®

Check for
updates

An Efficient, Scalable and Exact
Representation of High-Dimensional

Color Information Enabled via de Bruijn
Graph Search

Fatemeh Almodaresi', Prashant Pandey'(®™) Michael Ferdman',
Rob Johnson'?, and Rob Patro!

1 Computer Science Department, Stony Brook University, Stony Brook, USA
{falmodaresit,ppandey,mferdman,rob.patro}@cs.stonybrook.edu
2 VMware Research, Palo Alto, USA

robj@vmware.com

Abstract. The colored de Bruijn graph (cdbg) and its variants have
become an important combinatorial structure used in numerous areas in
genomics, such as population-level variation detection in metagenomic
samples, large scale sequence search, and cdbg-based reference sequence
indices. As samples or genomes are added to the cdbg, the color informa-
tion comes to dominate the space required to represent this data struc-
ture.

In this paper, we show how to represent the color information effi-
ciently by adopting a hierarchical encoding that exploits correlations
among color classes—patterns of color occurrence—present in the de
Bruijn graph (dbg). A major challenge in deriving an efficient encod-
ing of the color information that takes advantage of such correlations
is determining which color classes are close to each other in the high-
dimensional space of possible color patterns. We demonstrate that the
dbg itself can be used as an efficient mechanism to search for approx-
imate nearest neighbors in this space. While our approach reduces the
encoding size of the color information even for relatively small cdbgs
(hundreds of experiments), the gains are particularly consequential as
the number of potential colors (i.e. samples or references) grows into the
thousands.

We apply this encoding in the context of two different applications;
the implicit cdbg used for a large-scale sequence search index, Mantis, as
well as the encoding of color information used in population-level varia-
tion detection by tools such as Vari and Rainbowfish. Our results show
significant improvements in the overall size and scalability of representa-
tion of the color information. In our experiment on 10,000 samples, we
achieved more than 11X better compression compared to RRR.

1 Introduction

The colored de Bruijn graph (cdbg) [1], an extension of the classical de Bruijn
graph [2-4], is a key component of a growing number of genomics tools.

© Springer Nature Switzerland AG 2019
L. J. Cowen (Ed.): RECOMB 2019, LNBI 11467, pp. 1-18, 2019.
https://doi.org/10.1007/978-3-030-17083-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17083-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-17083-7_1

2 F. Almodaresi et al.

Augmenting the traditional de Bruijn graph with “color” information provides
a mechanism to associate meta-data, such as the raw sample or reference of
origin, with each k-mer. Coloring the de Bruijn graph enables it to be used in
a wide range of applications, such as large-scale sequence search [5-9] (though
some [6-8] do not explicitly couch their representations in the language of the
cdbg), population-level variation detection [10-12], traversal and search in a pan-
genome [11], and sequence alignment [13]. The popularity and applicability of the
cdbg has spurred research into developing space-efficient and high-performance
data-structure implementations.

An efficient and fast representation of cdbg requires optimizing both the de
Bruijn graph and the color information. While there exist efficient and scalable
methods for representing the topology of the de Bruijn graph [4,14-18] with
fast query time, a scalable and exact representation of the color information has
remained a challenge. Recently, Mustafa et al. [19] has tackled this challenge
by relaxing the exactness constraints—allowing the returned color set for a k-
mer to contain extra samples with some controlled probability—but it is not
immediately clear how this method can be made exact.

Specifically, existing exact color representations suffer from large sizes and a
fast growth rate that leads them to dominate the total representation size of the
cdbg with even a moderate number of input samples (see Fig.3b). As a result,
the color information grows to dominate the space used by all these indexes and
limits their ability to scale to large input data sets.

Igbal et al. introduced cdbgs [1] and proposed a hash-based representation
of the de Bruijn graph in which each k-mer is additionally tagged with the list
of reference genomes in which it is contained. Muggli et al. reduced the size of
the cdbg in VARI [10] by replacing the hash map with BOSS [16] (a BWT-
based [20] encoding of the de Bruijn graph that assigns a unique ID to each
k-mer) and using a boolean matrix indexed by the unique k-mer ID and genome
reference ID to indicate occurrence. They reduced the size of the occurrence
matrix by applying off-the-shelf compression techniques RRR [21] and Elias-
Fano [22] encoding. Rainbowfish [12] shrank the color table further by ensuring
that rows of the color matrix are unique, mapping all k-mers with the same color
information to a single row, and assigning row indices based on the frequency of
each occurrence pattern. However, despite these improvements, the scalability of
the resulting structure remains limited because even after eliminating redundant
colors, the space for the color table grows quickly to dominate the total space
used by these data structures.

We observe that, in real biological data, even when the number of distinct
color classes is large, many of them will be near each other in terms of the
set of samples or references they encode. That is, the color classes tend to be
highly correlated rather than uniformly spread across the space of possible col-
ors. There are intuitive reasons for such characteristics. For example, we observe
that adjacent k-mers in the de Bruijn graph are extremely likely to have either
identical or similar color classes, enabling storage of small deltas instead of the
complete color classes. This is because k-mers adjacent in the de Bruijn graph

An Efficient, Scalable and Exact Representation 3

are likely to be adjacent (and hence present) in a similar set of input samples. In
the context of sequence-search, because genomes and transcriptomes are largely
preserved across organs, individuals, and even across related species, we expect
two k-mers that occur together in one sample to be highly correlated in their
occurrence across many samples. Thus, we can take advantage of this correla-
tion when devising an efficient encoding scheme for the cdbg’s associated color
information.

In this paper, we develop a general scheme for efficient and scalable encoding
of the color information in the cdbg by encoding color classes (i.e. the patterns of
occurrence of a k-mer in samples) in terms of their differences (which are small)
with respect to some “neighboring” color class. The key technical challenge,
solved by our work, is efficiently searching for the neighbors of color classes in
the high-dimensional space of colors by leveraging the observation that similar
color classes tend to be topologically close in the underlying de Bruijn graph. We
construct a weighted graph on the color classes in the cdbg, where the weight
of each edge corresponds to the space required to store the delta between its
endpoints. Finding the minimum spanning tree (MST) of this graph gives a
minimal delta-based representation. Although reconstructing a color class on
this representation requires a walk to the MST root node, abundant temporal
locality on the lookups allows us to use a small cache to mitigate the performance
impact, yielding query throughput that is essentially the same as when all color
classes are represented explicitly.

