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Abstract

We introduce a provably stable, high-order-accurate finite difference method for simulation of acoustic and
flexural gravity waves in compressible, inviscid fluids partially covered by a thin elastic layer. Such waves arise
when studying ocean wave interactions with floating ice shelves, sea ice, and floating structures. Particular
emphasis is on a well-posed interface treatment of the fluid-ice coupling. To ensure numerical stability and
efficiency, finite difference approximations based on the summation-by-parts (SBP) framework are combined
with a penalty technique (simultaneous approximation term, SAT) to impose the boundary and interface
conditions. The resulting SBP-SAT approximations are time integrated with an unconditionally stable
finite difference method. Numerical simulations in 2D corroborate the predicted efficiency and stability
behaviours. The method can be used in its current form to study transmission of ocean waves and tsunamis
through ice shelves, and upon coupling to an elastic half-space beneath the ice and water, to study ice
motions associated with long-period seismic surface waves.

Keywords: finite difference methods, high-order derivative, high order accuracy, stability, boundary
treatment, flexural-gravity waves

1. Introduction

Waves of many kinds occur in Earth’s oceans and other bodies of water. These include surface gravity
waves and acoustic waves, associated with gravitational restoring forces and fluid compressibility, respectively
(e.g., [29, 19, 62]). A floating elastic layer, such as sea ice, an ice shelf, or a thin engineered platform,
influences wave propagation, both by providing additional elastic restoring force and by increasing inertia
(e.g., [16, 60, 61]). Surface gravity waves, ranging from short wavelength ocean swell to long wavelength
tsunamis and tides, become flexural-gravity waves (FGW) in the presence of an elastic layer. In many cases,
the layer thickness is small compared to horizontal wavelengths of interest, motivating treatment of the layer
through use of an elastic plate model. The classic Euler-Bernoulli plate model, or dynamic beam equation
(DBE) in 1D (e.g., [30]), is employed throughout this study. The DBE is a linear partial differential equation
(PDE) that is second order in time and fourth order in space. However, for problems involving large strains
and rotations, more sophisticated plate models might be used.

Specific motivation for this study comes from the catastrophic disintegration of several Antarctic ice
shelves by rifting (e.g., [54, 56, 55, 4, 66]), that is, formation of tensile fractures that cut through the ice
shelves and allow infiltration of warm sea water that promotes melting and additional fracturing. It is
possible that incident ocean waves, and stresses associated with wave-induced flexure, play some role in
creating and/or extending rifts [25, 9, 12, 5]. Recent deployments of seismometers and other instruments
have captured the vibrational response of several ice shelves [10, 8, 18, 11], but numerical modeling is required
to interpret these data to inform us about ice shelf thickness, elastic properties, and the possible formation
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of rifts. The data feature not only FGWs, for which the water is effectively incompressible, but also other
acoustic and seismic wave modes for which water compressibility is important. This motivates development
of a numerical method that accounts for compressibility in addition to the usual physics governing FGWs.

For simplicity, we limit attention in this initial study to the 2D problem with a 1D elastic layer. Several
numerical methods exist for this problem, though most are limited to incompressible fluids because of their
exclusive focus on FGWs. Sergienko [58, 59] has studied FGWs in the context of ice shelves both analytically
and numerically using the COMSOL finite element code. In [58] she considered an ice shelf of arbitrary
thickness and solved the 2D quasi-static elasticity equation for the ice shelf (rather than the 1D DBE)
coupled to Laplace’s equation for the velocity potential in the incompressible water layer. For sufficiently
thin ice, her solutions agree well with those utilizing the DBE. Her more recent work [59] again combines
analytical solutions with COMSOL numerical simulations, and provides an informative discussion of FGW
dispersion characteristics in light of recent observations from the Ross Ice Shelf, West Antarctica.

Papathanasiou et al. [50] also used finite elements to model FGWs, but with the 1D DBE instead of 2D
elasticity. The water was again assumed incompressible, but was treated in the context of the shallow-water
approximation. Eigenmode expansion methods have also been used for this problem (e.g., [65, 17]).

In contrast to these studies, we account for water compressibility by solving the wave equation instead
of Laplace’s equation for the velocity potential. This is coupled to the DBE for the ice layer. The coupled
equations are solved using a high-order-accurate finite difference method (up to 6th order in space). High
order methods are exceptionally powerful for wave propagation problems. They allow a considerable reduc-
tion in the degrees of freedom, for a given error tolerance. In particular, high-order finite difference methods
(HOFDM) are ideally suited for problems of this type. (See the pioneering paper by Kreiss and Oliger
[27] concerning hyperbolic problems.) The major difficulty with HOFDM is to obtain a stable boundary
treatment, something that has received considerable past attention concerning hyperbolic and parabolic
problems. (For examples, see [31, 64, 52, 1, 6, 23].)

A robust and well-proven HOFDM for well-posed initial boundary value problems (IBVP) is obtained by
combining summation-by-parts (SBP) operators [26, 63, 37] and either the simultaneous approximation term
(SAT) method [13] or the projection method [48, 49, 38, 51] to impose boundary conditions (BC). Recent
examples of the SBP-SAT approach can be found in [24, 34, 3, 46, 15, 45, 43]. The SBP operators found
in the literature (see for example [26, 63, 37, 41, 42, 14, 2]) are essentially central finite difference stencils,
defined on regular grids, closed at the boundaries with a careful choice of one-sided difference stencils, to
mimic the underlying integration-by-parts formula in a discrete norm.

The SBP-SAT approach has traditionally been restricted to problems involving first and second deriva-
tives in space. However, there are many problems where higher order derivatives are present. Some exam-
ples include the Korteweg-de Vries and the Boussinesq equations (describing nonlinear water waves), soliton
models in neuroscience [53], and the Euler-Bernoulli equation for beams [67, 20]. High-order accurate SBP
operators for third and fourth derivatives were recently derived [42], and in [44] stable SBP-SAT approxima-
tions of the DBE were presented. The main goal in the present study is to formulate a stable and high-order
accurate SBP-SAT approximation of a 2D model for ocean acoustic and FGWs in water that is partially
covered with ice.

In Section 2 the FGW model is introduced. In Section 3 the SBP-SAT method is introduced. Stability
analysis of the 2D problem is presented in Section 4. Time integration is analysed and discussed in Section
5. In Section 6 the accuracy and stability properties of the newly developed SBP-SAT approximations are
verified by performing numerical simulations. The code is then applied to study wave reflection/transmission
and dispersion of flexural-gravity waves in Section 7. Section 8 summarizes the work.

2. Governing equations

In this study, we consider the 2D problem illustrated in Figure 1. A compressible ocean of depth
D is partially covered with an ice shelf. The left domain (denoted Ω(l)) is covered by an ice shelf of
length L, with open water of length R in the right domain (denoted Ω(r)). Background on the governing
equations and nondimensionalization is provided in Appendix A; in this and the subsequent sections, only
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the nondimensional problem is considered. We first analyze the left and right domains separately before
moving on to the coupled problem.

The following definitions are used in the subsequent sections:

Definition 2.1. Let x = (x, y) denote grid coordinates in two dimensions. The 2D domain is divided into
two blocks (left and right), denoted Ω(l, r). We define the left 2D domain −L ≤ x ≤ 0, −D ≤ y ≤ 0 by
x ∈ Ω(l). Similarly the right 2D domain 0 ≤ x ≤ R, −D ≤ y ≤ 0 is denoted by x ∈ Ω(r). The right

boundary in the left domain, defined by the line x = 0, −D ≤ y ≤ 0, is denoted δΩ
(l)
East. The left boundary

in the right domain is denoted δΩ
(r)
West. Note that Ω

(l)
East and Ω

(r)
West is the shared interface between the two

subdomains. Similarly, the top (and bottom) boundaries in the left and right domains are denoted δΩ
(l, r)
Top

(and δΩ
(l, r)
Bottom). See also Figure 2.

Ice	shelf	

Ocean	
Ω(l)	 Ω(r)	

L	

D	

R	

x	

y	

Figure 1: A 2D compressible ocean is partially covered with an ice shelf.

