
Toward Cost-effective Memory Scaling in Clouds:
Symbiosis of Virtual and Physical Memory

Xinying Wang�, Cong Xu†, Ke Wang‡, Feng Yan�, Dongfang Zhao�

�University of Nevada, Reno †HP Labs, Palo Alto, CA ‡Microsoft Azure, Redmond, WA

Abstract—When deploying memory-intensive applications to
public clouds, one important yet challenging problem is selecting
a specific instance type whose memory capacity is large enough
to prevent out-of-memory errors while the cost is minimized
without violating performance requirements. The state-of-the-
practice solution is trial and error, causing both performance
overhead and additional monetary cost. This paper investigates
two memory scaling mechanisms in public cloud: physical
memory (good performance and high cost) and virtual memory
(degraded performance and no additional cost). In order to
analyze the trade-off between performance and cost of the two
scaling options, a performance-cost model is developed that is
driven by a lightweight analytic prediction approach through a
compact representation of the memory footprint. In addition, for
those scenarios when the footprint is unavailable, a meta-model
based prediction method is proposed using just-in-time migration
mechanisms. The proposed techniques have been extensively
evaluated with various benchmarks and real-world applications
on Amazon Web Services: the performance-cost model is highly
accurate with errors ranging from 1% to 4% and the proposed
just-in-time migration approach reduces the monetary cost by
up to 66%.

I. INTRODUCTION

While increasingly more modern applications are turning

from compute-centric to data-centric, many systems have

emerged to overcome the new challenges brought by the

so-called big data. Representative big data systems include

Hadoop [7], Spark [2], TensorFlow [24], Myria [17], and

SciDB [21], all of which share the same paradigm—data

parallelism, assuming the underlying infrastructure is a shared-

nothing cluster. Although these systems had greatly lowered

the technical barrier for parallel processing (comparing to, for

instance, OpenMP [20], MPI [16]), our prior work [15] showed

that new challenges are emerging from those big data systems

such as application migration, memory management, among

many others.

As a concrete example, in [15] we evaluated an astro-

nomical application, namely Large Synoptic Survey Tele-

scope (LSST [12]), by migrating it to a distributed database

Myria [17] on the Amazon Web Services (AWS) public

cloud [1]. In LSST, the telescope periodically takes photos

of the sky (i.e., sky surveys at multiple visits) and detects the

sources and tracks of celestial objects. As Figure 1 shows, the

converted code worked fine for up to 8 visits of sky surveys but

then started to experience out-of-memory (OOM) errors for 12

or more visits because the allocated data to each node exceeds

the physical memory capacity. We had to spend considerable

Fig. 1: The LSST astronomical application encounters numer-

ous out-of-memory errors when deployed to AWS. [15]

Fig. 2: The memory footprint of an MRI application increases

superlinearly to the input size. [9]

time to completely rewrite the original application using multi-

query to avoid memory errors.

The OOM error is often deemed as one of the most

frustrating errors as it usually implies that the developers

would need to spend a lot of time in further splitting the

application with finer granularity, reconfiguring the underlying

system, redeploying the application, and recomputing many

results. Despite of all such efforts, the application is not

guaranteed to work without OOM errors—possibly making

all the time and resource investment worthless. Part of the

challenge comes from the unpredictability of memory footprint

when the input data size changes. An intuitive solution would

be to estimate the memory footprint based on different input

sizes, which, unfortunately, is also challenging because in the

real world the relationship between the two could be nonlinear

as shown in Figure 2 reported in one of our more recent

works [9]. The number of streamlines represents the input



Fig. 3: Checkpointing overhead.

size for an Magnetic Resonance Imaging (MRI) application

detailed in [15].

One conventional way to scale memory is using operating

system’s virtual memory (e.g., swap in Unix-like systems).

Compared to scaling up physical memory (e.g., selecting

a more powerful instance1), virtual memory usually yields

degraded performance (thus potentially longer running time

and higher cost). Therefore, an effective way to determine the

performance and cost impact when using different amount of

virtual memory is highly desirable for users to make decisions.

To quantitatively study the trade-off between performance and

cost caused by virtual memory, the first goal of this work

aims at building a performance-cost model that can accurately

estimate the performance and cost using virtual memory.

Public cloud vendors provide a rich selection of scaling

options (e.g., different instance types with various memory ca-

pacities) and a flexible pay-as-you-go pricing scheme. Unfor-

tunately, preventing OOM errors in the real-world is even more

challenging because we need to consider the monetary cost

not applicable to conventional clusters. One native approach

is simply choosing the most powerful instances, which usually

incurs resource under-utilization and unnecessary monetary

cost. The current state-of-the-practice approach in industry is

trial and error using checkpoint, which often incurs significant

performance overhead and monetary cost as saving and restor-

ing large amounts of memory states can be highly expensive.