An alternative would have been to try to limit the depth (or diameter) of
the MST. This problem is heavily studied in two forms: the unrooted bounded-
diameter MST problem [23] and the rooted hop-constrained MST problem [24].
Neither is in APX, i.e. it is not possible to approximate them to within any
constant factor [25]. Althaus et al. gave an O(logn) approximation assuming the
edge weights form a metric [24]. Khuller et al. show that, if the edge lengths are
the same as the edge weights, then there is an efficient algorithm for finding a
spanning tree that is within a constant of optimal in terms of both diameter and
weight [26]. Marathe et al. show that in general we can find trees within O(logn)
of the minimum diameter and weight [27]. We can’t use Khuller’s approach
(because our edge lengths are not equal to our edge weights), and even a O(logn)
approximation would give up a potentially substantial amount of space.

We showcase the generality and applicability of our color class table com-
pression technique by demonstrating it in two computational biology applica-
tions: sequence search and variation detection. We compare our novel color class
table representation with the representation used in Mantis [5], a state-of-the-art
large-scale sequence-search tool that uses a cdbg to index a set of sequencing
samples, and the representation used in Rainbowfish [12], a state-of-the-art index
to facilitate variation detection over a set of genomes. We show that our app-
roach maintains the same query performance while achieving over 11x and 2.5x
storage savings relative to the representation previously used by these tools.

4 F. Almodaresi et al.

2 Methods

This section describes our compact cdbg representation. We first define cdbgs
and briefly describe existing compact cdbg representations. We then outline the
high-level idea behind our compact representation and explain how we use the de
Bruijn graph to efficiently build our compact representation. Finally, we describe
implementation details and optimizations to our query algorithm.

2.1 Colored de Bruijn graphs

De Bruijn graphs are widely used to represent the topological structure of a set
of k-mers [2,18,28-33]. The de Bruijn graph induced by a set of k-mers is defined
below.

Definition 1. Given a set E of k-mers, the de Bruijn graph induced by E has
edge set E, where each k-mer (or edge) connects its two (k—1)-length substrings
(or vertices).

Cdbgs extend the de Bruijn graph by assigning a color class C(x) to each
edge (or node) z of the de Bruijn graph. The color class C(x) is a set drawn
from some universe U. Examples of U and C(z) are

— Sometimes, U is a set of reference genomes, and C(x) is the subset of reference
genomes containing k-mer x [10,12,13,34].

— Sometimes, U is a set of reads, and C(z) is the subset of reads containing
z [35-37).

— Sometimes, U is a set of sequencing experiments, and C(z) is the subset of
sequencing experiments containing z [5-8].

The goal of a cdbg representation is to store E and C as compactly as possible!,
while supporting the following operations efficiently:

— Point query. Given a k-mer x, determine whether x is in E.
— Color query. Given a k-mer = € E, return C(z).

Given that we can perform point queries, we can traverse the de Bruijn
graph by simply querying for the 8 possible predecessor/successor edges of an
edge. This enables us to implement more advanced algorithms, such as bubble
calling [1].

Many cdbg representations typically decompose, at least logically, into two
structures: one structure storing a de Bruijn graph and associating an ID with
each k-mer, and one structure mapping these IDs to the actual color class [10,
12,38]. The individual color classes can be represented as bit-vectors, lists, or
via a hybrid scheme [39]. This information is typically compressed [21,40,41].

Our paper follows this standard approach, and focuses exclusively on reduc-
ing the space required for the structure storing the color information. We propose

! The nodes of the de Bruijn graph are typical stored implicitly, because the node set
is simply a function of E.

An Efficient, Scalable and Exact Representation 5

a compact representation that, given a color ID, can return the corresponding
color efficiently. Although we pair our color table representation with the de
Bruijn graph structure representation of the counting quotient filter [38] as used
in Mantis [5], our proposed color table representation can be paired with other
de Bruijn graph representations.

2.2 A Similarity-Based cdbg Representation

The key observation behind our compressed color-class representation is that
the color classes of k-mers that are adjacent in the de Bruijn graph are likely
to be very similar. Thus, rather than storing each color class explicitly, we can
store only a few color classes explicitly and, for all the remaining color classes,
we store only their differences from other color classes. Because the differences
are small, the total space used by the representation will be small.

Motivated by the observation above, we propose to find an encoding of the
color classes that takes advantage of the fact that most color classes can be
represented in terms of only a small number of edits (i.e., flipping the parity of
only a few bits) with respect to some neighbor in the high-dimensional space
of the color classes. This idea was first explored by Bookstein and Klein [42] in
the context of information retrieval. Bookstein and Klein showed how to exploit
the implicit clustering among bitmaps in IR to achieve excellent reduction in
storage space to represent those bitmaps using an MST as the underlying repre-
sentation. Unfortunately, the approach taken by Bookstein and Klein cannot be
directly used in our problem, since it requires computing and optimizing upon
the full Hamming distance graph of the bitvectors being represented, which is not
tractable for the scale of data we are analyzing. Hence, what we need is a method
to efficiently discover an incomplete and highly-sparse Hamming distance graph
that, nonetheless, supports a low-weight spanning tree. We describe below how
we apply and modify this approach in the context of the set of correlated bit
vectors (i.e. color classes) that we wish to encode.

We construct our compressed color class representation as follows (see Fig. 1).
For each edge x of the de Bruijn graph, let C'(z) be the color class of x. Let C be
the set of all color classes that occur in the de Bruijn graph. We first construct
an undirected graph with vertex set C and edge set reflecting the adjacency
relationship implied by the de Bruijn graph. In other words, there is an edge
between color classes ¢; and ¢ if there exist adjacent edges (i.e. incident on the
same node) = and y in the de Bruijn graph such that ¢; = C(x) and ¢z = C(y).
These edges indicate color classes that are likely to be similar, based on the
structure of the de Bruijn graph. We then add a special node) to the color class
graph, which is connected to every node. We set the weight of every edge in the
color class graph to be the Hamming distance between its two endpoints (where
we view color classes as bit vectors and () is the all-zeros bit vector).

