

shown to be in rigid wing studies [8,12].

Compared with the stability derivatives reported in the lit-

erature for rigid wings, the insects modelled with flexible

wings are more sensitive to perturbations (figure 4). The mag-

nitude of some of these stability derivatives are orders of

magnitude higher. These stability derivatives are calculated

by comparing the dynamics at hover equilibrium and the

response under a perturbation. The main difference in

the response of a flexible versus a rigid wing is that not only

the surrounding unsteady flow changes due to the imposed

perturbation but also the structural response adjusts to the per-

turbation and the changes in the surrounding flow. On the

other hand, the wing shape and motion remains the same

for the rigid wing and only the surrounding flow changes

under a perturbation. This increased sensitivity does not
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necessarily mean, however, that the insect is less stable. On the

contrary, the increased sensitivity significantly enhances the

horizontal velocity damping 2Xu and the pitch rate damping

2Mq both of which stabilize the insect (figure 3).

The hover equilibrium can be stabilized if the horizontal

velocity damping Xu and the pitch rate damping Mq are suf-

ficiently large compared with Mu [12], which is also much

greater for the flexible wings. Both Xu and Mq do not need

to be greater than Mu in magnitude [12]. For most rigid

wing systems, Xu and Mq are too small to stabilize the

hover equilibrium [12]. For the considered flexible wing sys-

tems, the ability for the wing to deform under perturbation

provides the means to sufficiently increase the damping

terms Xu and Mq, as described in §§3.3.1. and 3.3.2.

1

response of the flexible wing in a hover and a gust is not the same, leading
to higher horizontal velocity damping.
3.3.1. Horizontal velocity damping, Xu
Horizontal velocity damping exists when Xu , 0. To

explain the increase in horizontal rate damping 2Xu, we

plot the passive pitch angle aflex and the passive pitch

rate _aflex under perturbation, and the difference between

the horizontal accelerations in hover and perturbation D _u
for both a flexible ( f/f1 ¼ 0.41) and rigid wing in figure 5.

The rigid wing simulation uses the same passive pitch

angles that were produced during the hovering case with

the flexible wings.

The main mechanism for the differences in D _u and

hence Xu (equation (2.5)) for the two types of wings is

that the flexible wing is able to change its response—

especially the wing shape—due to the perturbation du.

On the other hand, a rigid wing maintains its shape and

moves according to the prescribed kinematics. Since the

pitch schedule between the rigid and flexible wing simu-

lations is the same at hover, the pitch and pitch rate for

the rigid wing is also the passive pitch angle and its rate

for the flexible wing at hover.

The horizontal rate damping 2Xu for the flexible wing is

enhanced during the portions of the wing stroke labelled a, b,

c in figure 5, where the change in horizontal acceleration D _u is

a large negative value. The first occurs from t ¼ 0.2–0.3
(station a in figure 5) in the dorsal to ventral stroke, when

the horizontal perturbation is opposing the wing motion

and the relative velocity of the wing is higher than at

hover. This higher relative velocity causes horizontal rate

damping (Xu , 0) in both the flexible and rigid motion

(station d) [5,8]. Clearly, the damping for the flexible wing

is larger. The flexible wing shape deformation responds to

the horizontal perturbation, reducing its pitch angle

(figure 5a) and increasing its angle of attack from 448 for

the rigid wing to 528 for the flexible wing. Thus, the wing

is more vertical, leading to a higher drag and increased

damping.

Figure 6 provides the deformed wing position and shape

in hover and under perturbation. The wing’s response to the

perturbation is not simply a matter of the wing being blown

back by the higher relative wind in the advancing stroke.

Rather, the entire dynamic response changes the time history

of deformation throughout the stroke.

There is also a significant horizontal rate damping Xu in

the flexible wing case at t ¼ 0.4–0.6 (station b in figure 5),

where no damping exists at all for the rigid wing. This

arises primarily due to the larger rotational rate in this
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portion of the stroke (figure 5b) along with a nearly vertical

wing orientation (figure 5a). Not only does the wing shape

change due to the perturbation, but also its rate. For example,

the unperturbed flexible wing has a rotation rate of 3698/
period when it is vertical at t ¼ 0.46, but the perturbed flex-

ible wing has a rotation rate of 4928/period when it is vertical

(t ¼ 0.49), resulting in a larger force oriented in the 2xb

direction.

