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Abstract—When deploying memory-intensive applications to
public clouds, one important yet challenging problem is selecting
a specific instance type whose memory capacity is large enough
to prevent out-of-memory errors while the cost is minimized
without violating performance requirements. The state-of-the-
practice solution is trial and error, causing both performance
overhead and additional monetary cost. This paper investigates
two memory scaling mechanisms in public cloud: physical
memory (good performance and high cost) and virtual memory
(degraded performance and no additional cost). In order to
analyze the trade-off between performance and cost of the two
scaling options, a performance-cost model is developed that is
driven by a lightweight analytic prediction approach through a
compact representation of the memory footprint. In addition, for
those scenarios when the footprint is unavailable, a meta-model
based prediction method is proposed using just-in-time migration
mechanisms. The proposed techniques have been extensively
evaluated with various benchmarks and real-world applications
on Amazon Web Services: the performance-cost model is highly
accurate with errors ranging from 1% to 4% and the proposed
just-in-time migration approach reduces the monetary cost by
up to 66%.

I. INTRODUCTION

While increasingly more modern applications are turning
from compute-centric to data-centric, many systems have
emerged to overcome the new challenges brought by the
so-called big data. Representative big data systems include
Hadoop [7], Spark [2], TensorFlow [24], Myria [17], and
SciDB [21], all of which share the same paradigm—data
parallelism, assuming the underlying infrastructure is a shared-
nothing cluster. Although these systems had greatly lowered
the technical barrier for parallel processing (comparing to, for
instance, OpenMP [20], MPI [16]), our prior work [15] showed
that new challenges are emerging from those big data systems
such as application migration, memory management, among
many others.

As a concrete example, in [15] we evaluated an astro-
nomical application, namely Large Synoptic Survey Tele-
scope (LSST [12]), by migrating it to a distributed database
Myria [17] on the Amazon Web Services (AWS) public
cloud [1]. In LSST, the telescope periodically takes photos
of the sky (i.e., sky surveys at multiple visits) and detects the
sources and tracks of celestial objects. As Figure 1 shows, the
converted code worked fine for up to 8 visits of sky surveys but
then started to experience out-of-memory (OOM) errors for 12
or more Vvisits because the allocated data to each node exceeds
the physical memory capacity. We had to spend considerable
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Fig. 1: The LSST astronomical application encounters numer-
ous out-of-memory errors when deployed to AWS. [15]
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Fig. 2: The memory footprint of an MRI application increases
superlinearly to the input size. [9]

time to completely rewrite the original application using multi-
query to avoid memory errors.

The OOM error is often deemed as one of the most
frustrating errors as it usually implies that the developers
would need to spend a lot of time in further splitting the
application with finer granularity, reconfiguring the underlying
system, redeploying the application, and recomputing many
results. Despite of all such efforts, the application is not
guaranteed to work without OOM errors—possibly making
all the time and resource investment worthless. Part of the
challenge comes from the unpredictability of memory footprint
when the input data size changes. An intuitive solution would
be to estimate the memory footprint based on different input
sizes, which, unfortunately, is also challenging because in the
real world the relationship between the two could be nonlinear
as shown in Figure 2 reported in one of our more recent
works [9]. The number of streamlines represents the input
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Fig. 3: Checkpointing overhead.

size for an Magnetic Resonance Imaging (MRI) application
detailed in [15].

One conventional way to scale memory is using operating
system’s virtual memory (e.g., swap in Unix-like systems).
Compared to scaling up physical memory (e.g., selecting
a more powerful instance'), virtual memory usually yields
degraded performance (thus potentially longer running time
and higher cost). Therefore, an effective way to determine the
performance and cost impact when using different amount of
virtual memory is highly desirable for users to make decisions.
To quantitatively study the trade-off between performance and
cost caused by virtual memory, the first goal of this work
aims at building a performance-cost model that can accurately
estimate the performance and cost using virtual memory.

