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Abstract—Large machine learning models are typically trained
in parallel and distributed environments. The model parameters
are iteratively refined by multiple worker nodes in parallel,
each processing a subset of the training data. In practice,
the training is usually conducted in an asynchronous parallel
manner, where workers can proceed to the next iteration before
receiving the latest model parameters. While this maximizes
the rate of updates, the price paid is compromised training
quality as the computation is usually performed using stale
model parameters. To address this problem, we propose a new
scheme, termed speculative synchronization. Our scheme allows
workers to speculate about the recent parameter updates from
others on the fly, and if necessary, the workers abort the ongoing
computation, pull fresher parameters, and start over to improve
the quality of training. We design an effective heuristic algorithm
to judiciously determine when to restart training iterations
with fresher parameters by quantifying the gain and loss. We
implement our scheme in MXNet—a popular machine learning
framework—and demonstrate its effectiveness through cluster
deployment atop Amazon EC2. Experimental results show that
speculative synchronization achieves up to 3× speedup over
the asynchronous parallel scheme in many machine learning
applications, with little additional communication overhead.

I. INTRODUCTION

Large-scale machine learning (ML) has demonstrated state-

of-the-art performance in many practical applications, such

as voice-driven personal assistants [1], photo search [2] and

captioning [3], and autonomous vehicles [4]. However, training

large ML models at scale requires processing a massive amount

of data, which cannot be accommodated by a single machine.

Distributed ML systems come as a solution that enables

parallel training of large ML models in a cluster of machines

[5]–[9]. In distributed ML systems, the training data is

partitioned across many worker nodes. All workers share access

to the model parameters, sharded across multiple servers. Each

worker iteratively refines the parameters based on its subset of

training data, and communicates the refinement with parameter

servers, in parallel with other workers.

Ideally, to ensure high-quality refinement, the computation

should use the up-to-date model parameters. This can be

achieved through a Bulk Synchronous Parallel (BSP) implemen-

tation, where workers synchronize at the end of each iteration

and will not proceed until the model parameters have been fully

updated by all workers. However, BSP-style solution suffers

from high synchronization overhead that makes it impractical
to solve large ML problems [5], [10]: the presence of straggling

workers inevitably slows down the entire learning progress.

Therefore, prevalent ML systems [5]–[9] employ an Asyn-

chronous Parallel (ASP) model, where workers eagerly start

the next iteration before receiving the latest parameters. In

this way, the rate of update is maximized, leading to faster

convergence than the BSP approach in many ML problems.

However, ASP-style solution falls short of the quality of learned

model. Without synchronization, the computation often iterate

on stale parameters, which may drive the refinement away from

the optimum [10]–[12].

Aiming at striking a balance between updates rate and

updates quality in training, Stale Synchronous Parallel (SSP)

model [6], [10], [13] is proposed recently as a middle ground

between the ASP and BSP approach. In the SSP model,

workers synchronize only when the staleness of parameters

(measured by the number of missing updates from stragglers)

exceeds a certain threshold. While this allows fast workers

to use relatively fresher parameters, it provides little benefit

for straggling machines which are left unnoticed about the

refinements made by others. Consequently, updates generated

by slowed machines may harm rather than benefit the training

progress [12].

In this paper, we explore a new aspect to accelerate

asynchronous distributed learning by enabling computation

to iterate over fresher parameters for quality refinement. Our

key observation is that, in ASP- and SSP-style solutions, a

worker pulls fresh parameters from servers only before the
start of each iteration. This restriction hides all the updates

from other workers during the iteration, many of which are

made shortly after the iteration begins. Should those updates be

included, the quality of refinement would have been improved

dramatically.

Following this observation, we propose a simple, yet ef-

fective parallel scheme, termed speculative synchronization
(SpecSync), where each worker speculates about the parameter

updates from others, and if necessary, it aborts the ongoing

computation, pulls fresher parameters to start over, so as to

opportunistically improve the quality of training. SpecSync

offers two attractive properties. First, it effectively mitigates

the inconsistency between the global parameters and their local

replicas across workers—even slowed machines can timely

discover the recent updates made by fast workers during

computation. Second, it imposes no synchronization barrier and

can be implemented on top of ASP and SSP models, well com-

plementing existing approaches with improved performance.



However, there are two primary challenges need to be

addressed. First, to facilitate SpecSync, workers need to be

informed about the parameter updates from others. How to

share this information without incurring high communication

overhead is critical. Simply broadcasting each worker’s update

to others leads to all-to-all communications, which is too

expensive to be useful in practice. Instead of broadcasting,

we adopt a centralized architecture where workers report to a

centralized scheduler once the parameter updates are pushed

to servers. The scheduler oversees the global new pushes and

notifies workers to re-synchronize for fresher parameters if

necessary.

The second challenge arises as a question of when

should a worker abort ongoing computation and perform

re-synchronization? On one hand, to uncover more recent

parameter updates, the worker should defer re-synchronization

as much as possible. On the other hand, such deferral results

in delayed computation, which in turn harms the training

performance. We quantify the gain and loss due to speculation

through a simple model. We formulate an optimization problem

and propose an effective heuristic algorithm that strikes a

good balance between uncovering more parameter updates and

minimizing the computation delay.

We implemented SpecSync as a pluggable module in

MXNet [7], a popular distributed ML systems with top-tier

performance. Our implementation can be easily extended

for other distributed ML systems and is open-sourced for

public access.1 We evaluated the effectiveness of SpecSync

through cluster deployment in Amazon EC2 against three

benchmarking ML applications: Matrix Factorization with

MovieLens dataset [14], CIFAR-10 [15], and ImageNet [16].

