

Tunable Wavelength Selectivity of Photonic Metamaterials-based Thermal Devices

Yanpei Tian^a, Alok Ghanekar^a, Xiaojie Liu^a, Jie Sheng^b, Yi Zheng^{a*}

^aDepartment of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, US 02881

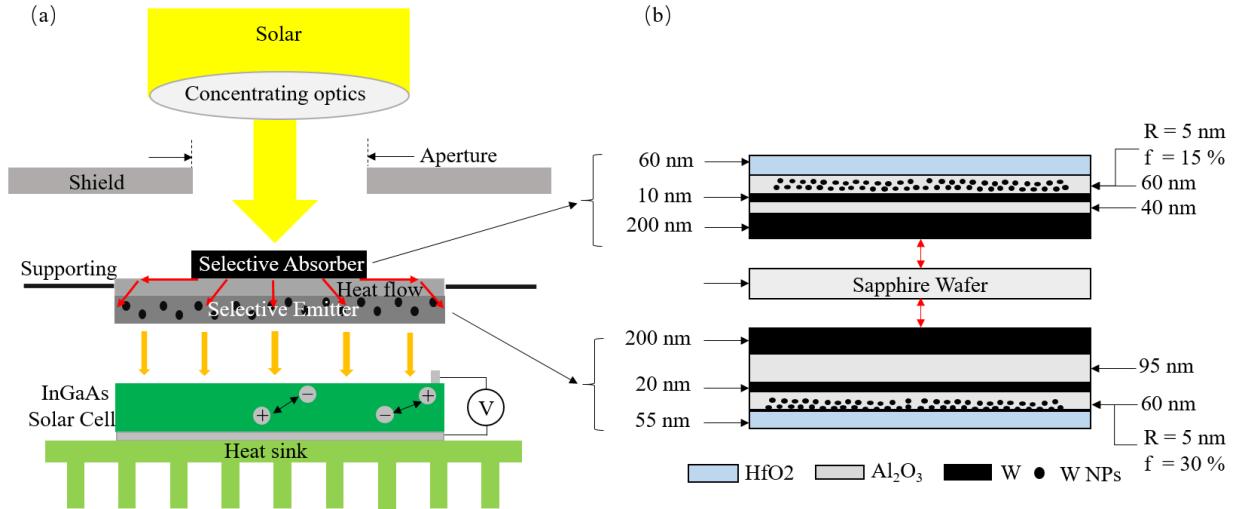
^bThe First Hospital of China Medical University, Shenyang, China 110001

1 **Abstract.** Wavelength selective thermal devices have great applications in concentrating solar power systems,
2 high-temperature thermoelectric systems and solar thermophotovoltaics (STPVs). Lack of high-temperature stability
3 and spectrally selective emissivity in different wavelength regions limit their efficiency. In this work, we propose
4 a one-dimensional $\text{HfO}_2/\text{Al}_2\text{O}_3\text{-W}$ nanocomposites/W/ Al_2O_3 /W multilayered photonic structure as potential wave-
5 length selective thermal devices, and theoretically investigate the emission properties of the proposed Mie-resonance
6 metamaterials from visible (VIS) to mid-infrared (MIR) region. HfO_2 thin layer is introduced to serve as an anti-
7 reflection coating film and W layer acts as an IR reflection layer that enhances the absorptivity/emissivity in VIS and
8 near-infrared (NIR) region, while reducing the MIR emission simultaneously. Effects of geometric parameters are
9 discussed, such as different radii and volume fractions of W nanoparticles, the thickness of $\text{Al}_2\text{O}_3\text{-W}$ nanocomposites
10 and HfO_2 thin film. The proposed thermal absorber and emitter exhibit nearly unity absorptance in both VIS and
11 NIR regions, while the emittance approaches zero in the MIR region. The selective absorption/emission window is
12 tunable by varying geometric parameters. The proposed solar thermal devices have great potentials in engineering
13 applications such as STPVs and solar thermoelectric generator (STEG) due to flexibility of geometric parameters and
14 ease of fabrication.

15 **Keywords:** Wavelength Selective, Solar Absorber and Emitter, High Temperature, Metamaterials.

16 *Yi Zheng, zheng@uri.edu

17 1 Introduction


18 The increasing energy crisis and global warming enforce us to explore alternative clean energy.
19 Abundant solar energy paves the way to solving the challenging energy demand. Solar thermopho-
20 toovoltaics (STPVs), which convert sunlight into thermal emission and tune to photons above the
21 photovoltaic (PV) bandgap through a high temperature absorber-emitter, have the potential to act
22 as a promising alternative approach for the existing power generation methods. Schematic of
23 a typical STPV system is represented in Fig.1 (a). STPVs consist of concentrating optics, hot
24 absorber-emitter, PV cell, and heat sink. The concentrating optics transform parallel solar lights
25 into a highly focused light spot that casts on the thermal absorber. The hot absorber is heated up to a
26 high temperature (around 1,300K)¹⁻³ and it transfers heat to the thermal emitter. Then, the thermal

27 emitter re-emits a certain spectrum of wavelengths matching well with the absorption characteris-
28 tics of the PV cell.⁴ The heat sink enables the operation of the PV cell at low temperatures The
29 selective thermal devices are vital components affecting the efficiency of a STPV system. An ideal
30 solar thermal absorber has two selective spectra of interest, (1) a unity absorptivity in both UV and
31 NIR ranges where almost all of the solar energy is distributed and (2) a zero emissivity in the MIR
32 range where heat loss owing to self-emission is suppressed.⁵ It is worth to mention that the absorp-
33 tivity of an arbitrary body equates its emissivity in a thermodynamic equilibrium according to the
34 Kirchhoff's law of thermal radiation.⁶ External quantum efficiency (EQE) of a PV cell is a ratio
35 of the number of converted electron-hole pairs by the solar cell to the number of incident photons.
36 It is related to the generated photon current when a PV cell is shining by incident lights of certain
37 wavelengths.⁷ The PV cell only generates a photon current when the energy of an incident photon
38 is higher than the bandgap of semiconductor materials.⁸ Furthermore, the efficiency drop caused
39 by waste heat occurs when the wavelength of incident photons is longer than the corresponding
40 wavelength of the bandgap. These photons are transformed into heat to increase the temperature
41 of the PV cell undesirably. Therefore, a perfect thermal emitter exhibits nearly a unity emissivity
42 in the region of high EQE and a zero emissivity in other regions.⁹

