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Insect wings are flexible, and the dynamically deforming wing shape influ-
ences the resulting aerodynamics and power consumption. However, the
influence of wing flexibility on the flight dynamics of insects is unknown.
Most stability studies in the literature consider rigid wings and conclude
that the hover equilibrium condition is unstable. The rigid wings possess
an unstable oscillatory mode mainly due to their pitch sensitivity to horizon-
tal velocity perturbations. Here, we show that a flapping wing flyer with
flexible wings exhibits stable hover equilibria. The free-flight insect flight
dynamics are simulated at the fruit fly scale in the longitudinal plane. The
chordwise wing flexibility is modelled as a linear beam. The two-
dimensional Navier—Stokes equations are solved in a tight fluid—structure
integration scheme. For a range of wing flexibilities similar to live insects,
all eigenvalues of the system matrix about the hover equilibrium have nega-
tive real parts. Flexible wings appear to stabilize the unstable mode by
passively deforming their wing shape in the presence of perturbations, gen-
erating significantly more horizontal velocity damping and pitch rate
damping. These results suggest that insects may passively stabilize their
hover flight via wing flexibility, which can inform designs of synthetic
flapping wing robots.

1. Introduction

Small flapping wing flyers such as insects are truly remarkable creatures.
Across the taxonomic class Insecta, they exhibit an enviable slate of character-
istics that includes highly agile flight, the ability to perform long migrations
and the ability to carry excess loads approaching their own weight. They clearly
possess the propulsion mechanisms, energy stores and control systems suffi-
cient to achieve these flying feats, as well as the sensing and processing
abilities to command them. These characteristicc make insects a natural
source of biomimicry for scientists and engineers attempting to design and
construct artificial flapping wing micro-air vehicles (FWMAVs).

Many flying insects can hover. This energetically demanding flight mode is
realized by using low Reynolds number (Re) unsteady lift enhancement mech-
anisms [1]. The well-known mechanisms of delayed stall, rotational lift, added
mass forces and wake-capture characterize the hovering flight of insects.

An open research question in the flight of insects and FWMAV is the stability
of flapping wings. To maintain its position in hover, an insect not only generates
sufficient aerodynamic forces to offset its weight and drag, it also must hold its
position in an equilibrium condition. However, the hovering equilibria are
reported to be unstable for flapping wing flyers [2,3]. The most common
method of describing the stability of insects is by presenting the eigenvalues A;
of the linearized system matrix [2,4,5]. Also known as open-loop poles, the litera-
ture reports on hover eigenvalues for a number of insect families, including
drone flies, fruit flies, bumblebees, hawkmoths and hover flies. The studies
include several different aerodynamic modelling techniques. Yet, they overwhel-
mingly share the same natural modes of motion, plotted on the complex plane in
figure 1. The fast and slow subsidence modes are stable. The complex pair of
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Figure 1. Open-loop poles for multiple insect species from studies that
assume rigid wings (times: hover fly [6]; open circles: dronefly [6,7]; plus:
bumblebee [8]). Simulations [9] using a Navier—Stokes aerodynamic
model and measured fruit fly pitch angles [10] with different axes of rotation
considered are blue. Flexible wings with different values of wing stiffness are
green. The open-loop poles are normalized with respect to each insect’s
flapping period and therefore have units of (flapping period) ™.

eigenvalues representing the oscillatory mode is located on the
right half of the complex plane, indicating that the system is
unstable. In spite of the different insects studied and the differ-
ent aerodynamic models employed, these reports share a
single unifying simplification—the wings are assumed to be
rigid [2-5,11-17].

Flying insects have flexible wings [18—22], which results
from the complicated structure of thicker veins and interstitial
resilin. Recent investigations have shown that wing flexibility
reduces the power requirement by lowering torque and drag
penalties [23] and enhances the load lifting capacity of
bumblebees [18] by altering the unsteady aerodynamics
around the flapping wings [24].

The objective of this study was to test the hypothesis that
the structural flexibility of flapping wings produces a stabiliz-
ing influence on the insect while in hover. We use the data
from a computational experiment [9] to calculate the stability
derivatives of a freely flying fruit fly scale flapping model
with flexible wings while in hover. Our results show that
the real part of all system eigenvalues associated with flexible
wings are negative (figure 1), suggesting that the hover equi-
librium of flexible flapping wings is linearly stable. A flexible
wing adjusts its structural dynamic response under a pertur-
bation, a feature not available to a rigid wing. The enhanced
damping associated with wing flexibility yields a stable hover
equilibrium across a range of different values of wing
stiffness.