The highlights of our evaluations are summarized as follows:

• SpecSync can significantly accelerate the training speed

of different ML workloads (i.e., up to 3× faster) without

compromising the training accuracy.

• SpecSync remains effective in a highly heterogeneous

cluster and also scales with cluster size.

• SpecSync incurs little additional communication overhead

during training.

II. BACKGROUND AND MOTIVATION

In this section, we briefly introduce the background of

distributed machine learning (ML) and the means to facilitate

it in large clusters through the recently proposed Parameter

Server (PS) architecture [5]–[9].

A. ML Problems Solved by Risk Minimization

In many learning problems, the input is a training dataset

D consisting of n samples. A sample is a vector where each

component characterizes a learning feature. Each sample x is

associated with a label y. The objective of learning is to find a

model with parameters w that correctly predicts label y given

sample x. The learned model can then be used to predict y for

any future x not seen in the training dataset.

1https://github.com/All-less/mxnet-speculative-synchronization

Fig. 1: The architecture of Parameter Server (PS).

To learn the model, the training algorithm solves a risk
minimization problem. In particular, we define a loss function

l(x, y, w) that measures the prediction error (risk) if model w
is used to predict label y given sample x. Our goal is to find

the best model w that results in the minimum prediction errors

over the entire training samples, i.e.,

minimizew
∑

x∈D l (x, y, w). (1)

B. Parameter Server and Distributed SGD

To expedite training ML models on very large data sets,

distributed ML systems have been proposed where the training

is distributed over a cluster of commodity machines [5], [6],

[8]. The recently proposed Parameter Server (PS) architecture

can be employed to facilitate the system design [5]–[9].

As shown in Fig. 1, in the PS-based systems, training samples

D are partitioned into a number of subsets D1,D2, . . . ,Dm,

each maintained by a worker machine. The model parameters

are sharded across multiple servers, and can be accessed by

all workers. Each worker also maintains a local replica of

model parameters and iteratively refines it based on its own

training samples. Periodically, workers push their local updates

to servers, jointly refining the global parameters. The worker

then pulls the most up-to-date parameters from servers and

proceeds to the next iteration of training.

More precisely, workers perform distributed SGD (stochastic

gradient descent) with data parallelism [17] in the PS-based

ML systems. Each worker i iteratively passes over its own

training samples Di. In each pass, the worker calculates the

subgradient ∇l(x, y, w) for each sample x and updates the

model with

w ← w − η
∑

x∈Di
∇l(x, y, w), (2)

where η is the learning rate. Every time a worker pushes an

update, we say it finishes one iteration; when all workers finish

an iteration, we say the training has gone through one epoch.

C. Synchronization Schemes

Asynchronous Parallel (ASP). Most popular PS-based ML

systems [5]–[9] adopt Asynchronous Parallelism when perform

distributed SGD, where each worker eagerly proceeds to the

next iteration without waiting for the parameter updates from

other workers. ASP-style execution fully exploits the computing

cycles, maximizing the rate of update. However, the price

paid is the compromised quality of learned models. In cluster

environments, it is common to have workers process training

samples at different speeds and make push and pull requests



at different rates. This results in inconsistent model replicas

among workers. By the time a fast worker finishes one iteration

and pulls parameters from servers, some slowed machines may

remain in the middle of iteration. The fast worker hence misses

the updates from those machines and proceeds to the next

iteration with stale version of parameters. Training with stale

parameters may poison the algorithm throughput as pointed in

the literature [11], compromising training quality.

Bulk Synchronous Parallel (BSP) comes as an alternative

scheme that enforces a consistent, up-to-date view of global

parameters across workers. With the BSP scheme, workers

synchronize at the end of each iteration and cannot proceed

until all workers have pushed updates to servers. The BSP

scheme ensures quality updates from each iteration, and is

widely adopted in parallel analytics frameworks such as MapRe-

duce [18], Spark [19], MLlib [20] and GraphX [21]. However,

the BSP scheme incurs high synchronization overhead: fast

workers must wait for stragglers to complete, wasting their

computing cycles in idle. For this reason, the BSP scheme

often performs poorly on large ML problems [10], [13].

Stale Synchronous Parallel (SSP) [6], [10], [13], [22] is

proposed recently as a middle ground between the ASP and

BSP schemes. In the SSP scheme, workers can asynchronously

start next iteration with stale parameters, provided that the

staleness (measured by the worker’s progress ahead of the

straggler) is within a bounded amount. The SSP scheme allows

fast workers to timely discover updates from slowed machines,

and is shown to provide a convergence guarantee as opposed

to the ASP approach [10]. However, slowed workers may

still lag behind with a rather inconsistent view to the global

parameters. Prior work [12] shows that updates from slowed

workers are often harmful rather than beneficial, especially

when the parameters are coming close to the optimum. In

fact, popular ML systems like TensorFlow [9] and MXNet

[7] choose not to implement SSP based on the claim that

only in rare cases can the improvement on training speed or

convergence be observed [23].

To summarize, relaxed synchronization schemes can ef-

fectively speed up distributed learning, but at the cost of

compromised quality due to inconsistent model replicas among

workers [22]. This motivates us to propose a new approach to

accelerate asynchronous distributed learning by enabling more

up-to-date views of global parameters across workers.

III. STAYING FRESH THROUGH NAÏVE WAITING

In this section, we examine the behaviors of asynchronous

learning through empirical studies and explore a new aspect

to keep parameters fresh in computation.