Finally, at t ¼ 0.7–0.8, the wing is flapping opposite the

perturbed body velocity, resulting in a lower relative fluid

velocity. The lower dynamic pressure reduces the drag com-

pared with the hover condition for both the flexible (station c

of figure 5) and rigid wing (station e of figure 5). However,

the flexible wing has lower drag in this portion of the

stroke because it has larger passive pitch deformation and

therefore lower angle of attack. Additionally, it has a lower

rotational velocity than the hover condition, reducing the

rotational drag.

Throughout the stroke, the negative contributions in Xu

overwhelm the positive contributions, leading to significantly

higher horizontal rate damping for the flexible wing than the

rigid wing.
0
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 (
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Figure 8. The longitudinal evolution of flight when released from hover for
flexible and rigid wings. The rigid wing results consist of a pitch motion from
observations of hovering fruit flies [10] (red) and a motion with the pitch
schedule based on the flexible wing response (blue). The flexible wing
dynamics correspond to f/f1 ¼ 0.41 (green).
3.3.2. Pitch rate damping, Mq
Pitch rate damping exists when Mq , 0, which indicates

that a nose-up (positive) pitch rate of the body yields a

nose-down (negative) moment and pitch acceleration. As

2Mq increases, the stability improves. Figure 7 depicts

the difference in the pitch acceleration D _q for the flexible

and rigid wings while experiencing a body pitch rate com-

pared with hover. The change in pitch acceleration D _q
directly informs the pitch rate damping Mq. Once again,

the trace of flexible wing remains negative for most of the

stroke, with significant local peaks of damping at stations

a, b and c in figure 7.

The main peak in the pitch rate damping Mq for the flex-

ible wing occurs from t ¼ 0.13 to 0.42 (station b in figure 7).

At the beginning of the stroke (station a), the passive pitch

angle due to wing deformation under perturbation is

higher than for the hover solution in this region. The larger

wing deflection implies that the angle of attack and, hence,

drag is lower. Lower drag reduces the nose-up pitch

moment about the CG compared with hover, which yields

D _q , 0. Also, during station b, the passive pitch angle is

lower with the perturbation, producing less lift. At this por-

tion of the stroke, the wing is now in front of the body CG,

and less lift produces D _q , 0.

In the second half-stroke, the rigid wing exhibits a stabi-

lizing trend because the direction of the perturbation dq is

now opposite. For the flexible wing, the large region of

damping from t ¼ 0.65 to 0.86 (station c) exists largely due

to decreased passive pitch angle, leading to higher angles

of attack. The more vertical wing orientation creates more

drag towards the front of the insect (2xb direction) in this

portion of the stroke. Acting above the body CG, the drag

causes a nose-down pitching moment, further contributing

to the pitch rate damping.
3.4. Evolution of flight from hover
The locations of the open-loop poles of the flexible flapping

wing system suggest that the hover equilibrium is stable.
However, the stability derivatives were determined by con-

ducting linearization about the equilibrium state of the

averaged system dynamics—a common and necessary first

step [2,4]. While this technique is powerful in its ability to

reveal valuable information about the participation of each

degree of freedom in the natural modes of motion, the real

system is nonlinear and time-varying. The lift production

can be affected by the time-history effects of the vortex

dynamics. For example, a persistent downward jet, a non-

linear wing–wake interaction mechanism, can decrease the

lift production [49].

To test the hypothesis that wing flexibility passively

stabilizes hover, we compare the longitudinal response of

the flexible wing to/against two different rigid wing simu-

lations: one with abstracted kinematics and the other with a

pitch schedule that matches the flexible wing’s passive

pitch in figure 8.

Initially, both the flexible and rigid wings are in hover.

Even for the unstable response of the rigid wing, the

growth in the vertical velocity rate, the highest response, is

still less than one chord per period after 10 cycles. The peri-

odic forcing of both wings causes cyclic variations in all
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three degrees of freedom. Eventually, both rigid wing sys-

tems diverge much more rapidly from the equilibrium than

the flexible wing.

The more rapid divergence of the rigid wings further

demonstrates that the pitching schedule alone is not

enough to stabilize a flapping wing flyer. These results

might also explain why the experimentally observed wing

pitch kinematics of hovering fruit flies [10] do not appear

to confer any stability benefits when simulated with rigid

wings. When a biological pitching schedule, which itself

results from wing flexibility, is reproduced using a rigid

wing simulation, the stability benefits are not seen. The true

source of these benefits, i.e. the ability to adjust the wing

shape and its dynamics under some perturbation, is not

simulated.
 rface
15:20180409
4. Concluding remarks
Our stability analysis of the linearized, open-loop flight

dynamics model of a flexible flapping wing flyer shows

that all eigenvalues have negative real parts. These results

suggest that the hover flight of a flapping wing flyer with

flexible wings is stable. This is a novel finding as most, if

not all, rigid flapping wing studies at fruit fly scales have

reported a hover equilibrium with at least one pole with a

positive real part. Additionally, we identify that the wing’s

increased sensitivity to horizontal and pitch perturbations is

the physical mechanism for the increased horizontal velocity

damping and pitch rate damping and the corresponding

improvement in stability. Furthermore, longitudinal simu-

lations in time of flexible wings showed significantly less

divergence from the initial condition than rigid wing simu-

lations. Studies in the literature modelled insect wings as

being rigid and therefore likely overpredicted their hover

instability.

