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Genome editing technologies are being widely adopted in plant 
breeding1. However, a looming challenge of engineering desir-
able genetic variation in diverse genotypes is poor predict-
ability of phenotypic outcomes due to unforeseen interactions 
with pre-existing cryptic mutations2–4. In tomato, breeding 
with a classical MADS-box gene mutation that improves 
harvesting by eliminating fruit stem abscission frequently 
results in excessive inflorescence branching, flowering and 
reduced fertility due to interaction with a cryptic variant that 
causes partial mis-splicing in a homologous gene5–8. Here, we 
show that a recently evolved tandem duplication carrying the  
second-site variant achieves a threshold of functional tran-
scripts to suppress branching, enabling breeders to neutralize 
negative epistasis on yield. By dissecting the dosage mecha-
nisms by which this structural variant restored normal flower-
ing and fertility, we devised strategies that use CRISPR–Cas9 
genome editing to predictably improve harvesting. Our find-
ings highlight the under-appreciated impact of epistasis in 
targeted trait breeding and underscore the need for a deeper 
characterization of cryptic variation to enable the full poten-
tial of genome editing in agriculture.

Cryptic variation consists of naturally occurring mutations that 
have little or no phenotypic consequences unless exposed to addi-
tional genetic or environmental interactions2,3. Genome sequencing 
projects have revealed widespread allelic variation between even 
closely related genotypes9–12. The proportion of genetic variation that 
is cryptic is potentially vast, providing mutations that could contrib-
ute to evolutionary adaption13,14. More important over shorter time 
scales is the impact on plant and animal breeding, where intense 
selection pressure combines diverse alleles to enhance productivity1. 
However, cryptic variation can cause unpredictable and sometimes 
detrimental outcomes due to epistatic interactions with beneficial 
genetic variation, which then must be overcome to achieve desir-
able phenotypes15–18. How such neutralization of cryptic variation is 
achieved has not been investigated.

In tomato, natural mutations in the MADS-box transcription 
factor gene JOINTLESS2 (J2) have the potential to improve harvest-
ability through a modification of flower development that eliminates  

the abscission zone on the stems of fruits6,7,19. However, the j2 breed-
ing mutation, caused by a transposon insertion (j2TE), results in 
undesirable branching of flower-bearing shoots (inflorescences) in 
genetic backgrounds that also carry a cryptic variant for the close 
homologue ENHANCER OF J2 (ej2W), which was selected during 
domestication5,8. This combination of loss-of-function alleles (j2TE 
ej2W) results in excessive flower production and low fertility due to 
poor fruit set, which has prevented widespread use of the jointless 
trait20. We discovered a small group of elite large-fruited varieties 
that carry both mutations but produce normal, unbranched inflo-
rescences with high fertility and regular fruit set (Fig. 1a–c). This 
discrepancy suggested breeders selected additional cryptic variants 
that suppressed negative epistasis on yield.

To find the genetic basis for this suppression, we crossed 
branched j2TE ej2W double mutants with an unbranched j2TE ej2W 
breeding line (Fla.8924) and found F1 hybrids produced mostly 
unbranched inflorescences, indicating suppression is partially 
dominant8,21 (Fig. 1a–c and Supplementary Fig. 1). A large F2 popu-
lation of 1,536 plants produced a range of inflorescence complexi-
ties, suggesting that multiple quantitative trait loci (QTLs) underlie 
suppression. To dissect the genetic architecture of suppression, we 
selected 70 F2 plants that captured the phenotypic extremes of inflo-
rescence branching (Fig. 1d). We subcategorized branched and sup-
pressed groups into ‘A’ and ‘B’ classes on the basis of expressivity and 
sequenced pools of DNA from each group. Comparing SNP-ratios 
between the branched and suppressed phenotypic classes showed 
two major QTLs on chromosomes 1 and 3, which we designated 
suppressor of branching1 (sb1) and sb3, respectively (Fig.  1d,e). 
Whereas both QTLs were found when comparing A-classes, only 
sb3 appeared in the B-class comparison, suggesting a stronger con-
tribution from sb3 (Fig. 1f).