As a concrete example, Figure 3 shows the overhead when

different numbers of checkpointing are applied to a real-world

application used in [15] using a popular checkpointing tool

CRIU [4]. We observe a fast-growing trend of performance

overhead incurred by checkpointing, which motivates us to

develop a checkpoint-free mechanism for memory-intensive

applications—the second objective of this work: scaling the

physical memory using checkpointing only one time.

This paper aims to answer the following research questions:

how could we prevent data-intensive applications from expe-
riencing OOM errors while retaining high resource utiliza-
tion and low monetary cost. To that end, we propose two

techniques, one building on virtual memory of the operating

system (OS) and the other inspired by statistical prediction

models aiming to eliminate the overhead of the conventional

1For memory-intensive applications, memory is the bottleneck, so a more
powerful instance with better other resources (e.g., CPU, networking) would
not necessarily improve the runtime performance. In the applications studied
in this paper, we observed less than 100% utilization in resources other than
memory capacity, such as CPU cycles and I/O bandwidth.

checkpoint-based mechanism. The first technique assumes the

I/O patterns (e.g., uniform) are well-studied, which is true for

many applications, for example, in areas like high-performance

computing [8] and scientific applications [32]. Specifically, we

build models that predict applications’ performance slowdown

and monetary benefit (or, loss) according to the proportion of

virtual memory being used. Experiments show that our models

are highly accurate as they exhibit only 1% – 4% error rates

when testing with multiple real-world applications in AWS.

The second technique drops the assumption of the I/O patterns

and introduces meta-models that can predict memory footprint

with dynamic adjustment according to the application’s own

traits at runtime. The meta-models are applied in a heuristic

manner, meaning that the application is deployed to instances

in the increasing order of their memory capacity and gets

migrated to more powerful (and more costly) instances only

when the meta-models determine an OOM is forthcoming.

Experiments show that this approach incurs significantly lower

monetary cost than both the checkpoint-based approach and

the naive pure-memory solution by up to 66%.

II. RELATED WORK

Memory management in cloud computing recently draws

plenty of research interests in the community. In particular,

Spinner et al. [23] proposed to predict the memory usage of

applications on virtual machine in a proactive manner using

time series analysis (with a training period usually in terms of

days). In [18], authors conducted a quantitative study of the

impact of overcommitment of physical memory to dockers.

In contrast to aforementioned related work, this paper for the

first time proposes to leverage virtual memory to achieve lower

monetary cost by trading off a fraction of running time.

A rich literature focuses on the optimization of resource al-

location and cost-effectiveness for a cluster of cloud instances.

In [11], authors proposed to reconfigure the constituent in-

stances serving the same workload with lower cost. More

recently, contracts-based resource sharing model [27] was

proposed to save the cost. To the best of our knowledge, this

paper is the first work focusing on cost reduction for memory-

intensive applications using virtual memory technology.

Much work has been focused on the modeling and schedul-

ing part in resource management. In [28], an automatic re-

source allocation model for scaling virtual machine was de-

veloped. More recently, in [29] authors proposed an autonomic

and elastic resource scheduling framework was proposed; an

scheduling algorithm based on Lyapunov optimization was

proposed in [22]. While the primary goal of this paper is to

investigate new approaches to reduce the monetary cost for

memory-intensive applications, the reduced cost also implies

reduced energy consumption as a co-product.

In more sophisticated scenarios such as both Infrastructure-

as-a-Service (IaaS) and Software-as-a-Service (SaaS) being

offered, a two-stage optimization model was developed in [26];

for hybrid clouds (i.e., applications deployed to both an on-

premises cluster and a public cloud), various techniques [13]



were proposed to minimize the overall cost; for cloud federa-

tion (i.e., inter-cloud), various techniques [14] were developed

to automate the resource selection and configuration. Although

in this paper we assume the underlying cloud infrastructure

comes from a single cloud vendor (i.e., AWS), there is

nothing technical to prevent users from applying the proposed

approach to multiple, heterogeneous clouds.

Many other domains (e.g., high-performance computing [3],

databases [25], networking [30], big data systems [9, 31]) are

switching from conventional cluster computing to cloud com-

puting and minimizing the cost is also actively researched. The

techniques proposed by this paper, although mainly targeted

on and evaluated on public clouds, have the potential to be

extended to apply to other domains as well.

