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Abstract—This study presents an approach to co-optimization
of transactive flexibility, energy, and optimal injection-range of
Variable Energy Resource (VER). Flexibility receives immense
attention, as it is the essential resource to accommodate VERs
in modern power systems. With a novel concept of trans-
active flexibility, the proposed approach proactively positions
the flexible resources and optimizes the demand of flexibility.
A Surrogate Affine Approximation (SAA) method is proposed
to solve the problem with variable infinite-constraint range
in polynomial time. It is shown that SAA is more optimistic
than the traditional affine policy in power literature. The SAA
method is also applicable to the search for secure injection-
range of VER, which is often heuristically determined in industry
given the latest system information. In practice, VER generation
beyond the secure injection-range has to be curtailed, even if its
cost is lower than the marginal price. The proposed technique
helps accommodate more VERs securely and economically by
increasing secure injection-range. The model and the solution
approach are illustrated in the six-bus system and IEEE 118-bus
system.

Index Terms—Flexibility and Uncertainty, Secure Injection-
Range, Dispatchable Renewables, Surrogate Optimization, Affine
Policy, Electricity Market

NOMENCLATURE

Indices
i index of fully-controllable unit
l index of transmission line
n index of bus/aggregated VER generator
t index of time

Sets and notations
C(·) cost function. Cc(·) for generation cost of

fully controllable generator; Cv(·) for cost
of VER generation; Cd(·) for the bene-
fit of load; Cf (·) for the benefit of up-
ward/downward flexibility

diag(·) diagonal matrix whose diagonal entries are
elements of vector ·

G(n) set of units located at bus n
J set of rows in (4d)
max(·, ·) element-wise maximum operator
Nb set of buses
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Ng set of generators
Nl set of lines
Rx set of real x-vectors
Rx×y set of real x× y matrices
T set of time intervals
U(u) uncertainty set, a function of flexibility u
Ũ surrogate uncertainty set (constant)

Constants
A, b abstract matrix and vector for constraint

(2a)-(2d)
B,C,E,d abstract matrices and vector for constraint

(3a)-(3d)
c,f abstract coefficient vectors for x and u
F ,H,h abstract matrices and vector for constraint

(2e)-(2f)
F̄l branch flow limit
Nb number of buses
Ng number of units
Nl number of transmission lines
Nr number of rows in (4d)
Pmin
i , Pmax

i minimum and maximum generation outputs
Rup

i , R
down
i unit ramping up/down limits (MW/minute)

T number of time intervals
δ timespan of one interval
Γl,n shift factor for line l and bus n

Variables
Dn load demand at bus n
G generation adjustment matrix, G ∈ RNg×Nb

G̃ surrogate generation adjustment matrix, G̃ ∈
RNg×Nb

JSAA, JAP optimal values of problem (SAA-P) and (TAP-
P)

Pi output of fully controllable generator i
P̂i(v) re-dispatch of fully controllable generator i, a

function of v
Pi,t output of fully controllable generator i at time

t in the extended multi-period model
s(uLB, uUB) surrogate function s(uLB,uUB) : R2Nb →

R2Nb

uLB,uUB downward and upward flexibility (allowed
downward and upward deviations from VER’s
perspective), uLB ∈ RNb ,uUB ∈ RNb

u u = [(uLB)>, (uUB)]>

U LB,U UB matrix diag(uLB) and diag(uUB)
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U LB
n , U

UB
n upward and downward flexibility (allowed

downward and upward deviation of VER out-
put)

v realized VER output vector, v ∈ RNb

Vn realized VER power output
V s
n scheduled VER power output

¯
Vn, V̄n lower and upper bound of allowed VER power

injection at the second stage, [
¯
Vn, V̄n] is the

optimal injection-range of VER n
V f
n forecast expectation of VER output

¯
V f
n forecast lower bound of VER output
x abstract vector denoting generation dispatch,

VER output, and load demand
y(ε) corrective action, a function of ε
ŷ(ε) surrogate corrective action, a function of ε
εn, ε uncertainty at bus n and uncertainty vector,

ε ∈ RNb

π,πLB,πUB non-negative matrix of auxiliary multipliers

I. INTRODUCTION

VARIABLE energy resources (VERs), such as solar and
wind power, have experienced rapid growth in the last

decades. In the U.S., wind and solar capacity have increased
by 100% and 900%, respectively, between 2009 and 2015 [1].
At the end of 2016, the solar and utility-scale wind generation
capacity reach 42.4GW and 81.3GW, respectively. Compared
with traditional fossil fuel-fired units, VER generators are not
fully controllable. They bring more variability and uncertainty
in the power system.

In the U.S., an important task of the Independent System
Operator (ISO) or Regional Transmission Organization (RTO)
is to make the short-term generation schedule, which is to sup-
ply the load respecting physical limits and security constraints.
In the power community, the Unit Commitment (UC) problem
is defined as finding the optimal unit ON/OFF status, and
the Economic Dispatch (ED) is to find the most cost-efficient
generation output schedule [2], [3]. When the penetration of
VERs reaches the certain level, ISOs/RTOs have to mitigate
the adverse impacts of the variability and uncertainty from
VER generators. The flexible resources, such as natural gas-
fired unit with large ramping rate, demand response, and
energy storage, are the ideal assets to achieve this goal by
providing flexibility.

VER generators are not fully controllable, and their genera-
tions are often treated as uncertain parameters. Thus, with the
rapid growth of VERs, the scheduling problems considering
uncertainty become active research topics in modern power
systems. In the literature, two of the candidate approaches to
handling uncertainties are stochastic programming and robust
optimization [4]–[8]. Scenario-based stochastic programming
approaches often model a number of scenarios to get the
cost expectation and reserve flexible resources by utilizing
Probability Density Function (PDF). However, due to the
computational intractability, many approaches only consider a
small portion of scenarios using sample-reduction techniques.
Recently, the chance-constrained stochastic approach is also
employed to solve optimal power flow problems [9]. In robust

optimization-based approaches, probability information is not
required and its solution is supposed to be immune to any
uncertainty in the predefined uncertainty set. It often requires
efforts in solving the NP-hard max-min problems to obtain a
robust and optimal solution.

In the real-time market, ISOs/RTOs are supposed to obtain
the optimal solution within several minutes, given the latest
available information, such as load and VER forecast output.
To address the computational challenge, researchers have in-
troduced affine policy in UC and ED problems [9]–[11]. Affine
policy can be traced back to 1950s in the chance-constrained
stochastic programming [12]. The strict affine policy helps
make the problem tractable. In industry, a similar principle
is widely applied in Automatic Generation Control (AGC)
[13] that is designed to balance the system frequency and the
scheduled interchange in seconds. The main difference is that
the participation factors are heuristically determined in AGC.

Flexibility has received many attentions in recent years, such
as [14]–[21]. Flexibility is considered as part of the generation
expansion problem [14], [16], [17]. A metric for flexibility
is further introduced, and profits of flexibility providers are
analyzed in [17]. However, the inherent stochastic nature of
renewable is not considered. In [18], [19], the authors present
approaches to utilizing the renewables as flexible resources.
[20] presents a framework for coordinating available reserves
using tie-line in multi-area. This author, Ge, Shahidehpour, and
Li’s previous work presents a pricing scheme for flexibility in
robust optimization [21], [22].