Public cloud vendors provide a rich selection of scaling
options (e.g., different instance types with various memory ca-
pacities) and a flexible pay-as-you-go pricing scheme. Unfor-
tunately, preventing OOM errors in the real-world is even more
challenging because we need to consider the monetary cost
not applicable to conventional clusters. One native approach
is simply choosing the most powerful instances, which usually
incurs resource under-utilization and unnecessary monetary
cost. The current state-of-the-practice approach in industry is
trial and error using checkpoint, which often incurs significant
performance overhead and monetary cost as saving and restor-
ing large amounts of memory states can be highly expensive.
As a concrete example, Figure 3 shows the overhead when
different numbers of checkpointing are applied to a real-world
application used in [15] using a popular checkpointing tool
CRIU [4]. We observe a fast-growing trend of performance
overhead incurred by checkpointing, which motivates us to
develop a checkpoint-free mechanism for memory-intensive
applications—the second objective of this work: scaling the
physical memory using checkpointing only one time.

This paper aims to answer the following research questions:
how could we prevent data-intensive applications from expe-
riencing OOM errors while retaining high resource utiliza-
tion and low monetary cost. To that end, we propose two
techniques, one building on virtual memory of the operating
system (OS) and the other inspired by statistical prediction
models aiming to eliminate the overhead of the conventional

'For memory-intensive applications, memory is the bottleneck, so a more
powerful instance with better other resources (e.g., CPU, networking) would
not necessarily improve the runtime performance. In the applications studied
in this paper, we observed less than 100% utilization in resources other than
memory capacity, such as CPU cycles and I/O bandwidth.

checkpoint-based mechanism. The first technique assumes the
I/O patterns (e.g., uniform) are well-studied, which is true for
many applications, for example, in areas like high-performance
computing [8] and scientific applications [32]. Specifically, we
build models that predict applications’ performance slowdown
and monetary benefit (or, loss) according to the proportion of
virtual memory being used. Experiments show that our models
are highly accurate as they exhibit only 1% — 4% error rates
when testing with multiple real-world applications in AWS.
The second technique drops the assumption of the I/O patterns
and introduces meta-models that can predict memory footprint
with dynamic adjustment according to the application’s own
traits at runtime. The meta-models are applied in a heuristic
manner, meaning that the application is deployed to instances
in the increasing order of their memory capacity and gets
migrated to more powerful (and more costly) instances only
when the meta-models determine an OOM is forthcoming.
Experiments show that this approach incurs significantly lower
monetary cost than both the checkpoint-based approach and
the naive pure-memory solution by up to 66%.

II. RELATED WORK

Memory management in cloud computing recently draws
plenty of research interests in the community. In particular,
Spinner et al. [23] proposed to predict the memory usage of
applications on virtual machine in a proactive manner using
time series analysis (with a training period usually in terms of
days). In [18], authors conducted a quantitative study of the
impact of overcommitment of physical memory to dockers.
In contrast to aforementioned related work, this paper for the
first time proposes to leverage virtual memory to achieve lower
monetary cost by trading off a fraction of running time.

A rich literature focuses on the optimization of resource al-
location and cost-effectiveness for a cluster of cloud instances.
In [11], authors proposed to reconfigure the constituent in-
stances serving the same workload with lower cost. More
recently, contracts-based resource sharing model [27] was
proposed to save the cost. To the best of our knowledge, this
paper is the first work focusing on cost reduction for memory-
intensive applications using virtual memory technology.

Much work has been focused on the modeling and schedul-
ing part in resource management. In [28], an automatic re-
source allocation model for scaling virtual machine was de-
veloped. More recently, in [29] authors proposed an autonomic
and elastic resource scheduling framework was proposed; an
scheduling algorithm based on Lyapunov optimization was
proposed in [22]. While the primary goal of this paper is to
investigate new approaches to reduce the monetary cost for
memory-intensive applications, the reduced cost also implies
reduced energy consumption as a co-product.

In more sophisticated scenarios such as both Infrastructure-
as-a-Service (IaaS) and Software-as-a-Service (SaaS) being
offered, a two-stage optimization model was developed in [26];
for hybrid clouds (i.e., applications deployed to both an on-
premises cluster and a public cloud), various techniques [13]



were proposed to minimize the overall cost; for cloud federa-
tion (i.e., inter-cloud), various techniques [14] were developed
to automate the resource selection and configuration. Although
in this paper we assume the underlying cloud infrastructure
comes from a single cloud vendor (i.e., AWS), there is
nothing technical to prevent users from applying the proposed
approach to multiple, heterogeneous clouds.