III. PRELIMINARIES

A. Swap space in Unix-like systems

The swap space in Unix-like systems is a portion of disk

space that is reserved to be used as an extended memory

that is addressable by the memory management module in

the operating system (OS) kernel. Swap is sometimes called

virtual memory, in the sense that it is not really manipulating

data on the physical memory. The virtual memory in the

context of swap should be differentiated from the OS-level

virtual memory, which refers to the logically continuous

memory pages that are mapped to possibly disjoint pages on

the physical memory.

Because swap requires readdressing of the memory space,

one limitation of swap is that it cannot be dynamically updated

at runtime. In our prior work [15], we showed that accurately

predicting applications’ memory usage could be highly time

consuming. So in the remainder of this paper, we will use

swap and virtual memory interchangeably.

B. Checkpointing

In cloud computing, checkpointing has been extensively

studied [5, 10]. The key idea is to periodically dump the mem-

ory status to persistent media, usually a local hard disk. One

classical problem in checkpointing is how frequently it should

be applied (assuming the checkpointing is applied at equal

time intervals): if it is applied too frequently, the checkpointing

itself (causing many I/O operations) could be unacceptable in

terms of performance; if it is rarely applied, say only once,

then up to 50% of work would get lost if the application or

system crashed at the very last moment before the checkpoint.

Therefore, the optimal checkpointing frequency usually lands

in somewhere between the aforementioned two extreme cases.

In this paper, we will take the following approach to

estimate the optimal checkpointing intervals (literature took

a similar approach with only some varieties on assumptions

and corner cases). Let T indicate the total runtime of the

application, n indicate the total number of checkpoints (with

equal time intervals), and t indicate the time that a single

checkpoint takes, and m indicate the total number of expected

failures. Without loss of generality, we assume the failures

occur in the middle of two adjacent checkpoints. It then

Fig. 4: Huge overhead introduced by improper use of virtual

memory

follows that the total time of lost work is T ·m
2n . The goal is to

find n so to minimize the end-to-end wall time comprised of

the application’s own execution time T , the summation of all

checkpointing time n · t, and the summation of all lost work
T ·m
2n as they have to be redone. That is, we need to find n

such that

argmin
n

F (n) = T + n · t+ T ·m
2n

It follows that n =
√

T ·m
2t . We will use n to calculate the

optimal checkpoint interval as part of the baseline performance

and compare it against the performance of our proposed

mechanism in later sections.

IV. COST-AWARE EXPLOITATION OF VIRTUAL MEMORY

A. Overview

For applications whose memory footprint exceeds the avail-

able physical memory2, it is possible to extend the memory

usage to the swap space (i.e., virtual memory) with expected

performance slowdown due to the data swap between the

physical memory and the disk. In theory, the entire hard disk

drive can be used as virtual memory; in Unix-like systems,

this can be easily configured before the applications starts.

Unfortunately, the change of virtual memory capacity would

not take effect during the runtime of the applications, meaning

that a dynamic allocation of virtual memory is out of the ques-

tion. Consequently, in theory, an application would unlikely

run into out-of-memory (OOM) errors as long as we simply

extended the virtual memory to the entire disk assuming the

application’s data can be accommodated by the disk size; but

this might not be always practical because the performance

overhead could be prohibitive in the real world.

As a concrete example, we show that an MRI application’s

performance on two different (and extreme-case) setups of

virtual memory in Figure 4. The application incurs a peak

memory usage of about 18 GB and completes in less than

2By “physical memory”, we do not exclude the memory allocation in a
virtual machine; it is used in this context only to differentiate the “virtual
memory” or “swap space” used in Unix-like systems.



500 seconds (red line) when the machine is equipped with

enough memory (i.e., swap portion 0%). However, when we

specify a combination of 1 GB physical memory and a 18 GB

swap space on the machine (i.e., swap portion 18
19 > 94%), the

same application’s total runtime exceeds 20,000 seconds. The

red line is the real-time memory footprint when the application

runs on a 32GB-RAM machine; the orange and blue lines

record the swap and physical memory usages, respectively (on

the 1GB-RAM 18GB-swap machine). However, the overall

cost on the 1GB-RAM 18GB-swap machine might be lower

than running the application on a 32GB-RAM machine.

The key question is: if the users are willing to trade some
time off to complete their jobs on the current instances (with
data swapped between memory and disk), what would the
monetary benefit and time overhead look like, quantitatively?
That is, users would know better about the distribution of

cost-time correlations in the parameter space between the two

extreme-cases presented in Figure 4.

B. Assumptions

We assume the swap space would be able to accommodate

the application’s memory usage at all times. This assumption

is easy to satisfy in the real world, as the capacity of hard

disk drives is usually orders of magnitudes larger than physical

memory. In addition, adding more hard disk drives is usually

one of the most economic upgrades if more swap space is

needed.