To resolve the individual and combined effects from sb1 and sb3 
we analysed inflorescence complexity from F3 families segregating 
for both QTLs. Similar to the branched j2TE ej2W double-mutant par-
ent, F3 plants lacking both Fla.8924 suppressor QTLs (sb1–/–sb3–/–) 
developed strongly branched inflorescences. Notably, sb1 partially 
suppressed branching in a dose-dependent additive manner, with 
heterozygotes (sb1+/–sb3–/–) and homozygotes (sb1+/+sb3–/–) showing 
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weak and moderate suppression of branching, respectively (Fig. 1g 
and Supplementary Fig.  2a,b). Along with environmental influ-
ence, sb1 additivity probably explains the range of inflorescence 
complexity in the F2 population. In contrast, both sb3 heterozygos-
ity (sb1–/–sb3–/+) and homozygosity (sb1–/–sb3+/+) nearly completely 
suppressed branching, supporting that sb3 is partially dominant. 
Interestingly, sb3 homozygosity suppressed branching compara-
ble to Fla.8924 and F3 families homozygous for both suppressors 
(sb1+/+sb3+/+), indicating that sb3 drives suppression. However, vari-
ance in branching was higher in sb1–/–sb3+/+ plants compared to 
sb1+/+sb3+/+, suggesting that sb1 stabilizes unbranched inflorescence 
architecture in Fla.8924 (Supplementary Fig. 2c).

We focused on sb3 for further dissection and inspected the 
14.6-megabase pair (Mb) mapping interval on chromosome 3 for 
candidate genes, which included EJ2 (Fig. 2a). The EJ2 variant in 
both the j2TE ej2W branched and Fla.8924 unbranched genotypes is a 
weak allele (ej2W) due to an insertion in the fifth intron8. This inser-
tion causes a partial loss of functional transcripts from mis-splic-
ing, resulting in enlarged leaf-like organs (sepals) on flowers and 
fruits—a trait that may have been selected during domestication. 

However, ej2W is a cryptic variant in the context of inflorescence 
architecture until exposed in j2 mutant backgrounds. Notably, j2 
mutants that are also heterozygous for ej2W (j2TE–/–ej2W+/–) produce 
weakly branched inflorescences compared to strongly branched 
inflorescences in j2TE ej2W double mutants, due to having one fully 
functional copy of EJ2. This dosage relationship with j2, along with 
partial mis-splicing from the ej2W variant, led us to propose that the 
dominant effect of sb3 could be on the basis of higher EJ2 expres-
sion that then reaches a threshold of correctly spliced transcripts. 
Consistent with this, we found EJ2 expression was increased more 
than about twofold in floral tissues of Fla.8924 compared to WT 
(Supplementary Fig. 3a).

One explanation for this higher expression could be a mutation 
in a linked trans-acting factor that represses EJ2, but this seemed 
unlikely. Alternatively, nearby cis-regulatory mutations could be 
responsible but we found no variants 28 kilobase (kb) upstream or 
56 kb downstream of ej2W in our Fla.8924 genome sequencing21. 
A third possibility that would also explain the around twofold 
increased expression is an additional linked copy of EJ2 exists in 
Fla.8924, possibly from a duplication event. Inspecting the mapping 
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interval for variation in genome sequencing coverage showed an 
83-kb window surrounding EJ2 with about twofold higher genomic 
read coverage in Fla.8924 compared to j2TE ej2W, supporting a dupli-
cation (Fig. 2b). We confirmed higher genome coverage at EJ2 in 
Fla.8924 by quantitative PCR and defined the borders of the dupli-
cation by PCR and Sanger sequencing (Fig. 2d,e and Supplementary 
Fig. 3b). We also detected the same structural variant by Nanopore 
long-read sequencing22, confirming an 83-kb tandem duplication 
at sb3 containing EJ2 and ten additional genes (Supplementary 
Table 1). Importantly, this duplication co-segregated with suppres-
sion of branching in our F2 mapping population (Fig. 2c).

To determine if increased EJ2 dosage underlies sb3 suppression 
we performed a series of molecular and genetic experiments. We 
first sequenced RNA from reproductive meristems of WT, j2TE ej2W 
double mutants and Fla.8924 and found that EJ2 and four addi-
tional genes on the duplication were expressed significantly higher 
in Fla.8924 compared to j2TE ej2W double mutants, including a sec-
ond MADS-box gene, the fruit ripening regulator FRUITFULL2 
(FUL2, ref. 23; Fig. 2f, Supplementary Fig. 3c). Several MADS-box 
genes increase in expression during tomato meristem maturation24. 
However, among all genes in the sb3 duplication only EJ2 was upreg-
ulated from the transition to early floral stages of meristem matu-
ration, which define a critical window during which inflorescence 
architecture is established24–27 (Fig. 3a). We found that the levels of 
correctly spliced EJ2 transcripts doubled from ~30% in j2TE ej2W to 
~60% in Fla.8924 (j2TE sb3) relative to WT (Fig. 3b–d), supporting 

that increased EJ2 dosage from the sb3 duplication overcomes insuf-
ficient levels of functional transcripts caused by the ej2W variant.