Realizing the increasing value of flexibility in power sys-
tems with deep VER penetration, several ISOs/RTOs have
taken actions to secure more flexible resources. For example,
CAISO has increased the reserve requirements, and both
CAISO and MISO have introduced ramping products in
the electricity market. At the same time, as flexibility in
the system is finite, renewable energy spillage often occurs
in the real-time market. Thus, ISO-NE proposes the DO-
NOT-EXCEED (DNE) limit in the real-time market [23]. It
gives clear dispatch signal for each VER generator, which
is instructed to curtail the VER generation beyond the DNE
limit. Recently, researchers present interesting results on this
topic by maximizing the norm of range vector and utilizing
historical data [24], [25].

While the terminology “flexibility” could have many def-
initions, in this work, flexibility is defined as the range
of power-injection-change that the system can accommodate
using available flexible resources within the specified time.
The flexible resources can be either from the generation side
or from Load Serving Entity (LSE) side. Furthermore, they can
be delivered to the desired destination respecting transmission
constraints. In this paper, the upward (downward) flexibility
is defined as the maximum accommodable power-injection-
change in upward (downward) direction.

Most literature of flexibility is on the supply side of flexible
resource that is often secured by the system operator based
on some heuristic requirements. This work introduces a novel
concept, transactive flexibility, to optimize both demand and
supply of flexibility. It enables the owners of flexible resource
and demanders of flexibility to manage flexibility actively.
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The demander of flexibility is allowed to procure flexibility
so that she is able to manage the uncertainty or variation of
power injection considering the benefit. The proposed model
optimally positions flexible resource and manages flexibility
demand via a two-sided market. The transmission reserves are
implicitly held so that deliverability of flexible resources is
guaranteed. Energy is often transactive, i.e., it can be bought
and sold in the electricity market. However, flexible resources,
such as ramping product, can only be sold in the existing
markets. In the existing literature, flexibility providers are
entitled to credits for reserving ramping capability. This author,
Ge, Shahidehpour, and Li’s previous research [22] further
proposes to allocate the flexibility cost to the uncertainty
source based on Uncertainty Marginal Price (UMP) following
a cost causation principle. The uncertainty source is thus
inclined to reduce the uncertainty level.

When flexibility has become increasingly valuable, three
questions remain open: 1) how to determine the flexibility
amount while keeping ISO/RTO independent; 2) how to
allocate flexibility to demander cost-effectively; 3) how to
handle the high flexibility demand when the flexible resource
is scarce. To address these problems, this paper proposes a co-
optimization model where flexibility is treated as a commodity,
and a general polynomial solution method. In the proposed
model, flexibility can be bought as well as sold. The VER’s
procurement of flexibility is equivalent to selling uncertainty at
a negative price. To the author’s best knowledge, this is the first
time to introduce the concept of transactive flexibility. Thus,
this work mainly focuses on the new co-optimization model
and the new solution methodology. The reader is referred to
[22] for the pricing schemes. The contributions of this paper
are summarized as follows.

1) This paper proposes a new co-optimization model to
maximize the total social welfare. A concept, transactive
flexibility, is proposed. The model co-optimizes flexibil-
ity and energy keeping ISO/RTO independent. System
security and economic efficiency are guaranteed. The
model will motivate VER to be an autonomous un-
certainty mitigator and flexibility demander. The VERs
submit the flexibility bid (either zero or positive) so
that resources are proactively positioned for more VER
integrations. Any VER generations within an optimally
determined injection-range can be injected into the grid.
Even with zero flexibility bid, it is still possible to find
an ED to accommodate more VERs, when a multiplicity
of ED occurs.

2) A general Surrogate Affine Approximation (SAA)
method is proposed to solve the problem that includes
decision variables of infinite-constraint range. It is com-
putationally tractable. By solving one Linear Program-
ming (LP) or Quadratic Programming (QP) problem, one
can attain the optimal solution in the proposed approach.
It is proved that the optimality of the SAA is never
worse than that of the traditional affine policy in power
literature. In many circumstances, the SAA method finds
a better solution.
The SAA method is also applicable to the DNE-limit
search, which was once regarded as a computationally
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Fig. 1. An illustrative intersection of demand and supply curve for upward
flexibility in a system without network congestion. The uncertainty source
submits demand curve. The shadow area is the social surplus.

intractable nonlinear problem. Heuristic methods are
often employed to solve it [23]. The SAA method can
even find better solutions by solving one LP problem. It
helps integrate more VERs.

The rest of this paper is organized as follows. In Sec-
tion II, the co-optimization model is developed with transactive
flexibility and uncertainty. The SAA method is presented in
Section III. Section IV illustrates the model and solution
approach using a simple six-bus system and a modified 118-
bus system. Section V concludes this paper.

II. CO-OPTIMIZATION OF TRANSACTIVE FLEXIBILITY,
UNCERTAINTY, AND ENERGY

The flexibility demand has been increasing significantly
with the growing VER penetration in power systems. In many
circumstances, flexibility is the scarce resource, that may be
even more expensive than energy [27]. To optimally and cost-
effectively position flexible resource, this paper presents a
model with transactive flexibility, which can be sold by the
supplier, and bought by the demander. Flexibility can be
either upward or downward. Fig. 1 illustratively depicts an
intersection 1 of the demand and supply curve for the upward
flexibility. The intersection is the optimal point, which yields
the resulting value of price and amount of flexibility. The
shadow area is the social surplus. This paper focuses on a new
model and solution methodologies. In the proposed model,
the flexibility consumer, such as VER, bids for flexibility,
so that she can use it for uncertainty accommodation or
ramping following. In the meantime, the flexible resource
owner gets paid for providing flexibility. The proposed market
clearing model follows a cost causation principle. It provides
an option to address the challenge of cost allocation and
resource deficiency for flexibility. On the other hand, the
system operator remains independent in this model.

Similar to stochastic/robust literature, VER generators at the
same bus are aggregated as a single one. For simplicity, a
single-period ED is considered here in the real-time market.
An extension to multi-period ED will be briefly discussed
later. Let n denote the bus index; Let V s

n denote the scheduled
VER output; let U LB

n and U UB
n denote the allowable downward

1Fig. 1 is used to illustrate the basic idea, and the intersection may be more
complicated when the line congestion exists in the system
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and upward deviation, respectively; Let Vn denote the realized
VER output. Any realized VER output

Vn ∈ [V s
n − U LB

n , V
s
n + U UB

n ], ∀n ∈ Nb

can be injected into the grid. This work considers a new two-
stage model to maximize the social welfare, where flexible
resources are to be proactively positioned at the first stage,
and they are used to accommodate uncertainties at the sec-
ond stage. It is so called “wait-and-see” process. When the
scheduled output V s

n , and allowable deviation for VER are
determined, U LB

n and U UB
n are viewed as the largest downward

and upward uncertainty at bus n by the system operator. If
these uncertainties can always be accommodated by deliver-
able flexible resource, it is defined in this work that the system
has the downward flexibility of U LB

n , and the upward flexibility
of U UB

n at bus n. In the proposed model, VER generator is
allowed to procure flexibility at the first stage, so that it could
inject more energy (i.e., larger injection-range) into the grid
at the second stage when uncertainty is realized.

The scheduled VER output V s
n,t respects

V s
n ≤ V f

n , V s
n − ¯

V f
n ≤ U LB

n , ∀n ∈ Nb,

where V f
n and

¯
V f
n are the forecast expectation, and the forecast

lower bound of VER output, respectively. The above equations
guarantee that VER output can always be accommodated.