2. Models and methods

The flight dynamics of a flapping flyer with flexible wings is
governed by the complex three-way coupling of aerody-
namics, structural dynamics and flight dynamics [4,11]: the
aerodynamic loads, governed by the nonlinear unsteady vis-
cous Navier—Stokes equations, depend on the wing
deformation, which, at the same time, depends on the aero-
dynamic loads. Additionally, the resulting aerodynamic
loading affects the body dynamics, which, in turn, changes

the wing aerodynamics and wing shapes. Because of this n

challenge, most theoretical and numerical studies in the lit-
erature [2,4,11] assume rigid wings, simulate flight in the
longitudinal plane and conclude that the hover equilibrium
is unstable.

In this study, we analyse the numerical data from an
insect flight simulator that is fully coupled to the unsteady
aerodynamics and flexible wing dynamics [9]. The detailed
discussion of the governing equations, computational meth-
odology, computational set-up and validation studies are
reported in our previous work [9]. A description of the
governing equations is summarized in appendix A for
completeness.

2.1. Flapping kinematics and passive pitch motion
We impose a bioinspired flapping motion { [25] on the
leading edge of a wing as follows:

() =— %1 sin~! (K cos 27ft]) + ¢, (2.1)
sin” K
where f is the flapping frequency, t is time and Z is the flap-
ping amplitude (figure 2a). The flapping motion can be
biased fore and aft of the body y-axis by a positive or negative
flapping offset angle {,. We set K= 0.01, which keeps the
flapping motion nearly sinusoidal. The reference velocity is
the maximum translational velocity of the second moment
of wing area rp, U = 27fr,Z.

We select the flapping amplitude Z, the stroke plane angle
B and the flapping offset angle {,, as control inputs that place
the insect in equilibrium based on methods used by previous
researchers [14,26]. These methods were altered to accommodate
the influence of wing flexibility in our previous work [9].

The key feature in this study is that the wing pitch angle is
not prescribed. Rather, the instantaneous wing pitch agex
results from the dynamic balance between the wing’s inertia,
elastic restoring force and aerodynamic forces. Furthermore,
body motion is superimposed on the flapping motion, both
of which can affect the resulting wing motion. Unlike most
rigid or flexible flapping aerodynamics studies [27,28],
where the insect is fixed and only resulting forces are ana-
lysed, we allow the body to respond to the instantaneous
aerodynamic forces and moments. As a result, the leading
edge of the wing also moves through multiple degrees of free-
dom, which, in turn, affects the resulting aerodynamics and
fluid —structure interaction.

2.2. Fluid —structure —dynamic interaction

The aerodynamic forces and moments are calculated directly
by the coupled Navier—Stokes equations and structural
dynamics solvers by integrating the pressure and shear
forces on the wing. It is critical to solve the Navier—Stokes
equations to analyse the flapping wing aerodynamics.
Insect flight is characterized by the unsteady, viscous flow
features, which include wake-capture, clap and fling,
dynamic stall via leading-edge vortices and rotational forces
due to combined translation and rotation [29]. The equations
of motion are solved to yield the body accelerations for each
time step. The displacements with respect to the inertial
frame are then transformed back into the computational
frame and provided to the Navier—Stokes solver. The body
motion is combined with the change in position and angle
due to the wing motion at each time step. The computational
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Figure 2. Schematics of the considered wing kinematics. (a) Fruit fly model used in the current study with pertinent reference frames. Subscripts |, b and sp refer to
the inertial, body and stroke plane reference frames, respectively. (b) Passive pitch motion e, due to wing flexibility and body dynamics over the dorsal to ventral
half-stroke for f/f; = 0.41. (c) Flapping and (d) passive pitch angles resulting from changing the wing flexibility alongside observed kinematics from a fruit fly [10].

grid is re-meshed at each time step using the radial basis
function interpolation scheme [30]. Extensive validation on
the flexible wing’s computation framework has been pre-
viously reported [28,31,32]. Also, careful validation studies
have been conducted on the open-loop stability derivatives
and power required in hover for fruit fly scale rigid [33]
and flexible wings [9].