A. Pushes after a Pull: The Source of Staleness

Without synchronization, each worker eagerly pulls parame-

ters to start next iteration, and will miss the following pushes

made by others before the next pull. That is, asynchrony hides

pushes after a pull (PAP)—the main source where staleness

derives. Fig. 2 illustrates an example. The parameters worker-1

t
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Fig. 2: Asynchrony hides pushes after a pull (PAP). Worker-1

misses more PAP than anyone else and ends up with the most

outdated parameters.

pulls at time t1 have received only one update from itself,

while the ones worker-2 pulls include four updates from all

workers and are much fresher. In fact, worker-1 has the most

outdated parameters, as it misses more PAP than anyone else.

Intuitively, to stay fresh, a worker should uncover more

recent pushes made by others. A simple way to do so is to

defer the pull request by a small amount of time, so as to

capture more recent pushes that are otherwise invisible. In the

previous example, delaying the pull request of worker-1 to t2
exposes the two pushes from worker-3 and worker-4, enabling

a more up-to-date view of the global parameters.

However, the deferral of a pull request inevitably delays the

start of an iteration, leading to longer completion time. Without

a careful control, the harm caused by the delay may outweigh

the benefits derived from fresher parameters. Therefore, whether

deferring a pull request is beneficial critically depends on how

many pushes are expected to be made shortly after the pull.

We investigate this issue through an empirical study using

a real ML application. We trained a deep residual network

with CIFAR-10 dataset [15] in MXNet [7], deployed in an

Amazon EC2 cluster consisting of 40 m4.xlarge instances.2

The training is performed in an ASP model. We collected the

workload traces and analyze how many pushes were made by

others between two consecutive pulls of a worker (i.e., the

number of missing updates in one iteration). In our experiment,

an iteration typically spans around 14 seconds. We further

divide an iteration into a number of 1-second intervals (i.e.,

0-1s, 1-2s, etc.), and for each interval, we count the number of

PAP received in it. We show the distribution of each interval as

a box plot in Fig. 3, where boxes depict 25th, 50th, and 75th

percentiles, and whiskers depict 5th and 95th percentiles. We

observe approximately uniform arrivals of PAP in each interval.

In particular, if we focus on the number of pushes received

within two seconds after a pull is made (the first two boxes in

Fig. 3), the median is over 6. That is to say, by delaying the

pull request by 14% of the iteration time, we can allow 50%

of workers to include at least 15% of recent updates. These

promising numbers suggest that a slight delay of iteration is

sufficient to discover more fresh parameters.

2In MXNet, each node is both a worker and a server.
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Fig. 3: Distribution of the number of pushes received in a time

interval after a pull is made (PAP). Each interval spans one

second.

Fig. 4: Naïve waiting defers each pull request by a short period

of time, allowing worker-1 (and others) to uncover more updates

than it could have had in Fig. 2.

B. Naïve Waiting

Motivated by our empirical studies, we propose a simple

strategy which we call naïve waiting. As the name suggests,

each worker simply delays its pull requests by a short period of

time, so as to uncover more pushes that are otherwise invisible.

Fig. 4 illustrates naïve waiting applied to the example in Fig. 2.

We see that a slight delay of pulls allows all workers to include

more updates in their parameters than they could in Fig. 2:

worker-1 now uncovers three updates (highlighted in Fig. 4),

while the other three workers get all four (not shown in Fig. 4).

To quantify the benefits of naïve waiting in real-world

systems, we implemented it in MXNet 0.7 [24] and evaluated

its performance in an EC2 cluster composed of 40 m4.xlarge
instances. We ran two benchmarking ML workloads: a deep

residual network with CIFAR-10 dataset [15] and matrix

factorization with MovieLens dataset [14]. For each workload,

we configured naïve waiting with different delays and compared

their impacts to the performance. Fig. 5 depicts the learning

curves of the two ML workloads. By delaying each pull

request by 1 second, both workloads achieve significant

performance improvements. However, as the delay increases,

more computing cycles get wasted, and the performance

deteriorates. As illustrated by the CIFAR-10 workload in

Fig. 5a, delaying each pull request by 3 seconds yields little

benefit over the original implementation; further increasing the

delay to 5 seconds even does more harm than good.

To summarize, our experiments confirm that simply deferring

each pull request to expose more fresh parameters can be
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Fig. 5: Convergence curves of naïve waiting with different

delay times. Curves with zero delay correspond to the stock

MXNet implementation.
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Fig. 6: Illustration of speculative synchronization. Worker-1

speculatively aborts computation after observing the two pushes

made by two peers. It pulls parameters again and starts over.

beneficial. However, such a benefit is conditioned on finding

the “right” delay time, which by itself is technically non-trivial.

In fact, naively deferring each pull request may not always be

justified—more often than not, the delay may expose only a

few new updates. We therefore give up on naïve waiting and

turn to a new approach to avoid unjustified delay.

IV. SPECULATIVE SYNCHRONIZATION

In this section, we present a new scheme, called speculative
synchronization (SpecSync), which allows workers to specula-

tively abort the ongoing computation and start over with fresher

parameters. We model the gain and loss due to speculative

re-execution, based on which we propose an effective heuristic

algorithm to determine when to restart computation for workers.

SpecSync can be implemented in both ASP and SSP models,

complementing existing solutions with improved performance.

A. Overview

Key idea. Instead of imposing an arbitrary delay without

justification, we let the worker asynchronously proceed to the

next iteration immediately, while at the same time speculating

about the updates made by others. Once the worker learns that

the global parameters have been updated “enough” times, it

will abort the ongoing iteration, pull the fresher parameters to

start over—if that is not too late yet.