2.1. Left domain (ice-covered), uncoupled

We begin with the left (ice-covered) domain (left side, Figure 1) as a standalone problem, i.e., without
coupling to the right (open-water) domain (right side, Figure 1). The nondimensional governing equations,
boundary conditions (BCs), and initial conditions for the ice shelf and compressible ocean, as derived in
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Appendix A, are

awtt = −bwxxxx − γφ(l)
t |0 − w, −L ≤ x ≤ 0, t ≥ 0,

w = 0, wx = 0, x = −L, t ≥ 0,

wxx = 0, wxxx = 0, x = 0, t ≥ 0,

w = f1, wt = f2, −L ≤ x ≤ 0, t = 0,

(1)

and

εφ
(l)
tt = φ

(l)
xx + φ

(l)
yy , x ∈ Ω(l), t ≥ 0,

φ
(l)
x = 0, x ∈ δΩ(l)

West, t ≥ 0,

φ
(l)
x = 0, x ∈ δΩ(l)

East, t ≥ 0,

wt − φ(l)
y = 0, x ∈ δΩ(l)

Top, t ≥ 0,

φ
(l)
y = 0, x ∈ δΩ(l)

Bottom, t ≥ 0,

φ(l) = g
(l)
1 , φ

(l)
t = g

(l)
2 , x ∈ Ω(l), t = 0.

(2)

Here w(x, t) is the vertical displacement of the ice shelf, φ(l)(x, y, t) is the velocity potential in the ocean
in the left domain. (To distinguish between φ in the left and right domains we will use the notion φ(l) and

φ(r), respectively.) In (1), φ
(l)
t |0 denotes φ

(l)
t at the Top (boundary) of the ocean, i.e., the restriction of φ

(l)
t

onto δΩ
(l)
Top (see Figure 2). The horizontal and vertical particle velocities in the ocean are φ

(l)
x and φ

(l)
y ,

respectively, and pressure is −γφ(l)
t . The dimensionless parameters a, b, γ, and ε are all non-negative; a

quantifies the importance of inertia of the ice and b quantifies the importance of flexural restoring forces.
In addition, ε quantifies water compressibility effects on flexural-gravity waves, and we can take ε → 0
for incompressible water. When the focus is on FGWs, the problem becomes very stiff because ε � 1,
motivating implicit time stepping.

Remark For the coupled problem (left and right domains) the East BC for φ(l), here given by φ
(l)
x = 0,

will be replaced by the interface conditions:

φ(l) = φ(r), φ(l)
x = φ(r)

x , x = 0, −D ≤ y ≤ 0 . (3)

For the ice shelf we have employed two different types of BC:

w = 0, wx = 0, ‘clamped’,

wxx = 0, wxxx = 0, ‘free’,
(4)

with the clamped condition at the West boundary, where the ocean ends and the ice becomes grounded (i.e.,
attached to the solid bed), and the free condition at the ice shelf edge. [44] provide a thorough analysis of
the various BCs for the DBE.

2.2. Right domain (open-water), uncoupled

In the right domain, there is no ice shelf. Therefore we set a = b = 0 in equation (1). Hence, we can

replace (1) with γφ
(r)
t |0 = −w. We then combine this with the kinematic condition at the top boundary,

wt = φ
(r)
y |0, to eliminate w and obtain the following BC:

γφ
(r)
tt = −φ(r)

y , x ∈ δΩTop . (5)
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Remark Instead of imposing (5) at the Top boundary we could have solved for w = −γφ(r)
t |0 and then

used the Top BC wt − φ(r)
y |0 = 0.

In the right domain, the combined system given by (1) and (2) is now reduced to

εφ
(r)
tt = φ

(r)
xx + φ

(r)
yy , x ∈ Ω(r), t ≥ 0,

φ
(r)
x = 0, x ∈ δΩ(r)

West, t ≥ 0,

φ
(r)
x = 0, x ∈ δΩ(r)

East, t ≥ 0,

γφ
(r)
tt + φ

(r)
y = 0, x ∈ δΩ(r)

Top, t ≥ 0,

φ
(r)
y = 0, x ∈ δΩ(r)

Bottom, t ≥ 0,

φ(r) = g
(r)
1 , φ

(r)
t = g

(r)
2 , x ∈ Ω(r), t = 0,

(6)

Remark For the coupled problem (left and right domains) the West BC for φ(r), here given by φ
(r)
x = 0,

will be replaced by the interface conditions (3).

2.3. Combining the left and right domains

We now couple the left and right domains. The coupling is done only for the ocean, as the ice shelf
terminates with a free boundary condition. Hence, (1), (2), and (6) constitute the governing equations for
the fully coupled problem, where we have replaced the standalone BC at the shared interface by (3). The
main focus is to derive a stable finite difference approximation of these equations.

2.4. Wellposedness

Let the inner product for real-valued functions u, v be defined by (u, v)a =
∫ 0

−L
∫ 0

−D u
T a v dxdy, where

a > 0 (or (u, v)a =
∫ 0

−L u
T a v dx for the 1D problem). Notice that the definition for the 2D inner product

changes with the domain considered, since we also write (u, v)a =
∫ R

0

∫ 0

−D u
T a v dxdy. The corresponding

norm is given by ‖u‖2a = (u, u)a.

2.5. Left domain

Multiplying (1) by wt and integrating by parts twice leads to

(wt, wtt)a =− wtbwxxx|0−L + (wtx, wxxx)b =

− wtbwxxx|0−L + wtxbwxx|0−L − (wtxx, wxx)b − (wt, φ
(l)
t |0)γ − (wt, w) .

Using the clamped and free BC we obtain

d

dt
EB = −2(wt, φ

(l)
t |0)γ , (7)

where the continuous energy EB in the beam is given by

EB = ‖wt‖2a + ‖wxx‖2b + ‖w‖2 . (8)

For EB to be an energy it is required that EB ≥ 0, which implies that a and b have to be non-negative, all
in accordance with the underlying physics.
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Multiplying (2) by γφ
(l)
t , integrating by parts, and using the BCs leads to

(φ
(l)
t , φ

(l)
tt )γε =γ

∫ 0

−D
φ

(l)
t φ(l)

x |0−L dy + γ

∫ 0

−L
φ

(l)
t φ(l)

y |0−D dx

− (φ
(l)
tx , φ

(l)
x )γ − (φ

(l)
ty , φ

(l)
y )γ

⇓
d

dt
E

(l)
O = 2γ

∫ 0

−L
φlt wt|0 dx ,

(9)

where the continuous energy E
(l)
O in the ocean is given by

E
(l)
O = ‖φ(l)

t ‖2εγ + ‖φ(l)
x ‖2γ + ‖φ(l)

y ‖2γ . (10)

By combining (7) and (9) we obtain,

d

dt
E(l) = 0 , (11)

where the continuous energy (in the left domain) is given by

E(l) = EB + E
(l)
O = ‖wt‖2a + ‖wxx‖2b + ‖w‖2 + ‖φ(l)

t ‖2εγ + ‖φ(l)
x ‖2γ + ‖φ(l)

y ‖2γ . (12)

(Here we have used the fact that γ
∫ 0

−L φ
(l)
t wt|0 dx = (wt, φ

(l)
t |0)γ .) Hence, the total energy, given by (12),

is conserved.

2.6. Right domain

We now turn to the right domain, where there is no ice shelf, i.e., the model given by (6). The energy
method applied to (6) yields

(φ
(r)
t , φ

(r)
tt )γε =γ

∫ 0

−D
φ

(r)
t φ(r)

x |R0 dy + γ

∫ R

0

φ
(r)
t φ(r)

y |0−D dx

− (φ
(r)
tx , φ

(r)
x )γ − (φ

(r)
ty , φ

(r)
y )γ

⇓
d

dt
E(r) = 0 ,

(13)

where the continuous energy (in the right domain) is given by

E(r) =

∫ R

0

(γφ
(r)
t )2|0 dx+ ‖φ(r)

t ‖2εγ + ‖φ(r)
x ‖2γ + ‖φ(r)

y ‖2γ . (14)

Here we can use the relation, γφt|0 = −w to replace
∫ R

0
(γφ

(r)
t )2|0 dx with ‖w‖2 in (14). Hence, E(r) is

completely analogous to E(l) if we set a = b = 0.