43 Several studies about selective thermal devices focus on photonic crystals,^{10,11} doped materi-
44 als^{12,13} and 1-D or 2-D surface grating structures¹⁴⁻¹⁶ to achieve spectrally selective emission prop-
45 erties. Metamaterials-based absorber/emitter is one type of nanostructures that achieve wavelength
46 selectivity through surface phonon and/or plasmon polaritons.¹⁷ Absorption or emission spectra
47 can be re-shaped due to different composite materials, such as alternatively spaced metal-cermet
48 multilayered structure^{18,19} and surface grating structures.^{8,20} Chirumamilla et al. experimentally
49 investigate the metal-insulator-metal absorber using Al_2O_3 -W refractory thin film and show a high

50 absorptance in the range of 650 nm to 1750 nm¹⁸ after thermal annealing for 4 hours at 800°C.
51 Thomas et al. achieve a measured absorptance of 76% at solar thermal wavelengths and approxi-
52 mately 5% emittance at the MIR region using a CaF₂, Cr and *a*Ge multilayered absorber.¹⁹ Lenert
53 et al choose 1-D Si/SiO₂ photonic crystal as a selective thermal emitter in an STPV system at
54 1,300 K and achieve an overall system efficiency of 3.2%.²¹ Aydin et al. demonstrate that a metal-
55 insulator stack with a nanostructured silver film composed of 1-D crossed trapezoidal arrays with
56 an average absorption of 71% over the entire VIS region.²⁰ Zhao et al. numerically investigate the
57 emissivity of a 2-D W grating structure on top of SiO₂ thin film and show an emissivity over 90%
58 from 300 nm to 2000 nm. The abovementioned structures of exhibiting wavelength selectivity and
59 high-temperature stability can be integrated into STPVs.

60 All of 1-D or 2-D surface grating metamaterials and photonic crystals rely on micro and
61 nanofabrication techniques, such as nanoscale photolithography and complex etching technolo-
62 gies, which limit scalable engineering applications. Though multilayered thin film structures is
63 relatively feasible, they do not display an ideal property of a nearly unity absorptivity/emissivity
64 across the entire UV-VIS-NIR regions. Mie-resonance metamaterials are another kind of meta-
65 materials that shows selective emission spectra utilizing Mie resonances of doping nanoparticles.
66 Francoeur, Zhao and Wheeler et al. perform theoretical studies of nanoparticle inclusions into ma-
67 trix materials.²²⁻²⁴ Ghanekar et al. theoretically investigate the optical properties of nanoparticle
68 embedded thin films and design a high-temperature selective thermal emitter using W nanoparti-
69 cles embedded SiO₂ matrix film with an opaque W film^{1,4} in both far-field and near-field limits.
70 However, the emissivity of all the above structures in the VIS-NIR region is not approaching to
71 unity. There are much improvement of reducing the thermal leakage considering a high emis-
72 sivity beyond 2 μ m. It is desirable to design a highly selective solar thermal device with unity

Fig 1 (a) Schematic of a STPV system consisting of concentrating optics, Mie-resonance metamaterial absorber and emitter, an InGaAs solar cell and a heat sink. (b) A proposed structure of thermal absorber and emitter deposited on double sides polished sapphire wafer. The absorber and emitter consist of different thicknesses of Al₂O₃ and W thin films alternately. Layer thickness, starting from the top HfO₂ layer, in the unit of nm, are: [60, **60**, 10, **40**, 200, **4300**, 200, **95**, 20, **60**, 55]. Two Al₂O₃ layers are doped with W nanoparticles of 5 nm radii with a volume fraction of 15% and 30%, respectively.

73 absorptance/emittance in the UV and NIR regions and zero emittance in the MIR region, which
 74 correspond spectrally to the wavelengths that are relevant to solar radiation and high EQE of PV
 75 cells .

76 In this work, we theoretically design photonic metamaterials consisting of multilayered thin
 77 film with W nanoparticle inclusions on an opaque W film as a perfect selective solar thermal device.
 78 The effective dielectric properties of these materials are investigated over a broad range of VIS-
 79 NIR-MIR using Maxwell-Garnett-Mie theory. The investigation of effects of geometric parameters
 80 is also conducted, including different radius (R) and volume fraction (VF) of W nanoparticles, the
 81 thicknesses of Al₂O₃-W nanocomposites layer and HfO₂ thin film. Perfect solar thermal devices
 82 based on Mie-resonance multilayered structure are proposed. Figure 1(b) illustrates an example of
 83 photonic metamaterials-based selective thermal devices. The solar absorber consists of a 60 nm
 84 HfO₂ layer as anti-reflection coating, a 60 nm Al₂O₃ layer doped with W nanoparticles of 5 nm

85 radius, a 10 nm W layer and a 40 nm Al_2O_3 layer on top of a 200 nm W thin film. The W layer acts
 86 as an IR reflection layer that reduces the MIR thermal emission. All of these layers are deposited
 87 on a double sides polished sapphire wafer. The thermal emitter comprises a similar structure with
 88 distinct thickness of each layer and different volume fraction of W nanoparticles as depicted in
 89 Fig. 1(b).

90 **2 Theoretical Fundamentals**

91 Considering that the designed solar thermal absorber and emitter are both multilayered thin film
 92 structures with nanoparticle inclusions, theoretical calculations of absorptivity and emissivity of
 93 multilayered structures are highly desirable. Supposing a structure having N layers media, the
 94 generalized reflection coefficient at the interface between region i and region $i + 1$ is given by,²⁵

$$\tilde{R}_{i,i+1}^{(\mu)} = \frac{R_{i,i+1}^{(\mu)} + \tilde{R}_{i+1,i+2}^{(\mu)} e^{2jk_{i+1,z}(d_{i+1}-d_i)}}{1 + R_{i,i+1}^{(\mu)} \tilde{R}_{i+1,i+2}^{(\mu)} e^{2jk_{i+1,z}(d_{i+1}-d_i)}} \quad (1)$$