Many other domains (e.g., high-performance computing [3],
databases [25], networking [30], big data systems [9, 31]) are
switching from conventional cluster computing to cloud com-
puting and minimizing the cost is also actively researched. The
techniques proposed by this paper, although mainly targeted
on and evaluated on public clouds, have the potential to be
extended to apply to other domains as well.

III. PRELIMINARIES
A. Swap space in Unix-like systems

The swap space in Unix-like systems is a portion of disk
space that is reserved to be used as an extended memory
that is addressable by the memory management module in
the operating system (OS) kernel. Swap is sometimes called
virtual memory, in the sense that it is not really manipulating
data on the physical memory. The virtual memory in the
context of swap should be differentiated from the OS-level
virtual memory, which refers to the logically continuous
memory pages that are mapped to possibly disjoint pages on
the physical memory.

Because swap requires readdressing of the memory space,
one limitation of swap is that it cannot be dynamically updated
at runtime. In our prior work [15], we showed that accurately
predicting applications’ memory usage could be highly time
consuming. So in the remainder of this paper, we will use
swap and virtual memory interchangeably.

B. Checkpointing

In cloud computing, checkpointing has been extensively
studied [5, 10]. The key idea is to periodically dump the mem-
ory status to persistent media, usually a local hard disk. One
classical problem in checkpointing is how frequently it should
be applied (assuming the checkpointing is applied at equal
time intervals): if it is applied too frequently, the checkpointing
itself (causing many I/O operations) could be unacceptable in
terms of performance; if it is rarely applied, say only once,
then up to 50% of work would get lost if the application or
system crashed at the very last moment before the checkpoint.
Therefore, the optimal checkpointing frequency usually lands
in somewhere between the aforementioned two extreme cases.

In this paper, we will take the following approach to
estimate the optimal checkpointing intervals (literature took
a similar approach with only some varieties on assumptions
and corner cases). Let 71" indicate the total runtime of the
application, n indicate the total number of checkpoints (with
equal time intervals), and ¢ indicate the time that a single
checkpoint takes, and m indicate the total number of expected
failures. Without loss of generality, we assume the failures
occur in the middle of two adjacent checkpoints. It then
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Fig. 4: Huge overhead introduced by improper use of virtual
memory

follows that the total time of lost work is T2—nm The goal is to
find n so to minimize the end-to-end wall time comprised of
the application’s own execution time 7', the summation of all
checkpointing time 7 - t, and the summation of all lost work
Té—nm as they have to be redone. That is, we need to find n
such that
argmin F(n) =T +n-t+ Tom
n 2n

It follows that n = 1/T2'—tm. We will use n to calculate the
optimal checkpoint interval as part of the baseline performance
and compare it against the performance of our proposed
mechanism in later sections.

IV. COST-AWARE EXPLOITATION OF VIRTUAL MEMORY
A. Overview

For applications whose memory footprint exceeds the avail-
able physical memory?, it is possible to extend the memory
usage to the swap space (i.e., virtual memory) with expected
performance slowdown due to the data swap between the
physical memory and the disk. In theory, the entire hard disk
drive can be used as virtual memory; in Unix-like systems,
this can be easily configured before the applications starts.
Unfortunately, the change of virtual memory capacity would
not take effect during the runtime of the applications, meaning
that a dynamic allocation of virtual memory is out of the ques-
tion. Consequently, in theory, an application would unlikely
run into out-of-memory (OOM) errors as long as we simply
extended the virtual memory to the entire disk assuming the
application’s data can be accommodated by the disk size; but
this might not be always practical because the performance
overhead could be prohibitive in the real world.

As a concrete example, we show that an MRI application’s
performance on two different (and extreme-case) setups of
virtual memory in Figure 4. The application incurs a peak
memory usage of about 18 GB and completes in less than

2By “physical memory”, we do not exclude the memory allocation in a
virtual machine; it is used in this context only to differentiate the “virtual
memory” or “swap space” used in Unix-like systems.