We also assume the swap portion is known in ad-

vance. In many areas such high-performance computing and

MapReduce-like workloads, I/O-patterns including memory

footprint are well studied (e.g., approaches including profiling

an sample run on a subset of input data). Therefore, as long

as the hardware specification of the machines is determined,

it is easy to calculate the swap portion based on the physical

memory capacity and the application’s I/O patterns.

The last assumption is that the pricing of different instance

types is fixed. Indeed, there are cases where instance prices

are versatile (e.g., AWS’s spot instances), but we do not

consider those scenarios in our models because they are highly

dependent on the non-technical contexts such business models

that are beyond the scope of this paper.

C. Methodology

We aim to develop models that characterize the inter-

connection between applications’ performance and instances’

swap portion (i.e., “swapness”) under various instance types

with different memory capacities. The models are crafted for

specific memory sizes for two reasons: First, they will achieve

higher accuracy than a single global model applied to all

memory capacities; Second, most cloud vendors offer a limited

number of instance types regarding memory capacities.

To study the correlation between performance slowdown

and swap portion, we start with measuring the swap-introduced

slowdown in one of the most widely used matrix operations:

matrix initialization. We chose this application as the baseline

benchmark because of its representative, i.e., uniform, access

Fig. 5: Slowdown vs. swapness with 4GB-RAM physical

memory

to the (virtual) memory. Specifically, a 17,000 × 17,000 two-

dimensional matrix is initialized with random integer values,

which incurs about 18 GB peak memory usage. The test

bed is an AWS t2.medium instance with 4 GB memory.

The benchmark application is decomposed into various phases

according to their memory usages, while the end-to-end execu-

tion times of each phases are recorded with the corresponding

swap portion. For data-intensive applications, recording all

the information on swap portions at a fine granularity is

both space- and time-consuming. To address that, we apply

cumulative density functions (CDF) to compress the numbers

and sizes of those records rather than storing all data points

in their raw format.

As shown in Figure 5, the benchmark exhibits a strong

exponential curve between the slowdown and the swapness.

Although this is the trend exhibited with 4GB physical mem-

ory, similar trends are indeed observed with other memory

capacities (we will discuss more when evaluating the system

in Section VI). In theory, a higher proportion of swap space

should imply a super-linear increase in I/O cost if the replace-

ment policy is least-recently-used (LRU) [32]. As a result, the

skeleton of the model we chose to fit is exponential in the

following form:

S = α · eβ·x + θ,

where S is the performance slowdown, e is Euler’s number, x
is the swapness, and (α, β, θ) are coefficients to be determined

during the model fitting.

The following illustrates how we fit the model for perfor-

mance slowdown and swap portion. We segment the bench-

mark’s execution into pieces with different swap portions

at runtime. For each swap proportion (i.e., swapness), we

maintain a bucket to store the number of pieces falling into

the bucket to save space (i.e., a cumulative density function,

CDF). We applied binary searches on each of the coefficients

in the model and determine them when the overall error is

minimal. The resultant model is:

f(x) = (3.09E − 13) · e44.21x + 0.35

Because of the fluctuations exhibited by Figure 5, we also

provide confidence intervals (maximum and minimum) as

follows:

fmax(x) = (1.16E − 10) · e36.34x + 13.33



fmin(x) = (4.48E − 11) · e34.89x + 0.075

The fmax models a subset of the benchmark data points

landing on the top-left edge, while the fmin models the subset

of the benchmark data points landing on the bottom-right edge.

We will be using the above models to predict more real-world

applications and report its accuracy and more importantly,

the correlation between the overall monetary cost and the

performance, in Section VI.

V. JUST-IN-TIME APPLICATION MIGRATION

A. Overview

There are various reasons why users decide not to use swap

space for out-of-memory errors. For instance, the applications

might be highly I/O-intensive and using swap, even by a very

small portion, would slow the application down by orders

of magnitude. As another example, the application’s memory

footprint and I/O patterns are not well studied, then the

techniques proposed in Section IV are not applicable.

The question now becomes: Without introducing swap, how
could we reduce the overall monetary cost in face of memory
depletion? Obviously, the risk of encountering memory errors

would become the lowest if users started with the most

powerful (and, expensive) instance to run the applications;

doing so implies, however, the highest chance of underuti-

lization of the memory resources and consequently incurs

unnecessary monetary cost. One heuristic approach would

be starting with the cheapest instances and then migrate the

application to a larger instance when memory is depleted,

which means additional performance overhead from periodical

checkpointing and relaunching virtual machines.