2.7. Combining the left and right domains

The energy estimate for the combined system, given by (1), (2), and (6), where we have replaced the
standalone BC at the shared interface by (3), is given by

d

dt

(
E(l) + E(r)

)
= 0 . (15)

As before, total energy is conserved, but now it can be exchanged between the left and right domains through
the common interface.
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3. The finite difference method in 1D

In an effort of making the stability analysis of the fully coupled problem easier to follow, we start by
introducing the SBP-SAT finite difference methodology for the 1D uncoupled DBE. In Section 4 we extend
the stability analysis to the fully coupled 2D problem. First some definitions are needed.

3.1. Definitions

The following definitions are needed later in the study. The domain (−L ≤ x ≤ 0) is discretized using
the following m equidistant grid points:

xi = −L+ (i− 1)hx, i = 1, 2, . . . ,m, hx = L
m−1 .

The approximate solution at grid point xi is denoted vi, and the discrete solution vector is vT =
[v1, v2, . . . , vm]. Similarly, we define an inner product for discrete real-valued vector functions w, v ∈ Rm by
(w, v)H = wT H v, where H is positive definite. The corresponding norm is ‖v‖2H = vT H v.

Definition 3.1. To simplify notation we will write vt for the time-derivative of the discrete solution vector,
i.e., d v

dt .

The following vectors will be frequently used:

e1 = [1, 0, . . . , 0]T , em = [0, . . . , 0, 1]T . (16)

The following definition (first stated in [40, 36]) is central to the present study:

Definition 3.2. An explicit 2pth-order accurate finite difference scheme with minimal stencil width for the
Cauchy problem is denoted a 2pth-order accurate narrow-stencil.

3.2. SBP operator

SBP operators are essentially central finite difference stencils closed at the boundaries with a careful
choice of one-sided difference stencils, to mimic the integration-by-parts formula in a discrete inner product.
In the present paper we address the SBP operators by the accuracy of the central scheme and the type
of norm which they are based on. In the present study we focus on diagonal-norm SBP operators. The
definitions for first- and second-derivative SBP operators can be found in earlier papers (see for example
[13, 37, 40, 36, 35, 39, 41]). In a recent paper [42] third- and fourth-derivative SBP operators were derived.

The following SBP definition (first introduced in [36]) is central to the present study:

Definition 3.3. A difference operator D
(b)
2 = H−1(−M (b) + bmemd1;m − b1e1d1;1) approximating

∂/∂ x ( b ∂/∂ x), where b > 0, using a 2pth-order accurate narrow-stencil in the interior, is said to be a
2pth-order diagonal-norm second-derivative SBP operator if the diagonal matrix H defines a discrete norm,
M (b) = (M (b))T ≥ 0, d1;1 and d1;m are first derivative finite difference stencils at x1 and xm.

The vectors e1 and em are defined in (16). Diagonal-norm second-derivative SBP operators of orders 2,

4 and 6 were derived in [41]. For the constant coefficient case D
(b)
2 = bD2 where D2 is an approximation of

∂2/∂ x2. High-order accurate D2 operators were derived in [37]. The following lemma (first introduced in
[36]) is relevant to the present study:

Lemma 3.4. The dissipative part M (b) of a narrow-diagonal second-derivative SBP operator has the fol-
lowing property:

vTM (b)v = h
α1

b1
(d1;1v)2 + h

α1

bm
(d1;mv)2 + vT M̃ (b)v , (17)

where M̃ (b) is symmetric and positive semi-definite, and α1 a positive constant, independent of h.
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second-order fourth-order sixth-order
1 0.2508560249 0.1878715026

Table 1: α1 in Eq. 17 for the second-, fourth- and sixth-order accurate diagonal-norm second-derivative SBP operators.

For the special but important case of constant coefficients (b = 1) the numerically derived values of α1 for
the second-, fourth- and sixth-order accurate finite difference SBP operators (presented in Appendix B) are
presented in Table 1.

For completeness we restate (first introduced in [42]) the definition of a fourth-derivative SBP operator:

Definition 3.5. A difference operator
D4 = H−1

(
N − e1d3;1 + emd3;m + dT1;1d2;1 − dT1;md2;m

)
approximating ∂4/∂ x4, using a 2pth-order accurate

narrow-stencil in the interior, is said to be a 2pth-order diagonal-norm fourth-derivative SBP operator if
H = HT > 0 is diagonal, N = NT ≥ 0, d1;1 and d1;m are first derivative finite difference stencils at x1

and xm, d2;1 and d2;m are second derivative finite difference stencils at x1 and xm, and d3;1, d3;m are third
derivative finite difference stencils at x1 and xm.

The SBP operators are presented in Appendix B. For further details concerning the various SBP oper-
ators we refer to [42].

The following two lemmas first presented in [44] are relevant to the present study:

Lemma 3.6. The dissipative part N of a diagonal-norm fourth-derivative SBP operator has the following
property:

vTNv = hα2

(
(d2;1v)2 + (d2;mv)2

)
+ vT Ñ2v , (18)

where Ñ2 is symmetric and positive semi-definite, and α2 a positive constant, independent of h.

Lemma 3.7. The dissipative part N of a diagonal-norm fourth-derivative SBP operator has the following
property:

vTNv = h3 α3

(
(d3;1v)2 + (d3;mv)2

)
+ vT Ñ3v , (19)

where Ñ3 is symmetric and positive semi-definite, and α3 a positive constant, independent of h.

The values of α2 and α3, were derived numerically for the second-, fourth- and sixth-order accurate finite
difference SBP discretizations. The results are presented in Table 2.

α
(2nd)
2 α

(4th)
2 α

(6th)
2 α

(2nd)
3 α

(4th)
3 α

(6th)
3

1.250 0.505 0.325 0.4 0.928 0.158

Table 2: α2, 3 in Eqs. 18 and 19, for the second-, fourth- and sixth-order accurate diagonal-norm fourth-derivative SBP
operators.

3.3. The SBP-SAT method

The semi-discrete approximation of the ice shelf BC given by (4) can be written as

eT1 w = 0, d1;1w = 0, ‘clamped’ ,

d2;mw = 0, d3;mw = 0, ‘free’ .
(20)
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The SBP-SAT approximation of (1) is given by

awtt = −bD4w − γeTTopv
(l)
t − w + bH−1(d3;1 − τ1eT1 )T

(
eT1 w − 0

)
− bH−1(d2;1 + τ2d1;1)T (d1;1w − 0)

− σ1H
−1dT1;m (d2;mw − 0)

+ σ2H
−1em (d3;mw − 0) ,

(21)

where eTTopv
(l)
t is an approximation of φ

(l)
t |0 (see (22) and (24)). Here τ1, 2 and σ1, 2 are penalty parameters

chosen to obtain a semi-discrete energy estimate. (For the stability analysis of (21), the coupling to the

ocean governed by γeTTopv
(l)
t , can be considered a known forcing function.)

The following lemma is important in the present study:

Lemma 3.8. Eq. 21 is stable if D4 is a diagonal-norm fourth-derivative SBP operator, τ1 ≥ 2
h3α3

, τ2 ≥
2
hα2

and σ1 = σ2 = −b hold.

Proof Multiplying (21) by wTt H, and adding the transpose leads to

d

dt

(
a ‖wt‖2H + bwTNw + ‖w‖2H

)
= −2γwTt He

T
Topv

(l)
t

+ b
d

dt

(
(w1)d3;1w − (d1;1w)d2;1w − τ1w2

1 − τ2(d1;1w)2
)

+ 2(b+ σ1)(d1;mwt)d2;mw − 2(b+ σ2)(wt)md3;mw .

Choosing σ1 = σ2 = −b while using the fact that D4 is a diagonal-norm fourth-derivative SBP operator we
obtain

d

dt
ĒB = −2γwTt He

T
Topv

(l)
t ,

where

ĒB = a ‖wt‖2H + bwTNw + ‖w‖2H + b w̃T1 A1w̃1 ,

and

w̃1 =


w1

d1;1w
d2;1w
d3;1w

 , A1 =


τ1 0 0 −1
0 τ2 1 0
0 1 0 0
−1 0 0 0

 .

To establish ĒB as an energy we need to show that ĒB ≥ 0. Using Lemmas 3.6, 3.7 we have

ĒB ≥ bwTNw + b w̃T1 A1w̃1 ≥
1

2
wT
(
Ñ2 + Ñ3

)
w + b w̃T1 Ã1w̃1 ≥ b w̃T1 Ã1w̃1

where

Ã1 =


τ1 0 0 −1
0 τ2 1 0
0 1 h

2α2 0

−1 0 0 h3

2 α3

 .