In the proposed co-optimization model, the objective is to
minimize the total cost 2 (i.e., the negative of social welfare),
which includes cost of energy, benefit of load, and benefit of
the injection-range for VER generators. Similar to ramping
products [30], [31], the proposed model optimizes the base-
case cost. Let Cc(·) and Cv(·) denote cost functions of the
conventional generation and VER generation respectively. Let
Cf (·) and Cd(·) denote benefit functions of flexibility and load
respectively. Then, the objective function of co-optimization
ED model is formulated as

min


∑
i

Cc(Pi) +
∑
n

Cv(V s
n )

−
∑
n

Cd(Dn)−
∑
n

Cf (U LB
n , U

UB
n )

 (1)

It is subject to∑
i

Pi +
∑
n

V s
n =

∑
n

Dn (2a)

−F̄l ≤
∑
n

Γl,n

( ∑
i∈G(n)

Pi + V s
n −Dn

)
≤ F̄l, ∀l ∈ Nl

(2b)

Pmin
i ≤ Pi ≤ Pmax

i , ∀i ∈ Ng (2c)
V s
n ≤ V f

n , ∀n ∈ Nb, (2d)
V s
n − ¯

V f
n ≤ U LB

n , n ∈ Nb, (2e)

¯
Vn = V s

n − U LB
n , V̄n = V s

n + U UB
n , n ∈ Nb (2f)

2It follows the current practice in industry. There are rich discussions on
other objectives in literature, such as [28]. Among them is removing con-
gestion revenue from social welfare [29]. On the contrary, some researchers
believe congestion revenue should be counted as a part of the social surplus,
as it is distributed to FTR holders [28]. Interested readers are referred to [28],
[29] for detailed discussions.

∑
i

P̂i(v) +
∑
n

Vn =
∑
n

Dn, ∀Vn ∈ [
¯
Vn, V̄n] (3a)

−F̄l ≤
∑
n

Γl,n

( ∑
i∈G(n)

P̂i(v) + Vn −Dn

)
≤ F̄l,

∀Vn ∈ [
¯
Vn, V̄n], l ∈ Nl

(3b)

Rdown
i δ ≤ P̂i(v)− Pi ≤ Rup

i δ, ∀Vn ∈ [
¯
Vn, V̄n], i ∈ Ng (3c)

U LB
n , U

UB
n , ¯
Vn ≥ 0, ∀n ∈ Nb (3d)

where Pi, Dn, V s
n , U LB

n , U UB
n ,

¯
Vn, and V̄n are decision variables

at the first stage. Pi, Dn,
¯
Vn, and V̄n denote the output of

Fully Controllable Generator (FCG) i, load at bus n, allowable
lower and upper bound of VER injection at bus n, respectively.
It is noted that the controllable load can also be modeled
as FCG. As it is optimally determined and secure, [

¯
Vn, V̄n]

is called Optimal Injection-Range (OIR). P̂i(v) is the re-
dispatch at the second stage when VER output v is revealed.
Constant F̄l, Pmin

i , Pmax
i , Rdown

i , Rup
i , and δ are, respectively,

the transmission limit of line l, lower and upper bounds of
generation of FCG i, downward and upward ramping rates,
and timespan. Constant Γl,n denotes the shift factor for line
l and bus n. Like Cd being submitted by LSE, Cf can be
submitted by the demander of flexibility, i.e., VER.

Equation (2a) denotes the power balance constraint; (2b)
denotes the transmission line limit; (2c) represents the gen-
eration capacity. Equation (2e)-(2f) are the constraints for
VER generators. They are well discussed at the beginning
of this section. Equation (3a)-(3c) denote the constraints for
the uncertainty accommodation at the second stage when
the information on VER output is revealed. The ramping
constraint (3c) is enforced for the re-dispatch of FCG.

III. SOLUTION APPROACH

The co-optimization problem (1)-(3d) models infinite con-
straints for the re-dispatch process, which is sometimes called
recourse in robust optimization literature [32]. The upward and
downward flexibility, procured by VERs, are decision variables
at the first stage. In this section, a general surrogate method
is proposed to solve the problem of its kind.

For brevity, the model is first rewritten in a compact form

(P) min
x,u

c>x− f>u (4a)

s.t. Ax ≤ b (4b)
Fu+Hx ≤ h (4c)
Bx+Cy(ε) +Eε ≤ d, ∀ε ∈ U(u) (4d)

where variable x includes the generation dispatch, VER’s
scheduled output, and the load. The variable u denotes the
flexibility procured by VER. It includes the downward de-
viation bound uLB ∈ RNb and the upward deviation bound
uUB ∈ RNb , where Nb is the number of buses. Thus, the
system must maintain enough flexibility at the first stage such
that it can accommodate these deviations of VER outputs
at the second stage. Equation (4a) denotes the objective
function (1). It could be a linear or semi-positive quadratic
function. Equation (4b) denotes (2a)-(2d). Equation (2e)-(2f)
are represented by (4c). The re-dispatch constraints (3a)-(3c)
are rewritten in (4d). The function y(ε) : RNb → RNg
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is an image of uncertainty ε ∈ RNb , where Ng and Nb

are numbers of FCGs and VER generators, respectively. It
represents the corrective actions (or re-dispatch) of FCGs when
the uncertainty is revealed. The uncertainty is defined as

εn = Vn − V s
n , ∀n ∈ Nb.

In other words, εn is a deviation of realized VER generation
Vn from the scheduled one V s

n . The uncertainty set is defined
as

U(u) , {ε ∈ RNb : −uLB ≤ ε ≤ uUB},

where uLB ≥ 0 and uUB ≥ 0.

A. Surrogate Affine Approximation

Problem (P) is computationally intractable due to the infinite
constraints (4d). On the other hand, U(u) is a function of
u and its extreme points are unknown. Hence, problem (P)
cannot be solved directly by extreme point-based approaches,
which are often used to handle infinite constraints in robust
optimization literature [7], [32], [33]. The problem of DNE-
limit search has a similar structure [23]. It was viewed as an
intractable nonlinear problem. Hence, ISO-NE uses a heuristic
method to set re-dispatch strategy, instead of finding the
optimal one. Next, it is shown why the traditional affine policy
is intractable to solve problem (P).

Consider the traditional affine policy

y(ε) = Gε, (5)

where G ∈ RNg×Nb is the matrix of affine policy. It maps the
uncertainty to re-dispatch. With the restricted recourse Gε, the
jth row of constraint (4d) becomes

0 ≥

{
max
ε

(CG+ E)jε+Bjx− dj
s.t. −uLB ≤ ε ≤ uUB

}
, ∀j ∈ J (6)

where (·)j denotes the jth row of matrix/vector. It is noted that
uLB and uUB are non-negative vectors. J is the set of rows in
(4d). Equation (6) shows that value of

(CG+ E)jε+Bjx− dj

is never greater than zero for any ε respecting

−uLB ≤ ε ≤ uUB.

In other words, when ε is revealed, the corrective action Gε
respects the system-wide constraints.