To validate genetically that two copies of ej2W explain sb3 sup-
pression and exclude a role for FUL2 or other duplicated genes, 
we took advantage of a collection of ej2 loss-of-function alleles to 
quantitatively modify EJ2 dosage in isogenic hybrid plants (Fig. 3b).  
In a j2 mutant background we found that heterozygotes of sb3 with a 
CRISPR–Cas9-generated EJ2 null mutation (ej2CR) developed highly 
branched inflorescences similar to those of the ej2W/ej2W homozy-
gous controls, indicating that two ej2W copies in cis (in sb3/ej2CR) 
and in trans (in ej2W/ej2W) had comparable effects on branching 
from the same dosage of the ej2W allele (Fig. 3c). Quantitative differ-
ences in branching between these genotypes were probably attribut-
able to additional unknown modifier loci that distinguish Fla.8924 
and the donor genotype carrying ej2W and the ej2CR null allele (M82) 
(Fig. 3d). Importantly, higher EJ2 gene dosage in sb3/EJ2 hybrids 
resulted in a near-complete suppression of branching (Fig.  3c,d). 
Because sb3/ej2CR and sb3/EJ2 hybrids differ only in EJ2 dosage and 
no other genes in the duplication, these results confirm that the 
additional copy of ej2W is responsible for suppression.

Our findings indicate that the sb3 duplication facilitated use of 
j2 mutations in tomato breeding but only for a narrow germplasm 
pool, suggesting sb3 is a rare structural variant. To determine when 
sb3 arose and was combined with j2 during breeding, we used re-
sequencing data from 590 diverse tomato genomes to analyse sb3 
allele frequency11,28,29 and then compared allele distributions for 
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j2TE, ej2W and sb3 with a phylogeny of 1,606 wild, early domesti-
cated and cultivated accessions30 (Fig.  4a, Supplementary Fig.  4a 
and Supplementary Table  2). We did not detect sb3 in distantly 
related wild Solanum species, the progenitor species of domesti-
cated tomato (S. pimpinellifolium), nor the first domesticated types 
(S. lycopersicum var. cerasiforme) (Fig.  4b, Supplementary Fig.  4b 
and Supplementary Table  3). Instead, we found the sb3 duplica-
tion arose in the ‘vintage’ accessions, which comprise cultivars 
developed approximately 75 years ago30, suggesting sb3 emerged 
as a cryptic variant during the earliest stages of modern breeding.  
In contrast, ej2W arose in S. lycopersicum var. cerasiforme and reached 
near-fixation in vintage cultivars, indicating that sb3 evolved in a 
cultivar that already carried the cryptic ej2W variant. Notably, j2TE 
was only detected in modern breeding cultivars, consistent with j2TE 
being introduced later into rare sb3 genotypes.

Over the last 75 years, breeding efforts took two major direc-
tions: ‘processing’ types with ‘square round’ fruits that withstand 
machine harvesting and ‘fresh-market’ types with large round fruits 
that are harvested by hand31. Interestingly, we found ej2W and sb3 
enriched in fresh-market but not in processing cultivars. This sug-
gested that using the jointless trait in fresh-market and process-
ing breeding programmes involved distinct solutions (Fig. 4b and 
Supplementary Fig. 4b). In support of this, we observed only j2TE 

sb3 genotypes in fresh-market and j2TE EJ2 genotypes in processing 
lines, showing that breeders used j2TE by either avoiding the cryptic 
ej2W variant (processing) or selecting for the sb3 duplication (fresh-
market) (Fig. 4c). Consistent with this, a ~350-kb region surround-
ing EJ2 showed low levels of genetic diversity (π) in fresh-market 
cultivars that carry sb3 (sb3+/+) compared to those without (sb3–/–), 
indicating the sb3 duplication was actively selected to permit breed-
ing of the jointless trait into large-fruited fresh-market cultivars 
(Fig. 4d and Supplementary Fig. 4c,d).