Recall the significant overhead of checkpointing as shown

in Figure 3. Ideally, the migration should occur when only

absolutely necessary, i.e., at the point just before the memory

errors out, what we called just-in-time application migration
in the following discussion. The terminology is inspired by

the well-known compiler technique “just-in-time compilation”,

meaning that the source code is only compiled at runtime

rather than prior to the execution—one of the unique features

in functional programming languages like Lisp.

B. Assumptions

We assume the application is migrated between different in-

stance types without physical data movements. This is not true

in conventional clusters but very common in cloud vendors,

for example in AWS the current instance can be shut down

with saved status (i.e., snapshot) and then get restarted with

larger memory capacity allocated along with other possible

upgrades. Microsoft Azure and IBM BlueMix provide similar

functionalities. Note that, in conventional cluster computing,

a failed node’s data are first checkpointed from memory to

disk and then transferred to a healthy node, usually incurring

a higher overhead.

Another assumption is that swap is completely excluded.

That is, the swap portion in the remainder of this section is 0%.

Indeed, there is nothing preventing us to combine the models

in Section IV and what we will discuss in this section, meaning

that swapness can be between 1% and 100% in the real world.

However, this section will focus on only the techniques of just-

in-time application migration, which is isolated from others

so we know how, and by how much, just-in-time application

migration can facilitate the cost reduction.

C. Methodology

Since we plan not to apply periodical checkpointing, the

key challenge is how to accurately predict when the memory

will error out. Our approach considers both statistical models

and the hint extracted from the application. Specifically, our

approach takes multiple fitting models (e.g., polynomial, expo-

nential) and looks back different numbers of data points (i.e.,

history depending on certain decay functions). Conventional

models simply look back a certain number of data points,

apply regression to achieve the least aggregate errors, and cal-

culate a future data point; In contrast, our approach considers

those fitting models as a input and take the application’s own

traits extracted from profiling a small portion of execution as

another input, both of which constitute a higher-level of model

that we call Meta-Model (MM). That is, the meta-model we

propose is not only fit by the existing data but also correlated

to the application’s sample runs. Taking a quadratic model for

example, the model M in its original form

M(x) = α · x2 + β · x+ γ

becomes

MM(x) = f1 · x2 + f2 · x+ f3

where the vector �F = [f1, f2, f3] represents the relation

between the coefficient and the adjusted impact to the appli-

cation. In the simplest form, �F can be a linear transformation

according to the I/O patterns we can observe from profiling a

subset of sampled data points. In other words, our model ex-

tends the conventional fitting approaches by generalizing those

constant coefficients into additional function that characterizes

the application’s own information.

After calculating the prediction values of multiple meta-

models, we compute the probability of memory crash. If the

probability falls below a threshold, the application will be

paused and gets ready to be migrated to another instance (with

larger memory capacity). An alternative approach is to run a

vote from all the participating meta-models and the majority

wins (either continue with the current instance or migrate to

a larger one).

If the system decides (or, predicts) that a memory crash is to

occur, the application will be migrated to the least expensive

instance type that has larger memory capacity than the current

running instance. The reasoning is that in most public cloud

vendors, the memory capacity roughly follows an exponential

pattern. Our protocol is conservative and hopes that doubling

the memory capacity could satisfy the application’s memory

requirement. A more aggressive protocol is possible, for exam-

ple instead of increasing 2× memory size we can multiple 3,

4, or even larger factors. In practice, doing so would imply



missing some intermediate instance types. This paper will

only discuss the scenarios where all the instances are strictly

ordered by the memory capacity. Finding out the optimal factor

of multiplying memory capacity is an interesting question and

might be addressed in our future work.

VI. EVALUATION

A. Experimental Setup

All experiments are carried out on AWS [1]. The instances

for various memory capacities and prices are listed in Ta-

ble I. We implement our models using Python and Shell

scripts. The source code is available at the project website:

https://www.cse.unr.edu/hpdic/proj/cme.

TABLE I: AWS instances used for evaluation

Instance Name Memory Capacity (GB) Price (US$ per Hour)
t2.medium 4 0.0464
t2.large 8 0.0928
t2.xlarge 16 0.1856
t2.2xlarge 32 0.3712

We evaluated the proposed techniques with three real-world

applications. The first application is an MRI image processing

scientific application from [15]. The second application is

a data mining application on taxi’s location data from Didi

Inc described at [6]. The third application is a common

numerical application on adding dense matrices extracted from

the popular Python library Numpy [19].