We then compute a minimum spanning tree of the color class graph and root
the tree at the special () node. Note that, because the # node is connected to
every other node in the graph, the graph is connected and hence an MST is

6 F. Almodaresi et al.

(a) A colored de Bruijn graph. Each (b) The color class graph from the cdbg. There
rectangle node represents a kmer. Each vector represents is an edge between each pair of color classes that which
a color class (equal color classes have the same color). correspond to adjacent k-mers in cdbg. Weights on the edges

represent the Hamming distances of the color class vectors.

(c) The color class graph we achieve from (d) The complete color class graph and its
1b by removing duplicate edges and its corresponding MST. derived MST which has the minimum achievable total weight.

Fig. 1. Encoding color classes by finding the MST of the color class graph, an undi-
rected graph derived from cdbg. The order of the process is a, b and c. The arrows in
a and b show the direction of edges in the de Bruijn graph which is a directed graph.
The optimal achievable MST is shown in d for comparison. Since we never observe the
edge between any k-mers from color classes green and yellow in cdbg, we won’t have
the edge between color classes green and yellow and therefore, our final MST is not
equal to the best MST we can get from a complete color class graph. (Color figure
online)

guaranteed to exist. By using a minimum spanning tree, we minimize the total
size of the differences that we need to store in our compressed representation.

We then store the MST as a table mapping each color class ID to the ID
of its parent in the MST, along with a list of the differences between the color
class and its parent. For convenience we can view the list of differences between
color class ¢; and color class co as a bit vector ¢; @ co, where @ is the bit-wise
exclusive-or operation. To reconstruct a color class given its ID ¢, we simply xor
all the difference vectors we encounter while walking from ¢ to the root of the
MST.

2.3 Implementation of the MST Data Structure

Assuming we have |C| color classes, |U| colors, and an MST with total weight
of w over the color class graph, we store all the information required to retrieve
the original color bit-vector for each color class ID based on the MST structure
into three data structures:

An Efficient, Scalable and Exact Representation 7

— Parent vector: This vector contains |C| slots, each of size [log, C]. The value
stored in index ¢ represents the parent color class ID of the color class with
index 4 in the MST.

— Delta vector: This vector contains w slots, each of size [log, |U[]. For each
pair of parent and child in the parent vector, we compute a vector of the
indices at which they differ. The delta vector is the concatenation of these
per-edge delta vectors, ordered by the ID of the source of the edge. Note
that the per-edge delta vectors will not all be of the same length, because
some edges have larger weight than others. Thus, we need an auxiliary data
structure to record the boundaries between the per-edge deltas within the
overall delta vector.

— Boundary bit-vector: This vector contains w bits, where a set bit indicates
the boundary between two delta sets within the delta vector. To find the
starting position, within the delta vector, of the per-edge delta list for the
MST edge with source ID i, we perform select(i) on the boundary vector.
Select returns the position of the ith one in the boundary vector.

Query of the MST-Based Representation. Figure2 shows how queries proceed
using this encoding. We start with an empty accumulator bit vector and a color
class ID 4 for which we want to compute the corresponding color class. We
perform a select query for ¢ and i + 1 in the boundary bit-vector to get the
boundaries of i’s difference list in the delta vector. We then iterate over its
difference list and flip the indicated bits in our accumulator. We then set i «—
PARENT[i] and repeat until ¢ becomes 0, which indicates that we have reached
the root. At this point, the accumulator will be equal to the bit vector for color
class i.

2.4 Integration in Mantis

Once constructed, our MST-based color class representation is a drop-in replace-
ment for the current color class representations used in several existing tools,
including Mantis [5] and Rainbowfish [12]. Their existing color class tables sup-
port a single operation—querying for a color class by its ID—and our MST-based
representation supports exactly the same operation.

For this paper, we integrated our MST-based representation into Mantis.
The same space savings can be achieved in other tools, particularly Rainbowfish,
which has a similar color-class encoding as Mantis.

Construction. We construct our MST-based color-class representation as fol-
lows. First, we run Mantis to build its default representation of the cdbg. We
then build the color-class graph by walking the de Bruijn graph and adding all
the corresponding edges to the color-class graph. The edge set is typically much
smaller than the de Bruijn graph (because many de Bruijn graph edges may map
to the same edge in the color-class graph), so this can be done in RAM. Note
that we do not compute the weights of the edges during this pass, because that
would require having all of the large color-class bit vectors in memory in order
to compute their Hamming distance.

8 F. Almodaresi et al.

Build BV for C3

Each index represents information for
color with the same ID as index

Update current index (3) to its
parent (2) for next iteration

4) Flip index (1)
in the current bit-vector

3)
fetch delta

0) start
with an empt
bit-vector

indices

N\

Reached the dummy node.
Stop

2) Select(3+1)

Final O;tput for nnnn 1) Select(3)

)

Fig. 2. The conceptual MST (top-left), the data structure to store the color information
in the format of an MST (right). This figure also illustrates the steps required to build
one of the color vectors (Cs) at the leaf of the tree. Note that the query process shown
here does not depict the caching policy we apply in practice.

In the second pass, we traverse the edge set and compute the weight of each
edge. To minimize RAM usage during this phase, we sort the edges and iterate
over them in a “blocked” fashion. Specifically, Mantis stores the color class bit
vectors on-disk sequentially by ID, grouped into blocks of roughly 6 GBs each.
We sort the edges lexicographically by their source and destination block. We
then load all pairs of blocks and compute the weights of all the edges between
the two blocks currently in memory. At all times, we need only two blocks of
color class vectors in memory. Given the weighted graph, we compute the MST
and make one final pass to determine the relevant delta lists and encode our
final MST structure.

Parallelization. We note that, after having constructed the Mantis representa-
tion, most phases of the MST construction algorithm are trivially parallelized.
MST construction decomposes into three phases: (1) color-class graph construc-
tion, (2) MST computation, and (3) color-class representation generation. We
parallelize graph construction and color-class representation generation. The
MST computation itself is not parallelized.