To fully unveil all of the effects of insect wing flexibility, a
full three-dimensional structural simulation is needed that
could accurately model the interesting biological wing
shapes and structures, and simultaneously resolve the non-
linear modes of the structural response with the fluid
dynamic response. This is a tall order. Furthermore, such a
complicated model could obscure, rather than highlight the
specific influence of individual features, which would likely
make determining the mechanisms for any observed benefits
harder to identify. Insect wings are 10-100 times more com-
pliant in the chordwise direction than the spanwise direction
[19]. Therefore, this study considers only chordwise flexibility
on a two-dimensional strip of the wing, so that the influence
of the most flexible mode can be determined. The chordwise
wing deformation alters the angle of attack of the wing,
which significantly influences the unsteady flow dynamics
and the resulting forces. We model the effects of chordwise
flexibility on the resulting aerodynamics and dynamics by
transforming the three-dimensional flapping wing motion
about the wing root { to a two-dimensional plunge motion
h = {r, at the second moment of wing area r, [9]. The r,
location accounts for the spanwise distribution of lift in an
averaged sense [34,35] and is the most appropriate location
to calculate the two-dimensional approximation of the
three-dimensional flapping wing aerodynamics [35].

The two-dimensional unsteady, viscous flow around the
chordwise flexible wing is calculated with the Navier—
Stokes equations to capture all of the unsteady and viscous
effects. In general, three-dimensional effects, such as span-
wise flow, that seem to stabilize the leading-edge vortices
(LEVs) [36], LEV—tip—vortex interaction [37], centrifugal,
Coriolis and angular accelerations [38], are notable in

flapping wings. However, earlier studies have shown that
the effects of spanwise flow on the overall aerodynamics
are less important at the fruit fly scale (considered in this
study) than at higher Reynolds numbers [36,39]. Also, the
characteristics of the LEVs in two dimensions for plunging
motions are representative of three-dimensional flapping
wings as long as the stroke-to-chord ratio is within the
range of typical insects, i.e. around four to five [40-42],
which we consider in this study. Finally, we showed that
the minor differences in the force coefficient magnitudes
between two-dimensional and three-dimensional flapping
wing aerodynamics do not qualitatively affect the stability
outcomes for fruit fly scale dynamics in our earlier work [33].

2.3. Frequency ratio

To determine the influence of wing flexibility on the flight
performance and dynamic characteristics of the FWMAYV,
we adjust the Young’s modulus E of the wing to determine
its effects on the resultant wing and body motion. This
variation is reflected in the resulting frequency ratios

f _2mcf [12p,
i khV E

(2.2)

as defined in [31], where f; is the fundamental natural fre-
quency of the wing in the chordwise direction based on its
structural properties, c¢ is the wing mean chord, ks is the
wing thickness and p,, is the wing material density. Larger
values of frequency ratio correspond to more compliant
wings. We hold several variables constant, while varying
Young’s modulus. The coefficient k; is based on the first natu-
ral mode of a cantilevered beam and is set to 1.875 for all of
the cases in this study [31]. The frequency is fixed at f=
218 Hz based on the observations of fruit flies [43]. The den-
sity of the wing is p,, = 1 x 10°> kg m > [31] and the thickness
ratio is h* =he/c =15 x 1073, where ¢ = 0.8 mm based on
the observations of fruit flies [44,45]. Furthermore, the wing
length is R = 2.39 mm and r, = 1.31 mm.

601708[02 ‘:s‘1 aJ‘anajU/“")dg.'y"[ ‘.ﬁjd'ﬁu.!ljs!|qr‘1d‘/(19pos‘|é/(or;jsj H



We parametrically vary the stiffness from relatively stiff
(f/f1 = 0.368) to more compliant (f/f; = 0.461) to assess the
effects of the frequency ratio on the insect hovering dynamics.
We were unable to find the frequency ratio range for fruit flies
in the literature; however, dragonflies are reported to fly at
frequency ratios from 0.31 to 0.46 [46]. Most insects flap
their wings with a flapping frequency f well below f; [22],
and the values of f/f; used in the current study are also less
than unity. The values of Young’s modulus that correspond
to these frequency ratios are listed in table 1.

2.4. Stability derivatives

We restrict our analysis to the longitudinal degrees of free-
dom in the pitch plane around hover equilibrium. The state
cgr 6]" where u and w are the body
velocities at the body centre of gravity (CG) along the x,

vector is x = [u,w,q,1Xcg1Z

and z, axes, respectively, and g is the pitch velocity about
the yp, axis. The body CG positions 1x; and iz and the
pitch attitude 6 are measured in the inertial frame of refer-
ence. To find the trimmed state at hover and determine the
stability derivatives, we express the nonlinear, time-varying
equations of motion (appendix A) as a set of coupled, linearized
equations of motion

x = Ax + Bu, (2.3)

where A is the system matrix and B is the control matrix that
translates changes in the applied control vector u = [Z,B,{‘p]T
to the changes in the rate vector x.