Continuing the example in Fig. 2, we apply speculative

synchronization and illustrate workers’ behaviors in Fig. 6. We

start to focus on worker-1. After finishing the first iteration,



it pulls parameters and starts the next iteration immediately.

Shortly after it starts, it learns that two other peers have pushed

updates to servers (highlighted in Fig. 6), which it views as

a significant-enough change made to the global parameters.

Worker-1 hence aborts the ongoing iteration, re-synchronizes

with servers to include those two recent updates, and starts over

with much fresher parameters. The abort-and-restart decision is

also made by worker-4 upon its notice of two updates pushed

shortly after the second iteration starts. In contrast, workers 2

and 3 choose not to restart as they do not see enough updates

(two in this example) pushed to servers since their last pulls.

Benefits. SpecSync offers two benefits.

1) It avoids unjustified delays, minimizing the cost of wasted
computing cycles due to abortion. With SpecSync, an iteration

gets restarted only when the global parameters have undergone

significant enough updates within a short period of time after

the iteration begins. When that happens, the improved quality of

refinement brought by fresher parameters will surely outweigh

the cost of slightly delayed computations.

2) SpecSync can be flexibly implemented in both ASP and
SSP models, complementing them with improved performance.
In fact, the only difference between ASP and SSP is that the

latter enforces bounded staleness in that fast workers must wait

for slowed ones to catch up. With SpecSync implemented in the

SSP model, workers can actively seek opportunities to restart

computation with fresher parameters, before the staleness bound

is reached. This also gives slowed workers a chance to timely

capture updates from fast peers by aborting computations,

ensuring a more consistent view of global parameters. As a

result, the quality of updates generated by straggling workers

can be improved dramatically.

Challenges. However, to facilitate SpecSync, there are two

major challenges we should address.

1) How can we efficiently notify each worker when the global
parameters are updated by others, without incurring high
communication overhead? Simply broadcasting each worker’s

push notification to others causes all-to-all communications, and

is too expensive to implement. We shall address this challenge

in Sec. V through a centralized system architecture, where a

scheduler oversees pushes from all workers and notifies each

when the global parameters have been updated sufficient times

since its last pull.

2) As the global parameters are refined, how can we
determine, for each worker, when to abort computation and
start over? We employ a simple speculation strategy with two

hyperparameters: ABORT_TIME and ABORT_RATE. In particular,

after starting an iteration, a worker speculates about the

parameter updates made in a time period of length ABORT_TIME.

The worker counts the number of pushes made by others in

that speculation period, and normalizes the count by the total

number of workers to obtain the push rate. If the push rate

exceeds ABORT_RATE, the worker is convinced that the global

parameters have undergone significant updates since its last

pull. The worker then aborts the ongoing computation, re-

synchronizes with servers, and starts over.

The choices of the two hyperparameters critically determine

the performance of speculative synchronization. The question

is: given a learning workload, how can we judiciously choose

the two hyperparameters that lead to the optimal performance?

We answer this challenge next.

B. Adaptive Hyperparameter Tuning

To achieve the optimal performance of SpecSync, we

propose a heuristic algorithm that adaptively tunes the two

hyperparameters. We start with a problem formulation.

Problem formulation. Suppose that worker i restarts an itera-

tion after a speculation period. Worker i gains by uncovering

more recent updates that are otherwise invisible, at the expense

of a delayed computation. Such a delay may hide worker i’s
update from being captured by others. By the time worker i
pushes an update, it would be too late for some other workers

to capture that refinement, which in turn harms the parameter

freshness of those workers.

In our model, we measure the freshness gain by the number

of updates others pushed in the speculation period, and the

freshness loss by the number of missed peers, which are workers

that missed the (delayed) push of the speculator. More precisely,

we divide time into epochs (cf. Sec. II-B). Let Δ denote

the ABORT_TIME used in epoch τ . For worker i, let ui,τ (Δ)
be the number of updates it uncovers during its speculation

period. The value of ui,τ (Δ) measures the freshness gain. Let

li,τ (Δ) be the number of missed peers, which quantifies the

freshness loss. Worker i hence makes a freshness contribution
ui,τ (Δ)− li,τ (Δ). To make a positive contribution, worker i
aborts the computation only when the gains outweighs the loss,

i.e., ui,τ (Δ) ≥ li,τ (Δ). We shall discuss later how this can be

achieved by correctly choosing an ABORT_RATE.

Summing up the contribution over all workers, we obtain

the overall freshness improvement due to speculative synchro-

nization, i.e.,

Fτ (Δ) =

m∑
i=1

(ui,τ (Δ)− li,τ (Δ)) . (3)

Our goal is to find the optimal Δ at the beginning of each

epoch that maximizes the overall freshness improvement:

maximizeΔFτ (Δ). (4)

Estimating gain and loss. Unfortunately, Problem (4) cannot

be directly solved in practice, as the exact computation of

ui,τ (·) and li,τ (·) requires knowing the complete push/pull

sequence in epoch τ before the epoch starts. We therefore turn

to estimations of the gain and loss.

In particular, to estimate how many updates worker i will

uncover after a speculation period Δ, we simply refer back to

the previous epoch and count the number of updates the worker

would have uncovered if it had deferred its last iteration by Δ.

More precisely, we estimate ui,τ (Δ) as

ũi,τ (Δ) = ui,τ−1(Δ), (5)

where ũi,τ (·) is an estimation of ui,τ (·). Our insight is that the

algorithmic behaviors and machine performance are usually



stable in a short period of time. Therefore, the freshness gain

computed based on the push history in the previous epoch can

be used as a good approximation to that in the current epoch.