B. Cost-aware Exploitation of Virtual Memory

The goal of this section is two-fold: a) demonstrating the

accuracy of the proposed performance model with various

real-world applications; b) reporting quantitative monetary

benefit (and the compromise made on performance) when

different portions of swap space are taken into account. All

the experiments were carried out with 4GB-RAM instances

on AWS (i.e., t2.medium).

Figure 6 shows the slowdown of the MRI application when

swap portion is between 0.1 and 0.8. We do see some fluctua-

tions in the real slowdown, which is expected as arbitrary (e.g.,

not LRU) memory-access patterns occur in this application.

However, the trend still follows an exponential curve in the big

picture. More importantly, all data points fall into the ranges

(i.e., the gray shadow) of the model, indicating a high accuracy

of the proposed model. To quantify that, we apply the Pearson

correlation coefficient (PCC) defined as:

PCC =
Σn

i=1(xi − x)(yi − y)√
Σn

i=1(xi − x)2
√

Σn
i=1(yi − y)2

where n indicates the total number of data points, xi and yi
indicate the real data and modeled data, and x and y indicate

the mean of each data series. The correlation of the real data

points and our model is extremely strong, as the PCC turns

out to be 0.994.

Similarly, Figure 7 shows the slowdown of the data mining

application and the swap portion is between 0.55 and 0.8. The

portion range is different from the first application because

this one is more memory-hungry (or, more memory-intensive);

that is why the swap space starts to kick in directly from the

0.55—more than half of the memory is “virtual”. Because

of the memory-hungry nature of this application, we observe

even more fluctuations than the MRI application. But again,

most of the real data points fall into the prediction intervals

(i.e., the gray shadow) and the PCC of this application is also

extremely high: 0.988.

Lastly, Figure 8 shows the slowdown of the matrix adding

application and the swap portion is between 0.1 and 0.8.

This application exhibits a similar pattern as MRI; the PCC

coefficient is also extremely high: 0.991.

Figure 10 compares the cost predicted by the proposed

model and the real cost on the 4GB-RAM instance, both of

which normalized to the cost on the 32GB-RAM instance that

provides enough physical memory for both applications (the

peak of real memory footprint is about 18 GB). Since in

all cases the application is not migrated between instances,

the cost is the same in terms of both execution time and

monetary cost. We can see that the cost predicted by our

model is highly accurate: The error rates are: Didi 4%, MRI

1%, and AddMatrix 3%. The figure also shows that using

swap does not guarantee reduced cost: the cost of the Didi

application using swap is increased by more than 158%, for

MRI the cost is reduced by 50%, and the cost for AddMatrix

is increased by 47%. The root cause of these results is that

the Didi application is highly memory-intensive, meaning that

introducing swap on a memory-restrained instance will likely

incur much more running time outweighing the benefit of

the cheaper per-hour price. The findings, in fact, prove the

effectiveness of our model: our model can tell, in a very

high accuracy, that whether applying swap on a memory-

constrained and inexpensive instance would result in higher

or lower total cost.

We also report the execution time for all three applications

in Figure 9. We observe an order of magnitude higher time

cost for both Didi and AddMatrix, which is partially attributed

to their I/O intensiveness between swap and physical memory

and therefore cause the overall monetary cost exceeding the

baseline case. What is more interesting, however, is the MRI

application. The MRI results make a strong case for trading

off performance for cost: by compromising 4X running time

the overall cost can be reduced to half. This is exactly the

point of the first contribution of this paper—allowing users to

make compromise between time and cost.

C. Just-in-Time Application Migration

This section answers the following questions using real-

world applications: a) illustrating the real-time performance

for applications continuously deployed to a series of cloud

instances in an increasing order of memory capacities (appli-

cation migrates to another instance when the current one’s

memory is to be depleted); b) reporting the quantitative

monetary benefit when applying the proposed techniques of

predicting memory footprint and elevating memory capacity.



Fig. 6: Swap model for MRI [15] Fig. 7: Swap model for Didi [6] Fig. 8: Swap model for AddMatrix [19]

Fig. 9: Execution time normalized to the 32G-RAM machine

Fig. 10: Monetary cost normalized to the 32G-RAM machine

(a) Stage 1 (4GB-RAM) (b) Stage 2 (8GB-RAM)

(c) Stage 3 (16GB-RAM) (d) Stage 4 (32GB-RAM)

Fig. 11: Memory elevation after migrating applications

Figure 11 shows the MRI application’s memory footprint

over its entire course using our prediction-elevation approach.