By choosing τ1 ≥ 2
h3α3

, τ2 ≥ 2
hα2

, Ã1 is positive semi-definite and ĒB ≥ 0, thus defining a semi-norm.
Therefore the scheme is stable with the following discrete energy estimate,

d

dt
ĒB = −2γwTt He

T
Topv

(l)
t ,

which mimics the corresponding continuous energy estimate (8) in the ice shelf. �
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Remark The term bwTNw is a discrete analog of b ‖wxx‖2b in the continuous energy, while b w̃T1 A1w̃1 is a
O(hp) correction due the boundary conditions.

4. The finite difference method in 2D

We will here extend the SBP-SAT methodology to 2D, in order to discretize the coupled system in the
ocean given by (2) and (6) with the interface coupling (3).

4.1. Definitions

To simplify the 2D analysis we introduce some notation, beginning with the Kronecker product:

C ⊗D =

c1,1D · · · c1,qD
...

...
cp,1D · · · cp,qD

 ,

where C is a p × q matrix and D is an m × n matrix. Two useful rules for the Kronecker product are
(A⊗B)(C ⊗D) = (AC)⊗ (BD) and (A⊗B)T = AT ⊗BT .

The left domain Ω(l) is discretized with an (mx + 1)× (my + 1)-point equidistant grid defined as

xi = −L+ (i− 1)hx, i = 1, 2, . . . ,mx, hx = L
mx−1 ,

yj = −D + (j − 1)hy, j = 1, 2, . . . ,my, hy = D
my−1 .

The numerical approximation at grid point (xi, yj) is denoted v
(l)
i,j . (The grid for the right domain is defined

analogously and we will use v(r) to denote the solution vector.)
The tensor product derivations are more transparent if we redefine the component vector vi,j as a

“vector of vectors.” Specifically, define a discrete solution vector vT = [v1, v2, . . . , vmx ], where vp =
[vp,1, vp,2, . . . , vp,my

] is the solution vector at xp along the y-direction, see Figure 2. To distinguish whether
a 2D difference operator P is operating in the x- or the y-direction, we use the notations Px and Py,
respectively. The following 2D operators are frequently used:

D2x = D2 ⊗ Imy , D2y = Imx ⊗D2,

Hx = H ⊗ Imy , Hy = Imx ⊗H,
eWest = e1 ⊗ Imy , eBottom = Imx ⊗ e1,

eEast = emx ⊗ Imy , eTop = Imx ⊗ emy ,

d1;West = d1;1 ⊗ Imy , d1;Bottom = Imx ⊗ d1;1,

d1;East = d1;m ⊗ Imy , d1;Top = Imx ⊗ d1;m,

(22)

where D2 and H are the 1D operators introduced in Section 3. Imx
and Imy

are identity matrices of
appropriate sizes, and d1;1, d1;m, e1, emx

and emy
are 1D “boundary” vectors defined by (16) and Definition

3.3. We further introduce the 2D norm operator H̄ = HxHy. eTTopv corresponds to the solution vector at
the Top boundary.

4.2. Stability analysis in the ocean

In this section we present the SBP-SAT approximations of (2) and (6), with the interface coupling (3).
The semi-discrete approximation of the continuity conditions (3) can be written

I1 ≡ eTEastv(l) − eTWestv
(r) = 0 , I2 ≡ d1;Eastv

(l) − d1;Westv
(r) = 0 , (23)

where v(l, r) are the solution vectors corresponding to the left and right domains respectively. The left and
right domains are discretized using my grid points along the shared interface (at x = 0).
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Figure 2: Domain 2D.

The SBP-SAT method for (2) and (6) with the interface coupling (3) is given by

εv
(l)
tt = D2xv

(l) +D2yv
(l)

+τH−1
x eEast(I1)

+σH−1
x dT1;East(I1)

+βH−1
x eEast(I2)

+H−1
x eWest(d1;Westv

(l))

+H−1
y eBottom(d1;Bottomv

(l))

+H−1
y eTop(wt − d1;Topv

(l))

εv
(r)
tt = D2xv

(r) +D2yv
(r)

−τH−1
x eWest(I1)

+σH−1
x dT1;West(I1)

+βH−1
x eWest(I2)

−H−1
x eEast(d1;Eastv

(r))

+H−1
y eBottom(d1;Bottomv

(r))

−H−1
y eTop(γeNorthv

(r)
tt + d1;Topv

(r))

(24)

The following lemma is central in the present study:

Lemma 4.1. The scheme (24) is stable if D2 is a diagonal-norm second-derivative SBP operator and β =
− 1

2 , σ = 1
2 , and τ ≤ − 1

2hα1
hold.

Proof Let β = − 1
2 , σ = 1

2 . Multiplying Eq. 24 by (γv(l))Tt H̄ and (γv
(r)
t )T H̄, respectively, and adding the

transpose leads to

d

dt

(
Ē

(l)
O + Ē(r) − zT (R⊗H)z

)
= 2γ(eTTopv

(l)
t )THwt ,

11



where

Ē
(l)
O = εγ ‖v(l)

t ‖2H̄ + γ(v(l))T M̃ ⊗Hv(l) + γ(v(l))TH ⊗Mv(l) ,

Ē(r) = εγ ‖v(r)
t ‖2H̄ + γ(v(r))T M̃ ⊗Hv(r) + γ(v(r))TH ⊗Mv(r)

+(γeTTopv
(r)
t )TH(γeTTopv

(r)
t ) .

Ē
(l)
O is a discrete analogue of the continuous energy given by (10), where γ(v(l))T M̃⊗Hv(l)+γ(v(l))TH⊗Mv(l)

mimics ‖φ(l)
x ‖2γ +‖φ(l)

y ‖2γ . The discrete energy in the right domain Ē(r) mimics the corresponding continuous

energy given by (14), since γ(v(r))T M̃⊗Hv(r)+γ(v(r))TH⊗Mv(r) is a discrete analogue to ‖φ(r)
x ‖2γ+‖φ(r)

y ‖2γ .

The term zT (R⊗H)z is a correction from the interface coupling given by,

z =


eEastv

(l)

eWestv
(r)

d1;Eastv
(l)

d1;Westv
(r)

 , R =


τ −τ 1

2 − 1
2

−τ τ 1
2 − 1

2
1
2

1
2 −hα1 0

− 1
2 − 1

2 0 −hα1

 .

Here we have used Lemma 3.4 and the fact that D2 is a narrow-diagonal SBP operator. By choosing

τ ≤ − 1
2hα1

, R is negative semi-definite and Ē
(l)
O + Ē(r) − zT (R ⊗H)z defines a semi-norm, and we obtain

the following discrete energy estimate

d

dt

(
Ē

(l)
O + Ē(r) − zT (R⊗H)z

)
= 2γeTTopv

(l)
t )THwt .

�

4.3. Stability analysis of the fully coupled problem

We will now utilise the stability analysis of the previous (uncoupled) problems and analyse stability of
the fully coupled problem, given by (21) and (24). The energy estimate for the combined system is given by

d

dt

(
Ē

(l)
O + Ē(r) − zT (R⊗H)z + ĒB + b w̃T1 A1w̃1

)
= 0 , (25)

where we have utilised the fact that γwTt He
T
Topv

(l)
t = γ(eTTopv

(l)
t )THwt. Hence, (25) exactly mimics the

continuous energy estimate given by (15).

5. Time integration

The stability analysis in the previous section was done for the semi-discrete problem. Due to the nature
of the problem, we expect the semi-discrete problem to be stiff. It is of course possible to time-integrate using
an explicit method, such as the classical 4th order Runge-Kutta method, but numerical tests (not shown
here) indicate the necessity of an implicit method for computational efficiency. In the present study we will
distinguish between two different implicit time-integrators: 1.) an 8th order SBP-in-time discretisation (see
[7] for details), and 2.) a second order centered finite difference approximation. To simplify the analysis we
recast the semi-discrete problem, given by (21) and (24), into a second order ODE system given by

Aqtt = −Bq − Cqt +G(t) , t ≥ 0 ,
q = f1 , qt = f2 , t = 0 ,

(26)
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where f1 and f2 are initial data,

qT =
[
w v(l) v(r)

]
,

A =

a Imx
0 0

0 ε Imx
⊗ Imy

0
0 0 ε Imx ⊗ Imy + γH−1

y eTNortheNorth

 ,

−B =

B11 0 0
0 B22 B23

0 B32 B33

 .