However, these findings are in principle only valid for the

considered simplified fruit fly model. Also, this study only

considers the effects of chordwise flexibility in a two-dimen-

sional flow velocity field. There are geometric projection

differences between a full three-dimensional flapping wing

and a two-dimensional plunge motion, particularly when

the flapping amplitude is large. These geometric differences

might result in minor differences in the resulting longitudinal

dynamics and potentially cause differences in the lateral

dynamics as well. A real insect wing is three-dimensional

with complicated vein patterns and non-uniform anisotropic

wing structures. The wing kinematics are also three-dimen-

sional with wing rotation at the wing root. The lateral

dynamics are also important, but the associated spanwise

flow and lateral forces cannot be accurately modelled without

considering more of the three-dimensional fluid dynamics

and structural features. Modelling the three-dimensional flex-

ible wings and analysing their effects on the unsteady

aerodynamics and six degree-of-freedom flight dynamics

and control are very interesting and are left as future study.

That said, the primary stabilizing mechanism from wing

flexibility may still exist in three-dimensional flapping wing

dynamics, particularly because the chordwise flexibility is

much more pronounced in insects than the spanwise

flexibility.

Recent investigations have demonstrated that flexible

flapping wings can enhance lift while reducing power
consumption [9,24]. Results from this study suggest that

the use of a compliant wing can lead to a novel dynamic

benefit that wing flexibility can passively stabilize flight

at hover. This does not necessarily imply that insects are

truly stable in the open-loop sense—rather, it simply

demonstrates that the chordwise wing flexibility has a sta-

bilizing influence on flapping wing flight. Many other

morphological parameters can affect insect flight stability

including centre-of-gravity location with respect to the

wings [4]. Some insect configurations may ultimately

prove to remain unstable while others might actually be

stable when all of the physics are properly captured. This

range of stability would mirror our experience with

fixed-wing aircraft, some of which are designed to be

inherently stable while others are not. Thus, wing flexi-

bility provides a more stable platform, and flexible wings

do not need an active pitching mechanism to achieve a

desired pitching motion. It is also possible that the sensing

and control system could be reduced in view of the more

stable dynamics of flexible wings. Such reductions in

weight and complexity are highly attractive to designers

because the physical dimensions of FWMAVs are, by defi-

nition, extremely small compared with typical air vehicles.

Additionally, flexible wings are likely to be made from

lighter materials than rigid wings. These combined

weight savings might also yield significantly higher

payload, range, endurance or agility.
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Appendix A. Governing equations
The equation of motion for a flapping wing flyer in

three-dimensional space is given as follows:

mb þ
X#wings

i¼1

mw,i

 !
b _vb �

X#wings

i¼1

mw,i b(~ro=cg _vb)

�
X#wings

i¼1

mw,i

�
R

w,i!b
w~rwg=o R

b!w,i

�
b _vb

¼ bFAero,b þmb bgþ
X#wings

i¼1

(bFAero,w,i þmw,i bg)�mb b ~vb bvb

�
X#wings

i¼1

mw,i(b ~vb bvb þ b ~vb b ~vb bro=cg)

�
X#wings

i¼1

mw,i R
w,i!b

�
w _vwg=o þ 2w ~vwwvwg=o

�w~rwg=o w _vw=b þ w ~vw w ~vw wrwg=o

�
ðA 1Þ
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bIb,cg b _vb þ

X#wings

i¼1

R
w,i!b

(wIw,o R
b!w,i

b _vb) i

þ
X#wings

i¼1

�
R

w,i!b
w~rwg=o R

b!w,i
mw(b _vcg � ~ro=cg b _vb)

�
i

�
X#wings

i¼1

mw,ib~ro=cg,i( R
w,i!b

w~rwg=o R
b!w,i

b _vb)