95 where $R_{i,i+1}^{(\mu)}$ is the Fresnel reflection coefficient at the interface between the layer i and $i + 1$, and
 96 $\tilde{R}_{i+1,i+2}^{(\mu)}$ is the generalized reflection coefficient at the interface between the layer $i + 1$ and $i + 2$,
 97 $\mu = s$ (or p) refers to transverse electric (or magnetic) polarization, $z = -d_i$ is the location of the
 98 i th interface. $k_{i,z} = \sqrt{\varepsilon_i(\omega)\omega^2/c^2 - k_\rho^2}$ is the normal z -component of the wave vector in medium i
 99 wherein $\varepsilon_i(\omega)$ is the relative permittivity of the medium i as a function of angular frequency ω , c is
 100 the speed of light in vacuum and k_ρ is the magnitude of the in-plane wave vector. With $\tilde{R}_{N,N+1}^{(\mu)} = 0$,
 101 the above equation provides a recursive relation to calculate the reflection coefficients $\tilde{R}_{i,i+1}^{(\mu)}$ in all

102 regions. The generalized transmission coefficient for the layered slab is given by²⁵

$$\tilde{T}_{1,N}^{(\mu)} = \prod_{i=1}^{N-1} e^{jk_{iz}(d_i - d_{i-1})} S_{i,i+1}^{(\mu)} \quad (2)$$

103 The hemispherical emissivity is given by the expression²⁶

$$\epsilon(\omega) = \frac{c^2}{\omega^2} \int_0^{\omega/c} dk_\rho k_\rho \sum_{\mu=s,p} (1 - |\tilde{R}_{h1}^{(\mu)}|^2 - |\tilde{T}_{h1}^{(\mu)}|^2) \quad (3)$$

104 where $\tilde{R}_h^{(\mu)}$ and $\tilde{T}_h^{(\mu)}$ are the polarization dependent effective reflection and transmission coef-
105 ficients which can be determined using Eqs.1 and 2.

106 The dielectric functions of materials used in this paper (HfO_2 , Al_2O_3 , W thin film and W
107 nanoparticles) are related to refractive index as $\sqrt{\epsilon} = n + j\kappa$, where n and κ are real and imaginary
108 parts of refractive index. The effective dielectric function of the Mie-resonance metamaterials is
109 expressed as Clausius-Mossotti equation.^{27,28}

$$\epsilon_{eff} = \epsilon_m \left(\frac{R^3 + 2\alpha_R VF}{R^3 - \alpha_R VF} \right) \quad (4)$$

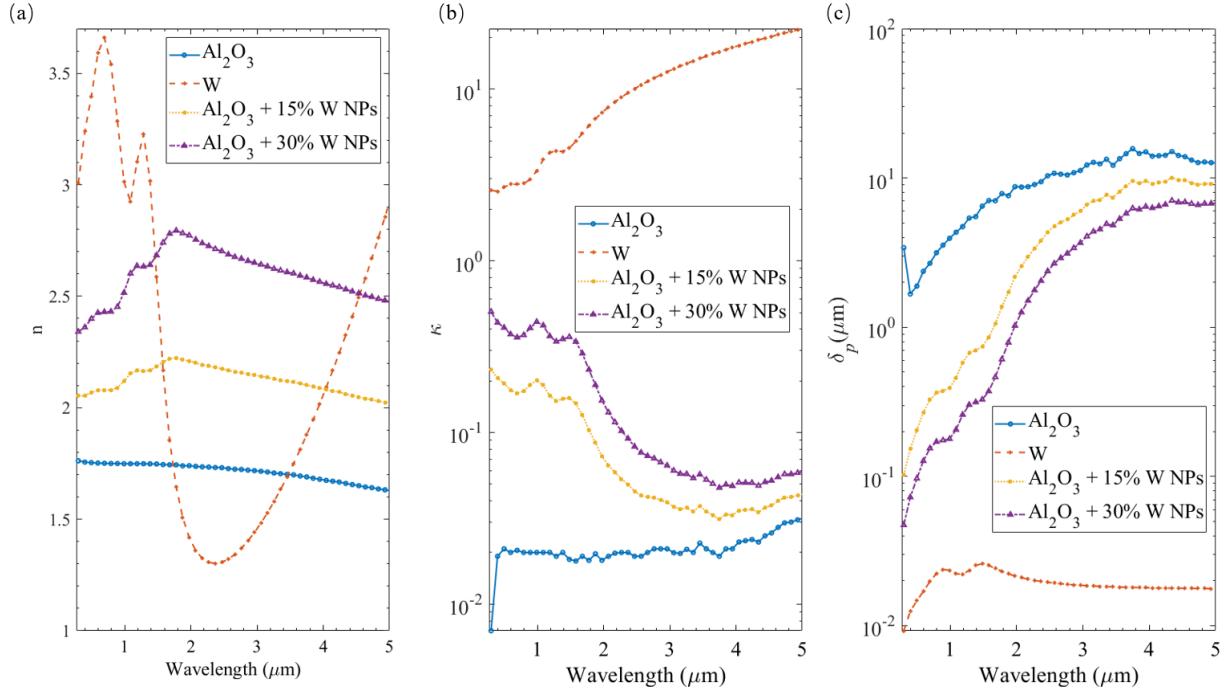
110 where ϵ_m is the dielectric function of the matrix, α_R is the electric dipole polarizability, R and VF
111 are the radius and volume fraction of nanoparticles respectively. Mie theory is an useful method
112 of considering the size of doping nanoparticles. Maxwell-Garnett formula using Mie theory²⁹ is
113 employed to express the electric dipole polarizability,

$$\alpha_R = \frac{3jc^3}{2\omega^3 \epsilon_m^{3/2}} a_{1,R} \quad (5)$$

114 where $a_{1,R}$ is the first electric Mie coefficient given by

$$a_{1,R} = \frac{\sqrt{\varepsilon_{np}}\psi_1(x_{np})\psi_1'(x_m) - \sqrt{\varepsilon_m}\psi_1(x_m)\psi_1'(x_{np})}{\sqrt{\varepsilon_{np}}\psi_1(x_{np})\xi_1'(x_m) - \sqrt{\varepsilon_m}\xi_1(x_m)\psi_1'(x_{np})} \quad (6)$$

115 where ψ_1 and ξ_1 are Riccati-Bessel functions of the first order given by $\psi_1(x) = xj_1(x)$ and
116 $\xi_1(x) = xh_1^{(1)}(x)$ where j_1 and $h_1^{(1)}$ are first order spherical Bessel functions and spherical Hankel
117 functions of the first kind, respectively. Here, ‘’ indicates the first derivative. $x_m = \omega r \sqrt{\varepsilon_m} / c$
118 and $x_{np} = \omega r \sqrt{\varepsilon_{np}} / c$ are the size parameters of the matrix and the nanoparticles, respectively; ε_{np}
119 being the dielectric function of nanoparticles.