We parallelized the determination of edges in the color-class graph by assign-
ing each thread a range of the k—mer-to-color-class-ID map. Each thread
explores the neighbors of the k-mers that appear in its assigned range, and
any redundant edges are deduplicated when all threads are finished. Similarly,
we parallelized the computation of edge weights and the extraction of the delta
vectors that correspond to each edge in the MST. Given the list of edges sorted

An Efficient, Scalable and Exact Representation 9

lexicographically by their endpoints (determined during the first phase), it is
straightforward to partition the work for processing batches of edges across many
threads. It is possible, of course, that the batches will display different workloads
and that some threads will complete their assigned work before others. We have
not yet made any attempt to optimize the parallel construction of the MST in
this regard, though many such optimizations are likely possible.

Accelerating Queries with Caching. The encoded MST is not a balanced
tree, so decoding a color bit-vector might require walking a long path to the
root, which negatively impacts the query time. Attempting to explicitly mini-
mize the depth or diameter of the MST is, as discussed in Sect. 1, not generally
approximable within a constant factor. However, considering the fact that the
frequency distribution of the color classes is very skewed, some of the color classes
are more popular or have more children and, therefore, are in the path of many
more nodes. We take advantage of these data characteristics by caching the most
recent queried color bit-vectors. Every time we walk up the tree, if the color bit-
vector for a node is already in the cache, our query algorithm stops at that point
and applies all the deltas to this bit-vector instead of the zero bit-vector of the
root. This caching approach significantly improves the query time, resulting in
the final query time required to decode a color class being marginally faster than
direct RRR access.

The cache policy is designed with the tree structure of our color-class repre-
sentation in mind. Specifically, we want to cache nodes near the leaves, but not
so close to the leaves that we end up caching essentially the entire tree. Also,
we don’t want to cache infrequently queried nodes. Thus we use the following
caching policy: all queried nodes are cached. Furthermore, we cache interior
nodes visited during a query as follows. If a query visits a node that has been
visited by more than 10 other queries and is more than 10 hops away from the
currently queried item, then we add that node to the cache. If a query visits
more than one such node, we add the first one encountered.

In our experiments, we used a cache of 10,000 nodes and managed the cache
using a FIFO policy.

2.5 Comparison with Brute-Force and Approximate-Nearest-
Neighbor-Based Approaches

Our MST-based color-class representation uses the de Bruijn graph as a hint as
to which color classes are likely to be similar. This leads to the natural question:
how good are the hints provided by the de Bruijn graph?

One could imagine alternatively constructing the MST on the complete color-
class graph. This would yield the absolutely lowest-weight spanning tree on the
color classes. Unforunately, no MST algorithm runs in less than §2(|E|) time, so
this would make our construction time quadratic in the number of color classes.
The number of color classes in our experiments range from 10% to 10%, so the
number of edges in the complete color-class graph would be on the order of 102
to 10!, or possibly even more, making this algorithm impractical for the largest
data sets considered in this paper.

10 F. Almodaresi et al.

Alternatively, we could try to use an approximate nearest-neighbor algorithm
to find pairs of color classes with small Hamming distance. As an experiment,
we implemented an approximate nearest neighbor algorithm that bucketed color
classes by their projection into a smaller-dimensional subspace. Nearest-neighbor
queries were computed by searching within the queried item’s bucket. Results
were disappointing. Even on small data sets, the average distance between the
queried item and the returned neighbor was several times larger than the average
distance found using the neighbors suggested by the de Bruijn graph. Thus, we
did not pursue this direction further.

3 Evaluation

In this section we evaluate our MST-based representation of the color informa-
tion in the cdbg. All our experiments use Mantis with our integrated MST-based
color-class representation.

Evaluation Metrics. We evaluate our MST-based representation on the fol-
lowing parameters:

— Scalability. How does our MST-based color-class representation scale in
terms of space with increasing number of input samples, and how does it
compare to the existing representations of Mantis?

— Construction time. How long does it take — in addition to the original
construction time for building cdbg — to build our MST-based color-class
representation?

— Query performance. How long does it takes to query the cdbg using our
MST-based color-class representation?

3.1 Experimental Procedure

System Specifications. Mantis takes as input a collection of squeakr files [43].
Squeakr is a k-mer counter that takes as input a collection of fastq files and
produces as output, a single file with a compact hash table mapping each k-mer
to the number of times it occurs in the input files. As is standard in evaluations
of large-scale sequence search indexes, we do not benchmark the time required
to construct these filters.

The data input to the construction process was stored on 4-disk mirrors (8
disks total). Each is a Seagate 7200rpm 8 TB disk (ST8000VN0022). They were
formatted using ZFS and exported via NFS over a 10 Gb link. We used different
systems to run and evaluate time, memory, and disk requirements for the two
steps of preprocessing and index building as was done by Prashant et al. [5].

For index building and query benchmarks, we ran all the experiments on
the same system used in Mantis [5], an Intel(R) Xeon(R) CPU (E5-2699 v4
@2.20 GHz with 44 cores and 56 MB L3 cache) with 512 GB RAM and a 4TB
TOSHIBA MGO03ACA4 ATA HDD running Ubuntu 16.10 (Linux kernel 4.8.0-
59-generic). Constructing the main index was done using a single thread, and

An Efficient, Scalable and Exact Representation 11

the MST construction was performed using 16 threads. Query benchmarks were
also performed using a single thread.

Data to Evaluate Scalability and Comparison to Mantis. We integrated
and evaluated our MST-based color-class representation within Mantis, so we
briefly review Mantis here. Mantis builds an index on a collection of unassem-
bled raw sequencing data sets. Each data set is called a sample. The Mantis
index enables fast queries of the form, “Which samples contain this k-mer,” and
“Which samples are likely to contain this string of bases?” Mantis takes as input
one squeakr file per sample [43]. A squeakr file is a compact hash table mapping
each k-mer to the number of times it occurs within that sample. Squeakr also has
the ability to serialize a hash that simply represents the set of k-mers present at
or above some user-provided threshold; we refer to these as filtered Squeakr files.
Using the filtered Squeakr files vastly reduces the required intermediate storage
space, and also decreases the construction time required for Mantis considerably.
For example, for the breast, blood, and brain dataset (2586 samples), the unfil-
tered Squeakr files required ~ 2.5 TB of space while the filtered files require only
~ 108 GB. To save intermediate storage space and speed index construction, we
built our Mantis representation from these filtered Squeakr files.