We sought to leverage our discovery of sb3 and its mechanism 
of suppression to develop strategies that allow predictable breed-
ing for the jointless trait. On the basis of our findings, higher EJ2 
dosage from sb3 suppresses negative epistasis between j2 and ej2W 
mutations, thereby protecting plants from undesirable inflorescence 
branching. In support of this, targeting both copies of ej2W on the 
sb3 duplication by CRISPR–Cas9 resulted in strongly branched 
inflorescences in Fla.8924 (Fig. 5a). This suggested that genotypes 
carrying sb3 could be exploited to maintain normal inflorescence 
architecture when generating jointless types by genome editing. We 
engineered j2 mutations using CRISPR–Cas9 in three jointed fresh-
market Florida breeding lines that carry sb3 (refs. 32–34; Fig.  5b,c) 
and obtained jointless fruit pedicels without disrupting inflores-
cence development (Fig. 5d). Together, our results show that the sb3 
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Fig. 4 | The sb3 duplication is a rare variant that arose recently in a ‘vintage’ tomato cultivar and was selected to overcome j2 ej2W negative epistasis 
during the development of large fresh-market varieties. a, Phylogeny of 1,606 tomato accessions using 1,812 genome-wide SNPs showing that sb3 is 
restricted to vintage and modern cultivars. Coloured lines at the ends of each branch indicate the presence (blue) or absence (red) of the ej2W, sb3 and 
j2TE alleles. Zoom-in of the probable founder genotype of sb3 (‘Santa Clara’) is shown at right. b, Allele frequencies of ej2W, sb3 and j2TE in accessions 
classified as wild Solanum species (distant relatives and S. pimpinellifolium, the wild progenitor of domesticated tomato), early domesticates and cultivars 
(S. lycopersicum var. cerasiforme and S. lycopersicum vintage) and modern cultivars (fresh-market and processing), see also Supplementary Fig. 4b. Number 
of accessions is indicated below each bar. c, Distribution of J2 EJ2 genotypes in accessions classified as fresh-market (n = 95) and processing tomato types 
(n = 33). Jointless (j2TE) genotypes are highlighted in red. d, Nucleotide diversity (π) plots across a 10-kb chromosomal region containing EJ2, calculated 
using n = 107 accessions classified as ‘fresh-market’ genotypes with (n = 37, red line) and without (n = 73, green line) the sb3 locus. The blue line shows the 
pi-ratio between the accessions with and without the sb3 locus. Dashed lines indicate the 90% cut-off across the whole chromosome.
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duplication neutralizes negative epistasis between j2 and the cryp-
tic ej2W variant. Thus, introgression of either the wild-type allele 
of EJ2 or the sb3 duplication into diverse genetic backgrounds can 
now provide predictable breeding for the jointless trait. Although 
current genome editing technologies do not yet permit creating 
precise deletions, we expect it will soon be possible to simultane-
ously mutate J2 and eliminate the ej2W insertion to rapidly engineer 
improved harvestability in any genotype.

We have shown that selection of a rare tandem duplication during 
tomato breeding neutralized a deleterious cryptic variant for inflo-
rescence development. The importance of structural variants—par-
ticularly those that affect gene copy number—in the domestication 
and breeding of both plants and animals is becoming more appar-
ent35. Gene duplications, and the increase in expression and protein 
dosage they confer, have been instrumental in modifying produc-
tivity traits in maize36, rice37 and wheat38. Notably, experimental 
evolution studies in yeast39, nematodes40 and plants41 have shown 
that gene copy number variation becomes especially important for 
rapid adaption under strong selective pressure, which mirrors the 
intense selection imposed during domestication and breeding35. 
Over longer time scales, these and similar as yet uncharacterized 
duplications and copy number variants in agricultural systems 
have the potential to further evolve if selection pressure is relaxed.  
An enlightening example involves evolution of leaf complexity in 
the Brassicaceae, where a homeodomain gene was tandemly dupli-
cated and one duplicate copy was subsequently dampened in func-
tion by a coding sequence mutation42,43. This haplotype provided a 

subtle dosage change and facilitated neofunctionalization from an 
additional cis-regulatory change that changed expression domains. 
Similar suppressing or enhancing combinations of coding and regu-
latory mutations arising after gene duplications may have also been 
important for achieving more subtle molecular outputs and possi-
bly new crop phenotypes and adaptations. Greatly increasing refer-
ence genomes for many related model and crop species, enabled by 
long-read sequencing technologies, will be critical for exposing the  
full repertoire of haplotype complexity involving both structural 
variation and SNPs, as well as for studying the impact of specific 
haplotypes over the different time scales of evolution, domestication 
and breeding.