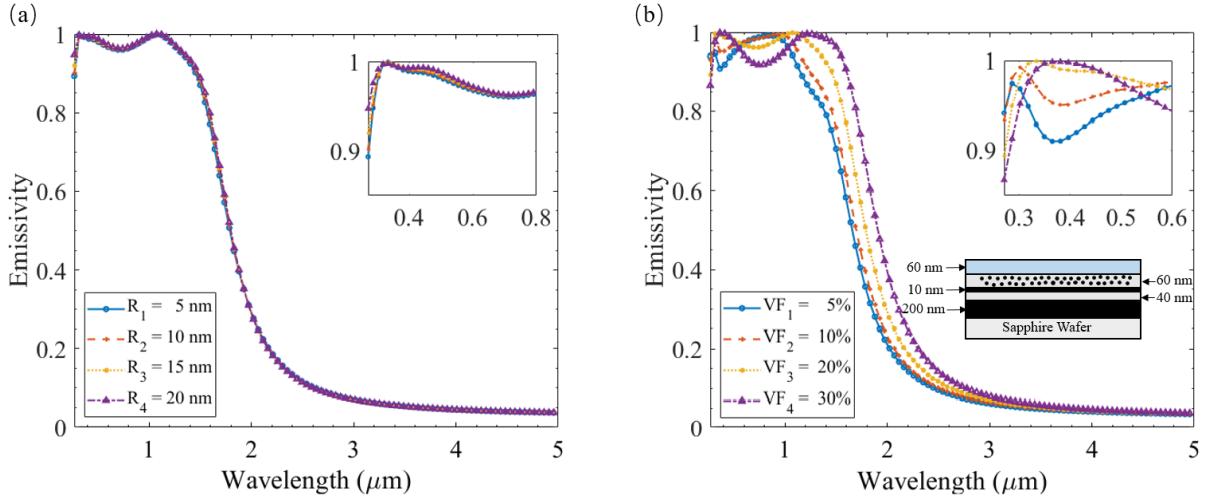

120 Dielectric functions of abovementioned materials are given in these literature.³⁰⁻³² Since all
121 the melting temperatures of the materials considered in this paper are over 2,300K and the oper-
122 ating temperature (1,300K) is much less than the melting point, the dielectric properties of these
123 materials are assumed to be constant. Each layer of the designed structure is uniform, including
124 the nanoparticles embedded thin film, so it is reasonable that each layer can be approximated as a
125 homogeneous layer and its effective dielectric function can be evaluated and utilized in theoretical
126 calculations. It is also worth to notice that the size (10 nm) of W nanoparticles is much smaller
127 than the wavelengths of interest ($\lambda = 0.3 \mu\text{m} - 20 \mu\text{m}$), so the Maxwell-Garnett-Mie theory is
128 appropriate in this study.³³

129 3 Calculation Results and Discussion

130 3.1 Refractive Indices and Penetration Depth of Nanoparticle Inclusions

131 Figure 2 elucidate the effects of W nanoparticle inclusions on the refractive indices of Al_2O_3
132 matrix in the wavelength range from $0.3 \mu\text{m}$ to $5 \mu\text{m}$, aiming to illustrate the physical mechanisms

133 responsible for the enhanced emissivity/absorptivity that gives rise to high emissivity/absorptivity
134 in both VIS and NIR regions. Figure 2 shows that the real part of refractive index ($n \approx 1.7$)
135 of the pure Al_2O_3 is nearly constant and the imaginary part ($\kappa \approx 0.02$) is nearly negligible. The
136 introduced W nanoparticles increase both the real and imaginary parts of refractive index of Al_2O_3 ,
137 when the VF of W nanoparticles increases. It can be seen that both the real and imaginary parts
138 of refractive index of Al_2O_3 -W nanocomposites also increase (see the curve of Al_2O_3 thin film
139 embedded with a VF of 15% and 30% W nanoparticles). Since the effective refractive index of
140 nanocomposites relies on different components, and the inclusion of W nanoparticles ($R = 10$
141 nm) is much smaller than the investigated wavelengths ($\lambda = 0.3\mu\text{m} - 5\mu\text{m}$) that causes the Mie-
142 scattering of the incidence, the change of refractive index of Al_2O_3 -W nanocomposites results
143 from the mixture of different constituents and wave scattering of W nanoparticles. Figure. 2(a)
144 shows that the real part (n) of refractive index of Al_2O_3 -W nanocomposites goes up from $0.3\mu\text{m}$
145 to $1.8\mu\text{m}$ and it has a peak around $1.8\mu\text{m}$, then declines. Simultaneously, Figure 2(b) gives that
146 the imaginary part (κ) of Al_2O_3 -W nanocomposites slowly decreases from $0.3\mu\text{m}$ to $1.8\mu\text{m}$ and
147 suddenly drops around $1.8\mu\text{m}$. However, the real part of refractive index of W keeps at a relatively
148 high value (above 3) from $0.3\mu\text{m}$ to $1.8\mu\text{m}$, then falls down to valley around $2.2\mu\text{m}$ and then
149 increases, and its imaginary part rises continuously, which does not correspond to the trend of the
150 change in its real part of nanocomposites for both VFs of 15% and 30%. It can be concluded
151 that when the wavelength of the incident light is small, the inclusion of W nanoparticles causes
152 the Mie-scattering; when the wavelength of the incident light is large, no scattering is caused by
153 W nanoparticles. For this reason, the real parts of the Al_2O_3 -W nanocomposites increase in the
154 region of $0.3\mu\text{m}$ to $1.8\mu\text{m}$, while its imaginary parts decline at a slow pace. Otherwise, they
155 would have drop sharply. When the wavelength of incident light is greater than $1.8\mu\text{m}$, both the


Fig 2 Refractive indices and penetration depths of W, Al_2O_3 and Al_2O_3 doped with W nanoparticles of 5 nm radius and volume fraction of 15% and 30%, respectively. (a) Real part of refractive indices. (b) Imaginary part of refractive indices. (c) The penetration depth from $\lambda = 0.3 \mu\text{m}$ to $5 \mu\text{m}$.