The aerodynamic forces and moments on the flapping
wing flyer do not depend on the position of the body CG.
As a consequence, the open-loop dynamics of a flapping
wing flyer then is described by a 4 x 4 matrix A [2], typically
written as

X, —X, =
m-"m m1 8
1 1 1
—Z —Zw —Z
A=|m™ m m 0 (2.4)
1 1 1
—M, —M, —M,; 0
I
vy Wy vy
L O 0 1 0]

where the stability derivatives X,,/m, X./m, X;/m, Z,/m,
Zw/m, Z4/m, M,/ 1, My, /1, and M,/I,, describe the aver-
age response (over a single flapping period) of a flyer in
equilibrium to a perturbation in a particular degree of free-
dom. X and Z are the aerodynamic forces acting on the
body CG in the body frame in the x, and z, directions,
respectively. M is the pitch moment about the body CG.
The total mass is m = 0.97 mg, and the body inertia about
the y, axis is I, =5.1 x 10 ?kgm % For example, the
horizontal velocity damping X,,/m is defined as
Xy A iug + 8u,wo, go, 00) — 1o, Wo, qo, Bo)

Su__ 27 , 2.5
m ou ou (2.5)

where the overbar indicates a cycle average of the acceleration in
each degree of freedom and 6u is a horizontal velocity pertur-
bation. The hover equilibria are determined numerically [9],
implying that the cycle-averaged velocities and accelerations
are zero. Hover solutions are indicated with the subscript
0. The pitch rate damping M, /1, is defined in a similar way as

M, §(uo,wo, go + 89, 6o) — (o, W, 9o, 60)
Ly oq ’

(2.6)

Table 1. The frequency ratio and the Young’s modulus considered in this  [JJ]

study [9]. The flapping amplitude Z and the reduced frequency k are
determined to achieve hover equilibrium [9].

fif, Young’s modulus (N m~?) Z(°) k
0.368 7.0 x 10 75 0.235
0452 53x 0P 707 0250
T ey

where g is the body pitch rate in the body frame and 8g is a pitch
rate perturbation and so on. The control matrix B is obtained by
perturbing each control in a similar fashion and determining its
effect on the average of the rate vector.

3. Results and discussion
3.1. Passively pitching flexible flapping wings

To explain the stabilizing influence of flexible flapping wing
dynamics, we systematically vary the flapping wing ampli-
tude Z, stroke plane angle B and stroke mean angle £,
(figure 2a), so that the insect is in a hover equilibrium with
zero cycle-averaged body velocities and accelerations [9].
Once in equilibrium flight, the open-loop poles can be
assessed by perturbing the dynamical system in the horizon-
tal, vertical and pitch degrees of freedom as described in §2.4.
and more in detail in our previous work [9].

The passive deformation of flexible wings (figure 2b)
arises from the dynamic balance of the wing inertia from flap-
ping (figure 2c), the aerodynamic forces and the wing’s
stiffness. The wing deformation results in a passive pitch
angle oge (figure 2b,d) as well as significant wing camber.
Previous studies [24,47] have shown that the passive pitch
angles are large enough to generate enough lift to remain
aloft. By contrast, most rigid wings must actively rotate to
achieve similar kinematics and produce enough lift. The
extent to which insects actively rotate their wings is not
fully known. Although they possess the musculature to
achieve pitch rotation [48], experiments have also observed
tip-to-root torsion waves and other evidence that insects typi-
cally rely on passive deformation of their wings to fly [21,48].
Furthermore, being able to pitch does not necessarily imply
that they always actively pitch the wing. Dynamic aspects
of active and passive pitch will be considered in the future.