Ideally, we can use the same approach to estimate freshness

loss, i.e., l̃i,τ (Δ) = li,τ−1(Δ). However, simply using the

push history in epoch τ − 1 may not be sufficient to compute

li,τ−1(Δ). In fact, assuming the worker deferred its last

iteration by Δ, it is possible that the iteration would still

be running now, and the freshness loss caused by that delay

cannot be fully characterized until the iteration completes.

Unable to make use of historical traces, we simply estimate

freshness loss li,τ (Δ) as the expected number of missed peers
assuming uniform arrivals of pull requests. While this technical

assumption may not always hold in practice, it simplifies the

analysis and makes the problem tractable. We shall show in

Sec. VI that despite this technical assumption, our solution

can still achieve near-optimal performance in a number of ML

applications.

Specifically, let Ti,τ be the iteration span of worker i in epoch

τ , which can be accurately predicted from history. Deferring the

iteration by Δ hides the worker’s update from being captured by

another with probability Δ
Ti,τ

. Therefore, the expected number

of missed peers, or the estimate of freshness loss, is

l̃i,τ (Δ) =
Δ

Ti,τ
(m− 1). (6)

Substituting the gain and loss by their estimates, we obtain an

estimate of the overall freshness improvement:

F̃τ (Δ) =

m∑
i=1

(
ũi,τ (Δ)− m− 1

Ti,τ
Δ

)
. (7)

Hyperparameter tuning. Directly searching the optimal Δ to

maximize improvement estimate F̃τ (Δ) can be difficult, as

Eq. (7) is non-convex. We present an efficient algorithm that

optimally solves this problem. Our key observation is that, to

maximize Eq. (7), it is sufficient to search a finite number of Δ.

To see this, consider worker i, and let Δ gradually increase from

0. By definition, ũi,τ (Δ) increments only when the increase

of speculation period exposes one more push from another

worker. Therefore, ũi,τ (Δ) is a step function. Also note that the

estimate of freshness loss (cf. Eq. (6)) linearly increases with Δ.

Putting them together, the freshness contribution (gain minus

loss) reaches the maximum only if the speculation interval

right aligns with a push. It is easy to see that there are O(m2)
such intervals in total, where m is the number of workers. We

can therefore enumerate all candidate Δ and choose the one

that maximizes Eq. (7). Algorithm 1 illustrates the details, with

time complexity O(m3).
Once the optimal Δ∗ is found (ABORT_TIME), we set

ABORT_RATE so that workers abort computation only when

the gain outweighs the loss. Specifically, let Γ denote the

ABORT_RATE used by worker i. By our scheme, worker i aborts

computation if the number of updates received during the spec-

ulation period exceeds Γm. We therefore set Γ = l̃i,τ (Δ
∗)/m

to ensure that re-execution always makes a positive contribution

to the overall freshness improvement.

Algorithm 1 Adaptive Tuning

– m: number of workers
– T : averaged iteration span

1: function TUNEPARAM

2: l ← sequence of all pushes made in the last epoch
3: {Δ} ← time difference between all pairs of pushes in l
4: for Δ ∈ {Δ} do
5: F ← computation result of Eq. (7)
6: if F is maximal then
7: ABORT_TIME ← Δ
8: ABORT_RATE ← Δ(m− 1)/Tm

Fig. 7: The architecture of speculative synchronization.

The experimental evaluation in Sec. VI verifies that our

heuristic approach achieves near-optimal speedup for many

ML applications even compared with the scheme using the

optimal hyperparameters cherry-picked via exhaustive search.

V. IMPLEMENTATION

In this section, we present our implementation of SpecSync

atop MXNet [7], [24], a popular ML framework employing

the parameter server (PS) architecture. While we base our

implementation on MXNet, nothing precludes it from being

ported to other PS-based systems such as TensorFlow [9].

A. Architecture Overview

Centralized implementation. We employ a centralized imple-
mentation for SpecSync. As shown in Fig. 7, our implemen-

tation consists of three components: workers, servers, and a

centralized scheduler. At the beginning of an iteration, a worker

pulls model parameters from servers and starts computation.

In the mean time, the worker delegates the speculation job to

the centralized scheduler which oversees the parameter updates

from others and notifies the worker when it is time to re-

synchronize. Upon receiving an instruction from the scheduler,

the worker pulls fresh parameters from servers and restarts the

computation. After an iteration completes, the worker pushes

the computed update to servers, and notifies the scheduler.

This way, the scheduler can keep track of pushes made by all

workers, enabling it a global view to perform speculation for

each worker.

Benefits. The centralized implementation offers two benefits

over a direct implementation where each worker performs

speculation individually. First, it eliminates the need for all-

to-all communication among workers, which is unavoidable

in the direct implementation as each worker must broadcast
a push notification to all others. In contrast, workers in the

centralized architecture only report to the scheduler. We shall

show in Sec. VI that the communication overhead incurred



Algorithm 2 Speculative Synchronization

Workers: i = 1, 2, . . . ,m

1: function WORKERSTARTSEPOCH(e)
2: Pull model parameters w(e,0) from servers
3: for all training batch t = 0, 1, 2, · · · , T do
4: Start computing gradient g

(e,t)
i in a non-blocking manner

5: if worker receives re-sync during computation then
6: Abort computation and pull w(e,t) from servers
7: go to 4 � Restart compution

8: Push g
(e,t)
i to servers

9: Pull w(e,t+1) from servers
10: Send notify to scheduler

Scheduler:
– l: a list of timestamps of all pushes

1: function STARTSTRAINING

2: for epoch e = 0, 1, 2, ..., E do
3: Issue WORKERSTARTSEPOCH(e) to all workers

4: function HANDLENOTIFICATION(msg)
5: Append current timestamp to l
6: Call CHECKRESYNC(msg.sender) after ABORT_TIME

7: function CHECKRESYNC(senderId)
8: cnt ← number of pushes received within ABORT_TIME
9: if cnt ≥ m× ABORT_RATE then � Time to re-synchronize

10: Issue re-sync to the worker with senderId

among workers and the scheduler is negligible. Second, in the

centralized architecture, only the scheduler needs to maintain

a global view of the push history of workers. However, in

the direct implementation, this information must be separately

maintained by each worker, leading to unnecessary storage

redundancy.