Following strong duality [34], equation (6) is exactly recast
as 

CG+ E + πLB − πUB = 0 (7a)
Bx− d+ πLBuLB + πUBuUB ≤ 0 (7b)
πLB, πUB ≥ 0 (7c)

where x, G, πLB, πUB, uLB and uUB are variables. Equation (6)
is equivalent to (7a)-(7c), an approximation to the original
constraint (4d). As a side note, affine policy is often employed
in stochastic programming and robust optimization literature
due to its computational tractability [9], [11], [26], [35].
However, equation (7b) is computationally intractable due to

bilinear term πLBuLB and πUBuUB resulted from the traditional
affine policy.

Next, a new SAA method is proposed to solve the prob-
lem in polynomial time. Fundamentally, the SAA method
introduces new variables to replace bilinear term πLBuLB and
πUBuUB. The new constraints without nonlinear terms are
surrogates to the original ones. The proposed technique does
not relax any constraints, even better, it increases the freedom
degree of affine policy. While techniques are different, the
terminology “surrogate” can date back to 1990s in Lagrangian
Relaxation literature [36]. Authors in [36] propose to update
Lagrangian multipliers by solving only some rather than all
subproblems.

To eliminate the bilinear terms in (7b), two surrogates are
designed in the SAA method. The original uncertainty set
U(u) is the underlying cause of nonlinearity. The proposed
two surrogates are thus used to replace U(u). One is a
surrogate uncertainty set, and the other is a surrogate function.
Define the new surrogate uncertainty set

Ũ ,
{

(δLB, δUB) ∈ R2Nb : 0 ≤ δLB ≤ 1,0 ≤ δUB ≤ 1
}
.
(8)

The surrogate uncertainty set Ũ is constant. Define the surro-
gate function s(uLB,uUB) : R2Nb → R2Nb

s(uLB,uUB) , diag(uUB)δUB − diag(uLB)δLB,

where diag(·) is a diagonal matrix whose diagonal entries are
elements of vector ·. Then the image of Ũ under the surrogate
function s(uLB,uUB) is

Û ,
{

diag(uUB)δUB − diag(uLB)δLB : (δLB, δUB) ∈ Ũ
}
.

A lemma is established as follows regarding the primitive set
and the image of the surrogate set.

Lemma 1. The image of the uncertainty set Ũ under the sur-
rogate function s(uLB,uUB) is equivalent to U , i.e., U(u) = Û .

The proof is trivial. Lemma 1 reveals that any original
uncertainty point in U can be replaced with its image in the
surrogate set Û . Based on Lemma 1, propositions are estab-
lished as follows concerning the computational tractability.

Proposition 1. Let U LB = diag(uLB) and U UB = diag(uUB).
Then, constraint (4d) is rewritten as

Bx+ Cŷ(δLB, δUB) + E
[
− U LB U UB

] [δLB

δUB

]
≤ d,

∀(δLB, δUB) ∈ Ũ ,
(9)

where ŷ(δLB, δUB) : R2Nb → RNg is the surrogate re-dispatch
function of uncertainty (δLB, δUB).

According to the definition of Û ,
[
− U LB U UB

] [δLB

δUB

]
∈

Û , ∀(δLB, δUB) ∈ Ũ . Following Lemma 1, (x, uLB, uUB) re-
specting (9) must be feasible for (6).

Proposition 2. Consider a surrogate affine function

ŷ(δLB, δUB) = Ĝ

[
δLB

δUB

]
. (10)
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Following the strong duality, the surrogate affine approxima-
tion of (4d) is

CĜ+ E
[
− U LB U UB

]
− π ≤ 0 (11a)

Bx− d+ π · 1 ≤ 0 (11b)
π ≥ 0 (11c)

where x, Ĝ,π,uLB and uUB are variables.

Compared to (7a)-(7b), equation (11a)-(11c) do not have
any nonlinear terms. Bilinear term πLBuLB and πUBuUB in
(7b) are replaced with linear term π · 1 in (11b). Equation
(11a)-(11c) are linear and computationally tractable. Following
Proposition 2, the SAA model

(SAA-P) JAPP = min
x,u,Ĝ

c>x− f>u

s.t. (4b)− (4c), (11a)− (11c)

is formulated, and it can be solved using modern LP solvers.
In problem (SAA-P), the decision variables are genera-
tion dispatch, VER’s scheduled output, load demand, up-
ward/downward flexibility, and surrogate affine policy.

Surrogate affine policy Ĝ in problem (SAA-P) is used for
re-dispatch once the uncertainty is revealed. After optimal Ĝ
is attained, the re-dispatch can be written as

Ĝ

[
δLB

δUB

]
= Ĝ

[
max

(
−(U LB)−1ε, 0

)
max

(
−(U UB)−1ε, 0

)] (12)

= Ĝ

[
(U LB)

−1
0

0 (U UB)
−1

][
max (−ε, 0)
max (ε, 0)

]
.(13)

Above two equality equations naturally introduce two ways
to calculate re-dispatch when uncertainty ε is realized. Equa-
tion (12) shows one way that requires the calculation of the
surrogate uncertainty. In contrast, (13) shows the other way
without such calculation. One can calculate

Ĝ

[
(U LB)

−1
0

0 (U UB)
−1

]
without uncertainty ε information in advance. It is preprocess-
ing of the surrogate affine policy.

B. Optimality of SAA

In Section III-A, the SAA method is introduced to solve the
co-optimization model. In this part, its optimality is analyzed
by being compared with that of the conventional affine policy.

Proposition 3. Denote the feasible region of (x,u) in (SAA-
P) as Fsaa. Consider the traditional affine policy model

(TAP-P) JAP = min
x,u,G

c>x− f>u

s.t. (4b)− (4c), (7a)− (7c),

and denote the feasible region of (x,u) in (TAP-P) as Ftap,
then Ftap ⊆ Fsaa always holds.

Proof. Assume global optimal solution (x∗,u∗,G∗) to in-
tractable problem (TAP-P) is attained from an oracle. The
surrogate affine policy is constructed as

Ĝ∗ = [−G∗U LB G∗U UB].

Feasible Region of (x,u) in Problem (TAP-P)

Feasible Region of (x,u) in Problem (SAA-P)

Fig. 2. Comparison of feasible regions of the conventional affine policy and
the surrogate affine policy-based approaches.

Affine 
Policy

Problem (P)

Optimal 
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Surrogate 
Affine Policy

Nolinear
Intractable

Linear
Tractable

Optimal 
Value J1 APJ

SAAJ

SAA APJ J

Fig. 3. Comparison of conventional affine policy and surrogate affine policy.

Given any uncertainty ε ∈ [−uLB,uUB], a surrogate uncertainty
can be constructed as

δLB = max
(
−(U LB)−1ε,0

)
, δUB = max

(
(U UB)−1ε,0

)
,

where max(·, ·) returns a component-wise maximum vector.
(x∗,u∗, Ĝ∗) is a feasible point to problem (SAA-P). There-
fore, Ftap ⊆ Fsaa.

Proposition 3 indicates that the feasible region of (x, u) in
SAA-based model is never smaller than that in the conven-
tional affine policy-based model. Due to the higher freedom
degree of the surrogate affine policy, it is possible that the
feasible region of the conventional affine policy-based model
is a strict subset of that of the SAA-based model. This case is
illustrated in Fig. 2. The following lemma shows the relation
between the optimal values obtained using these two methods.

Lemma 2. If problem (SAA-P) and (TAP-P) are feasible, then

JSAA ≤ JAP

holds, where JSAA and JAP denote the optimal values of
problem (SAA-P) and (TAP-P), respectively.