156 real and imaginary parts decrease quickly.

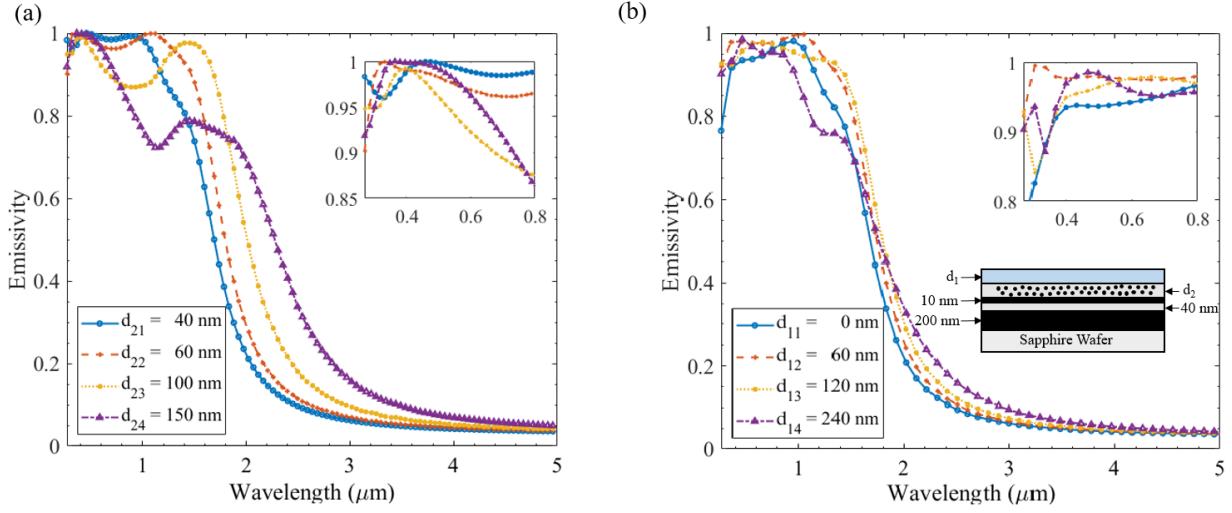
157 Figure 2(c) shows the penetration depths of pure Al_2O_3 , W, and Al_2O_3 -W nanocomposites of
158 two different VFs. By introducing W nanoparticles, the penetration depth of Al_2O_3 -W nanocom-
159 posites is smaller than the pure Al_2O_3 because of the scattering effect of W nanoparticles. The
160 increasing VF of W nanoparticles gives rise to the decrease in the penetration depth of Al_2O_3 -W
161 nanocomposites. Figure 2(c) also shows that the maximum penetration depth of pure W is around
162 25 nm, which ensures all the incident lights are reflected back by the bottom W layer and the
163 structure can be treated as opaque.

164 *3.2 Effect of Geometric Parameters*

165 We investigate the geometric effects on the emissivity/absorptivity of designed Mie-resonance
166 metamaterials-based solar thermal absorber/emitter at normal incidence, in order to clarify a dom-

Fig 3 Emissivity/absorptivity spectra as a function of (a) the size of W nanoparticles with radius of 5 nm, 10 nm, 15 nm and 20 nm, respectively, embedded in Al_2O_3 layer, (b) the volume fraction of W nanoparticles of 5%, 10 %, 20 % and 30 %, respectively, embedded in Al_2O_3 layer. The investigated structure is shown in the inset of Fig.3(b). The top right insets are both the zoom-in wavelength regions from $\lambda = 0.3 \mu\text{m}$ to $0.8 \mu\text{m}$.

167 inated mechanism for the selective emissivity/absorptivity and to get an optimized geometric pa-
 168 rameters for the designed structure. The effects of size and volume fraction of W nanoparticles,
 169 the thickness of Al_2O_3 -W nanocomposites layer and the thickness of anti-reflection HfO_2 layer are
 170 set to the base geometric parameters shown in the insets of Fig. 3(b) and Fig. 4(b). Other geo-
 171 metric effects are fixed to the base geometric parameters when one of the investigated parameters
 172 varies in our calculations. The incident angle is fixed at 0° . Figures 3 and 4 show how the emissiv-
 173 ity/absorptivity varies with various geometric parameters in the wavelength region from $0.3 \mu\text{m}$ to
 174 $5 \mu\text{m}$, where most of the solar energy is distributed.


175 Figure 3(a) shows that there are two peaks with an enhanced emissivity significantly up to

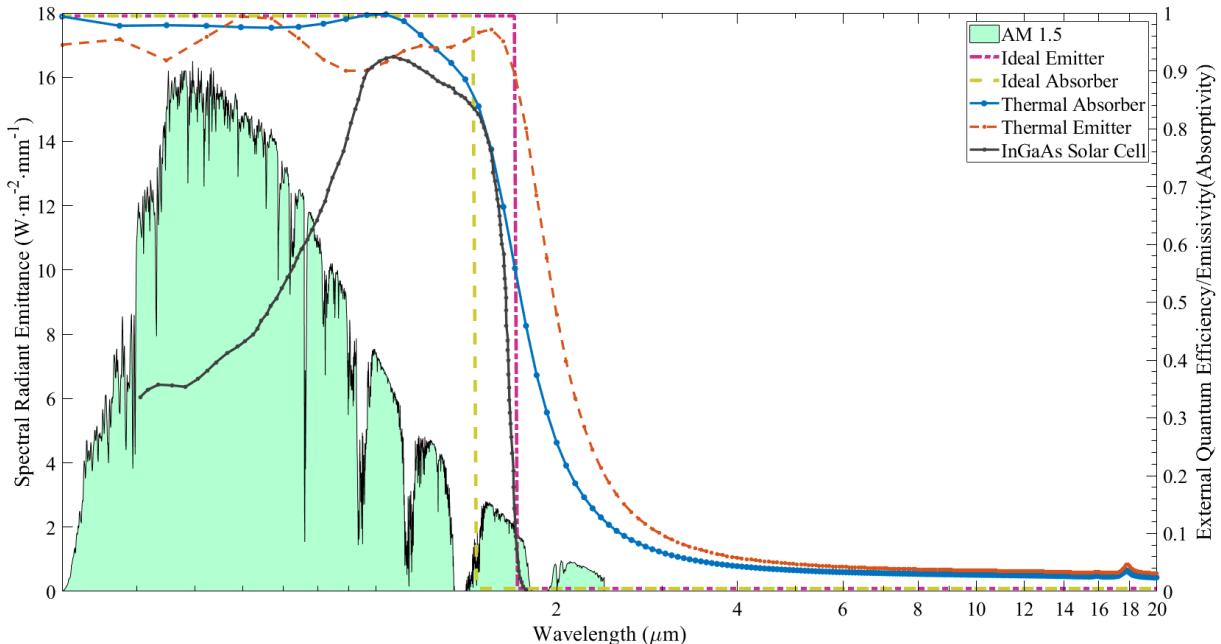
176 about 1 at around $\lambda = 0.35 \mu\text{m}$ and $\lambda = 1.15 \mu\text{m}$ corresponding to the two peaks of real part of
 177 pure W, as shown in the Fig. 2(a). With the radius of W nanoparticles increasing from 5 nm to
 178 20 nm and the VF of W nanoparticles is fixed at 20%, the two peaks remain almost un-shifted
 179 and there is unnoticeable fluctuations of the magnitude of these peaks, which indicates that the