−C =

 0 −γeTNorth 0
H−1
y eNorth 0 0

0 0 0

 ,

G(t) =

 0
0

H−1
x eEastḡ(t))

 ,

and

B11 = −bD4 − Im + bH−1(d3;1 − τ1eT1 )T eT1 − bH−1(d2;1 + τ2d1;1)T d1;1

− σ1H
−1dT1;md2;m + σ2H

−1emd3;m

B22 = D2x +D2y + τH−1
x eEaste

T
East + σH−1

x dT1;Easte
T
East + γH−1

x eEastd1;East

+H−1
x eWestd1;West +H−1

y eSouthd1;South −H−1
y eNorthd1;North

B33 = D2x +D2y + τH−1
x eWeste

T
West − σH−1

x dT1;Weste
T
West − γH−1

x eWestd1;West

−H−1
x eEastd1;East +H−1

y eSouthd1;South −H−1
y eNorthd1;North

B23 =− τH−1
x eEaste

T
West − σH−1

x dT1;Easte
T
West − γH−1

x eEastd1;West ,

B32 =− τH−1
x eWeste

T
East + σH−1

x dT1;Weste
T
East + γH−1

x eWestd1;East .

Here

τ1 ≥
2

h3α3
, τ2 ≥

2

hα2
, σ1 = σ2 = −b, τ ≤ − 1

2hα1
, γ = −1

2
, σ =

1

2
.

The values of the parameter α1 (for different orders of accuracy) are presented in Table 1 and the values of
α2, 3 are presented in Table 2.

A, B, and C are m3×m3 matrices, where m3 = m2
x×my. We introduce Ã = H̄3A, B̃ = H̄3B, C̃ = H̄3C

where H̄3 is given by

H̄3 =

H 0 0
0 γH̄ 0
0 0 γH̄

 . (27)

Definition 5.1. If Ã = ÃT is positive definite and B̃ = B̃T is positive semi-definite,

EH = qTt Ãqt + qT B̃q ,

is non-negative and EH = 0 implies that qt = 0. Hence, EH defines a semi-norm.

Lemma 5.2. If Ã = ÃT ≥ 0, C̃ + C̃T ≥ 0 and B̃ = B̃T ≥ 0, the ODE system (26) is stable.
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Proof Multiplying the homogeneous version of (26) by qTt H̄3 and adding the transpose leads to

qTt H̄3Aqtt + qTtt(H̄3A)T qt = −qTt (H̄3B)q − qT (H̄3B)T qt − qTt (H̄3C − (H̄3C)T )qt

⇓
d

dt
EH = −qTt (C̃ + C̃T )qt .

In the last step we use the fact that Ã = ÃT is positive definite and B̃ = B̃T is positive semi-definite such
that EH defines a semi-norm (see Definition 5.1). If C̃ + C̃T ≥ 0 the time-growth of EH is non-positive. �

The semi-discrete SBP-SAT approximation of the fully coupled problem, given by (21) and (24), fulfils (26)
such that the conditions in Lemma 5.2 hold.

5.1. 8th order SBP in time

In [47, 33] a novel idea to discretise a first order ODE system using SBP operators was presented.
In the present study we will utilize an 8th order accurate SBP discretisation presented in [7]. The SBP
discretisation is very accurate, but requires the ODE system (26) to be recast into first order form and is
also rather memory consuming. An alternative implicit method is presented in the next subsection.

5.2. 2nd order implicit in time

Here we will present an implicit, second order accurate finite difference method that does not require
reformulation into first order form. For many applications with only modest accuracy requirements, this
method is likely to be the most efficient.

Let tn = nk, n = 0, 1, . . . denote the discrete time-levels, where k is the time-step, and introduce the no-
tation qn = q(tn). We introduce the following second-order accurate central finite difference approximations,
D0q

n = (qn+1 − qn−1)/(2 k) and D+D−q
n = (qn+1 − 2qn + qn−1)/k2, of the first and second derivatives in

(26). The first derivative in the initial step can be approximated with D+q
0 = (q1 − q0)/k. By replacing

the first derivative in the initial step by D+q
0 and inserting appropriate Taylor expansions we obtain the

following second-order accurate approximation of (26):

A qn+1−2qn+qn�1

k2 = −B qn+1+qn�1

2 − C qn+1−qn�1

2 k +Gn , n = 1, . . .

q0 = f1,
q1−f1
k = f2 − k

2A
−1(Bf1 + Cf2 −G0) .

(28)

Definition 5.3. Let Ā = ĀT and B̄ = B̄T . If Ā is positive definite and B̄ is positive semi-definite,

En =
(
D+q

n, ĀD+q
n
)

+

(
qn+1 + qn

2
, B̄

qn+1 + qn

2

)
,

is non-negative for all qn, qn+1 and En = 0 imply qn+1 = qn. Hence, En defines a semi-norm. Here we
define

(
D+q

n, ĀD+q
n
)

= (D+q
n)
T
Ā (D+q

n).

We will make use of the following two relations (where Ā = ĀT and B̄ = B̄T ):(
qn+1 − qn−1, Ā(qn+1 + qn−1)

)
+
(
qn+1 + qn−1, Ā(qn+1 − qn−1)

)
= 2

(
qn+1 − qn, Ā(qn+1 − qn)

)
+ 4

(
qn+1, Āqn

)
− 2

(
qn − qn−1, Ā(qn − qn−1)

)
− 4

(
qn, Āqn−1

)
,

(29)

(qn+1, B̄qn) +
(
qn, B̄qn+1

)
=

1

2

(
qn+1 + qn, B̄(qn+1 + qn)

)
− 1

2

(
qn+1 − qn, B̄(qn+1 − qn)

)
.

(30)

The following Theorem is one of the main results in the present study:
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Theorem 5.4. Eq. 28 is an unconditionally stable approximation of (26) if Lemma 5.2 applies.

Proof Start by setting G = 0 (since G does not affect stability), and rewrite (28) as(
A

k2
+
B

2

)
qn+1 + qn−1

k2
=

(
2
A

k2

)
qn − C q

n+1 − qn−1

2 k
.

Multiplying by
(
qn+1−qn�1

2 k

)T
H̄3 leads to(

qn+1 − qn−1

2 k
,

(
Ã

k2
+
B̃

2

)(
qn+1 + qn−1

k2

))
=

−

(
qn+1 − qn−1

2 k
,

(
2
Ã

k2

)
vn

)
−
(
qn+1 − qn−1

2 k
, C̃

(
qn+1 − qn−1

2 k

))
.

By adding the transpose, assuming Ã = ÃT and B̃ = B̃T , we obtain(
qn+1 − qn−1

2 k
,

(
Ã

k2
+
B̃

2

)(
qn+1 + qn−1

k2

))
+qn+1 + qn−1

k2
,

(
Ã

k2
+
B̃

2

)T (
qn+1 − qn−1

2 k

)
= −

(
qn+1 − qn−1

2 k
,

(
2
Ã

k2

)
vn

)
−

qn,(2
Ã

k2

)T
qn+1 − qn−1

2 k


−
(
qn+1 − qn−1

2 k
, (C̃ + C̃T )

(
qn+1 − qn−1

2 k

))
.

By using the two relations (29) and (30) we obtain

1

k

(
D+q

n,

(
Ã+

k2

4
B̃

)
D+q

n

)
+

1

k

(
qn+1 + qn

2
,

1

4
B̃
qn+1 + qn

2

)
=

1

k

(
D+q

n−1,

(
Ã+

k2

4
B̃

)
D+q

n−1

)
+

1

k

(
qn−1 + qn

2
,

1

4
B̃
qn−1 + qn

2

)
−
(
D0q

n, (C̃ + C̃T )D0q
n
)
.