Neutralizing the negative epistasis between j2TE and ej2W 
depended not only on the increased gene dosage from the sb3 
duplication but also the second suppressor QTL sb1, which is also a 
cryptic modifier of inflorescence architecture that stabilized normal 
inflorescence development, flower production and fertility. This 
genetic complexity, in which epistatic and additive effects from mul-
tiple loci and cryptic alleles are involved, probably reflects many as-
yet-undetected cases where the exposure and selection for or against 
cryptic variants have shaped quantitative traits in other crops. The 
impact of cryptic variation and epistasis on crop domestication and 
improvement has not been deeply explored2,15. Although standing 
variation comprises an untapped source of alleles to provide gains 
in productivity and environmental adaptations, our work serves 
as a cautionary tale for how cryptic variants can complicate pre-
dictable breeding, since seemingly neutral mutations can become  
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adaptive or deleterious when genetically reconfigured1,44. Such 
genetic background dependencies, which are frequently subtle in 
effect, are pervasive across systems4,45. With the rapid advancement 
of genome editing technologies, it is now feasible to begin exposing 
epistatic background effects at the population level, by systemati-
cally engineering mutations with known phenotypic consequences 
into tens or even hundreds of related genotypes. Such an endeavour 
will become especially informative for traits that are controlled by 
functionally related genes and gene families where epistatic inter-
actions are probably more abundant46. Combined with advanced 
quantitative genetic approaches47, such strategies could show how 
genotypic context contributes to phenotypic variability (penetrance 
and expressivity) and also aid in resolving the responsible cryptic 
variants to the nucleotide level, many of which could be structural 
alleles. Future dissection of cryptic genetic variation can help pre-
dict how complex genetic architectures shape quantitative trait  
variation, which is critical for creating superior genotypes in  
crop and livestock breeding and also for guiding decisions in  
personalized medicine4.

Methods
Plant material, growth conditions and phenotyping. Seeds of the S. lycopersicum 
processing cultivar M82 (LA3475) and Florida fresh-market breeding lines 
Fla.7946, Fla.8624, Fla.8735 and Fla.8924 were from our own stocks. Seeds 
were either pre-germinated on moistened Whatman paper at 28 °C in complete 
darkness or directly sown and germinated in soil in 96-cell plastic flats. Plants 
were grown under long-day conditions (16 h light/8 h dark) in a greenhouse under 
natural light supplemented with artificial light from high-pressure sodium bulbs 
(~250 µmol m−2 s−1). Daytime and night-time temperatures were 26–28 °C and  
18–20 °C, respectively, with a relative humidity of 40–60%. Analyses of 
inflorescence architecture were conducted on plants grown in the fields at Cold 
Spring Harbor Laboratory (July 2017), the Cornell Long Island Horticultural 
Experiment Station (July 2017) and the fields of the Gulf Coast Research and 
Education Center (March 2018). Seeds were germinated in 96-cell flats and grown 
for 32 d in the greenhouse before being transplanted to the field. Plants were grown 
under drip irrigation and standard fertilizer regimes. Damaged or diseased plants 
were marked throughout the season and were excluded from the analyses.

For quantitative analyses of inflorescence complexity, we counted the number 
of branching events on 3–5 inflorescences from at least four replicate plants per 
genotype. Lignified cells in the pedicel abscission zones of flowers and young 
fruits were stained using a Phloroglucinol-HCl solution (two volumes 2% (w/v) 
phloroglucinol in 95% (v/v) ethanol and one volume of concentrated HCl). The 
phloroglucinol-HCl solution was directly applied to pedicels that were freshly cut 
along the longitudinal axis using a razor blade. Stained pedicles were immediately 
imaged with a Nikon SMZ1500 stereomicroscope (Nikon).

QTL-sequencing. To map the loci underlying suppression of of j2TE ej2W branching 
in the Fla.8924 breeding line, we generated an F2 segregating population by 
crossing a branched j2TE ej2W double mutant in the M82 background with the 
unbranched j2TE ej2W mutant in the Fla.8924 background. We followed an 
established standard QTL-seq protocol48 and focused on F2 plants with extreme 
phenotypes. From a total of 1,536 j2TE ej2W × Fla.8924 F2 plants grown at the 
Cornell Long Island Horticultural Experiment Station, we selected 35 plants with 
excessively branched inflorescences (6–36 branches) and 35 clearly suppressed 
plants (1–4 branches). We further subcategorized these suppressed and branched 
classes on the basis of average number of branches into ‘A’ and ‘B’ classes, 
branched-A (19–30 branches), branched-B (10–18 branches), suppressed-B 
(1.5–2.25 branches) and suppressed-A (1–1.25 branches) classes. An equal amount 
of tissue from each plant (~0.2 g) was pooled for DNA extraction using standard 
protocols. Libraries were prepared with the Illumina TruSeq DNA PCR-free prep 
kit from 2 µg genomic DNA sheared to 550 bp insert size. We sequenced all DNA 
libraries on an Illumina NextSeq platform at the Cold Spring Harbor Laboratory 
Genome Center.