The proof is trivial given Proposition 3. If Ftap ⊂ Fsaa holds,
then JSAA < JAP holds sometimes. It is shown in [37] that
separating the uncertainty into upward and downward parts can
improve the solution. Fig. 3 illustrates a comparison between
two methods. In the SAA method, one only needs to handle
tractable linear constraints. In contrast, one has to deal with an
intractable nonlinear problem in the conventional affine policy-
based method.

C. Extension to Multi-period ED

The co-optimization model and solution approach is readily
extended to the multi-period ED. Consider period index t =
{1, · · · , T}. The objective function (1) and constraint (2a)-(3c)
are repeated over all periods. The generation output is subject
to ramping up/down constraints

Rdown
i δ ≤ Pi,t − Pi,t+1 ≤ Rup

i δ, ∀i ∈ I, t = 1, · · · , T − 1.
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Fig. 4. The one-line diagram for the six-bus system

Constraints between P̂i,t and P̂i,t+1 can also be enforced.
Equation (4d) is general enough to include these ramping con-
straints, and the proposed solution approach is still applicable.
It is noted ISO/RTO runs ED tool on a rolling basis, and only
issues dispatch signal for the first interval in practice.

To simplify the policy, G can be restricted to depend only
on the most recently revealed information vt. A multi-stage
model is thus attained since the re-dispatch decision at t can
be made based on all available information at time t. In
the proposed SAA method, the resulting problem (SAA-P) is
convex and has a similar structure with the conventional affine
policy-based multi-stage model [38].

D. Application in DNE-limit Search

The proposed SAA method can also be directly applied to
the problem of DNE-limit search in ISO-NE. The DNE-limit
search is the sequential optimization, where the regular ED
problem is first solved, and then a problem maximizing the
DNE-limit is formulated given the ED solution. It has several
advantages to apply the SAA method in the DNE-limit search.
Firstly, the SAA method gets optimal participation factors
in polynomial time. Secondly, SAA provides an adjustment
matrix with higher freedom degree for the controllable gener-
ators. More specifically, the optimal participation factors for
upward uncertainties can be different from those for downward
uncertainties. Thirdly, due to tractability of SAA, one can solve
two problems sequentially to get a larger injection-range when
a multiplicity of ED occurs. The first one is a regular ED
problem, whose optimal value will be enforced as a constraint
in the second problem, i.e., DNE-limit search. Alternatively,
one can also get the ED and DNE-limit in one shot by solving
problem (SAA-P) with a special f that has small elements.
These advantages in return help integrate more VERs.

IV. CASE STUDIES

The simulations were performed in a six-bus system
and a modified IEEE 118-bus system to illustrate the pro-
posed model and SAA method. All cases were solved using
CPLEX 12.7 on a PC with 2.6 GHz Intel Core i7.

A. Six-bus system

Fig. 4 shows the one-line diagram of the six-bus system.
There are three FCGs, two VER units, and three loads.

TABLE I
FULLY CONTROLLABLE GENERATORS IN SIX-BUS SYSTEM

Pmin* Pmax* Rdown/Rup*** S1-IC** S2-IC ** S3-IC **

G1 100 210 12 10 10 10
G2 10 100 6 10 13 13
G3 0 20 5 10 10 18
* MW; ** incremental cost, $/MWh; *** MW/Interval

TABLE II
COMPARISON OF FINDING OPTIMAL FLEXIBILITY IN THREE CASES IN THE

SIX-BUS SYSTEM

Decision Variable Parameter

Case 1 (sequential opt.) up./down. flexibility G, ED
Case 2 (sequential opt.) up./down. flexibility, G ED
Case 3 (Co-opt.) up./down. flexibility, G, ED

Table I shows parameters of three FCGs. All generators are
committed. For simplicity, only a single-period scheduling
problem was considered. Three scenarios, S1, S2, and S3,
were considered with different Incremental Costs (ICs) for
FCG. Forecast outputs of VER1 and VER2 are 16 MW and
10 MW, respectively. The upward deviations are 16 MW and
14 MW; the downward deviations are 15 MW and 8 MW,
respectively. The following case studies were performed in
the six-bus system:
• Case 1: Sequential optimization with fixed AP.
• Case 2: Sequential optimization with variable AP.
• Case 3: Co-optimization with variable AP.

In the six-bus system, flexibility is held for the deviation of
VER output. Hence, it is gauged by allowable injection-range
for VERs. Table II shows the main differences in three cases.
In Case 1, flexibility/injection-range for VER was calculated
given G and ED solution. In Case 2, the injection-range and
G are decision variables given ED solution. As the search of
maximum injection-range for VERs finishes in two steps, it
is the so-called sequential optimization in Case 1 and 2. In
Case 3, injection-range, ED solution, and G were optimized
simultaneously. The transmission constraints were relaxed in
Case 1 and 2, so that it is easy to illustrate the basic ideas.
For comparison, the transmission constraints were enforced in
Case 3.

1) Case 1: In this case, there are two steps to determine the
injection-range for VER or flexibility. The first step is to solve
a classic ED model that determines the FCG power outputs.
The second step is to find the maximal secure injection-range
for VER, given the ED solution to the first problem. In Case 1,
the constraint (2e) was dropped. This case is similar to the
DNE limit search in ISO-NE [23].

Table III shows the ED solutions in three scenarios with
different ICs. It is observed that the total cost rises with
increasing ICs. The lowest cost is $2684 in the scenario with
ICs, $10/MWh, for G1, G2, and G3. The scheduled VER
outputs are 16 MW and 10 MW, respectively. They reach the
limits (i.e., forecast values) according to constraint (2d), as
VER generators’ IC, $0/MWh, is much cheaper than other
generators’ IC, $10/MWh.

In this case, the affine adjustment matrix is
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TABLE III
GIVEN ECONOMIC DISPATCHES FOR SEQUENTIAL OPTIMIZATION WITH

DIFFERENT INCREMENTAL COSTS IN CASE 1 AND 2

G1(MW) G2(MW) G3(MW) VER1(MW) VER2(MW) Cost ($)

S1 204 15 5 16 10 2684
S2 205 10 9 16 10 2714
S3 210 14 0 16 10 2726

TABLE IV
FLEXIBILITY FOR VERS (MW)

Up.VER1 Up.VER2 Dn.VER1 Dn.VER2

S1 10 1.5 10 1.5
S2 0 0 0 0
S3 0 0 0 0

−


0.5217 0.5217
0.26087 0.26087
0.2174 0.2174

, (14)

which was determined proportionally according to the ramping
rate of FCG. Although it is non-optimal, a similar strategy is
used in industry, as finding the optimal adjustment matrix was
regarded as computationally intractable in the traditional affine
policy-based method. As a side note, the SAA method can find
the optimal adjustment matrix in polynomial time. Based on
the ED solution and the adjustment matrix (14), it is trivial to
calculate corrected dispatches and injection-ranges for VER.
For instance, if the realized VER outputs are 17 MW and
12 MW, respectively, the adjusted output vector in S1 is202.9565

14.4783
4.5652

 =

204
15
5

−
 0.5217 0.5217

0.26087 0.26087
0.2174 0.2174

[17− 16
12− 10

]
.