Given the input files, Mantis constructs an index consisting of two files: a
map from k-mer to color-class ID, and a map from color-class ID to the bit vector
encoding that color class. The first map is stored as a counting quotient filter
(CQF), which is the same compact hash table used by Squeakr. The color-class
map is an RRR-compressed bit vector.

Recall that our construction process is implemented as a post-processing step
on the standard Mantis color-class representation. For construction times, we
report only this post-processing step. This is because our MST-based color-class
representation is a generic tool that can be applied to many cdbg representations
other than Mantis, so we want to isolate the time spent on MST construction.

To test the scalability of our new color class representation, we used a
randomly-selected set of 10,000 paired-end, human, bulk RNA-seq short-read
experiments downloaded from European Nucleotide Archive (ENA) [44] in
gzipped FASTQ format. Additionally, we have built the proposed index for 2,586
sequencing samples from human blood, brain, and breast tissues (BBB) origi-
nally used by [6] and also used in the subsequent work [7,8,39], including Man-
tis [5], as a point of comparison with these representations. The set of 10,000
experiments does not overlap with the BBB samples. The full list of 10,000
experimental identifiers can be obtained from https://github.com/COMBINE-
lab/color-mst/blob/master/input_lists/nobbb10k_shuffled.lst. The total size of
all these experiments (gzipped) is 25.23 TB.

In order to eliminate spurious k-mers that occur with insignificant abundance
within a sample, the squeakr files are filtered to remove low-abundance k-mers.
We adopted the same cutoff policy originally proposed by Solomon and Kingsford
[6], by discarding k-mers that occur less than some threshold number of time.
The thresholds are determined according to the size (in bytes) of the gzipped
sample, and the thresholds are given in Table 1. We adopt a value of £ = 23 for
all experiments.

https://github.com/COMBINE-lab/color-mst/blob/master/input_lists/nobbb10k_shuffled.lst
https://github.com/COMBINE-lab/color-mst/blob/master/input_lists/nobbb10k_shuffled.lst

12 F. Almodaresi et al.

Table 1. Minimum number of times a k-mer must appear in an experiment in order to
be counted as abundantly represented in that experiment (taken from the SBT paper).
Note, the k-mers with count of “cutoff” are included at each threshold.

Min size | Max size | Cutoff | # of experiments with specified threshold
0 < 300MB |1 2,784

>300MB | <500MB |3 798

>500MB | <1GB 10 1,258

>1GB <3GB 20 2,296

>3GB 00 50 2,864

3.2 Evaluation Results

Scalability of the New Color Class Representation. Figure 3a and Table 2
show how the size of our MST-based color-class representation scales as we
increase the number of samples indexed by Mantis. For comparison, we also give
the size of Mantis’ RRR-compression-based color-class representation. Figure 3a
also plots the size of the CQF that Mantis uses to map k-mers to color class IDs.
We can draw several conclusions from this data:

— The MST-based representation is an order-of-magnitude smaller than the
RRR-based representation.

— The gap between the RRR-based representation and the MST-based represen-
tation grows as we increase the number of input samples. This suggests that
the MST-based representation grows asymptotically slower than the RRR-
based representation.

— The MST-based color-class representation is, for large numbers of samples,
about 5x smaller than the CQF. This means that representing the color
classes is no longer the scaling bottleneck.

Table 2 also shows the scaling rate of all elements of the MST representation,
in addition to the ratio of MST over the color bit-vector. As expected, the list of
deltas dominate the MST representation both in terms of total size and in terms
of growth. Table 2 also shows the average edge weight of the edges in the MST.
The edge weight grows approximately proportional to ©(log(# of samples)) (i.e.
every time we double the number of samples, the average edge weight increases
by almost exactly 1). This suggests that our de Bruijn graph-based algorithm is
able to find pairs of similar color classes.

To better understand the scaling of the different components of a cdbg rep-
resentation, we plot the sizes of the RRR-based color-class representations and
MST-based representations on a log-log scale in Fig. 3b. Based on the data, the
RRR-based representation appears to grow in size at a rate of roughly ©(n!-?),
whereas the new MST-based representation grows roughly at a rate of O(n!2).
This explains why the RRR-based representation grows to dwarf the CQF (which
grows roughly linearly) and become the bottleneck to scaling to larger data sets,

sizein GB.

An Efficient, Scalable and Exact Representation 13
3.000
RRR compressed CC table
MST compressed CC table
. 2.000
o
O y = 1.54707x — 3.89823
£ R? .999506
o 1.0004
N
@
o
o
~ 0.0004
y = 1.19349x — 3.5311
R? = 0.999957
—1.000 . = = =~
2.000 2.500 3.000 3.500 4.000 4.500

[2500 7500 10600

5000
#of samples.

(a) Sizes of the RRR and MST-based color class
representations with respect to the number of samples
indexed from the human bulk RNA-seq data set.
The counting quotient filter component is the Mantis
representation of the de Bruijn graph.

log(# of samples)

(b) Empirical asymptotic analysis of the growth rates of
the sizes of RRR-based color class representation and the
MST-based color class representation. The RRR-based
representation grows at a rate of ~ @(nl's), where n is
the number of samples. The MST-based representation

grows at a rate of ~O(n'?).

Fig. 3. Size of the MST-based color-class representation vs. the RRR-based color-class
representation.

Table 2. Space required for RRR and MST-based color class encodings over different
numbers of samples (sizes in GB) and time and memory required to build MST. Central
columns break down the size of individual MST components.