B. Workflow

We elaborate on the implementation of each component,

following the workflow of SpecSync illustrated in Algorithm 2.

Workers communicate with the scheduler through two ded-

icated messages: notify and re-sync. A notify message

simply contains a senderId and is sent to the scheduler by

a worker upon the completion of an iteration. The notify
message triggers the speculation on the scheduler. At the same

time, the worker pulls parameters from servers and proceeds to

the next iteration, during which the worker expects a re-sync
message from the scheduler to re-synchronize with servers and

start over. Once the iteration completes, the worker pushes

update to servers, sends a notify message to the scheduler,

and repeats the entire process.

Servers are agnostic to speculative synchronization performed

by workers and the scheduler. Their behaviors remain the same

as in the stock MXNet, and is not shown in Algorithm 2.

Scheduler keeps track of pushes made by workers through

notify messages and performs two jobs. First, it computes

the two hyperparameters ABORT_TIME and ABORT_RATE at

the beginning of each epoch using Algorithm 1. Second, it

implements the logic of SpecSync on behalf of each worker.

Specifically, it maintains a push counter and a timer for each

worker. Upon receiving a notify message from a worker, the

TABLE I: Models and datasets used for workloads. The

iteration time is based on m4.xlarge instance.

workload # parameters dataset dataset size iteration time
MF 4.2 million Movielens 100,000 3s

CIFAR-10 2.5 million CIFAR-10 50,000 14s
ImageNet 5.9 million ImageNet 281,167 70s

scheduler appends it to the push history and kicks start the

speculation for the sender. To do so, it resets the push counter

of the sender and starts the corresponding timer which will

expire in ABORT_TIME. During the speculation period, the push

counter increments whenever a notify message is received.

Upon the timer expires, the scheduler checks whether the

counter is more than m×ABORT_RATE, where m is the number

of workers. If so, the scheduler instructs the worker to re-

synchronize through a re-sync message, as enough updates

have been pushed since the worker’s last pull.

VI. EVALUATION

We conduct extensive experimental evaluations to validate the

effectiveness and robustness of the proposed SpecSync. We first

compare the accuracy and runtime of SpecSync with the default

synchronization scheme of MXNet. Then we demonstrate the

robustness of SpecSync in terms of handling heterogeneity and

scalability. We examine the communication overhead afterward.

Finally, we discuss the advantage of hyperparameter tuning

with respect to the algorithm efficiency and adaptivity.

A. Experiment Setup

Workloads. We use three different workloads to drive the

experiments for evaluation, and we summarize them in Table I.

For the first workload, we use MovieLens [14] as the dataset to

train a recommendation system with matrix factorization (MF),

the batch size is set to 100,000. We train a 110-layer deep

residual network [25] with CIFAR-10 dataset as the second

workload. To achieve the best performance, we set the batch

size to 128 and let the learning rate decrease from an initial

value 0.05 at epochs 200 and 250, respectively [26]. Finally,

we train an 18-layer deep residual network with ImageNet

dataset [16]. The batch size is set to 128 and the learning rate

is set to 0.3. We choose the above workloads because they

represent different characteristics of popular ML applications.

For example, the input data of CIFAR-10 and ImageNet are

pictures represented by dense vectors, while the input data of

MF are user ratings represented by sparse vectors. The training

data set size and model size of the above workloads are also

representative from small to large applications with iteration

time spanning from a few seconds to more than one minute.

Testbed. We build clusters on Amazon EC2 for running exper-

iments. We use a 40-node cluster (Cluster 1) for effectiveness

evaluation, which is composed of 40 m4.xlarge instances.

This cluster is for the scenario of asynchronous distributed

learning on homogeneous hardware. We build a heterogeneous

cluster (Cluster 2) for evaluating SpecSync’s ability to deal

with heterogeneity, which consists of 10 m3.xlarge, 10

m3.2xlarge, 10 m4.xlarge, and 10 m4.2xlarge instances.
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Fig. 8: Loss (left plot in each sub-figure) and runtime (right plot in each sub-figure) comparison of (a) MF, (b) CIFAR-10, and

(c) ImageNet. For better visualization, we only show the results up to when one of the approaches is converged (i.e., loss is

below the target value for 5 consecutive iterations).

To evaluate SpecSync’s scalability, we use 3 clusters with 20,

30 and 40 m4.xlarge instances respectively. All the instances

run Ubuntu Server 16.04 LTS, and are configured to run our

extended MXNet 0.7.

Schemes. We use three different synchronization schemes

in our evaluation. (1) Original: default asynchronous syn-

chronization scheme provided by MXNet. (2) SpecSync-
Cherrypick: the cheerypick version (i.e., tune the ABORT_TIME
and ABORT_RATE hyperparameters using grid search) of the

proposed speculative synchronization, which is built on top

of the asynchronous synchronization scheme provided by

MXNet. (3) SpecSync-Adaptive: the adaptive version (i.e.,

tune the hyperparameters adaptively) of the proposed specula-

tive synchronization, which is also implemented based on the

asynchronous synchronization scheme provided by MXNet.