500 seconds (red line) when the machine is equipped with
enough memory (i.e., swap portion 0%). However, when we
specify a combination of 1 GB physical memory and a 18 GB
swap space on the machine (i.e., swap portion }—S > 94%), the
same application’s total runtime exceeds 20,000 seconds. The
red line is the real-time memory footprint when the application
runs on a 32GB-RAM machine; the orange and blue lines
record the swap and physical memory usages, respectively (on
the 1GB-RAM 18GB-swap machine). However, the overall
cost on the IGB-RAM 18GB-swap machine might be lower
than running the application on a 32GB-RAM machine.

The key question is: if the users are willing to trade some
time off to complete their jobs on the current instances (with
data swapped between memory and disk), what would the
monetary benefit and time overhead look like, quantitatively?
That is, users would know better about the distribution of
cost-time correlations in the parameter space between the two
extreme-cases presented in Figure 4.

B. Assumptions

We assume the swap space would be able to accommodate
the application’s memory usage at all times. This assumption
is easy to satisfy in the real world, as the capacity of hard
disk drives is usually orders of magnitudes larger than physical
memory. In addition, adding more hard disk drives is usually
one of the most economic upgrades if more swap space is
needed.

We also assume the swap portion is known in ad-
vance. In many areas such high-performance computing and
MapReduce-like workloads, I/O-patterns including memory
footprint are well studied (e.g., approaches including profiling
an sample run on a subset of input data). Therefore, as long
as the hardware specification of the machines is determined,
it is easy to calculate the swap portion based on the physical
memory capacity and the application’s I/O patterns.

The last assumption is that the pricing of different instance
types is fixed. Indeed, there are cases where instance prices
are versatile (e.g., AWS’s spot instances), but we do not
consider those scenarios in our models because they are highly
dependent on the non-technical contexts such business models
that are beyond the scope of this paper.

C. Methodology

We aim to develop models that characterize the inter-
connection between applications’ performance and instances’
swap portion (i.e., “swapness”) under various instance types
with different memory capacities. The models are crafted for
specific memory sizes for two reasons: First, they will achieve
higher accuracy than a single global model applied to all
memory capacities; Second, most cloud vendors offer a limited
number of instance types regarding memory capacities.

To study the correlation between performance slowdown
and swap portion, we start with measuring the swap-introduced
slowdown in one of the most widely used matrix operations:
matrix initialization. We chose this application as the baseline
benchmark because of its representative, i.e., uniform, access
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Fig. 5: Slowdown vs. swapness with 4GB-RAM physical
memory

to the (virtual) memory. Specifically, a 17,000 x 17,000 two-
dimensional matrix is initialized with random integer values,
which incurs about 18 GB peak memory usage. The test
bed is an AWS t2.medium instance with 4 GB memory.
The benchmark application is decomposed into various phases
according to their memory usages, while the end-to-end execu-
tion times of each phases are recorded with the corresponding
swap portion. For data-intensive applications, recording all
the information on swap portions at a fine granularity is
both space- and time-consuming. To address that, we apply
cumulative density functions (CDF) to compress the numbers
and sizes of those records rather than storing all data points
in their raw format.

As shown in Figure 5, the benchmark exhibits a strong
exponential curve between the slowdown and the swapness.
Although this is the trend exhibited with 4GB physical mem-
ory, similar trends are indeed observed with other memory
capacities (we will discuss more when evaluating the system
in Section VI). In theory, a higher proportion of swap space
should imply a super-linear increase in I/O cost if the replace-
ment policy is least-recently-used (LRU) [32]. As a result, the
skeleton of the model we chose to fit is exponential in the
following form:

S=q-e* 40,

where S is the performance slowdown, e is Euler’s number, x
is the swapness, and («, 3, 6) are coefficients to be determined
during the model fitting.

The following illustrates how we fit the model for perfor-
mance slowdown and swap portion. We segment the bench-
mark’s execution into pieces with different swap portions
at runtime. For each swap proportion (i.e., swapness), we
maintain a bucket to store the number of pieces falling into
the bucket to save space (i.e., a cumulative density function,
CDF). We applied binary searches on each of the coefficients
in the model and determine them when the overall error is
minimal. The resultant model is:

f(z) = (3.09F — 13) - e**21* 1.0.35

Because of the fluctuations exhibited by Figure 5, we also
provide confidence intervals (maximum and minimum) as
follows:

ax(z) = (L16E — 10) - 36347 4 13.33
fmaz(z) = (



frnin(2) = (4.48E — 11) - 3489 4+ 0.075

The [, models a subset of the benchmark data points
landing on the top-left edge, while the f,,;, models the subset
of the benchmark data points landing on the bottom-right edge.
We will be using the above models to predict more real-world
applications and report its accuracy and more importantly,
the correlation between the overall monetary cost and the
performance, in Section VI.