Genomic DNA reads were trimmed by quality using Trimmomatic49 and 
paired reads mapped to the reference tomato genome (SL3.00) using BWA-MEM 
(refs. 50,51). Alignments were then sorted with samtools and duplicates marked 
with PicardTools (ref. 52; http://broadinstitute.github.io/picard). SNPs were called 
with samtools/bcftools52,53 using read alignments for the various genomic DNA 
sequencing pools from this project in addition to reference M82 (ref. 54) and 
Fla.8924 (ref. 21) reads. Called SNPs were then filtered for bi-allelic high-quality 
SNPs at least 100 bp from a called indel using bcftools52. Following read alignment 
and SNP calling, all statistics and calculations were done in R (ref. 55). Read 
depth for each allele at segregating bi-allelic SNPs in 100-kb sliding windows 
(by 10 kb) was summed for the various sequencing pools and allele frequencies 
were calculated. Finally, the difference in allele frequency (SNP index) between 

sequencing pools was calculated for all pairwise comparison and plotted across 
the 12 tomato chromosomes. This analysis disclosed two genomic regions that 
exceeded a genome-wide 95% cut-off in SNP index on chromosomes 1 and 3. Both 
of these regions exhibited high frequencies of Fla.8924 alleles in the unbranched 
but not in the branched pool, indicating these two loci underlie the suppression of 
inflorescence branching in Fla.8924.

To test for copy number variations we determined regions with differences in 
genome coverage between j2TEej2W and Fla.8924. For this, we calculated genome 
coverage from Illumina data using bedtools multicov only counting properly paired 
reads (v.2.26.0) in 10-kb windows across chromosome 3 for j2TEej2W, Fla.8924 and 
the reference cultivar M82. Depth in the two mutant genotypes was normalized by 
dividing by the average depth in M82 using R.

QTL analysis of sb1 and sb3 in F3 families. We genotyped F2 plants derived from 
a cross between j2TE ej2W and Fla.8924 for sb1 and sb3 using linked PCR markers 
(see Supplementary Table 4 for marker information). DNA was extracted from 
leaf tissue using a standard cetrimonium bromide (CTAB) protocol and PCR 
was performed using Taq polymerase (NEB) according to the manufacturer’s 
instructions. Two sb1–/– sb3–/–, two sb1+/+ sb3+/+, one sb1–/– sb3+/–, two sb1+/– sb3–/–, 
one sb1+/+ sb3+/– and one sb1+/– sb3+/+ F2 plant were selected. These nine F2 plants 
were self-pollinated and the F3 progeny was PCR genotyped for sb1 and sb3 with 
linked markers (see Supplementary Table 4). The progeny was grouped by sb1 
sb3 genotypes and 10–28 plants per genotype were phenotyped for inflorescence 
branching (number branches per inflorescence; 3–5 inflorescences per plant) in 
agricultural fields.

Meristem transcriptome profiling. Meristem collection, RNA extraction and 
library preparation for s2 mutant plants were performed as previously described24. 
Briefly, we collected seedling shoots at the transition meristem and floral meristem 
stages of meristem maturation and immediately fixed them in ice-cold acetone. 
Meristems were manually dissected under a stereoscope and two biological 
replicates consisting of 20–30 meristems from independent plants were generated. 
Total RNA was extracted with the PicoPure RNA Extraction kit (Arcturus) and 
messenger RNA was purified with Dynabeads mRNA Purification kits (Thermo 
Fisher). Barcoded libraries were prepared using the NEBNext Ultra RNA library 
prep kit for Illumina according to the manufacturer’s instructions and assessed 
for size distribution and concentration with a Bioanalyzer 2100 (Agilent) and the 
Kapa Library quantification kit (Kapa Biosystems), respectively. Libraries were 
sequenced on Illumina NextSeq platform at the Genome Center of Cold Spring 
Harbor Laboratories. Reads were trimmed by quality using Trimmomatic49 and 
aligned to the reference genome sequence of tomato (SL3.0, ref. 56) using Tophat2 
(ref. 57). Alignments were sorted with samtools53 and gene expression quantified 
as unique read pairs aligned to reference annotated gene features (ITAG3.2) using 
HTSeq-count (ref. 58). All statistical analyses of gene expression were conducted 
in R (ref. 55). Expression of individual genes is shown as transcripts per million 
(TPM). Significant differential expression between meristem stages in wild-type 
tomato cultivar M82 was identified with edgeR (ref. 59) using twofold change, 
average 1 CPM and FDR ≤ 0.10 cut-offs27.