B. Effectiveness of SpecSync

We first evaluate the effectiveness of the proposed SpecSync

on Cluster 1 with three different workloads outlined in

Table I. We report two metrics: loss change over time (for

accuracy evaluation) and runtime to convergence (for runtime

performance evaluation), and present the results in Figure 8.

Runtime is measured as the timespan from the beginning of

training to convergence, where convergence is defined as the

loss staying below the target value for 5 consecutive iterations.

By comparing the results of different schemes, it is clear that

the proposed SpecSync can significantly speed up the training

process, i.e., up to 2.97× speedup for MF, up to 2.25× speedup

for CIFAR-10, and up to 3× speedup for ImageNet. The results

also demonstrate that even though SpecSync-Adaptive is not

able to achieve the same performance as SpecSync-Cherrypick,

the difference is very small, which verified the effectiveness of

the proposed adaptive algorithm. We also notice for SpecSync-

Adaptive, the learning curves (loss as a function of time) has

more jitter at the beginning than SpecSync-Cherrypick, this is

due to the adaptive nature of SpecSync-Adaptive.

With SpecSync, when re-synchronization occurs during an

iteration, the length of the iteration becomes longer, but the

training quality of the iteration is improved due to the fresher pa-

rameters used for training, so the overall training speed becomes

faster. To demonstrate this, we plot the loss as a function of the

iteration number and also the accumulated iteration number for

different schemes in Fig. 9. The comparison results shows that

it takes up to 58% fewer iterations for SpecSync to converge

compared with Original. Such an improvement suggests that

with SpecSync, the quality of computing is improved while

the efficiency of utilizing the distributed computing power by

asynchronous learning is preserved.
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Fig. 9: Loss as a function of iteration number (left plot)

and accumulated iteration number (right plot) for different

synchronization schemes using CIFAR-10.

C. Robustness of SpecSync

Heterogeneity. In distributed machine learning, heterogeneity

(caused by various factors from hardware resources to software

failures) can result in inconsistent training progress among

workers and therefore slows down the training speed [12]. Here

we conduct experiments using a heterogeneous cluster (Cluster

2), which consists of 4 different instance types, to evaluate

SpecSync’s robustness in the presence of heterogeneity. In the

interest of space, we only show the results of CIFAR-10 in

Fig. 10. From the loss plot, it is clear that SpecSync-Adaptive

outperforms Original in both homogeneous and heterogeneous

clusters.3 The results also verified that the heterogeneity can

3Given we have already verified the difference between SpecSync-Adaptive
and SpecSync-Cherrypick is small, for clear presentation, we do not show the
results of SpecSync-Cherrypick in all following plots.



slow down the training speed. Heterogeneity slows down BSP

because it increases synchronization overhead as fast workers

need to wait for stragglers to complete in each iteration. ASP

and SSP also suffer from heterogeneity because the staleness

gap between workers is intensified due to the mismatch in

training speed, which makes the convergence slower. SpecSync-

Adaptive actively improves the freshness of parameter replica

to alleviate inconsistency between workers compared to ASP

and SSP, and does not have the synchronization issue of BSP,

thus being more robust to heterogeneity. Another interesting

observation is the speedup of SpecSync-Adaptive over Original

is smaller compared to the same experiments on homogeneous

cluster as shown in Fig. 8b. This is because our adaptive

tuning approach assumes uniform arrivals of pull requests, but

in heterogeneous environment, the arrival becomes less uniform,

so the quality of the tuned hyperparameters deteriorates.
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Fig. 10: Loss comparison for different synchronization schemes

running CIFAR-10 in both homogeneous and heterogeneous

clusters.

Scalability. We perform sensitivity analysis for cluster size to

evaluate the scalability of the proposed SpecSync-Adaptive.

We show results for two scenarios that are commonly used in

practice. The first scenario is when machine learning practi-

tioners with clear training target in mind. So we demonstrate

the speedup of SpecSync-Adaptive over Original in runtime for

achieving the same target training accuracy of CIFAR-10 using

cluster size of 20, 30, and 40, respectively (the left plot of

Fig. 11). The second scenario is usually for the case with fixed

budget and aims to achieve the best training accuracy under

the given budget (e.g., rent cloud instances for a time period

that can be fit into the given budget). Therefore, we compare

the loss improvement of SpecSync-Adaptive over Original

when training CIFAR-10 for the same amount of time using

different cluster sizes as shown in the right plot of Fig. 11. It

is clear that in both scenarios, SpecSync-Adaptive consistently

outperforms Original running with different cluster size. More

importantly, when the cluster size grows, the improvement

becomes even larger. This suggests that SpecSync-Adaptive

has better scalability than Original.

D. Communication Overhead

SpecSync may introduce extra communication overhead

due to exchanging additional information between workers and

parameter servers. Fig. 12 reports the accumulated data transfer
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Fig. 11: Runtime speedup for achieving the same training

accuracy target (left plot) and loss improvement with the same

training time (right plot) for SpecSync-Adaptive over Original

using CIFAR-10 as workload under different cluster size.

over time for different workloads using Original and SpecSync-

Adaptive. It is clear that the accumulated data transfer is very

close between SpecSync-Adaptive and Original at all time,

meaning there is very little additional bandwidth consumed

by SpecSync-Adaptive. In addition, the overall training time

is shorter using SpecSync-Adaptive, so the total data transfer

can be actually smaller compared to Original, i.e., compare the

right most points in Fig. 12. Take CIFAR-10 as an example,

Original incurs a total data transfer of 3.17 TB while SpecSync-

Adaptive only needs to transfer 2.00 TB in total, a saving of

nearly 40% of communication overhead.
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Fig. 12: Accumulated data transfer over time for different

workloads under different schemes.