V. JUST-IN-TIME APPLICATION MIGRATION
A. Overview

There are various reasons why users decide not to use swap
space for out-of-memory errors. For instance, the applications
might be highly I/O-intensive and using swap, even by a very
small portion, would slow the application down by orders
of magnitude. As another example, the application’s memory
footprint and I/O patterns are not well studied, then the
techniques proposed in Section IV are not applicable.

The question now becomes: Without introducing swap, how
could we reduce the overall monetary cost in face of memory
depletion? Obviously, the risk of encountering memory errors
would become the lowest if users started with the most
powerful (and, expensive) instance to run the applications;
doing so implies, however, the highest chance of underuti-
lization of the memory resources and consequently incurs
unnecessary monetary cost. One heuristic approach would
be starting with the cheapest instances and then migrate the
application to a larger instance when memory is depleted,
which means additional performance overhead from periodical
checkpointing and relaunching virtual machines.

Recall the significant overhead of checkpointing as shown
in Figure 3. Ideally, the migration should occur when only
absolutely necessary, i.e., at the point just before the memory
errors out, what we called just-in-time application migration
in the following discussion. The terminology is inspired by
the well-known compiler technique “just-in-time compilation”,
meaning that the source code is only compiled at runtime
rather than prior to the execution—one of the unique features
in functional programming languages like Lisp.

B. Assumptions

We assume the application is migrated between different in-
stance types without physical data movements. This is not true
in conventional clusters but very common in cloud vendors,
for example in AWS the current instance can be shut down
with saved status (i.e., snapshot) and then get restarted with
larger memory capacity allocated along with other possible
upgrades. Microsoft Azure and IBM BlueMix provide similar
functionalities. Note that, in conventional cluster computing,
a failed node’s data are first checkpointed from memory to
disk and then transferred to a healthy node, usually incurring
a higher overhead.

Another assumption is that swap is completely excluded.
That is, the swap portion in the remainder of this section is 0%.
Indeed, there is nothing preventing us to combine the models

in Section IV and what we will discuss in this section, meaning
that swapness can be between 1% and 100% in the real world.
However, this section will focus on only the techniques of just-
in-time application migration, which is isolated from others
so we know how, and by how much, just-in-time application
migration can facilitate the cost reduction.

C. Methodology

Since we plan not to apply periodical checkpointing, the
key challenge is how to accurately predict when the memory
will error out. Our approach considers both statistical models
and the hint extracted from the application. Specifically, our
approach takes multiple fitting models (e.g., polynomial, expo-
nential) and looks back different numbers of data points (i.e.,
history depending on certain decay functions). Conventional
models simply look back a certain number of data points,
apply regression to achieve the least aggregate errors, and cal-
culate a future data point; In contrast, our approach considers
those fitting models as a input and take the application’s own
traits extracted from profiling a small portion of execution as
another input, both of which constitute a higher-level of model
that we call Meta-Model (MM). That is, the meta-model we
propose is not only fit by the existing data but also correlated
to the application’s sample runs. Taking a quadratic model for
example, the model M in its original form

M@)=a-2°+ 8 -z+7

becomes
MM(z)=fi-2°+ fo-z+ f3

where the vector F = [f1, f2, f3] represents the relation
between the coefficient and the adjusted impact to the appli-
cation. In the simplest form, F can be a linear transformation
according to the I/O patterns we can observe from profiling a
subset of sampled data points. In other words, our model ex-
tends the conventional fitting approaches by generalizing those
constant coefficients into additional function that characterizes
the application’s own information.

After calculating the prediction values of multiple meta-
models, we compute the probability of memory crash. If the
probability falls below a threshold, the application will be
paused and gets ready to be migrated to another instance (with
larger memory capacity). An alternative approach is to run a
vote from all the participating meta-models and the majority
wins (either continue with the current instance or migrate to
a larger one).