Figure 2b includes the pitch angle time history, exper-
imentally observed for hovering fruit flies by Fry et al. [10].
There are some differences, which are expected due to mod-
elling and experimental uncertainties. Nevertheless, we show
in our previous work [9] that the resulting pitch motion
resembles that of fruit flies and the effects of these differences
on the resulting aerodynamics and flight dynamics are small:
(i) we solve for the flapping amplitude and stroke plane angle
to place the system in hover equilibrium. The flapping ampli-
tude and stroke plane angle solutions are similar to those
observed for fruit flies [9]. (ii) The resulting time-averaged
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Figure 3. Variation of the open-loop poles with respect to a change in stability derivatives. Poles are plotted for flexible wings with f/f; = 0.41, while varying each
of the nine primary stability derivatives and holding all the rest constant. In each plot, a single stability derivative is varied from its nominal value to a factor 2.5 of
its base value. As the stability derivative is increased, the flexible results vary from blue to red. The units of each axis are period .

lift produced by the obtained wing motion including the pas-
sive pitch angles is similar to those of fruit flies [9]. In hover,
the time-averaged lift offsets the weight and time-averaged
drag is zero. (iii) The resulting specific power including the
aerodynamic and inertial terms is also within the range that
is reported for fruit flies [9].

3.2. Hover equilibrium is unstable for rigid wings

The primary reason for the instability of the rigid wing
models is the large magnitude of the stability derivative M,
relative to the others [8,12,43]. The derivative M,, is the rate
at which an insect tends to pitch up in the presence of a hori-
zontal velocity perturbation. In spite of the various sources of
damping that exist in the system, this large pitch rate causes
the insect to diverge away from equilibrium, albeit at a rate
that ranges from 29 (for hawkmoths) to 114 times (for
hover flies) slower than the flapping frequency across insect
types [13].

The physical sources of the large speed derivative experi-
enced by a rigid wing extend directly from several of the
unique unsteady force production mechanisms. Insects use
these low Reynolds number flight mechanisms, i.e. transla-
tional lift from delayed stall, rotational lift and wing—wake
interaction, to fly using flapping wing motion [1]. Each of
these mechanisms destabilizes the hover equilibrium of an
insect with rigid wings. The net rearward translational drag
force, acting above the body CG, induces nose-up pitch [8].
Also, the stronger rotational lift during stroke reversal from
the advancing to retreating strokes causes a larger nose-up
pitch moment than in the opposite half-stroke [5,33]. Finally,
the wing—wake interaction, where the wing gains momen-
tum from the near-field vortex structures immediately
following stroke reversal, creates a fore-to-aft lift imbalance
and induces a nose-up tendency under a gust [33].

3.3. Flexible wings stabilize the unstable mode

When wing flexibility is considered, the unstable oscillatory
mode becomes stable (figure 1). The least stable mode has
now become the slow subsidence mode associated with the
heave dynamics, i.e. the vertical motion of the insect. The
fast subsidence mode has become much more stable than
for the rigid wings.

To assess the collective effect that each individual stability
derivative has on the overall system dynamics, we change the
values of the stability derivatives individually, while keeping
other stability derivatives constant. The resulting variation
in the locations of the poles (figure 3) illustrates the sensi-
tivity of the natural response of the insect to each stability
derivative [12]. We consider a representative flexible wing
system (f/f, = 0.41).

Only the stability derivatives X,, M, and M, have a
notable impact on the system poles. Similar to the dynamics
reported for rigid flapping wings [12], increasing the magni-
tudes of X, and M, have a stabilizing influence on the
oscillatory mode, which has become stable for flexible
wings. By contrast, M, is destabilizing, as it has been
shown to be in rigid wing studies [8,12].

Compared with the stability derivatives reported in the lit-
erature for rigid wings, the insects modelled with flexible
wings are more sensitive to perturbations (figure 4). The mag-
nitude of some of these stability derivatives are orders of
magnitude higher. These stability derivatives are calculated
by comparing the dynamics at hover equilibrium and the
response under a perturbation. The main difference in
the response of a flexible versus a rigid wing is that not only
the surrounding unsteady flow changes due to the imposed
perturbation but also the structural response adjusts to the per-
turbation and the changes in the surrounding flow. On the
other hand, the wing shape and motion remains the same
for the rigid wing and only the surrounding flow changes
under a perturbation. This increased sensitivity does not
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Figure 4. Stability derivatives (a) (times) X, and (open circles) Z,, (b) (open
diamonds) M,, (c) (times) X; and (open circles) Z, and (d) (open diamonds)
My, for the flexible wing with varying #/f; (green) and for insect models that
assume rigid wings (blue). HF, hover fly [6]; BB, bumblebee [8]; DF, dronefly
[6,7]; FF, fruit fly [9].

necessarily mean, however, that the insect is less stable. On the
contrary, the increased sensitivity significantly enhances the
horizontal velocity damping — X, and the pitch rate damping
—M, both of which stabilize the insect (figure 3).