This can be written as

En+1 − En

k
= −

(
D0q

n, (C̃ + C̃T )D0q
n
)
,

where the semi-norm En is given by Definition 5.3, where Ā = Ã+ k2

4 B̃ is positive definite and Ā = 1
4 B̃ is

positive semi-definite . If C̃ + C̃T ≥ 0 we conclude that the time-growth of the semi-norm En is bounded.
�

6. Numerical verifications

In this section the accuracy and convergence properties of the SBP-SAT approximations, defined by (21)
and (24), are verified by numerical simulations. We perform three verification tests: 1.) waves in the fully
ice-covered domain, as defined in Section 2.1; 2.) waves in the open ocean domain, as defined in Section 2.2;
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and 3.) waves in the fully coupled problem (left and right domain coupled). For all computations the 8th
order (SBP) implicit time integrator is employed, to make sure the time discretisation errors are negligible.

The first two verification tests employ analytical plane-wave solutions for the time-harmonic problem.
Inhomogeneous BC are set so that the surface plane waves for the respective problems are exact solutions.
In Figure 3 we present the initial conditions of φ and w for the two different cases.

(a) Ice covered domain (first test) (b) Open water domain (second test)

Figure 3: Initial conditions (φ and w) for the first and second verification test problems involving time-harmonic wave solutions.
The wave disturbance is confined to the surface, especially for the open water test.

For the fully coupled problem (the third verification test), an analytic solution cannot easily be derived
without the inclusion of mathematical forcing functions. An alternative, chosen here, is to replace the
analytic solution with a computation done on a very fine grid, i.e., comparing against an accurate reference
solution. The parameter values used for all three verification tests are presented in Table 3.

Verification/parameters a b γ ε
Ice covered (test 1) 0.18 0.32 0.7 2.2e-3
Open water (test 2) 0.7 2.2e-3
Fully coupled (test 3) 0.1112 1.2419 0.4916 2.6e-3

Table 3: Parameter values used for the three verification tests.

6.1. Test 1: Ice-covered domain

An analytic solution to (1) and (2), in infinite depth water, is given by

φ = eλy sin(κx− ωt),

w =
λ

ω
cos(κx− ωt),

(31)
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where

λ =
ω2γ

−aω2 + bκ4 + 1
, (32)

and κ and ω satisfy the dispersion relation

(−aω2 + bκ4 + 1)2κ2 = εω2 + ω4γ2. (33)

This is a third order polynomial in ω2 which can easily be solved numerically (or using a symbolic math
software). In the numerical simulations we set k = 7π which leads to ω ≈ 461 and λ ≈ 4. The initial data
is presented in Figure 3. The solution is evolved for 3 periods, i.e., until time T = 3× 2π/ω. The time step
was set to (2π/ω)/5 for the coarsest grid and then refined together with the grid resolution (,i.e., if N is
doubled the time step is reduced by a factor of 2.) The convergence results for the 2nd, 4th and 6th order
accurate SBP-SAT approximations are shown in Table 4 and Figure 4. The discrete l2-errors are computed
for the full wave field, including both φ and w. Here q denotes the convergence rate.

2th order 4th order 6th order
N log10(l2) q log10(l2) q log10(l2) q
31 -0.26 -1.11 -1.43
43 -0.54 -1.91 -1.80 -4.74 -2.32 -6.13
61 -0.86 -2.04 -2.47 -4.30 -3.37 -6.76
86 -1.17 -2.05 -3.10 -4.18 -4.39 -6.74
121 -1.47 -2.03 -3.73 -4.20 -5.35 -6.40

Table 4: Convergence resulsts for the ice-covered problem, comparing the 2nd, 4th and 6th order approximations. N is the
number of grid points in the x-direction.

(a) Ice covered domain (first test) (b) Open water domain (second test)

Figure 4: Convergence results (in the left and right subfigures) are taken from Tables 4 and 5.

6.2. Test 2: Open-water domain

An analytic solution to (6), in infinite depth water, for the open water domain is given by

φ = eλy sin(κx− ωt), (34)

where λ = γω2, while κ and ω satisfy

−γ2ω4 + εω2 − κ2 = 0. (35)
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Solving for ω2 we have

ω2 = − ε

2γ2
+

√
ε2

4γ4
+
κ2

γ2
. (36)

In the numerical simulations we set k = 7π which leads to ω ≈ 5.6 and λ ≈ 22. The solution is evolved for
3 wave periods, i.e., until T = 3× 2π/ω. The time step was set to (2π/ω)/5 for the coarsest grid and then
refined together with the grid resolution. The convergence results for the 2nd, 4th and 6th order accurate
SBP-SAT approximations are shown in Table 5 and Figure 4.

2th order 4th order 6th order
N log10(l2) q log10(l2) q log10(l2) q
31 -0.36 -1.06 -1.63
43 -0.62 -1.75 -1.59 -3.61 -2.28 -4.41
61 -0.91 -1.89 -2.18 -3.83 -3.05 -5.02
86 -1.20 -1.95 -2.79 -3.99 -3.90 -5.57
121 -1.50 -1.98 -3.40 -4.09 -4.78 -5.88

Table 5: Convergence results for the open ocean problem, comparing the 2nd, 4th and 6th order approximations. N is the
number of grid points in the x-direction.

6.3. Test 3: Fully coupled problem

To achieve a realistic setup for the fully coupled problem we use a domain of length L = 15.73 and water
depth D = 0.4916, where the left half is covered with ice and the right half has no ice cover. The side and
bottom water boundaries have homogeneous Neumann (no flow) boundary conditions. The parameters a,
b, γ, and ε (Table 3) are representative of a thick ice shelf. The initial condition is set to a Gaussian-shaped
pulse in the velocity potential of the water,

φ = exp(−1

2
(x− 3

4
L)2/D2), (37)

with φt = 0. The ice starts in an undeformed rest state, w = wt = 0, and is clamped, w = wx = 0, at the
left boundary and free, wxx = wxxx = 0, at the right boundary.

The problem is solved to final time T = 62.92 on a series of grids using the prescribed method and the
8th order time-integration scheme. The time step is chosen as T/16 for the coarsest grid and is then refined
together with the spatial dimension. The reference solution (see Figure 6) was obtained using 2177×18 grid
points computed with the 6th order accurate discretisation. The convergence results for the 2nd, 4th and
6th order accurate SBP-SAT approximations are shown in Table 6 and Figure 5.

Remark We suspect that the somewhat irregular convergence behavior is attributed to the discontinuity in
the solution that develops at the ice edge, which arises from the change in top surface boundary condition for
the water PDE. Despite this discontinuity, the convergence test demonstrates that the high-order methods
are superior to the second-order method on fine meshes.

2th order 4th order 6th order
N log10(l2) q log10(l2) q log10(l2) q
69 -0.25 -0.23 -0.23
137 -0.68 -1.43 -0.75 -1.74 -0.75 -1.74
273 -1.58 -3.00 -1.80 -3.47 -1.80 -3.48
545 -1.91 -1.10 -3.59 -5.94 -3.75 -6.48

Table 6: Convergence results for the fully coupled problem, comparing the 2nd, 4th and 6th order approximations. N is the
number of grid points in the x-direction.
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Figure 5: Convergence for the coupled problem. The dashed lines show convergence rates 2 and 6. Results are from Table 6.

6.

(a) t = 0

(b) t = 1
10
T

(c) t = T

Figure 6: Reference solution (w and φ) to the fully coupled problem at three different times, obtained using the 6th order space
discretisation and 2177 × 18 grid-points. T = 62.92.
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parameter value units
water depth, H 600 m

water density, ρw 1000 kg/m3

water sound speed, cw 1500 m/s
gravitational acceleration, g 9.8 m/s2

ice density, ρi 920 kg/m3

ice thickness, h 100, 200, 300 m
ice bending stiffness, D 1015 × (h/100 m)3 N m

Table 7: Parameters for the study of reflection/transmission and flexural-gravity wave dispersion.

7. Applications

In this section we demonstrate how our newly developed code can be used to study the interaction
of incident ocean waves with ice shelves. We revert to dimensional parameters, using the notation in
Appendix A, and select water depths, ice thicknesses, and other parameters (Table 7) to approximately
coincide with ice shelves in Antarctica. Results of the study are summarized in Figure 7.