180 peak wavelength and magnitude has much less dependence on the size of the W nanoparticles.
181 It is reasonable that the maximum diameter of W nanoparticles is 40 nm which is quite smaller
182 compared to the minimum investigated wavelength (300 nm), so the size of the W nanoparticles
183 shows little effect on the emissivity performance when the W nanoparticles have relatively small
184 radii. For the two emissivity peaks, it is owing to the excitation of surface plasmon polaritons
185 (SPPs) of W. Such similar emissivity peaks have been discovered at short wavelengths in the 2-D
186 metamaterials-based TPV emitters,⁸ which is attributed to the excitation of SPPs for metallic W.

187 When the radius of the W nanoparticles is set to 5 nm and the VF varies, as shown in Fig.
188 3(b), the overall emissivity raises together with an increment of VF of W nanoparticles from 5%
189 to 20%, however, it drops after the VF approaches 30%. The first set of emissivity peaks emerging
190 at around $0.35 \mu\text{m}$ increases and shifts to a longer wavelength corresponding to the increment of
191 VF of W nanoparticles. It can also be observed that the second set of emissivity peaks shifts to a
192 longer wavelength from $1.0 \mu\text{m}$ to $1.3 \mu\text{m}$ with an increasing VF. Since the W support SPPs, the
193 right-shifts of two peaks presented here can be attributed to the excitation of SPPs. Ghanekar et
194 al.³⁴ discuss explicitly on the behavior of SPPs of the metal (Au) nanoparticles embedded in SiC
195 matrix that is similar to the structures discussed here.

196 As shown in Fig. 4(a), the thickness of the top Al_2O_3 -W nanocomposites layer yields sim-
197 ilar effect as the VF of W nanoparticles on the emissivity of Mie-resonance solar thermal ab-
198 sorber/emitter at normal incidence. When the thickness of Al_2O_3 -W nanocomposites changes from
199 40 nm to 240 nm, the first set of emissivity peaks emerging at around $0.4 \mu\text{m}$ do not show clear pre-
200 ferred direction of the shifts. While the position of the second set of emissivity peaks that appear
201 at over $1.2 \mu\text{m}$ and shifts obviously to the right and the magnitude of these peaks drops abruptly
202 when the thickness of the top Al_2O_3 -W nanocomposites layer increase to 150 nm. Similarly, the

Fig 4 Emissivity/absorptivity spectra as a function of (a) thickness of the top Al_2O_3 -W nanocomposites layer of 40 nm, 60 nm, 120 nm and 240 nm, respectively, (b) thickness of the anti-reflection HfO_2 coating layer of 0 nm, 60 nm, 120 nm and 240 nm, respectively. The base investigated structure is as shown in the inset of Fig.4(b). The top right insets are both the zoom-in wavelength regions from $\lambda = 0.3 \mu\text{m}$ to $0.8 \mu\text{m}$.


203 average emissivity of solar thermal absorber/emitter drops with the increment of the thickness of
 204 the top Al_2O_3 -W nanocomposites layer. As a result, a relatively high and broad emissivity band
 205 from $0.3 \mu\text{m}$ to $1.5 \mu\text{m}$ can be achieved with a thickness around 60 nm.

206 Figure 4(b) shows the effect of the thickness of the anti-reflection HfO_2 layer on the emissivity
 207 of solar thermal devices at normal incidence. It can be seen that the average emissivity of a
 208 broad spectral band from $0.3 \mu\text{m}$ to $1.6 \mu\text{m}$ is enhanced when the thickness of the HfO_2 layer is 60
 209 nm compared to a structure without an HfO_2 layer. The average emissivity from $0.3 \mu\text{m}$ to $1.6 \mu\text{m}$
 210 decreases when the thickness of HfO_2 layer is thicker at 120 nm or 240 nm. On the other side, when
 211 the thickness of HfO_2 layer varies from 0 nm to 240 nm, the emissivity of solar thermal devices
 212 increases for long wavelengths ($\lambda > 2 \mu\text{m}$). Considering the overall performance, the HfO_2 layer
 213 with a thickness of 60 nm gives the best performance.

214 Conclusively, the emissivity of the Mie-resonance solar thermal absorber/emitter strongly de-
 215 pends on the geometric parameters. It can be seen clearly that there exist two emissivity peaks due

216 to the excitation of SPPs modes and a broad band with an enhanced emissivity in both the VIS and
 217 NIR regions. Meanwhile, the locations and magnitudes of peak emissivity wavelengths depend
 218 significantly on the size and VF of W nanoparticle inclusions and the thickness of the Al_2O_3 -W
 219 nanocomposites layer. The introduction of HfO_2 layer will improve the overall performance of the
 220 solar thermal absorber/emitter, and it will enhance the emissivity up to 1 in the short wavelength
 221 region (from $0.3 \mu\text{m}$ to $1.6 \mu\text{m}$) and reduce the emissivity down to 0 in the long region ($\lambda > 1.8$
 222 μm).