þ
X#wings

i¼1

mw,i b~ro=cg,i(b _vcg=I þ b _~vb bro=cg)i

¼ MAero,body þ b~rac,b=cg bFAero,body

þ
X#wings

i¼1

R
w,i!b

(wMAero,w þ w~rac=owFAero,w þmw w~rwg=o wg) i

þ
X#wings

i¼1

b~ro=cg,i R
w,i!b

(wFAero,wing þmw wg) i

� b ~vb bIb,cg bvb

�
X#wings

i¼1

R
w,i!b

(wIw,o w _vw=b þ w ~vw wIw,o wvw)

�
X#wings

i¼1

�
R

w,i!b
w~rwg=omw[b ~vb bvcg þ b ~vb b ~vb bro=cg]

�

�
X#wings

i¼1

mw,ib~ro=cg,i R
w,i!b

�w~rwg=o w _vw=b þ w ~vw w ~vw wrwg=o

þw _vwg=o þ 2w ~vw wvwg=o

" #
i

�
X#wings

i¼1

mw,i b~ro=cg,i(b ~vbbvcg þ b ~vb b ~vb bro=cg)i,

ðA 2Þ

where v and v denote the velocity and angular rate vector of

the subscripted object; ro/cg is the position vector from the

body CG cg to the wing root o; rwg/o is the position vector

from the wing root o to the wing CG wg; g is the acceleration

of gravity vector; Ib is the inertia tensor about the body CG;

Iwg,o is the inertial tensor of the wing about the wing root

and R
w,i!b

is the transformation matrix that rotates a vector in

the wing frame to the body frame. The leading subscript (w
or b) of a vector denotes the reference frame within which the

vector is expressed. Other terms follow the same convention

and are as follows: mw,i and mb is the mass of the ith wing or

body, respectively. An over-dot indicates a local time deriva-

tive. The tilde over a vector quantity denotes a cross product.

There are two main differences of the considered equation

of motion for flexible wings compared with rigid wing

models. In rigid wing studies [6,50], the wing motion is pre-

scribed. In this study, the wing motion is a result of the

combination of the body motion, imposed flapping angle
and passive pitch angle due to wing deformation. These

terms are indicated with single-underlines in equations (A 1

and A 2). Moreover, the double-underlined terms only exist

for flexible flapping wing models.

The aerodynamic forces bFAero and moments bMAero pro-

duced by the wing are calculated by integrating the

pressure and viscous shear stress distribution on the wing

that is in dynamic balance between the inertial forces due

to the wing and body motion, elastic restoring force from

the wing flexibility and aerodynamic forces.

The chordwise flexibility of the wing is modelled with the

non-dimensional Euler–Bernoulli beam equation given as

follows [31]:

P0
@2v�

@t2
þP1D

�2v� ¼ F�, ðA 3Þ

which describes the transverse deflection of the beam v as a

function of space and time. The time is normalized by the

flapping period 1/f, i.e. t ¼ ft, and lengths are normalized

by the chord v* ¼ v/c. The effective inertia is the inertia of

the wing normalized by the fluid dynamic forces given by

Q0 ¼ r*hs*(k/p)2 [31], where r* is the ratio of wing density

rw to the density of air r. The reduced frequency k in

hover reduces to a geometric relationship that is governed

by the stroke amplitude: k ¼ pfc/U ¼ c/(2Zr2). The reduced

frequency for all simulations based on the flapping ampli-

tude required to hover is k ¼ 0.20–0.25, which is the same

reduced frequency range of fruit flies and other insects

[31]. The effective stiffness normalizes the wing stiffness

by the fluid dynamic variables and is given by Q1 ¼ Ehs*/

(12rU2) [31].

In equation (A 3), the force F*¼ F/(crU2) is the non-dimen-

sional transverse component of the aerodynamic forces F per

unit length. This force is determined from the pressure distri-

bution based on the solutions to the unsteady, viscous,

incompressible, two-dimensional Navier–Stokes equations:

r� �V� ¼0

k
p

@V�

@t
þ ðV� � r�ÞV� ¼ �r�p� þ 1

Re
D�V�,

9>=
>; ðA 4Þ

where the velocity field V is normalized with the reference vel-

ocity U, or V* ¼ V/U. Lengths are again normalized by c, and

pressure is normalized per p*¼ p/rU2. The Reynolds number

is defined as Re ¼ Uc/n, where the kinematic viscosity is for air

n ¼ 1.7073� 1025 m2 s21. At the considered reduced frequency

of k¼ 0.20–0.25, the flow is unsteady, suggesting that only the

unsteady Navier–Stokes equations can resolve the true nature

of the fluid dynamics. Full details of the computational

methodology are described in our previous work [9].
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