As in Figure 1, the domain is divided into an open-water region (0 < x < 50 km) and an ice-covered
region (−50 km < x < 0). Uniform grid spacings of 50 m and 30 m are used in the horizontal and vertical
directions, respectively, and the solution is evolved using the second-order time stepping method of Section
5.2 with a constant time step of 1 s. Waves are initialized in the open water using a nonzero initial pressure
distribution, which is depth-independent and of Gaussian shape in the horizontal direction (having standard
deviation, or width, equal to the water depth H and centered at x = 10 km). Surface gravity waves in the
open ocean span a range of wavelengths or periods, with the longest periods propagating in the shallow water
limit with speed (gH)1/2 and shorter periods propagating more slowly. Upon encountering the ice edge, the
waves are both reflected back into the open water and transmitted into the ice-covered water. Transmission
is favored for thinner ice and at longer periods. Upon entering the ice-covered region, the waves become
anamolously dispersed flexural-gravity waves that reflect from the grounding line (i.e., clamped boundary)
at x = −50 km.

8. Conclusions and future work

We developed a provably stable high-order accurate SBP-SAT finite difference method for flexural-
gravity waves and other waves in a compressible ocean partially covered in ice. To guarantee stability we
employ SBP operators (derived in [41, 42]) to approximate the fourth-derivative term in the dynamic beam
equation, and the second derivative terms in the wave equation for velocity potential, combined with the
SAT technique to impose the BC and interface conditions weakly. Numerical computations corroborate the
stability and accuracy properties and show that the higher-order accurate approximations are superior to
the corresponding second-order accurate SBP-SAT schemes.

While the example simulations in this study are limited to relatively simple geometries and problems,
slight generalizations of the method can be used to study more complex problems. For example, by adding
additional water blocks, with appropriate coupling between them, we could account for thinner water beneath
the ice shelf than external to it. The ice-shelf/ocean model we have developed could also be coupled to an
underlying elastic half-space, obeying the elastic wave equation, to study how seismic surface waves are
influenced by the ocean and ice layers. Such studies are essential to properly interpret the wealth of new
observations that are being made on ice shelves.
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Figure 7: (a) Flexural-gravity wave dispersion curves for different ice thicknesses h (with other parameters given in Table 7).
(b)-(d) Space-time plots of surface uplift w(x, t) illustrating reflection/transmission of surface gravity waves from open-water
region (x > 0) to ice shelf (x < 0). Thicker ice increases phase velocity, leading to more pronounced dispersion (with shorter
wavelengths and periods propagating faster in the ice). Black lines show shallow wave wave speed in open water, (gH)1/2, and
sound speed.
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Appendix A. Governing equations and nondimensionalization

In this section we introduce the governing equations of the water and ice. We nondimensionalize the
equations using scalings relevant to FGWs and discuss the meaning of the dimensionless parameters.

Consider a body of water of uniform depth H, density ρw, and sound speed cw. Let x and y be
horizontal and vertical coordinates, with y positive up and y = 0 the location of the equilibrium water
surface. Neglecting stratification and assuming spatially uniform properties, the velocity potential φ(x, y, t)
obeys the wave equation (e.g., [29, 62])

−c−2
w φtt + φxx + φyy = 0, (A.1)

with horizontal and vertical particle velocities given by

u = φx and v = φy (A.2)

and pressure by

p = −ρwφt. (A.3)

Thus φ, u, v, and p all depend on x, y, t, while ρw and cw are constant.
The perturbed surface of the water is y = w(x, t). Assuming small amplitude waves, the problem is

linearized so that boundary conditions can be applied on the unperturbed surface y = 0. The linearized
kinematic condition is

wt = v(x, 0, t) = φy(x, 0, t), (A.4)

using (A.2) for the last equality.
The water surface boundary condition involves pressure on the moving water surface, p(x,w(x, t), t). In

the context of our linearized theory and accounting for gravity, this pressure is given by [28, 32]

p(x,w(x, t), t) ≈ p(x, 0, t)− ρwgw(x, t) = −ρw [φt(x, 0, t) + gw(x, t)] , (A.5)

where g is the gravitational acceleration, and the last equality follows from (A.3). The −ρwgw term accounts
for the hydrostatic increase of pressure with depth in the unperturbed reference state, and vanishes in the
absence of gravity (g = 0).

In open water (i.e., no ice shelf), pressure on the surface is set equal to zero: p(x,w(x, t), t) = 0 or, using
(A.5),

φt(x, 0, t) + gw(x, t) = 0. (A.6)

For this open water case, equations (A.4) and (A.6) can be combined, by taking ∂/∂t of (A.6) and using
(A.4) to eliminate wt, into a single condition on φ:

φtt(x, 0, t) + gφy(x, t) = 0. (A.7)

With an ice layer, the pressure in (A.5) is set equal to the vertical elastic restoring force per unit area
from ice flexure, q(x, t):

−ρw [φt(x, 0, t) + gw(x, t)] = q(x, t). (A.8)

The ice obeys the Euler-Bernoulli plate equation, describing an elastic plate subject to load q:

ρihwtt +Dwxxxx = q(x, t), (A.9)
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where ρi is the ice density, h is the ice thickness, and D is the bending stiffness, all assumed to be spatially
uniform. Equations (A.8) and (A.9) can be combined into a single equation by eliminating q:

ρihwtt +Dwxxxx = −ρw [φt(x, 0, t) + gw(x, t)] , (A.10)

which must be solved together with the kinematic condition (A.4).
There are many ways to nondimensionalize these equations. We do this using a scaling appropriate for

shallow water surface gravity waves. In open water, such waves (having wavelength much greater than the
water depth H) propagate without dispersion at speed

√
gH. Let ω be a characteristic angular frequency

and ω/
√
gH be the associated characteristic wavenumber. Time and distance are nondimensionalized as

t′ = ωt, x′ = ωx/
√
gH, and y′ = ωy/

√
gH, where nondimensional variables are denoted with a prime. Let A

be the characteristic wave amplitude, such that w′ = w/A. In addition, p′ = p/(ρwgA) and φ′ = φ/(
√
gHA).

With these definitions, the governing equations and boundary conditions can be nondimensionalized.
We now drop the primes and present the nondimensional equations and dimensionless parameters. Equa-

tion (A.1) becomes

−εφtt + φxx + φyy = 0, (A.11)

where

ε ≡ gH/c2w. (A.12)

In Earth’s oceans, ε � 1, and the smallness of this parameter justifies the relative unimportance of com-
pressibility on surface gravity waves and gravity on acoustic waves [57, 19]. The open water condition (A.7)
becomes

γφtt(x, 0, t) + φy(x, 0, t) = 0, (A.13)

where

γ ≡ ω
√
H/g. (A.14)

In ice-covered water, the kinematic condition (A.4) is

wt = φy(x, 0, t) (A.15)

and the plate equation is

awtt + bwxxxx = −γφt(x, 0, t)− w(x, t), (A.16)

where

a ≡ ρihω
2

ρwg
and b ≡ Dω4

ρwg3H2
=

[
ω√
gH

(
D

ρwg

)1/4
]4

. (A.17)

The parameter a quantifies the importance of inertia of the ice (i.e., the additional mass of the ice layer)
and b quantifies ice rigidity (i.e., flexural restoring forces and elastic resistance to bending). The second
form of b reveals the product of the characteristic wavenumber of shallow water waves, ω/

√
gH, and the

flexural length, (D/ρwg)1/4. Parameter estimates for Antarctic ice shelves demonstrate that a, b, and γ are
O(0.1− 1) at relevant wave periods ∼10 to 300 s.

Appendix B. SBP operators

Below we list the second-derivative SBP operators for the second-, fourth- and sixth-order cases (first
reported in [41, 45]). The second-derivative operator

D
(b)
2 = H−1(−M (b) + bmemd1;m − b1e1d1;1) ,
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approximates ∂/∂ x ( b(x) ∂/∂ x), where b(x) > 0. The fourth-derivative SBP operator is given by,

D4 = H−1
(
N − e1d3;1 + emd3;m + dT1;1d2;1 − dT1;md2;m

)
.

The boundary closures (the coefficients) are presented for the H, M (b) and N matrices. Notice that the
coefficients in H, M (b) and N should be multiplied by h, 1

h and 1
h3 , respectively. Here h denotes the

grid-spacing.

Appendix B.1. Second order case.