223 *3.3 Optimized Structures*

Fig 5 Emission spectra of an optimized solar thermal absorber and emitter, and an ideal selective thermal absorber and emitter. The incident solar spectrum (AM 1.5) and the EQE of InGaAs PV cell are shown for reference.

224 According to the geometric effects on the emissivity of solar thermal device, optimized struc-
 225 tures of solar thermal absorber/emitter are shown in Fig.1(b). The solar thermal absorber presented
 226 here is applicable to the STPV applications under high concentration ratio solar lights at AM 1.5
 227 conditions. As shown in Fig. 5, the ideal solar absorber has a up to 1 emissivity from $0.3 \mu\text{m}$

228 to $1.6 \mu\text{m}$ where most of the solar energy is distributed, while its emissivity reduces down to 0.1
229 beyond $2.3 \mu\text{m}$. The emissivity curve of the designed solar absorber structure perfectly matches
230 to an ideal thermal absorber, giving rise to the absorber receives as much solar energy as possible
231 and reducing its self-emitting at a high temperature ($\sim 1,300\text{K}$). The thermal emitter, as shown in
232 Fig. 1(b), is suitable for a STPV system with an InGaAs based PV cell. The EQE curve of the
233 InGaAs PV cell is shown in Fig. 5. The efficiency of the InGaAs PV cell is high when the wave-
234 length of incident photons falls in the region between $0.3 \mu\text{m}$ and $1.8 \mu\text{m}$. The proposed thermal
235 emitter exhibits a high emissivity (> 0.92) in the wavelength range from $0.3 \mu\text{m}$ to $1.8 \mu\text{m}$, and
236 an extremely low emissivity (< 0.1) beyond $2.9 \mu\text{m}$. Both the solar thermal absorber and emitter
237 have a near zero emissivity beyond $4 \mu\text{m}$. The close match between the emission spectrum and
238 the EQE curve of PV cell ensures a high conversion efficiency and minimizes the thermal leakage
239 of low energy photons. Since the melting points of the selected materials (Al_2O_3 and W) are over
240 $2,300\text{K}$ and their linear temperature expansion coefficients of $\text{Al}_2\text{O}_3 (8.1 \times 10^{-6}\text{m}/(\text{m}\cdot\text{K}))$ and W
241 ($4.5 \times 10^{-6}\text{m}/(\text{m}\cdot\text{K})$) are at the same order of magnitude, the solar absorber and emitter both have a
242 high temperature stability that ensures a high efficiency of the STPV system at a high temperature.
243 In addition, fabrication of the multilayered solar thermal absorber and emitter is relatively simple,
244 in comparison to the 1-D or 2-D surface grating structures which require nanoscale photolithogra-
245 phy and complex dry or wet etching. The deposition of Al_2O_3 , W and $\text{Al}_2\text{O}_3\text{-W}$ nanocomposites
246 thin films can be achieved by Magnetron Sputtering Technology.³⁵ As refractory materials such as
247 tungsten and Al_2O_3 have been chosen to be materials of thermal emitter, it is reasonable that the
248 proposed structures of solar thermal absorber and emitter have a great potential to be an scalable-
249 manufactured engineering metamaterials.

250 **4 Conclusions**

251 In this work, we have theoretically designed a selective thermal device made of Mie-resonance
252 metamaterials consisting of multilayered structures with nanoparticle inclusions. High absorp-
253 tivity/emissivity in the visible and near-infrared regions and low emittance in the mid-infrared
254 region can be attained through such a structure. The effects of geometric parameters on the optical
255 properties of the solar thermal absorber/emitter have been elucidated in details. The absorptiv-
256 ity/emissivity is enhanced to be unity as desired with optimized geometric parameters such as size
257 and volume fraction of W nanoparticles, thickness of Al_2O_3 -W nanocomposites layer, and the
258 thickness of anti-reflection HfO_2 layer. The spectral absorptivity of the proposed solar thermal ab-
259 sorber is up-to-unity in the wavelength range from $0.3 \mu\text{m}$ to $1.6 \mu\text{m}$, while its spectral emissivity
260 is lower than 0.1 from $2.3 \mu\text{m}$ to $20 \mu\text{m}$. Moreover, the solar thermal emitter has an emissivity over
261 0.92 from $0.3 \mu\text{m}$ to $1.8 \mu\text{m}$, while remaining as low as 0.1 from $2.9 \mu\text{m}$ to $20 \mu\text{m}$. Design of the
262 proposed metamaterials-based solar absorber and emitter will benefit the performance of STPV
263 systems and can also be applied to solar energy harvesting and traditional TPV systems.

264 **5 Acknowledgements**

265 This project was supported in part by a National Science Foundation through grant number 1655221,
266 Institutional Development Award (IDeA) Network for Biomedical Research Excellence from the
267 National Institute of General Medical Sciences of the National Institutes of Health through grant
268 number P20GM103430, and National Aeronautics and Space Administration through grant num-
269 ber NNX15AK52A.

270 *References*

271 1 A. Ghanekar, Y. Tian, S. Zhang, *et al.*, “Mie-metamaterials-based thermal emitter for near-
272 field thermophovoltaic systems,” *Materials* **10**(8), 885 (2017).

273 2 Y. Tian, A. Ghanekar, M. Ricci, *et al.*, “A review of tunable wavelength selectivity of meta-
274 materials in near-field and far-field radiative thermal transport,” *Materials* **11**(5), 862 (2018).

275 3 A. Ghanekar, M. Sun, Z. Zhang, *et al.*, “Optimal design of wavelength selective thermal
276 emitter for thermophovoltaic applications,” *Journal of thermal science and engineering
277 applications* **10**(1), 011004 (2018).

278 4 A. Ghanekar, L. Lin, and Y. Zheng, “Novel and efficient mie-metamaterial thermal emitter
279 for thermophovoltaic systems,” *Optics express* **24**(10), A868–A877 (2016).

280 5 N. P. Sergeant, O. Pincon, M. Agrawal, *et al.*, “Design of wide-angle solar-selective absorbers
281 using aperiodic metal-dielectric stacks,” *Optics express* **17**(25), 22800–22812 (2009).

282 6 Z. Zhang, *Nano/Microscale Heat Transfer*, McGraw-Hill, New York (2007).