If the system decides (or, predicts) that a memory crash is to
occur, the application will be migrated to the least expensive
instance type that has larger memory capacity than the current
running instance. The reasoning is that in most public cloud
vendors, the memory capacity roughly follows an exponential
pattern. Our protocol is conservative and hopes that doubling
the memory capacity could satisfy the application’s memory
requirement. A more aggressive protocol is possible, for exam-
ple instead of increasing 2x memory size we can multiple 3,
4, or even larger factors. In practice, doing so would imply



missing some intermediate instance types. This paper will
only discuss the scenarios where all the instances are strictly
ordered by the memory capacity. Finding out the optimal factor
of multiplying memory capacity is an interesting question and
might be addressed in our future work.

VI. EVALUATION

A. Experimental Setup

All experiments are carried out on AWS [1]. The instances
for various memory capacities and prices are listed in Ta-
ble I. We implement our models using Python and Shell
scripts. The source code is available at the project website:
https://www.cse.unr.edu/hpdic/proj/cme.

TABLE I: AWS instances used for evaluation

Instance Name = Memory Capacity (GB)  Price (US$ per Hour)

t2.medium 4 0.0464
t2.large 8 0.0928
t2.xlarge 16 0.1856
t2.2xlarge 32 0.3712

We evaluated the proposed techniques with three real-world
applications. The first application is an MRI image processing
scientific application from [15]. The second application is
a data mining application on taxi’s location data from Didi
Inc described at [6]. The third application is a common
numerical application on adding dense matrices extracted from
the popular Python library Numpy [19].

B. Cost-aware Exploitation of Virtual Memory

The goal of this section is two-fold: a) demonstrating the
accuracy of the proposed performance model with various
real-world applications; b) reporting quantitative monetary
benefit (and the compromise made on performance) when
different portions of swap space are taken into account. All
the experiments were carried out with 4GB-RAM instances
on AWS (i.e., t2.medium).

Figure 6 shows the slowdown of the MRI application when
swap portion is between 0.1 and 0.8. We do see some fluctua-
tions in the real slowdown, which is expected as arbitrary (e.g.,
not LRU) memory-access patterns occur in this application.
However, the trend still follows an exponential curve in the big
picture. More importantly, all data points fall into the ranges
(i.e., the gray shadow) of the model, indicating a high accuracy
of the proposed model. To quantify that, we apply the Pearson
correlation coefficient (PCC) defined as:

S (i —T)(yi — )
\/Z?:1(xi - E)Q\/Z?:ﬂyi -7)?
where n indicates the total number of data points, x; and y;
indicate the real data and modeled data, and = and ¥ indicate
the mean of each data series. The correlation of the real data
points and our model is extremely strong, as the PCC turns
out to be 0.994.

Similarly, Figure 7 shows the slowdown of the data mining
application and the swap portion is between 0.55 and 0.8. The
portion range is different from the first application because

PCC =

this one is more memory-hungry (or, more memory-intensive);
that is why the swap space starts to kick in directly from the
0.55—more than half of the memory is “virtual”. Because
of the memory-hungry nature of this application, we observe
even more fluctuations than the MRI application. But again,
most of the real data points fall into the prediction intervals
(i.e., the gray shadow) and the PCC of this application is also
extremely high: 0.988.

Lastly, Figure 8 shows the slowdown of the matrix adding
application and the swap portion is between 0.1 and 0.8.
This application exhibits a similar pattern as MRI; the PCC
coefficient is also extremely high: 0.991.

Figure 10 compares the cost predicted by the proposed
model and the real cost on the 4GB-RAM instance, both of
which normalized to the cost on the 32GB-RAM instance that
provides enough physical memory for both applications (the
peak of real memory footprint is about 18 GB). Since in
all cases the application is not migrated between instances,
the cost is the same in terms of both execution time and
monetary cost. We can see that the cost predicted by our
model is highly accurate: The error rates are: Didi 4%, MRI
1%, and AddMatrix 3%. The figure also shows that using
swap does not guarantee reduced cost: the cost of the Didi
application using swap is increased by more than 158%, for
MRI the cost is reduced by 50%, and the cost for AddMatrix
is increased by 47%. The root cause of these results is that
the Didi application is highly memory-intensive, meaning that
introducing swap on a memory-restrained instance will likely
incur much more running time outweighing the benefit of
the cheaper per-hour price. The findings, in fact, prove the
effectiveness of our model: our model can tell, in a very
high accuracy, that whether applying swap on a memory-
constrained and inexpensive instance would result in higher
or lower total cost.