We also refer to Fig. 13 for the breakdown of overall data

transfer incurred by SpecSync-Adaptive in three parts: push and

pull, which are the regular communication traffic (i.e., also in

Original); the additional pulls triggered by re-synchronization;

notifications including notify and re-sync messages. The

results indicate that the additional overhead introduced by

notification messages is marginal given the message size is

quite small. The main additional communication overhead

is introduced by re-synchronization. However, such overhead

is compensated by the improved quality of training, thanks

to the fresher parameters. In general, for computation-bound

workloads, SpecSync can achieve higher computation efficiency

as the training quality improves with fresher parameters,

and therefore alleviates the computation bottleneck impact.

For communication-bound workloads, SpecSync automatically

adjusts the speculative synchronization hyperparameters (e.g.,



ABORT_TIME and ABORT_RATE) so that the re-synchronization

is performed more conservatively to balance the freshness and

network performance.
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Adaptive.

E. SpecSync-Cherrypick vs. SpecSync-Adaptive

We evaluate SpecSync-Adaptive here against SpecSync-

Cherrypick in terms of the overhead of tuning hyperparameters.

For SpecSync-Adaptive, there is little overhead as it simply

searches best hyperparameter through logged information (a

short list of numbers) using a closed-form estimation function

(Eq. (7)), no additional profiling experiment is needed. For

SpecSync-Cherrypick, the hyperparameters are tuned through

exhaustive search with profiling experiments. Examples of total

search time for different workloads are shown in Table II. In

the example, we search 10 different values of ABORT_RATE
for each workload. For ABORT_TIME, we try to minimize the

number of trials by restricting the search range and increasing

search step (e.g., we use half of the batch time as upper bound

and make sure the search step is greater than communication

time). It is clear that even with reasonable search range and

step, the cost is still very high as each experiment takes

long time, and the accumulated cost becomes even higher.

Therefore, SpecSync-Adaptive has much lower search overhead

for hyperparameter tuning. In addition, SpecSync-Adaptive

adapts the hyperparameters for each iteration, which is more

robust than the fixed value solution of SpecSync-Cherrypick.

TABLE II: Cost of hyperparameter exhaustive search using

SpecSync-Cherrypick.

workload
# of trial for
ABORT_TIME

# of trial for
ABORT_RATE

each trial
time (hour)

total search
time (hour)

MF 3 10 1.33 40
CIFAR-10 7 10 6 420
ImageNet 10 10 > 8 > 800

F. Discussion

The experimental study in this section is mainly based on

CPU cluster. For GPU or other architecture based cluster,

SpecSync is also compatible because the synchronization

happens at node level, where the node can be a virtual concept,

e.g., it can be a machine with CPU or GPU, and/or it can

be a CPU or GPU within a multi-CPU/GPU machine. In the

interest of space, we leave the detailed study for clusters with

different hardware architecture as our future work. We also

leave experimental study of other machine learning applications

and other machine learning frameworks as our future work.

VII. RELATED WORK

Many recent works have been proposed to improve the

performance of existing synchronization schemes employed in

distributed ML systems. Notably, for the SSP-style execution,

Wei et al. [27] proposed a system called Bösen to maximize

the communication efficiency by prioritizing update messages

that are the most significant to the final convergence. Harlap et

al. [28] proposed FlexRR to mitigate the straggler problem by

dynamically offloading the training work of straggling workers

to fast machines. For the ASP-style executions, Zhang et al. [29]

proposed a staleness-aware asynchronous SGD algorithm that

achieves guaranteed convergence by dynamically adjusting the

learning rate based on the gradient staleness. Jiang et al. [12]

applied the similar approach to heterogeneous clusters, where

slowed workers are assigned lower learning rate to alleviate

the negative impact of their updates. More recently, Chen et

al. [30] revisited the BSP model and suggested synchronous

training of deep models with backup workers, so as to mitigate

the impact of stragglers. All those techniques are orthogonal

to our proposal and can be combined together with SpecSync.
SpecSync is inspired by delay scheduling [31] used in

MapReduce clusters, where map tasks prefer to running on

machines that can provide data locality. With delay scheduling,

the assignment of a task is delayed for a short period of time

if its data locality cannot be satisfied at the current moment.

Unlike delay scheduling in MapReduce where the delay is

almost surely beneficial [31], we have shown in Sec. III that

naïvely delaying each pull request is not always justified

(Fig. 5). SpecSync is proposed to address this problem. In

fact, aborting and restarting a task is considered expensive for

MapReduce jobs, and is usually not an option to the scheduler.

VIII. CONCLUDING REMARK

In this paper, we have investigated a new aspect to improve

parameter freshness for asynchronous distributed learning. We

have proposed SpecSync where each worker speculates about

the parameter updates pushed by others after an iteration

starts. In case that a sufficient number of pushes have been

made within a short period of time, the worker aborts the

ongoing iteration, re-synchronizes with servers, and starts

over with fresher parameters. We have designed an adaptive

hyperparameter tuning algorithm to judiciously determine the

span of speculation period and the threshold number of pushes

beyond which a re-synchronization is triggered. We have imple-

mented SpecSync atop MXNet in a centralized architecture with

little extra communication overhead. Experimental evaluations

through EC2 deployment demonstrate that SpecSync achieves

up to 3× speedup in three benchmarking ML workloads.
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