283 7 W. R. Chan, P. Bermel, R. C. Pilawa-Podgurski, *et al.*, “Toward high-energy-density, high-
284 efficiency, and moderate-temperature chip-scale thermophovoltaics,” *Proceedings of the
285 National Academy of Sciences* **110**(14), 5309–5314 (2013).

286 8 B. Zhao, L. Wang, Y. Shuai, *et al.*, “Thermophovoltaic emitters based on a two-dimensional
287 grating/thin-film nanostructure,” *International Journal of Heat and Mass Transfer* **67**, 637–
288 645 (2013).

289 9 Y. Zheng, “Thermal radiative wavelength selectivity of nanostructured layered media,” in
290 *Nanoscaled Films and Layers*, InTech (2017).

291 10 P. Nagpal, S. E. Han, A. Stein, *et al.*, “Efficient low-temperature thermophotovoltaic emitters
292 from metallic photonic crystals,” *Nano letters* **8**(10), 3238–3243 (2008).

293 11 K. A. Arpin, M. D. Losego, A. N. Cloud, *et al.*, “Three-dimensional self-assembled photonic
294 crystals with high temperature stability for thermal emission modification,” *Nature communica-
295 tions* **4** (2013).

296 12 F. Cao, D. Kraemer, L. Tang, *et al.*, “A high-performance spectrally-selective solar absorber
297 based on a yttria-stabilized zirconia cermet with high-temperature stability,” *Energy & Envi-
298 ronmental Science* **8**(10), 3040–3048 (2015).

299 13 F. Cao, L. Tang, Y. Li, *et al.*, “A high-temperature stable spectrally-selective solar absorber
300 based on cermet of titanium nitride in sio 2 deposited on lanthanum aluminate,” *Solar Energy
301 Materials and Solar Cells* **160**, 12–17 (2017).

302 14 H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” *Optics express*
303 **21**(106), A1078–A1093 (2013).

304 15 A. Moreau, C. Ciraci, J. J. Mock, *et al.*, “Controlled-reflectance surfaces with film-coupled
305 colloidal nanoantennas,” *Nature* **492**(7427), 86 (2012).

306 16 M. G. Nielsen, A. Pors, O. Albrektsen, *et al.*, “Efficient absorption of visible radiation by gap
307 plasmon resonators,” *Optics express* **20**(12), 13311–13319 (2012).

308 17 A. Ghanekar, Y. Tian, and Y. Zheng, “Photonic metamaterials: Controlling nanoscale radia-
309 tive thermal transport,” (2018).

310 18 M. Chirumamilla, A. S. Roberts, F. Ding, *et al.*, “Multilayer tungsten-alumina-based broad-
311 band light absorbers for high-temperature applications,” *Optical Materials Express* **6**(8),
312 2704–2714 (2016).

313 19 N. H. Thomas, Z. Chen, S. Fan, *et al.*, “Semiconductor-based multilayer selective solar ab-
314 sorber for unconcentrated solar thermal energy conversion,” *Scientific reports* **7**(1), 5362
315 (2017).

316 20 K. Aydin, V. E. Ferry, R. M. Briggs, *et al.*, “Broadband polarization-independent resonant
317 light absorption using ultrathin plasmonic super absorbers,” *Nature communications* **2**, 517
318 (2011).

319 21 A. Lenert, D. M. Bierman, Y. Nam, *et al.*, “A nanophotonic solar thermophotovoltaic device,”
320 *Nature nanotechnology* **9**(2), 126–130 (2014).

321 22 M. Francoeur, S. Basu, and S. J. Petersen, “Electric and magnetic surface polariton mediated
322 near-field radiative heat transfer between metamaterials made of silicon carbide particles,”
323 *Optics express* **19**(20), 18774–18788 (2011).

324 23 Q. Zhao, J. Zhou, F. Zhang, *et al.*, “Mie resonance-based dielectric metamaterials,” *Materials
325 Today* **12**(12), 60–69 (2009).

326 24 M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric
327 spheres with an isotropic negative permeability at infrared frequencies,” *Physical Review B*
328 **72**(19), 193103 (2005).

329 25 W. C. Chew and W. C. Chew, *Waves and fields in inhomogeneous media*, vol. 522, IEEE press
330 New York (1995).

331 26 A. Ghanekar, L. Lin, J. Su, *et al.*, “Role of nanoparticles in wavelength selectivity of multilay-
332 ered structures in the far-field and near-field regimes,” *Optics Express* **23**(19), A1129–A1139
333 (2015).

334 27 V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, *et al.*, “Modelling the op-
335 tical response of gold nanoparticles,” *Chemical Society Reviews* **37**(9), 1792–1805 (2008).

336 28 U. Kreibig and M. Vollmer, *Optical properties of metal clusters*, vol. 25, Springer Berlin
337 (1995).

338 29 W. T. Doyle, “Optical properties of a suspension of metal spheres,” *Physical review B* **39**(14),
339 9852 (1989).

340 30 D. L. Wood, K. Nassau, T. Kometani, *et al.*, “Optical properties of cubic hafnia stabilized
341 with yttria,” *Applied optics* **29**(4), 604–607 (1990).

342 31 M. R. Querry, “Optical constants,” tech. rep., MISSOURI UNIV-KANSAS CITY (1985).

343 32 A. D. Rakić, A. B. Djurišić, J. M. Elazar, *et al.*, “Optical properties of metallic films for
344 vertical-cavity optoelectronic devices,” *Applied optics* **37**(22), 5271–5283 (1998).

345 33 M. S. Wheeler, *A scattering-based approach to the design, analysis, and experimental verifi-
346 cation of magnetic metamaterials made from dielectrics*. PhD thesis (2010).

347 34 A. Ghanekar, L. Lin, J. Su, *et al.*, “Role of nanoparticles in wavelength selectivity of multilay-
348 ered structures in the far-field and near-field regimes,” *Optics express* **23**(19), A1129–A1139
349 (2015).

350 35 M. Austgen, D. Koehl, P. Zalden, *et al.*, “Sputter yield amplification by tungsten doping
351 of al₂o₃ employing reactive serial co-sputtering: process characteristics and resulting film
352 properties,” *Journal of Physics D: Applied Physics* **44**(34), 345501 (2011).