Dataset # samples RRR |MST Expected %
matrix edge
weight
Total |Parent |Delta |Boundary |Build Build time
space |vector |vector |bit-vector i memory |(hh:mm:ss)
(GB)

H. sapiens |200 0.42 | 0.15 |0.08 0.06 |0.01 8 0:05:42 2.42 0.37
RNA-seq |500 1.89 | 0.46 (0.2 0.24 |0.03 16 0:12:15 3.42 0.24
samples 1,000 5.14 | 1.03 |0.37 0.6 0.06 29 0:25:03 4.39 0.2

2,000 14.2 2.35 [0.71 1.5 0.14 29 0:51:58 5.38 0.17

5,000 59.89 | 7.21 |1.72 5.1 0.39 59 3:52:34 6.61 0.12

10,000 190.89 |16.28 |3.37 12.06 0.86 111 10:17:42 7.68 0.085
Blood, 2586 15.8 2.66 [0.63 1.88 |0.16 29 00:57:43 6.98 0.17
Brain,
Breast
(BBB)
E. coli 5,598 2.06 |0.83 0.02 0.76 |0.06 6 00:03:15 7.8 0.4
strain
reference
genomes

Table 3. The MST construction time for 1000 experiments using different number of
threads. Memory stays the same across all the runs.

of threads

1

2

4

8

16

32

Run time (hh:mm:ss)

02:47:08

01:38:26

01:02:4

2100:31:57

00:22:00

00:

14:17

whereas the MST-based representation does not. With the MST-based represen-
tation, the CQF itself is now the bottleneck.

14 F. Almodaresi et al.

Table 4. Query time and resident memory for mantis using the MST-based representa-
tion for color information and the original mantis (using RRR-compressed color classes)
over 10,000 experiments. The “query” column provides just the time taken to execute
all queries (as would be required if the index was already loaded in e.g. a server-based
search tool). Note that, in resident memory usage for the MST-based representation,
the counting quotient filter always dominates the total required memory.

Mantis with MST Mantis

Index load + query | Query | Space | Index load + query | Query | Space
10 Transcripts 1min 10s 0.3s 118 GB | 32min 59s 0.5s 290 GB
100 Transcripts | 1min 17s 8s 119 GB | 34 min 33s 11s 290 GB
1000 Transcripts | 2min 29s 79s 120 GB | 46 min 4s 80s 290 GB

Finally, the last two rows in Table2 show the size of the RRR- and MST-
based color-class representations for the human blood, brain, breast (BBB) and
E. coli data sets respectively. BBB is the data set used in SBT and its subse-
quent tools [7,8,39], as well as in Mantis [5] and E. coli is the data set analyzed
in the Rainbowfish paper. This dataset, which has been obtained from Gen-
Bank [45], consists of 5,598 distinct E. coli strains. We specifically chose this
dataset since Rainbowfish has already demonstrated a large improvement in size
for it compared to Vari [10].

As the table shows, our MST-based color-class representation is able to effec-
tively compress genomic color data in addition to RNA-seq color data.

)

Index Building Evaluation. The “Memory” and “Build time” columns in
Table2 show the memory and time required to build our MST-based color-
class representation from Mantis” RRR-based representation respectively. All
builds used 16 threads. Table 3 shows how the MST construction time for a 1000
sample dataset scales as a function of the number of build threads. The memory
consumption is not affected by number of threads and remains fixed for all trials.

Overall, the MST construction time is only a tiny fraction of the overall
time required to build the Mantis index from raw fastq files. The vast bulk of
the time is spent processing the fastq files to produce filtered squeakrs. This
step was performed on a cluster of 150 machines over roughly one week. Thus
MST construction represents less than 1% of the overall index build time. The
memory required to build the MST is dependent on the size of the CQF and
grows proportional to that. In fact, due to the multi-pass construction procedure,
the peak MST construction memory is essentially the size of the CQF plus a
relatively small (and adjustable) amount of working memory. For the run over
10k experiments, where the CQF size was the largest (98G), the peak memory
required to build MST is 111G.

Query Evaluation. We evaluate query speed in the following manner. We select
random subsets, of increasing size, of transcripts from the human transcriptome,
and query the Mantis index to determine the set of experiments containing each
of these transcripts. Mantis answers transcript queries as follows. For each k-mer
in the transcript, it computes the set of samples containing that k-mer. It then

An Efficient, Scalable and Exact Representation 15

reports a sample as containing a transcript if the sample contains more than ©
fraction of the k-mers in the transcript, where © is a user-adjustable parameter.
Note that, for Mantis, the @ threshold is applied at the very end. Mantis first
computes, for each sample, the fraction of k-mers that occur in that sample, and
then filters as a last step. Thus the query times reported here are valid for any ©.

Table4 reports the query performance of both the RRR and MST-based
Mantis indexes. Despite the vastly-reduced space occupied by the MST-based
index, and the fact that the color class decoding procedure is more involved,
query in the MST-based index is slightly faster than querying in the RRR-based
index. The average query time in both RRR-based and MST-based index is
0.08 s/query.

Once the index has been loaded into RAM, Mantis queries are much faster
than the three SBT-based large-scale sequence search data structures, and our
MST-based color-class representation doesn’t change that.

4 Discussion and Conclusion

We have introduced a novel exact representation of the color information asso-
ciated with the cdbg. Our representation yields large improvements in terms
of representation size when compared to previous state-of-the-art approaches.
While our MST-based representation is much smaller, it still provides rapid
query and can, for example, return the query results for a transcript across an
index of 10,000 RNA-seq experiments in ~0.08 s/query. Further, the size benefit
of our proposed representation over that of previous approaches appears to grow
with the number of color classes being encoded, meaning it is not only much
smaller, but also much more scalable. Finally, the representation we propose
is, essentially, a stand-alone encoding of the cdbg’s associated color informa-
tion, making this representation conceptually easy to integrate with any tool or
method that needs to store color information over a large de Bruijn graph.
Though it is not clear how much further the color information can be com-
pressed while maintaining a lossless representation, this is an interesting theoret-
ical question. It may be fruitful to approach this question from the perspective
suggested by Yu et al. [46], of evaluating the metric entropy, fractal dimension,
and information-theoretic entropy of the space of color classes. Practically, how-
ever, we have observed that, at least in our current system, Mantis, for large-scale
sequence search, the counting quotient filter, which is used to store the topology
of the de Bruijn graph and to associate color class labels with each k-mer, has
become the new scalability bottleneck. Here, it may be possible to reduce the
space required by this component by making use of some of the same observations
we relied upon to allow efficient color class neighbor search. For example, because
many adjacent k-mers in the de Bruijn graph share the same color class ID, it
is likely possible to encode this label information sparsely across the de Bruijn
graph, taking advantage of the coherence between topologically nearby k-mers.
Further, to allow scalability to truly-massive datasets, it will likely be necessary
to make the system hierarchical, or even to adopt a more space-efficient (and

16 F. Almodaresi et al.

domain-specific) representation of the underlying de Bruijn graph. Nonetheless,
because we have designed our color class representation as essentially orthogonal
to the de Bruijn graph representation, we anticipate that we can easily integrate
this approach with improved representations of the de Bruijn graph.