The lifespan of the application comprises four stages on

Fig. 12: Cost comparison (normalized to the 32GB-RAM

machine)

four instance types: 4GB-, 8GB-, 16GB-, and 32GB-RAM

instances, as shown in sub-figures. For each stage, we plot

the true values and the predicted values using the approach

we discussed in Section V. As we can see, our predicted

values are highly accurate for most of time, except that at

around 50 seconds the predicted value is noticeable lower than

the true value. The reason for that is because the application

just completed a memory-intensive iteration and the system

is busy with memory recycling (i.e., garbage collection). We

will further fine-tune our model by considering such corner

scenarios in our future work.

Figure 12 illustrates the overall costs at various stages nor-

malized to the baseline cost (we did not show the 32GB-RAM

comparison since they all incur the same cost). We can see

that for all types of instances, our proposed approach incurs

the least cost—significantly cheaper than both the checkpoint

approach and the baseline with all physical memory allocated.

Specifically, our approach costs only 12% of the baseline

approach at 4GB-RAM instances, and 33% and 60% on 8GB-

RAM and 16GB-RAM instances, respectively. The optimal-

checkpointing approach is also cheaper than the baseline but

more expensive than our proposed approach: 14% (vs. 13%),

53% (vs. 33%), and 90% (vs. 61%) on the above instances.

Overall, our approach takes only 35% of the baseline cost and

66% of the optimal-checkpointing approach.

Indeed, the saved cost does require more running time, and

Figure 13 reports the time overhead on each type of instances

normalized to the baseline running time. Again, we did not

report the 32GB-RAM case since the numbers would look

exactly the same. We can see that for each instance type,

the proposed approach does not incur as significant overhead

as the optimal-checkpoint does. For the first three stages, the

proposed approach takes 3%, 34%, and 22% more time than



Fig. 13: Time comparison (normalized to the 32GB-RAM

machine)

the baseline while the optimal-checkpointing approach takes

much more: 13%, 110%, and 80%. Taking all together, the

time overhead of the proposed prediction-elevation approach

is only 22% but saves 65% cost comparing to the baseline.

VII. CONCLUSION

This paper presents two techniques to help deploy memory-

intensive applications in public clouds with low monetary cost.

The first approach assumes the users are well aware of the

application’s I/O patterns such as uniform access, and the

proposed performance-cost model can accurately predict how,

and by how much, virtual memory size would slow down

the application and consequently, impact the overall monetary

cost. The second approach removes the assumption of a priori
I/O patterns by proposing a lightweight memory usage predic-

tion methodology. The key idea is to eliminate the periodical

checkpointing and migrate the application only when the

predicted memory usage exceeds the physical allocation based

on dynamic meta-models adjusted by the application’s own

traits. Taking both techniques together, this work covers a wide

spectrum of data-intensive applications regarding the trade-off

between performance and cost using both virtual and physical

memory scaling approaches.

ACKNOWLEDGMENTS

This work is in part supported by an Amazon Web Services

(AWS) Research Grant, a Microsoft Azure Research Award,

and a National Science Foundation (NSF) award #1756013.

REFERENCES

[1] Amazon EC2. http://aws.amazon.com/ec2, Accessed March 6, 2015.
[2] Apache Spark. http://spark.apache.org/, Accessed December 23, 2015.
[3] R. Chard, K. Chard, K. Bubendorfer, L. Lacinski, R. Madduri, and

I. Foster. Cost-aware elastic cloud provisioning for scientific work-
loads. In 2015 IEEE 8th International Conference on Cloud Computing
(CLOUD), pages 971–974, 2015.

[4] CRIU. https://criu.org, Accessed February 10, 2018.
[5] S. Di, Y. Robert, F. Vivien, D. Kondo, C. L. Wang, and F. Cappello.

Optimization of cloud task processing with checkpoint-restart mecha-
nism. In International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pages 1–12, Nov 2013.

[6] Didi Data Mining Competition. http://research.xiaojukeji.com/
competition/detail.action?competitionId=DiTech2016, Accessed Febru-
ary 12, 2018.

[7] Hadoop. http://hadoop.apache.org/, Accessed September 5, 2014.
[8] X. Ji, C. Wang, N. El-Sayed, X. Ma, Y. Kim, S. S. Vazhkudai, W. Xue,

and D. Sanchez. Understanding object-level memory access patterns
across the spectrum. In International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), pages 25:1–25:12,
2017.

[9] L. Jiang, K. Wang, and D. Zhao. Davram: Distributed virtual memory
in user space. In IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), Accepted, 2018.

[10] S. Khatua and N. Mukherjee. Application-centric resource provisioning
for amazon ec2 spot instances. In European Conference on Parallel
Processing (Euro-Par), pages 267–278, 2013.

[11] P. Kokkinos, T. A. Varvarigou, A. Kretsis, P. Soumplis, and E. A.
Varvarigos. Cost and utilization optimization of amazon ec2 instances.
In 2013 IEEE Sixth International Conference on Cloud Computing
(CLOUD), pages 518–525, June 2013.