The allowed deviation ranges for the VER are shown in
Table IV. It is observed that the system-wide upward deviation
range is 11.5 MW (i.e., 11.5 = 10 + 1.5) in S1. Column “Up.
VER1” (“Dn.Ver1”) is the upward (downward) deviation range
for VER1. However, while G2 reaches its lower bound (i.e.,
10 MW) in S2, and G3 reaches its lower bound (i.e., 0 MW)
in S3, the deviation ranges are 0 MW in both S2 and S3, given
the ED solution and the adjustment matrix (14).

2) Case 2: Similar to Case 1, the ED problem and
injection-range search problem were solved sequentially, but
with variable affine adjustment in this case. Given the ED
solution, the proposed SAA method was used to find the secure
injection-range. Table VI shows the secure injection-ranges for
VER in Case 2. It is observed that the system-wide injection-
range (or flexibility) is larger than that in Case 2. Next, detailed
discussions and analysis of this advantage will be presented.
Some limitations of sequential optimization, such as limitation
of injection-range and infeasibility, will be discussed.

First, the larger injection-range partially comes from the
optimality of the affine adjustment. Case 2 has the same ED
solution with Case 1, as both employ the same ED model.
In contrast, the adjustment matrix is a decision variable in
Case 2. In the problem of optimizing injection-range/deviation
range/flexibility, the same coefficient for VER1 and VER2
were used. In the SAA method, one can attain the optimal so-
lution by solving an LP problem. Table V presents the optimal
surrogate affine adjustment matrices in scenario S1, S2, and

TABLE V
OPTIMAL SURROGATE AFFINE ADJUSTMENT MATRICES IN CASE 2 (MW)

S1* S2* S3*

δUB
1 δUB

2 δLB
1 δLB

2 δUB
1 δUB

2 δLB
1 δLB

2 δUB
1 δUB

2 δLB
1 δLB

2

G1 0 -12 6 0 0 -12 0 5 0 -12 0 0
G2 -5 0 6 0 0 0 6 0 -4 0 0 6
G3 -3 -2 5 0 -3 -2 0 5 0 0 0 5
* 3× 4 matrix.

TABLE VI
OPTIMAL ALLOWED DEVIATION RANGE FOR VER IN CASE 2 (MW)

Up.VER1 Up.VER2 Dn.VER1 Dn.VER2

S1 8 14 17 0
S2 3 14 6 10
S3 4 12 0 11

S3, and Table VI presents the largest allowed deviations for
VER in different scenarios. Table V shows three 3×4 matrices.
The re-dispatch can be calculated based on (12)-(13) according
to Table V and VI. For example, consider realized VER1 and
VER2 output being 10 MW and 13 MW, respectively. Then,
the output vector after re-dispatch in S1 is


203.5462
17.1176
6.3361

=


204
15
5

+


0 −12 6 0
−5 0 6 0
−3 −2 5 0



max{0, 10−1617 }
max{0, 13−1014 }
max{0, 16−1017 }
max{0, 10−1314 }

,

where (16 − 10)/17 and (13 − 10)/14 are the surrogate un-
certainties from VER1 and VER2, respectively. By comparing
the data in Table IV and VI, one can find that the deviation
range is larger in Case 2, even Case 1 and 2 have the same
ED. For example, in scenario S1, the total upward deviation
range increases to 22 MW (i.e., 22 = 8 + 14) from 11.5 MW.
At the same time, the downward deviation range also increases
to 17 MW from 11.5 MW, although up to 16 MW is useful.

Second, the larger injection-range for VER is partly because
of the higher dimension of affine policy in SAA method.
As each uncertainty was separated into virtual positive and
negative components, various affine coefficients can be utilized
for re-dispatch when uncertainties fall into different regions. In
Case 1, the affine adjustment matrix is in the space of R3×2. In
contrast, the affine adjustment matrix is in the space of R3×4

in Case 2. Take scenario S2 as an example. As G2’s output
is at its lower bound 10 MW, it cannot further lower its
output. Therefore, G2 is not able to provide the downward
flexible resource. In Case 1, although G2 has the ability to
provide the upward reserves, the adjustment coefficients are
all zeros limited by its zero downward reserves. In contrast,
G2’s coefficient of surrogate uncertainty (negative component)
for VER1 is 6, according to column “δLB

1 ” for scenario S2 and
row “G2” in Table V. At the same time, the allowed downward
deviation for VER1 is 6 MW, and the corresponding surrogate
uncertainty is 1 = 6/6. It means that all the upward reserve of
G2 will be utilized for the uncertainty management according
to equation (10) (i.e., 6 = 6 × 6

6 ). Consequently, the system
has more flexibility to accommodate VER output in Case 2.

However, although the SAA method helps get the optimal
secure injection-range, the largest possible injection-range for
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TABLE VII
EDS FROM THE CO-OPTIMIZATION WITHOUT TRANSMISSION

CONSTRAINTS IN CASE 3

G1(MW) G2(MW) G3(MW) VER1(MW) VER2(MW) Cost ($)

S1 198 21 5 16 10 2684
S2 198 11 15 16 10 2717
S3 198 26 0 16 10 2762

TABLE VIII
OPTIMAL ALLOWED DEVIATIONS OF VER GENERATION WITHOUT

TRANSMISSION CONSTRAINTS IN CASE 3

Up1 Up2 Dn1 Dn2 ∆ Up a ∆ Dn b

S1 9 14 15 8 1 6
S2 9 14 15 8 6 7
S3 4 14 15 8 2 12

a Change of allowed upward deviations of VER generation from Case 2.
b Change of allowed downward deviations of VER generation from Case 2.

VER is still constrained by the available flexible resources.
These flexible resources are determined as byproducts of
solving the ED problem. According to Table VI, different
EDs lead to various injection-ranges. For example, the total
downward deviation in scenario S1 is 17 MW, which is larger
than that of 11 MW in scenario S3. One can observe similar
trends for the total upward deviations in different scenarios.

The simulation results also show that the secure injection-
range obtained from the sequential optimizations may be
infeasible in reality. The infeasibility is due to the fact that
the VER generator can only spill power, but not produce
electricity larger than its maximum available power. When the
available VER power is smaller than the lower bound of the
secure injection-range, it is impossible to enforce the lower
bound limit for VER generator. For example, the allowed
downward deviation range is 11 MW in scenario S3 according
to Table VI. It indicates power produced by VERs should be
at least 15 MW (i.e., 15 = 16 + 10 − 11). However, there
is a possibility that the available VER power is 3 MW (i.e.,
3 = 16 − 15 + 10 − 8). In this case, the secure downward
range is infeasible. The similar defect exists in the DNE limit
proposed by ISO-NE [23].

3) Case 3: In this case, the SAA method was employed to
co-optimize the transactive flexibility, uncertainty, and energy.
By solving one LP problem, one can get OIRs for VER,
as well as the optimal power output of FCG (i.e., ED).
The following context will illustrate how the proposed co-
optimization model addresses the issues revealed in sequential
optimization models. The results will verify its benefits in the
social welfare and the VER injection-range.