Mantis with the new MST-based color class encoding is written in C++17 and
is available at https://github.com/splatlab/mantis.

Acknowledgments and Declarations. This work was supported by the US
National Science Foundation grants BIO-1564917, CCF-1439084, CCF-1716252, CNS-
1408695, National Institutes of Health grant ROIHG009937. The experiments were con-
ducted with equipment purchased through NSF CISE Research Infrastructure Grant
Number 1405641. RP is a co-founder of Ocean Genomics.

References

1. Igbal, Z., Caccamo, M., Turner, 1., Flicek, P., McVean, G.: De novo assembly and
genotyping of variants using colored de Bruijn graphs. Nat. Genet. 44, 226232
(2012). https://doi.org/10.1038/ng.102810.1038 /ng.1028

2. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA
fragment assembly. Proc. National Acad. Sci. 98(17), 9748-9753 (2001)

3. Pevzner, P.A., Tang, H.: Fragment assembly with double-barreled data. Bioinfor-
matics 17(Suppl. 1), s225-s233 (2001)

4. Chikhi, R., Limasset, A., Jackman, S., Simpson, J.T., Medvedev, P.: On the repre-
sentation of de bruijn graphs. In: Sharan, R. (ed.) RECOMB 2014. LNCS, vol. 8394,
pp. 35-55. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05269-4_4

5. Prashant, P., Fatemeh, A., Bender, M.A., Ferdman, M., Johnson, R., Patro, R.:
Mantis: a fast, small, and exact large-scale sequence-search index. Cell Syst. 7(2),
201-207.e4 (2018). https://doi.org/10.1016/j.cels.2018.05.021

6. Solomon, B., Kingsford, C.: Fast search of thousands of short-read sequencing
experiments. Nat. Biotechnol. 34(3), 300-302 (2016)

7. Solomon, B., Kingsford, C.: Improved search of large transcriptomic sequencing
databases using split sequence bloom trees. In: Sahinalp, S.C. (ed.) RECOMB
2017. LNCS, vol. 10229, pp. 257-271. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56970-3_16

8. Sun, C., Harris, R.S., Chikhi, R., Medvedev, P.: AllSome sequence bloom trees.
In: Sahinalp, S.C. (ed.) RECOMB 2017. LNCS, vol. 10229, pp. 272-286. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56970-3_17

9. Bradley, P., den Bakker, H., Rocha, E., McVean, G., Igbal, Z.: Real-time search of
all bacterial and viral genomic data. BioRxiv, p. 234955 (2017)

10. Muggli, M.D., et al.: Succinct colored de bruijn graphs. Bioinformatics 33, 3181—
3187 (2017)

11. Holley, G., Wittler, R., Stoye, J.: Bloom Filter Trie: an alignment-free and
reference-free data structure for pan-genome storage. Algorithms Mol. Biol. 11(1),
3 (2016)

12. Almodaresi, F., Pandey, P., Patro, R.: Rainbowfish: a succinct colored de Bruijn
graph representation. In: LIPIcs-Leibniz International Proceedings in Informatics,
vol. 88. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

13. Liu, B., Guo, H., Brudno, M., Wang, Y.: deBGA: read alignment with de Bruijn
graph-based seed and extension. Bioinformatics 32(21), 3224-3232 (2016a)

https://github.com/splatlab/mantis
https://doi.org/10.1038/ng.102810.1038/ng.1028
https://doi.org/10.1007/978-3-319-05269-4_4
https://doi.org/10.1016/j.cels.2018.05.021
https://doi.org/10.1007/978-3-319-56970-3_16
https://doi.org/10.1007/978-3-319-56970-3_16
https://doi.org/10.1007/978-3-319-56970-3_17

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

An Efficient, Scalable and Exact Representation 17

Chikhi, R., Rizk, G.: Space-efficient and exact de bruijn graph representation based
on a bloom filter. In: Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp.
236-248. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33122-
0-19

Salikhov, K., Sacomoto, G., Kucherov, G.: Using cascading bloom filters to improve
the memory usage for de brujin graphs. Algorithms Mol. Biol. 9(1), 2 (2014)
Bowe, A., Onodera, T., Sadakane, K., Shibuya, T.: Succinct de bruijn graphs. In:
Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp. 225-235. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33122-0-18

Crawford, V., Kuhnle, A., Boucher, C., Chikhi, R., Gagie, T., Hancock, J.: Prac-
tical dynamic de bruijn graphs. Bioinformatics 34, 4189-4195 (2018)

Pandey, P., Bender, M.A., Johnson, R., Patro, R.: deBGR: an efficient and near-
exact representation of the weighted de bruijn graph. Bioinformatics 33(14), i133—
i141 (2017)

Mustafa, H., Schilken, I., Karasikov, M., Eickhoff, C., Ratsch, G., Kahles, A.:
Dynamic compression schemes for graph coloring. Bioinformatics, p. bty632 (2018).
https://doi.org/10.1093 /bioinformatics/bty632

Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm
(1994)

Raman, R., Raman, V., Srinivasa Rao, S.: Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets. In: Proceedings of the Thir-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 233—-242. Soci-
ety for Industrial and Applied Mathematics (2002)

Elias, P.: Efficient storage and retrieval by content and address of static files. J.
ACM (JACM) 21(2), 246-260 (1974)

Raidl, G.R.: Exact and heuristic approaches for solving the bounded diameter
minimum spanning tree problem. Ph.D. thesis (2008)