Alternative EJ2 splicing variants, determined by cloning and sequencing 
RT–qPCR products from ej2W and WT, were quantified using RNA-seq data 
from meristems of the WT (M82), the j2TEej2W double mutant and Fla.8924 at 
the floral meristem stage of meristem maturation. Reads were trimmed using 
Trimmomatic49 and aligned to the reference genome sequence (SL3.0, ref. 56), 
a sequence comprising EJ2 exons 1 to 5 (‘total-EJ2 transcript’) and a sequence 
comprising EJ2 intron 5 including the ej2W 564 bp insertion (‘ej2W transcript’) using 
Tophat2 (ref. 57). Reads mapping to the total EJ2 and ej2W transcripts were counted 
using samtools53 and reads per kilobase of transcript, per million mapped reads 
(RPKM) values were calculated in R (ref. 55). The relative amount of functional EJ2 
transcript (delta total-ej2W) for each genotype was calculated by subtracting ej2W 
RPKM from total transcript RPKM values.

Detection of structural variants. To detect the ej2W and j2TE insertion alleles and 
the sb3 duplication using Illumina re-sequencing data28,60, we adopted a method 
recently described61. In short, for each variant we first used blastn (v.2.2.29+) 
to detect similar sequences of the variant across the genome. We subsequently 
extracted the coordinates and masked the region of the reference with N’s using 
bedtools (v.2.17.0). This modified reference was extended with the variant 
sequence as an extra contig. Next, we extracted the reads and their pairs that are 
mapped in the region where the variant was expected ±3 kb and all the unmapped 
pairs per sample. These reads were then mapped to the modified reference genome 
using BWA-MEM (v.0.7.10–r789). Samtools view (v.0.1.19–44428 cd) was used to 
count the reads that mapped to the inserted variant sequence represented as the 
contigs and their pairs to the chromosome of the expected variant site.

To validate the sb3 duplication in Fla.8924, we sequenced the genome using 
Oxford Nanopore sequencing according to established protocols62. For Nanopore 
long-read sequencing, high molecular weight DNA was obtained from 21-day-old 
seedlings that were dark-treated for two days before tissue collection. DNA was 
extracted from isolated nuclei using a modified CTAB protocol that ensures DNA 
integrity by minimizing shearing at all steps. Libraries were prepared for MinION 
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flow cell sequencing according to standard protocols and seven flow cells generated 
a total of 36.6 giga base pairs (Gb) of data with an average mean read length of 
20 kb. Reads were mapped with NGMLR and SVs were called with Sniffles22, 
confirming the sb3 duplication at exactly the same coordinates.

CRISPR–Cas9 mutagenesis, plant transformation and selection of mutant alleles. 
CRISPR–Cas9 mutagenesis and generation of transgenic plants was performed 
following our standard protocol32. Guide (g)RNAs were designed using the 
CRISPR-P tool (http://cbi.hzau.edu.cn/cgi-bin/CRISPR) and vectors were assembled 
using the Golden Gate cloning system as described63. We have described selection of 
gRNA sequences and cloning of binary vectors for targeting J2 and EJ2 before8. Final 
binary vectors were transformed into the tomato cultivars M82, Fla.7946, Fla.8624, 
Fla.8735 and Fla.8924 by Agrobacterium tumefaciens-mediated transformation64. 
After in-vitro regeneration of transgenic plants, culture medium was washed 
from the root system and plants transplanted into soil. Plants were covered with 
transparent plastic domes and maintained in a shaded area for five days.

In general, first-generation (T0) transgenics were genotyped for induced lesions 
using a forward primer 5′ of the sgRNA-1 and a reverse primer 3′ of the sgRNA-2 
recognition site. PCR products were separated in agarose gels and selected products 
were cloned into pSC-A-amp/kan vector (Stratagene). At least five clones per PCR 
product were sequenced using M13-F and M13-R primer. When targeting EJ2 
on the sb3 duplication in Fla.8924, we analysed the effect of ej2CR mutations on 
inflorescence branching directly in chimeric ej2CR T0 plants. For this, we cloned and 
sequenced 5–8 EJ2 alleles from DNA extracted from sepals of three independent 
ej2CR T0 plants, which developed branched inflorescences. When targeting J2 
in Fla.7946, Fla.8624 and Fla.8735, we both self-pollinated and backcrossed 
independent j2CR T0 plants with lesions to the respective WT parental line. The 
T1 and F1 generation was genotyped for deletion alleles and the absence of the 
CRISPR–Cas9 transgene using primer binding the 3′ of the 35S promoter and the 
5′ of the Cas9 transgene, respectively. T1 and F1 plants carrying the engineered j2CR 
mutant alleles and lacking the transgene were self-pollinated to isolate homozygous, 
non-transgenic j2CR null mutants from the T2 and F2 generation. Phenotypes were 
observed and documented in T0, T2 and F2 generation plants that lacked WT alleles 
according to amplicon sequencing. All primers are listed in Supplementary Table 4.