For comparison purposes, the co-optimization model was
formulated without transmission line constraints first, but with
the feasibility constraint (2d). According to Table VII, the cost
in scenario S1 remains $2684, and VERs are scheduled to
generate power at the forecast values in Case 3. However, ac-
cording to Table VII and Table VI, the total upward deviation
for VERs increases by 1 MW (i.e., 1 = 9 + 14 − 8 − 14) in
scenario S1 from Case 2 to Case 3. Similarly, the downward
deviation for VERs rises by 6 MW (i.e., 6 = 15+8−17−0) in

TABLE IX
ALLOWED UPWARD DEVIATION OF VERS WITH DIFFERENT FLEXIBILITY

BIDS IN SCENARIO S3 IN CASE 3 WITHOUT TRANSMISSION CONSTRAINTS

VER1 VER2 Up-1 Up-2 G1 G2 G3 Cost ($)

4 4 16 2 198 26 0 2690
4 5.1 4 14 198 26 0 2674
4 6 4 14 198 26 0 2662

5.1 4 16 2 198 26 0 2673
5.1 6 9 14 198 21 5 2657
6 5.1 16 7 198 21 5 2655

scenario S1. It suggests that the co-optimization model helps
accommodate more VER power even though the total cost is
the same. That is because ED problem, as an LP problem,
often has multiple optimal solutions.

Co-optimization also addresses the infeasibility issue in the
sequential optimizations. Feasibility of VER injection-range
comes at the expense of slightly higher total cost when bidding
of flexibility is zero. For example, the total cost in scenario S3
is increased by $36 = $2762− $2726 from Case 2 to Case 3,
according to Table III and VII. In Case 3, the VER generators
can inject power within the range of [3 MW, 44 MW] (i.e.,
3 = 16 + 10 − 15 − 8, 44 = 16 + 10 + 4 + 14) as shown in
Table VII and VIII. In contrast, the range is [15 MW, 42 MW]
(i.e., 15 = 16 + 10 − 10, 40 = 16 + 10 + 4 + 12) according
to Table III and VI. More importantly, [3 MW, 44 MW] is a
feasible range. Therefore, the operator can guarantee that any
VER power within the OIR will be securely accommodated.

An important question then arises: is it possible to further
increase the secure injection-range of VERs (flexibility) or
lower the total cost? Next, this question will be answered,
and several interesting observations will be highlighted for the
model with flexibility bids.

Firstly, the social welfare increases when VER generators
are allowed to bid for flexibility. In Table IX, allowed upward
deviations, column “Up-1” for VER1 and “Up-2” for VER2,
are different with various flexibility bids in scenario S3.
The bids are shown in column “VER1” and “VER2” in
Table IX. The column ’Cost’ in Table IX shows the total cost.
For example, according to the 2nd row in Table IX, if the
flexibility bids of VER1 and VER2, respectively, are $4/MW
and $5.1/MW, then the allowed upward deviations for VER1
and VER2 are 4 MW and 14 MW, respectively. Compared
to data in the 3rd row in Table VII, the total social welfare
is increased by $72 = $2762 − $2690 in Case 3, where the
flexibility bids are introduced.

Secondly, the secure injection-range for VERs can be ex-
panded when the bid reaches a certain level. For example, in
the last two rows of Table IX where biddings are greater than
$5/MW, the system-wide allowed upward deviation increases
to 23 MW (i.e., 23 = 9 + 14 = 16 + 7) from 18 MW. In
fact, 23 MW is the highest possible upward deviation (i.e.,
23 = 12 + 6 + 5). By comparing column “G3” in Table VII
and Table III, one can observe that the increase of flexibility
is due to the higher output of G3 in Case 3. If the upward
deviation occurs, the system operator can lower G3’s output
to 0 MW so that G3 provides the additional 5 MW downward
reserve. However, only when the flexibility bid is larger than
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TABLE X
EDS AND ALLOWED UPWARD DEVIATIONS FOR VERS WITH FLEXIBILITY

BIDS IN SCENARIO 3 WITH TRANSMISSION CONSTRAINTS

VER1 VER2 Up1 Up2 G1 G2 G3 Cost

4 4 4 14 148.14 75.86 0 2839.75
4 5.1 4 14 148.14 75.86 0 2824.37
4 6 4 14 148.14 75.86 0 2811.77

5.1 4 16 2 148.14 75.86 0 2822.17
5.1 6 9 14 148.88 70.12 5 2804.64
6 5.1 16 7 148.88 70.12 5 2802.84

TABLE XI
EDS AND ALLOWED UPWARD DEVIATIONS FOR VERS WITH FLEXIBILITY

BIDS IN SCENARIO 3 WITH TRANSMISSION CONSTRAINTS

VER1 VER2 Up1 Up2 G1 G2 G3 Cost

4 4 12 6 168.0369 55.9631 0 2780.066
4 5.1 4 14 168.0369 55.9631 0 2764.666
4 6 4 14 168.0369 55.9631 0 2752.066

5.1 4 12 6 168.0369 55.9631 0 2766.866
5.1 6 9 14 168.7798 50.2202 5 2744.938
6 5.1 12 11 168.7798 50.2202 5 2746.738
11 5.1 16 7 164.7365 54.2635 5 2675.267

$5/MW (i.e., 5 = 18 − 13), G3 will increase its output, and
G2 will reduce its output. It verifies that introducing bid can
help the system hold more flexibility.

Thirdly, VER1 and VER2 compete for the upward flexibil-
ity. By comparing the bids and the allowed upward deviations
in Table IX, one can observe an interesting point that the
VER generator with larger bid always has the larger allowed
deviation. For example, when the bids from VER1 and VER2
are $4/MW and $6/MW, respectively, the procured upward
flexibility by VER2 is 14 MW, which is 10 MW (i.e.,
10 = 14 − 4) higher than that of VER1. 14 MW is also
the highest possible deviation of VER2. It suggests the co-
optimization encourages VERs to bid for flexibility based on
the benefit. From the system’s perspective, flexibility will be
positioned cost-effectively.

Now, consider the impacts of transmission line constraints.
Table X presents the simulation results with enforced transmis-
sion line constraints. By comparing EDs in Table X and IX,
one can observe that G1 produces less electricity. In contrast,
G2 generates more electricity. That is due to the congestion
of line 1-4. Moreover, the total cost increases when the trans-
mission line constraint is enforced. For example, when bids
are $4/MW from both VER generators, G1’s scheduled output
decreases by 49.86 MW (i.e., 49.86 = 198−148.14), and G2’s
output increases by 49.86 MW (i.e. 49.86 = 75.86− 26). The
total cost is $2839.75, which is increased by $149.75 (i.e.,
149.75 = 2839.75 − 2690). The allowed upward deviation
does not change when the transmission line constraints are
enforced in this case.

To analyze the impact on flexibility/OIR for VERs, VER1
was moved from bus 5 to bus 1. The results are shown in
Table XI. By comparing the column ’G1’, ’G2’, and ’G3’ in
Table XI and X, one can observe that G1’s output increases
and G2’s output decreases if VER is moved to bus 1. It is
observed that when flexibility bids from VER1 and VER2
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Fig. 5. Upward flexibility UUB procured by VER27 when the load is
3060 MW. Solid lines denote bidding strategies (2aUUB + b), which change
with the increasing a. Red dots denote the optimal solutions with the
increasing a.

are $6/MW and $5.1/MW, respectively, the allowed deviation
of VER1 is decreased to 12 MW from 16 MW according
to Table XI and X, although system-wide flexibility remains
23 MW. If VER1 increases its bid to $11/MW, then the
allowed deviation of VER1 decreases back to 16 MW. At
the same time, the output of G1 decreases to 164.74 MW
from 168.78 MW. It suggests that the congestion of line 1-3
prevents the larger power injection at bus 1. From the system’s
point of view, the benefit of providing upward flexibility at
bus 1 is larger than that of using the cheap energy from G1,
(i.e., 11 − 5.1 = 5.9 > 3 = 13 − 10). Therefore, the upward
flexibility is re-distributed between VER1 and VER2, and G2
supplies more loads in this case.