The hover equilibrium can be stabilized if the horizontal
velocity damping X,, and the pitch rate damping M, are suf-
ficiently large compared with M, [12], which is also much
greater for the flexible wings. Both X,, and M, do not need
to be greater than M, in magnitude [12]. For most rigid
wing systems, X, and M, are too small to stabilize the
hover equilibrium [12]. For the considered flexible wing sys-
tems, the ability for the wing to deform under perturbation
provides the means to sufficiently increase the damping
terms X, and M,, as described in §§3.3.1. and 3.3.2.

3.3.1. Horizontal velocity damping, X,

Horizontal velocity damping exists when X, <0. To
explain the increase in horizontal rate damping —X,, we
plot the passive pitch angle e and the passive pitch
rate dge, under perturbation, and the difference between
the horizontal accelerations in hover and perturbation A
for both a flexible (f/f; = 0.41) and rigid wing in figure 5.
The rigid wing simulation uses the same passive pitch
angles that were produced during the hovering case with
the flexible wings.

The main mechanism for the differences in A and
hence X, (equation (2.5)) for the two types of wings is
that the flexible wing is able to change its response—
especially the wing shape—due to the perturbation &u.
On the other hand, a rigid wing maintains its shape and
moves according to the prescribed kinematics. Since the
pitch schedule between the rigid and flexible wing simu-
lations is the same at hover, the pitch and pitch rate for
the rigid wing is also the passive pitch angle and its rate
for the flexible wing at hover.

The horizontal rate damping — X, for the flexible wing is
enhanced during the portions of the wing stroke labelled a, b,
cin figure 5, where the change in horizontal acceleration Ai is
a large negative value. The first occurs from 7=0.2-0.3

~
Q
=

Oex (%)

,\
S
-

Olpex (°/period)

—~
3
~

Aur(m s—2)

0 0.25 0.50 0.75 1.00
period

Figure 5. Contributions to the horizontal rate damping, —X,.. Flexible wing
(green) dynamics at f/f; = 0.41 with X, = —120.3 are compared with rigid
(blue) with X, = —19.0 in response to a perturbation éu in the x, direc-
tion. The pitch schedule is the same for the flexible and rigid wings at hover.
Under perturbation, the rigid wing pitch motion remains the same, whereas
the wing shape and rates of passive pitch change for the flexible wing. As a
consequence, (a) the pitch angle are,, (b) pitch rate cuey and (c) the change
in horizontal acceleration A are different for the flexible and rigid wings
under perturbation.

(a) dorsal to ventral b) ventral to dorsal

(—

091
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KON TN

Figure 6. Deformed wing motion for hover (blue) and under a horizontal
perturbation (red) for the flexible wing with f/f; = 0.41. The structural
response of the flexible wing in a hover and a gust is not the same, leading
to higher horizontal velocity damping.

(station a in figure 5) in the dorsal to ventral stroke, when
the horizontal perturbation is opposing the wing motion
and the relative velocity of the wing is higher than at
hover. This higher relative velocity causes horizontal rate
damping (X, <0) in both the flexible and rigid motion
(station d) [5,8]. Clearly, the damping for the flexible wing
is larger. The flexible wing shape deformation responds to
the horizontal perturbation, reducing its pitch angle
(figure 5a) and increasing its angle of attack from 44° for
the rigid wing to 52° for the flexible wing. Thus, the wing
is more vertical, leading to a higher drag and increased
damping.

Figure 6 provides the deformed wing position and shape
in hover and under perturbation. The wing’s response to the
perturbation is not simply a matter of the wing being blown
back by the higher relative wind in the advancing stroke.
Rather, the entire dynamic response changes the time history
of deformation throughout the stroke.

There is also a significant horizontal rate damping X,, in
the flexible wing case at 7= 0.4-0.6 (station b in figure 5),
where no damping exists at all for the rigid wing. This
arises primarily due to the larger rotational rate in this
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portion of the stroke (figure 5b) along with a nearly vertical
wing orientation (figure 51). Not only does the wing shape
change due to the perturbation, but also its rate. For example,
the unperturbed flexible wing has a rotation rate of 369°/
period when it is vertical at 7= 0.46, but the perturbed flex-
ible wing has a rotation rate of 492°/period when it is vertical
(7=0.49), resulting in a larger force oriented in the —x
direction.