Althaus, E., Funke, S., Har-Peled, S., Konemann, J., Ramos, E.A., Skutella, M.:
Approximating k-hop minimum-spanning trees. Oper. Res. Lett. 33(2):115-120
(2005). https://doi.org/10.1016/j.0rl.2004.05.005. http://www.sciencedirect.com/
science/article/pii/S0167637704000719. ISSN 0167-6377

Manyem, P., Stallmann, M.F.M.: Some approximation results in multicasting.
Technical report, Raleigh, NC, USA (1996)

Khuller, S., Raghavachari, B., Young, N.E.: Balancing minimum spanning and
shortest path trees. CoRR, ¢s.DS/0205045 (2002). http://arxiv.org/abs/cs.DS/
0205045

Marathe, M.V., Ravi, R., Sundaram, R., Ravi, S.S., Rosenkrantz, D.J., Hunt III,
H.B.: Bicriteria network design problems. CoRR, ¢s.CC/9809103 (1998). http://
arxiv.org/abs/cs.CC/9809103

Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J.M., Birol, I.:
ABySS: a parallel assembler for short read sequence data. Genome Res. 19(6),
1117-1123 (2009)

Schulz, M.H., Zerbino, D.R., Vingron, M., Birney, E.: Oases: robust de novo RNA-
seq assembly across the dynamic range of expression levels. Bioinformatics 28(8),
1086-1092 (2012)

Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using
de Bruijn graphs. Genome Res. 18(5), 821-829 (2008)

Grabherr, M.G., et al.: Full-length transcriptome assembly from RNA-seq data
without a reference genome. Nature Biotechnol. 29(7), 644-652 (2011)

Chang, Z., et al.: Bridger: a new framework for de novo transcriptome assembly
using RNA-seq data. Genome Biol. 16(1), 30 (2015)

https://doi.org/10.1007/978-3-642-33122-0_19
https://doi.org/10.1007/978-3-642-33122-0_19
https://doi.org/10.1007/978-3-642-33122-0_18
https://doi.org/10.1093/bioinformatics/bty632
https://doi.org/10.1016/j.orl.2004.05.005
http://www.sciencedirect.com/science/article/pii/S0167637704000719
http://www.sciencedirect.com/science/article/pii/S0167637704000719
http://arxiv.org/abs/cs.DS/0205045
http://arxiv.org/abs/cs.DS/0205045
http://arxiv.org/abs/cs.CC/9809103
http://arxiv.org/abs/cs.CC/9809103

18

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.
45.

46.

F. Almodaresi et al.

Liu, J., et al.: Binpacker: packing-based de novo transcriptome assembly from
RNA-seq data. PLOS Comput. Biol. 12(2), €1004772 (2016b)

Almodaresi, F., Sarkar, H., Srivastava, A., Patro, R.: A space and time-efficient
index for the compacted colored de Bruijn graph. Bioinformatics 34(13), i169-1177
(2018)

Turner, 1., Garimella, K.V., Igbal, Z., McVean, G.: Integrating long-range connec-
tivity information into de Bruijn graphs. Bioinformatics 34(15), 2556-2565 (2018).
https://doi.org/10.1093 /bioinformatics /bty157

Alipanahi, B., Muggli, M.D., Jundi, M., Noyes, N., Boucher, C.: Resistome SNP
calling via read colored de Bruijn graphs. bioRxiv, p. 156174 (2018)

Alipanahi, B., Kuhnle, A., Boucher, C.: Recoloring the colored de Bruijn graph. In:
Gagie, T, Moffat, A., Navarro, G., Cuadros-Vargas, E. (eds.) SPIRE 2018. LNCS,
vol. 11147, pp. 1-11. Springer, Cham (2018b). https://doi.org/10.1007/978-3-030-
00479-8-1

Pandey, P., Bender, M.A., Johnson, R., Patro, R.: A general-purpose counting
filter: making every bit count. In: Proceedings of the 2017 ACM International
Conference on Management of Data, pp. 775-787. ACM (2017)

Yu, Y., et al.: SeqOthello: querying RNA-seq experiments at scale. Genome Biol.
19(1), 167 (2018). https://doi.org/10.1186/s13059-018-1535-9. ISSN 1474-760X
Ottaviano, G., Venturini, R.: Partitioned Elias-Fano Indexes. In: Proceedings of
the 37th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 273-282. ACM (2014)

Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory 23(3), 337-343 (1977)

Bookstein, A., Klein, S.T.: Compression of correlated bit-vectors. Inf. Syst. 16(4),
387400 (1991)

Pandey, P., Bender, M.A., Johnson, R., Patro, R.: Squeakr: an exact and approx-
imate k-mer counting system. Bioinformatics, btx636 (2017). https://doi.org/10.
1093 /bioinformatics/btx636

NIH. SRA (2017). https://www.ebi.ac.uk/ena/browse. Accessed 06 Nov 2017
O’Leary, N.A., et al.: Reference sequence (RefSeq) database at NCBI: current sta-
tus, taxonomic expansion, and functional annotation. Nucleic Acids Res. gkv1189
(2015)

Yu, Y.W., Daniels, N.M., Danko, D.C., Berger, B.: Entropy-scaling search of mas-
sive biological data. Cell systems 1(2), 130-140 (2015)

https://doi.org/10.1093/bioinformatics/bty157
https://doi.org/10.1007/978-3-030-00479-8_1
https://doi.org/10.1007/978-3-030-00479-8_1
https://doi.org/10.1186/s13059-018-1535-9
https://doi.org/10.1093/bioinformatics/btx636
https://doi.org/10.1093/bioinformatics/btx636
https://www.ebi.ac.uk/ena/browse

	An Efficient, Scalable and Exact Representation of High-Dimensional Color Information Enabled via de Bruijn Graph Search
	1 Introduction
	2 Methods
	2.1 Colored de Bruijn graphs
	2.2 A Similarity-Based cdbg Representation
	2.3 Implementation of the MST Data Structure
	2.4 Integration in Mantis
	2.5 Comparison with Brute-Force and Approximate-Nearest-Neighbor-Based Approaches

	3 Evaluation
	3.1 Experimental Procedure
	3.2 Evaluation Results

	4 Discussion and Conclusion
	References