B. Modified 118-bus System

The modified IEEE 118-bus system consists of 54 genera-
tors, 186 lines, and 91 loads. The VER generators are located
at 18 buses. The detailed data for the model can be found
at http://PowerEE.github.io/118 bus data.xlsx. The sensitivity
analysis was performed with various upward and downward
flexibility bids. The simulation for the multi-period model
was also performed. The quadratic curves were employed to
simulate the flexibility benefit. For instance, the benefit of
upward flexibility was assumed as an(U UB

n )2 + bn(U UB
n ) + cn,

where an, bn and cn are coefficients. The incremental benefit
is 2anU

UB
n + bn. By changing a, one can easily modify benefit

curves. Two scenarios were considered. Unit ON/OFF stats
were assumed determined in advance.

In the first scenario, the load is 3030 MW. As the load is
low, only a small number of units are committed. Figure 5
illustrates a set of the bidding curves with different a. For
simplicity, it was assumed that all VER units use the same
a, and the bids for the downward flexibility were set to 0
for all VER units. Generator VER27 is located at bus 27.
It is observed that VER can procure more flexibility if its
bid price is high. For example, if a = 0.10, then the bid of
VER27 is 0.2U UB +14. In this case, the red dot (40.71, 5.86) is
the optimal point, which represents that VER27 can purchase
40.71 MW flexibility at the price of $5.86/MW. Alternatively,
setting a to 0.40 indicates that VER27 willingness-to-pay is
lower for upward flexibility. In this case, the optimal point is
(15.02, 1.99), which means that VER27 purchases 15.02 MW
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TABLE XII
PROCURED FLEXIBILITY WITH VARIOUS BIDS (LOAD: 3060 MW)

a*** Cost** Scheduled* Up. Flex.* Down. Flex.* OIR*

0.1 23302.93 1052.85 374.25 374.25 748.5
0.15 23745.04 1052.85 329.25 374.25 703.5
0.2 24066.74 1052.85 297.97 374.25 672.22

0.25 24290.77 1052.85 243.24 374.25 617.49
0.3 24446.95 1052.85 215.9 374.25 590.15

0.35 24572.91 1052.85 194.25 374.25 568.5
0.4 24682.09 1052.85 180.68 374.25 554.93

*** $/MW2 ** $ * MW
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Fig. 6. Upward flexibility UUB procured by VER27 when the load is
6060 MW. Solid lines denote bidding strategies (2aUUB +b) that change with
the increasing a. Red dots denote the optimal solutions with the increasing a.

flexibility at the price of $1.99/MW. The energy price at this
location is around $12/MWh. The simulation results indicate
that VERs can inject more clean energy into the grid by
purchasing flexibility at a low price.

Table XII shows the system-wide information with in-
creasing a. Column “Up. Flex.” denotes system-wide upward
flexibility. For example, a = 0.1 indicates that VER generators
prefer to purchase more upward flexibility. The total cost
is $23302.93, and upward flexibility is 374.25 MW, and
system-wide OIR is 748.5 MW. Data in Table XII indicates
that system-wide upward flexibility and the total cost (social
welfare) are monotonically decreasing (increasing) with a. If
a increases to 0.4 from 0.1, upward flexibility decreases by
193.57 MW (i.e., 193.57 = 374.25− 180.68) to 180.68 MW.
As a result, OIR is reduced to 554.93 MW.

In the second scenario, the load was increased to 6060 MW,
and more units were committed online (UC was determined in
advance). Figure 6 shows the procured flexibility by VER27
with increasing a. It depicts a similar trend as Figure 5. If
VER27 is willing to pay more, then it can procure more
upward flexibility. An interesting observation is that VER27
can get 28 MW flexibility free of charge. It indicates that
flexible resources are free products in some circumstances. At
the same time, VER27 can also procure 40.65 MW flexibility
at $1.8/MW, which is $4.06/MW (i.e., 4.06 = 5.86 − 1.8)
cheaper than that in the first scenario. It reveals that more
flexibility will be available when more units are on-line.

An important trend is revealed that procured flexibility is a
monotonically decreasing function of a in general. It indicates
that the more VERs are willing to pay, the higher flexibility
they can secure. Consequently, VERs can inject more energy

into the grid. On the other hand, the total social welfare
increases.

The model can be extended to the multi-period ED problem.
ISOs/RTOs often perform multi-period ED problems on a
rolling basis. To reduce the computational burden, the adjust-
ment matrix was set to a diagonal block matrix. In return,
the corrective actions of the FCGs are determined by the
VER output deviation at the current interval. For a 24-period
problem, LP solver was able to get the solution within 281
seconds. If inactive line constraints were removed based on
[39], the solution time was reduced to 18 seconds, which is
6.4% of the original time.

V. CONCLUSION

With the growing VERs penetration, it becomes important
to manage the demand of flexibility in the modern electric
grid. This work provides an option to address these questions:
1) how to determine the flexibility amount while keeping
ISO/RTO independent; 2) how to allocate flexibility to de-
mander cost-effectively; 3) how to handle the high flexibility
demand when the flexible resource is deficient. A model is
proposed to optimize transactive flexibility, uncertainty, as well
as energy. In this work, flexibility is defined as the change
range of power injection that the system can accommodate
using available flexible resources within a specified time.

A novel SAA method is proposed to solve the problem
in polynomial time. It is proved that its solution is even
better than the original affine policy-based method used in the
power literature. The SAA method can also be applied to the
DNE-limit search in the industry. The simulation results show
the co-optimization approach increases the social welfare and
proactively positions flexibility for VER accommodation.

As constraints in the SAA method are linear and convex,
the general acceleration techniques for an LP/QP problem can
be used directly in the proposed approach. By introducing
decision variables and constraints associated with UC [3], [22],
one can extend the co-optimization model to the UC problems.
It will be an interesting future work, as UC may position more
flexible resources.

The proposed model is convex, and Slater’s condition holds.
Thus, the strong duality follows. Therefore, it is possible to de-
rive marginal prices for energy and upward/downward flexibil-
ity based on Lagrangian multipliers. It is worth mentioning that
the deliverability of flexible resources will result in congestion
components in marginal prices. When the energy loss is
ignored, the prices consist of the Lagrangian multipliers for the
energy balance constraints and transmission line constraints.
This author, Ge, Shahidehpour, and Li have done some work
on pricing scheme with non-dispatchable renewables [22],
[26]. The principles in [22] are applicable to the model in this
work where the curtailment of VER generation is considered.
For example, the definition of Uncertainty Marginal Price can
be extended to the marginal price for flexibility. Interested
readers are referred to [22], [26] for details. With the fair treat-
ment for uncertainty and flexibility, VERs incline to purchase
flexibility cost-effectively. That requires VERs to self-manage
uncertainties or self-optimize their resources. In return, the
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flexibility demand (or uncertainty level) can be reduced from
the system’s point of view. Two questions are of great interest
in future: what is the best bidding strategy for VER? How can
flexibility demand be aggregated with uncertainty correlations
information? With the distribution information, the expected
cost can also be employed in the objective function.
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