Finally, at 7= 0.7-0.8, the wing is flapping opposite the
perturbed body velocity, resulting in a lower relative fluid
velocity. The lower dynamic pressure reduces the drag com-
pared with the hover condition for both the flexible (station c
of figure 5) and rigid wing (station e of figure 5). However,
the flexible wing has lower drag in this portion of the
stroke because it has larger passive pitch deformation and
therefore lower angle of attack. Additionally, it has a lower
rotational velocity than the hover condition, reducing the
rotational drag.

Throughout the stroke, the negative contributions in X,
overwhelm the positive contributions, leading to significantly
higher horizontal rate damping for the flexible wing than the
rigid wing.

3.3.2. Pitch rate damping, M,

Pitch rate damping exists when M, <0, which indicates
that a nose-up (positive) pitch rate of the body yields a
nose-down (negative) moment and pitch acceleration. As
—M, increases, the stability improves. Figure 7 depicts
the difference in the pitch acceleration Ag for the flexible
and rigid wings while experiencing a body pitch rate com-
pared with hover. The change in pitch acceleration Ag
directly informs the pitch rate damping M,. Once again,
the trace of flexible wing remains negative for most of the
stroke, with significant local peaks of damping at stations
a, b and c in figure 7.

The main peak in the pitch rate damping M, for the flex-
ible wing occurs from 7= 0.13 to 0.42 (station b in figure 7).
At the beginning of the stroke (station a), the passive pitch
angle due to wing deformation under perturbation is
higher than for the hover solution in this region. The larger
wing deflection implies that the angle of attack and, hence,
drag is lower. Lower drag reduces the nose-up pitch
moment about the CG compared with hover, which yields
Ag < 0. Also, during station b, the passive pitch angle is
lower with the perturbation, producing less lift. At this por-
tion of the stroke, the wing is now in front of the body CG,
and less lift produces Ag < 0.

In the second half-stroke, the rigid wing exhibits a stabi-
lizing trend because the direction of the perturbation g is
now opposite. For the flexible wing, the large region of
damping from 7= 0.65 to 0.86 (station c) exists largely due
to decreased passive pitch angle, leading to higher angles
of attack. The more vertical wing orientation creates more
drag towards the front of the insect (—x;, direction) in this
portion of the stroke. Acting above the body CG, the drag
causes a nose-down pitching moment, further contributing
to the pitch rate damping.

3.4. Evolution of flight from hover
The locations of the open-loop poles of the flexible flapping
wing system suggest that the hover equilibrium is stable.

500 1
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—-1000
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Figure 7. Difference in pitch acceleration between hover and during a g-per-
turbation Ag for the flexible (green) at f/f; = 0.41 and rigid (blue) wings.
The values of pitch rate damping are M, = —114.4 for the flexible wing
and M; = —66.3 for the rigid wing.
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Figure 8. The longitudinal evolution of flight when released from hover for
flexible and rigid wings. The rigid wing results consist of a pitch motion from
observations of hovering fruit flies [10] (red) and a motion with the pitch
schedule based on the flexible wing response (blue). The flexible wing
dynamics correspond to f/f; = 0.41 (green).

However, the stability derivatives were determined by con-
ducting linearization about the equilibrium state of the
averaged system dynamics—a common and necessary first
step [2,4]. While this technique is powerful in its ability to
reveal valuable information about the participation of each
degree of freedom in the natural modes of motion, the real
system is nonlinear and time-varying. The lift production
can be affected by the time-history effects of the vortex
dynamics. For example, a persistent downward jet, a non-
linear wing—wake interaction mechanism, can decrease the
lift production [49].

To test the hypothesis that wing flexibility passively
stabilizes hover, we compare the longitudinal response of
the flexible wing to/against two different rigid wing simu-
lations: one with abstracted kinematics and the other with a
pitch schedule that matches the flexible wing’s passive
pitch in figure 8.

Initially, both the flexible and rigid wings are in hover.
Even for the unstable response of the rigid wing, the
growth in the vertical velocity rate, the highest response, is
still less than one chord per period after 10 cycles. The peri-
odic forcing of both wings causes cyclic variations in all
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three degrees of freedom. Eventually, both rigid wing sys-
tems diverge much more rapidly from the equilibrium than
the flexible wing.

The more rapid divergence of the rigid wings further
demonstrates that the pitching schedule alone is not
enough to stabilize a flapping wing flyer. These results
might also explain why the experimentally observed wing
pitch kinematics of hovering fruit flies [10] do not appear
to confer any stability benefits when simulated with rigid
wings. When a biological pitching schedule, which itself
results from wing flexibility, is reproduced using a rigid
wing simulation, the stability benefits are not seen. The true
source of these benefits, i.e. the ability to adjust the wing
shape and its dynamics under some perturbation, is not
simulated.