Phylogenetic analyses and measuring signatures of selection. Illumina  
re-sequencing data from more than 600 tomato accessions28,60 was downloaded 
from NCBI-SRA and aligned to the tomato genome reference v.2.50 using Bowtie2 
with default parameters. The resulting alignment files were filtered to remove reads 
mapping to multiple locations using samtools53 with parameter -q 5 and to  
remove duplicated reads with Picard MarkDuplicates with default  
parameters (http://broadinstitute.github.io/picard, parameter REMOVE_
DUPLICATES = true). Finally, indels were realigned using GATK 
RealignerTargetCreator and IndelRealigner successively with default parameters65.

Alignment files were used to call SNPs at 8,760 positions genotyped in the 
SolCAP Infinium Chip SNP microarray as indicated in the tomato annotation 
(ITAG2.4_solCAP.gff3). For this, we ran GATK’s UnifiedGenotyper with default 
parameters in all 602 accessions simultaneously65. The SNP matrix obtained was 
merged with a previous published matrix containing data for 1,008 accessions 
genotyped at 7,720 positions with the SolCAP SNP array30. After filtering 
accessions not suitable for our analysis and SNPs that did not agree between the 
two datasets, 5,856 SNPs remained in 1,606 accessions. We obtained a final matrix 
of 1,812 SNPs by removing SNPs in linkage disequilibrium using PLINK with 
parameters—mind 0.1—geno 0.1—indep 50 5 3.5 (ref. 66). A phylogenetic tree was 
estimated from the final matrix using the ape package in R and the neighbour-
joining method including S. pennellii LA0716 as a root67. The resulting tree was 
plotted using the ggtree package in R (ref. 68). Tomato accessions in the tree were 
classified manually taking into account previously described classifications30 and 
their positions in the tree relative to known classifications of species and type 
(Supplementary Table 2).

To identify signatures of selection in the chromosomal region of EJ2, 
we analysed bi-allelic SNPs in all re-sequenced accessions belonging to the 
phylogenetic groups with fresh tomatoes (‘S. lycopersicum fresh/processing’,  
‘S. lycopersicum fresh’ and ‘S. lycopersicum vintage/fresh’ in Supplementary Table 2). 
For this, we first generated gvcf files for each of the 100 accessions classified as 
fresh tomatoes using GATK HaplotypeCaller with default parameters. Next, 
we called SNPs in chromosome 3 in all accessions simultaneously using GATK 
GenotypeGVCFs and we filtered the resulting table to stay only with bi-allelic SNPs 
with a minor allele frequency greater than 0.05 using vcftools69 with parameters—
remove-indels—maf 0.05—min-alleles 2—max-alleles 2. We finally calculated 
nucleotide diversity (pi) separately for all accessions with and without the sb3 
duplication using vcftools69 in windows of 100 kb with steps of 10 kb. We considered 
a region to be under positive selection when the ratio between the pi values of the 
accessions without the sb3 duplication and the pi values of the accessions with the 
duplication exceeded the top 10% values for the whole chromosome.

Statistical analyses. For quantitative analyses of inflorescence branching, 3–5 
inflorescences on at least four plants were analysed per genotype and exact 
numbers of plants (n) are presented in all figures. For expression analyses using 

RT–qPCR, at least three plants were pooled per tissue sample and at least two 
RT–qPCR reactions (technical replicates) were performed. The exact number 
of replicates is given in figure legends. Statistical calculations were performed 
using R (ref. 62) and Microsoft Excel. Mean values for each measured parameter 
were compared using two-way analysis of variance (ANOVA) or two-tailed, two-
samples Student’s t-test, whenever appropriate, with statistical tests listed for each 
experiment in figure legends.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The DNA sequencing data used to map branching QTLs in the S. lycopersicum 
j2 ej2W × S. lycopersicum Fla.8924 F2 population and the RNA sequencing data of 
transition and floral meristem stages for S. lycopersicum M82, S. lycopersicum j2 
ej2W and S. lycopersicum Fla.8924 has been deposited in SRA (http://ncbi.nlm.nih.
gov/sra) under the accession code PRJNA509653.
Source Data files for all main and supplementary figures are available in the online 
version of the paper. All additional data sets are available from the corresponding 
author on request.
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Field-collected samples Phenotypic data and tissue samples for QTL-sequencing were collected between 11 am and 1 pm on July 8, 2017 in the fields of 
the Cornell Long Island Horticultural Experiment Station in Riverhead, New York.
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