The boundary derivative operators are given by

d1;1v = −3v1+4v2−v3
2h , d1;mv = +3vm−4vm�1+vm�2

6h

d2;1v = v1−2v2+1v3
h2 , d2;mv = vm−2vm�1+vm�2

h2

d3;1v = −v1+3v2−3v3+v4
h3 , d3;mv = +vm−3vm�1+3vm�2−vm�3

h3

The interior schemes of D4 is given by

(D4v)j =
vj−2 − 4vj−1 + 6vj − 4vj+1 + vj+2

h4

The norm is the traditional second order norm, i.e, the first and last coefficients are given by H1,1 = Hm,m =
1
2 , and the interior is a diagonal matrix with ones. Notice that the coefficients in the norm H should be
multiplied by h to have the correct scaling with h.

The left boundary closure of M (b) (given by a 3× 3 matrix) is given by
1
2 b1 + 1

2 b2 − 1
2 b1 − 1

2 b2 0

− 1
2 b1 − 1

2 b2
1
2 b1 + b2 + 1

2 b3 − 1
2 b2 − 1

2 b3

0 − 1
2 b2 − 1

2 b3
1
2 b2 + b3 + 1

2 b4

 .
The corresponding right boundary closure is given by replacing bi → bm+1−i for i = 1..4 followed by a
permutation of both rows and columns.

The interior stencil of M (b) at row i is given by (i = 4 . . .m− 3):

mi,i−1 = − 1
2 bi−1 − 1

2 bi

mi,i = 1
2 bi−1 + bi + 1

2 bi+1

mi,i+1 = − 1
2 bi − 1

2 bi+1

The upper part of N ,

N1,1 = 13
10

N1,2 = − 12
5

N1,3 = 9
10

N1,4 = 1
5

N2,2 = 26
5

N2,3 = − 16
5

N2,4 = 2
5

N3,3 = 47
10

N3,4 = − 17
5

N4,4 = − 29
5

Appendix B.2. Fourth order case.

The boundary derivative operators are given by

d1;1v = −11v1+18v2−9v3+2v4
6h , d1;mv = +11vm−18vm�1+9vm�2−2vm�3

6h

d2;1v = 2v1−5v2+4v3−v4
h2 , d2;mv = 2vm−5vm�1+4vm�2−1vm�3

h2

d3;1v = −v1+3v2−3v3+v4
h3 , d3;mv = +vm−3vm�1+3vm�2−vm�3

h3
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The interior scheme of D4 is given by

(D4v)j =
−vj−3 + 12vj−2 − 39vj−1 + 56vj − 39vj+1 + 12vj+2 − vj+3

6h4

The upper part of the norm H,

H1,1 = 17
48 H2,2 = 59

48 H3,3 = 43
48 H4,4 = 49

48

The interior stencil of −M (b) at row i is given by (i = 7 . . .m− 6):

mi, i�2 = 1
6 bi�1 − 1

8 bi�2 − 1
8 bi

mi, i�1 = 1
6 bi�2 + 1

6 bi+1 + 1
2 bi�1 + 1

2 bi

mi, i = − 1
24 bi�2 − 5

6 bi�1 − 5
6 bi+1 − 1

24 bi+2 − 3
4 bi

mi, i+1 = 1
6 bi�1 + 1

6 bi+2 + 1
2 bi + 1

2 bi+1

mi, i+2 = 1
6 bi+1 − 1

8 bi − 1
8 bi+2

.

The boundary closure of M (b) (given by a 6× 6 matrix) is presented in [41]. (The coefficients fill almost a
page.)

The upper part of N ,

N1,1 = 5762947
2316384

N1,2 = − 6374287
1158192

N1,3 = 573947
165456

N1,4 = − 124637
289548

N1,5 = 67979
2316384

N1,6 = − 60257
1158192

N2,2 = 30392389
2316384

N2,3 = − 2735053
289548

N2,4 = 273109
165456

N2,5 = 83767
1158192

N2,6 = 245549
2316384

N3,3 = 5266855
579096

N3,4 = − 1099715
289548

N3,5 = 869293
1158192

N3,6 = − 10195
144774

N4,4 = 3259225
579096

N4,5 = − 324229
72387

N4,6 = 1847891
1158192

N5,5 = 2626501
330912

N5,6 = − 7115491
1158192

N6,6 = 21383077
2316384

Appendix B.3. Sixth order case.

The boundary derivative operators are given by

d1;1v = −25v1+48v2−36v3+16v4−3v5
12h , d1;mv = +25vm−48vm�1+36vm�2−16vm�3+3vm�4

12h

d2;1v = 35v1−104v2+114v3−56v4+11v5
12h2 , d2;mv = 35vm−104vm�1+114vm�2−56vm�3+11vm�4

12h2

d3;1v = −5v1+18v2−24v3+14v4−3v5
2h3 , d3;mv = +5vm−18vm�1+24vm�2−14vm�3+3vm�4

2h3

The interior scheme of D4 is given by

(D4v)j =
7vj�4�96vj�3+676vj�2�1952vj�1+2730vj�1952vj+1+676vj+2�96vj+3+7vj+4

240h4

The upper part of the norm H,

H1,1 = 13649
43200

H2,2 = 12013
8640

H3,3 = 2711
4320

H4,4 = 5359
4320

H5,5 = 7877
8640

H6,6 = 43801
43200
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The interior stencil of M (b) at row i is given by (i = 10 . . . N − 9):

mi, i�3 = 1
40 bi�2 + 1

40 bi�1 − 11
360 bi�3 − 11

360 bi

mi, i�2 = 1
20 bi�3 − 3

10 bi�1 + 1
20 bi+1 + 7

40 bi + 7
40 bi�2

mi, i�1 = − 1
40 bi�3 − 3

10 bi�2 − 3
10 bi+1 − 1

40 bi+2 − 17
40 bi − 17

40 bi�1

mi, i = 1
180 bi�3 + 1

8 bi�2 + 19
20 bi�1 + 19

20 bi+1 + 1
8 bi+2 + 1

180 bi+3 + 101
180 bi

mi, i+1 = − 1
40 bi�2 − 3

10 bi�1 − 3
10 bi+2 − 1

40 bi+3 − 17
40 bi − 17

40 bi+1

mi, i+2 = 1
20 bi�1 − 3

10 bi+1 + 1
20 bi+3 + 7

40 bi + 7
40 bi+2

mi, i+3 = 1
40 bi+1 + 1

40 bi+2 − 11
360 bi − 11

360 bi+3

.

The boundary closure of M (b) (given by a 9× 9 matrix) is presented in [41]. (The coefficients fill almost a
page.)

The upper part of N is given by,

N1,1 = 1394226315049
367201486080

N1,2 = − 1137054563243
114750464400

N1,3 = 16614189027367
1836007430400

N1,4 = − 1104821700277
306001238400

N1,5 = 1355771086763
1836007430400

N1,6 = − 27818686453
459001857600

N1,7 = − 40671054239
1836007430400

N1,8 = 5442887371
306001238400

N2,2 = 70616795535409
2570410402560

N2,3 = − 173266854731041
6426026006400

N2,4 = 28938615291031
2570410402560

N2,5 = − 146167361863
71400288960

N2,6 = 2793470836571
12852052012800

N2,7 = 6219558097
428401733760

N2,8 = − 7313844559
166909766400

N3,3 = 378613061504779
12852052012800

N3,4 − 9117069604217
642602600640

N3,5
632177582849
233673672960

N3,6 − 1057776382577
6426026006400

N3,7
443019868399
4284017337600

N3,8 − 3707981
2318191200

N4,4 = 5029150721885
514082080512

N4,5 = − 5209119714341
1285205201280

N4,6 = 12235427457469
12852052012800

N4,7 = − 13731270505
64260260064

N4,8 = 2933596129
40800165120

N5,5 = 14871726798559
2570410402560

N5,6 = − 7504337615347
1606506501600

N5,7 = 310830296467
171360693504

N5,8 = − 55284274391
183600743040

N6,6 = 106318657014853
12852052012800

N6,7 = − 14432772918527
2142008668800

N6,8 = 58102695589
22666758400

N7,7 = 27102479467823
2570410402560

N7,8 = − 1216032192203
153000619200

N8,8 = 20799922829107
1836007430400
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