4. Concluding remarks

Our stability analysis of the linearized, open-loop flight
dynamics model of a flexible flapping wing flyer shows
that all eigenvalues have negative real parts. These results
suggest that the hover flight of a flapping wing flyer with
flexible wings is stable. This is a novel finding as most, if
not all, rigid flapping wing studies at fruit fly scales have
reported a hover equilibrium with at least one pole with a
positive real part. Additionally, we identify that the wing’s
increased sensitivity to horizontal and pitch perturbations is
the physical mechanism for the increased horizontal velocity
damping and pitch rate damping and the corresponding
improvement in stability. Furthermore, longitudinal simu-
lations in time of flexible wings showed significantly less
divergence from the initial condition than rigid wing simu-
lations. Studies in the literature modelled insect wings as
being rigid and therefore likely overpredicted their hover
instability.

However, these findings are in principle only valid for the
considered simplified fruit fly model. Also, this study only
considers the effects of chordwise flexibility in a two-dimen-
sional flow velocity field. There are geometric projection
differences between a full three-dimensional flapping wing
and a two-dimensional plunge motion, particularly when
the flapping amplitude is large. These geometric differences
might result in minor differences in the resulting longitudinal
dynamics and potentially cause differences in the lateral
dynamics as well. A real insect wing is three-dimensional
with complicated vein patterns and non-uniform anisotropic
wing structures. The wing kinematics are also three-dimen-
sional with wing rotation at the wing root. The lateral
dynamics are also important, but the associated spanwise
flow and lateral forces cannot be accurately modelled without
considering more of the three-dimensional fluid dynamics
and structural features. Modelling the three-dimensional flex-
ible wings and analysing their effects on the unsteady
aerodynamics and six degree-of-freedom flight dynamics
and control are very interesting and are left as future study.
That said, the primary stabilizing mechanism from wing
flexibility may still exist in three-dimensional flapping wing
dynamics, particularly because the chordwise flexibility is
much more pronounced in insects than the spanwise
flexibility.

Recent investigations have demonstrated that flexible
flapping wings can enhance lift while reducing power

consumption [9,24]. Results from this study suggest that
the use of a compliant wing can lead to a novel dynamic
benefit that wing flexibility can passively stabilize flight
at hover. This does not necessarily imply that insects are
truly stable in the open-loop sense—rather, it simply
demonstrates that the chordwise wing flexibility has a sta-
bilizing influence on flapping wing flight. Many other
morphological parameters can affect insect flight stability
including centre-of-gravity location with respect to the
wings [4].
prove to remain unstable while others might actually be

Some insect configurations may ultimately

stable when all of the physics are properly captured. This
range of stability would mirror our experience with
fixed-wing aircraft, some of which are designed to be
inherently stable while others are not. Thus, wing flexi-
bility provides a more stable platform, and flexible wings
do not need an active pitching mechanism to achieve a
desired pitching motion. It is also possible that the sensing
and control system could be reduced in view of the more
stable dynamics of flexible wings. Such reductions in
weight and complexity are highly attractive to designers
because the physical dimensions of FWMAVs are, by defi-
nition, extremely small compared with typical air vehicles.
Additionally, flexible wings are likely to be made from
lighter materials than rigid wings. These combined
weight savings might also yield significantly higher
payload, range, endurance or agility.
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Appendix A. Governing equations

The equation of motion for a flapping wing flyer in
three-dimensional space is given as follows:
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(A2)

where v and w denote the velocity and angular rate vector of
the subscripted object; r,,., is the position vector from the
body CG cg to the wing root 0; tyg/, is the position vector
from the wing root o to the wing CG wg; g is the acceleration
of gravity vector; I, is the inertia tensor about the body CG;
Lygo is the inertial tensor of the wing about the wing root

and R is the transformation matrix that rotates a vector in
w,i—b

the wing frame to the body frame. The leading subscript (w
or b) of a vector denotes the reference frame within which the
vector is expressed. Other terms follow the same convention
and are as follows: 1, ; and 1y, is the mass of the ith wing or
body, respectively. An over-dot indicates a local time deriva-
tive. The tilde over a vector quantity denotes a cross product.

There are two main differences of the considered equation
of motion for flexible wings compared with rigid wing
models. In rigid wing studies [6,50], the wing motion is pre-
scribed. In this study, the wing motion is a result of the
combination of the body motion, imposed flapping angle
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