We also report the execution time for all three applications
in Figure 9. We observe an order of magnitude higher time
cost for both Didi and AddMatrix, which is partially attributed
to their I/O intensiveness between swap and physical memory
and therefore cause the overall monetary cost exceeding the
baseline case. What is more interesting, however, is the MRI
application. The MRI results make a strong case for trading
off performance for cost: by compromising 4X running time
the overall cost can be reduced to half. This is exactly the
point of the first contribution of this paper—allowing users to
make compromise between time and cost.

C. Just-in-Time Application Migration

This section answers the following questions using real-
world applications: a) illustrating the real-time performance
for applications continuously deployed to a series of cloud
instances in an increasing order of memory capacities (appli-
cation migrates to another instance when the current one’s
memory is to be depleted); b) reporting the quantitative
monetary benefit when applying the proposed techniques of
predicting memory footprint and elevating memory capacity.
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after migrating applications

Figure 11 shows the MRI application’s memory footprint

over its entire course using our

prediction-elevation approach.

The lifespan of the application comprises four stages on
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Fig. 12: Cost comparison (normalized to the 32GB-RAM
machine)

four instance types: 4GB-, 8GB-, 16GB-, and 32GB-RAM
instances, as shown in sub-figures. For each stage, we plot
the true values and the predicted values using the approach
we discussed in Section V. As we can see, our predicted
values are highly accurate for most of time, except that at
around 50 seconds the predicted value is noticeable lower than
the true value. The reason for that is because the application
just completed a memory-intensive iteration and the system
is busy with memory recycling (i.e., garbage collection). We
will further fine-tune our model by considering such corner
scenarios in our future work.

Figure 12 illustrates the overall costs at various stages nor-
malized to the baseline cost (we did not show the 32GB-RAM
comparison since they all incur the same cost). We can see
that for all types of instances, our proposed approach incurs
the least cost—significantly cheaper than both the checkpoint
approach and the baseline with all physical memory allocated.
Specifically, our approach costs only 12% of the baseline
approach at 4GB-RAM instances, and 33% and 60% on 8GB-
RAM and 16GB-RAM instances, respectively. The optimal-
checkpointing approach is also cheaper than the baseline but
more expensive than our proposed approach: 14% (vs. 13%),
53% (vs. 33%), and 90% (vs. 61%) on the above instances.
Overall, our approach takes only 35% of the baseline cost and
66% of the optimal-checkpointing approach.

Indeed, the saved cost does require more running time, and
Figure 13 reports the time overhead on each type of instances
normalized to the baseline running time. Again, we did not
report the 32GB-RAM case since the numbers would look
exactly the same. We can see that for each instance type,
the proposed approach does not incur as significant overhead
as the optimal-checkpoint does. For the first three stages, the
proposed approach takes 3%, 34%, and 22% more time than
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the baseline while the optimal-checkpointing approach takes
much more: 13%, 110%, and 80%. Taking all together, the
time overhead of the proposed prediction-elevation approach
is only 22% but saves 65% cost comparing to the baseline.

VII. CONCLUSION

This paper presents two techniques to help deploy memory-
intensive applications in public clouds with low monetary cost.
The first approach assumes the users are well aware of the
application’s I/O patterns such as uniform access, and the
proposed performance-cost model can accurately predict how,
and by how much, virtual memory size would slow down
the application and consequently, impact the overall monetary
cost. The second approach removes the assumption of a priori
I/0 patterns by proposing a lightweight memory usage predic-
tion methodology. The key idea is to eliminate the periodical
checkpointing and migrate the application only when the
predicted memory usage exceeds the physical allocation based
on dynamic meta-models adjusted by the application’s own
traits. Taking both techniques together, this work covers a wide
spectrum of data-intensive applications regarding the trade-off
between performance and cost using both virtual and physical
memory scaling approaches.
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