[12] Large Synoptic Survey Telescope. https://www.lsst.org/, Accessed June
29, 2017.

[13] Y. C. Lee and B. Lian. Cloud bursting scheduler for cost efficiency.
In 2017 IEEE 10th International Conference on Cloud Computing
(CLOUD), pages 774–777, June 2017.

[14] A. F. Leite, V. Alves, G. N. Rodrigues, C. Tadonki, C. Eisenbeis, and
A. C. M. A. d. Melo. Automating resource selection and configuration in
inter-clouds through a software product line method. In 2015 IEEE 8th
International Conference on Cloud Computing (CLOUD), pages 726–
733, June 2015.

[15] P. Mehta, S. Dorkenwald, D. Zhao, T. Kaftan, A. Cheung, M. Balazinska,
A. Rokem, A. Connolly, J. Vanderplas, and Y. AlSayyad. Comparative
evaluation of big-data systems on scientific image analytics workloads.
In Proceedings of the 43rd International Conference on Very Large Data
Bases (VLDB), volume 10, pages 1226–1237, Aug. 2017.

[16] MPICH. http://www.mpich.org, Accessed December 10, 2014.
[17] Myria. http://myria.cs.washington.edu, Accessed July 18, 2016.
[18] R. Nakazawa, K. Ogata, S. Seelam, and T. Onodera. Taming per-

formance degradation of containers in the case of extreme memory
overcommitment. In 2017 IEEE 10th International Conference on Cloud
Computing (CLOUD), pages 196–204, June 2017.

[19] Numpy: adding matrix. https://docs.scipy.org/doc/numpy-1.13.0/
reference/generated/numpy.add.html, Accessed March 2, 2018.

[20] OpenMP. http://openmp.org/wp/, Accessed March 24, 2015.
[21] SciDB. https://paradigm4.atlassian.net/wiki/display/ESD/SciDB+

Documentation, Accessed July 25, 2016.
[22] S. Shi, C. Wu, and Z. Li. Cost-minimizing online vm purchasing for

application service providers with arbitrary demands. In 2015 IEEE 8th
International Conference on Cloud Computing (CLOUD), pages 146–
154, 2015.

[23] S. Spinner, N. Herbst, S. Kounev, X. Zhu, L. Lu, M. Uysal, and R. Grif-
fith. Proactive memory scaling of virtualized applications. In 2015 IEEE
8th International Conference on Cloud Computing (CLOUD), pages
277–284, June 2015.

[24] TensorFlow. https://www.tensorflow.org/, Accessed July 26, 2016.
[25] P. Upadhyaya, M. Balazinska, and D. Suciu. Price-optimal querying

with data apis. International Conference on Very Large Data Bases
(VLDB), 9(14):1695–1706, Oct. 2016.

[26] V. D. Valerio, V. Cardellini, and F. L. Presti. Optimal pricing and service
provisioning strategies in cloud systems: A stackelberg game approach.
In 2013 IEEE Sixth International Conference on Cloud Computing
(CLOUD), pages 115–122, June 2013.

[27] J. Xu and B. Palanisamy. Cost-aware resource management for federated
clouds using resource sharing contracts. In 2017 IEEE 10th International
Conference on Cloud Computing (CLOUD), pages 238–245, June 2017.

[28] L. Yazdanov and C. Fetzer. Vscaler: Autonomic virtual machine scaling.
In 2013 IEEE Sixth International Conference on Cloud Computing
(CLOUD), pages 212–219, June 2013.

[29] Z. Yin, H. Chen, J. Sun, and F. Hu. Eaers: An enhanced version
of autonomic and elastic resource scheduling framework for cloud
applications. In 2017 IEEE 10th International Conference on Cloud
Computing (CLOUD), pages 512–519, June 2017.

[30] L. Zhang, Z. Li, and C. Wu. Dynamic resource provisioning in cloud
computing: A randomized auction approach. In IEEE Conference on
Computer Communications (INFOCOM), pages 433–441, April 2014.

[31] D. Zhao, N. Liu, D. Kimpe, R. Ross, X.-H. Sun, and I. Raicu. Towards
exploring data-intensive scientific applications at extreme scales through
systems and simulations. IEEE Transactions on Parallel and Distributed
Systems (TPDS), 27(6):1824–1837, June 2016.

[32] D. Zhao, K. Qiao, and I. Raicu. Hycache+: Towards scalable high-
performance caching middleware for parallel file systems. In Proceed-
ings of the 14th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), pages 267–276, 2014.


