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Abstract—Commonly used drop-based channel models cannot
satisfy the requirements of spatial consistency for millimeter-
wave (mmWave) channel modeling where transient motion or
closely-spaced users need to be considered. A channel model
having spatial consistency can capture the smooth variations of
channels, when a user moves, or when multiple users are close
to each other in a local area within, say, 10 m in an outdoor
scenario. Spatial consistency is needed to support the testing
of beamforming and beam tracking for massive multiple-input
and multiple-output (MIMO) and multi-user MIMO in fifth-
generation (5G) mmWave mobile networks. This paper presents
a channel model extension and an associated implementation of
spatial consistency in the NYUSIM channel simulation platform
[1], [2]. Along with a mathematical model, we use measurements
where the user moved along a street and turned at a corner
over a path length of 75 m in order to derive realistic values
of several key parameters such as correlation distance and the
rate of cluster birth and death, that are shown to provide spatial
consistency for NYUSIM in an urban microcell street canyon
scenario.

Index Terms—5G; mmWave; NYUSIM; spatial consistency;
channel modeling; channel simulator; propagation; small-scale

I. INTRODUCTION

Recent work reveals that global mobile data consumption
will experience a vast increase over the next few years [3], [4].
MmWave communication is regarded as a promising technique
to support the unprecedented capacity demand because of
the availability of ultra-wide bandwidths. Accurate channel
modeling for mmWave frequencies has been an important area
of study recently, since the mmWave channel, when combined
with directional antennas, has vastly different characteristics
from omnidirectional microwave channels [5]–[7]. Many sta-
tistical and deterministic channel models such as METIS [8],
NYUSIM [6], [9], MiWEBA [10], 3GPP [11], [12], 5GCM
[13], and mmMAGIC [14], have been proposed over the past
few years.

Most of the existing statistical channel models are drop-
based, where all parameters used in one channel realization are
generated and used for a single placement of a particular user.
Then, a subsequent simulation run of the drop-based channel
model results in an independent sample function for a different
user, and at a completely different, arbitrary location, even if
the same distance between the transmitter (TX) and receiver
(RX) is considered [1], [6], [15]. Drop-based models are popu-
lar because of their simplicity in Monte Carlo simulations [16].

The NYUSIM channel model generates static channel impulse
responses (CIRs) at a particular distance/location, or across
the manifold of a 2-D antenna structure, but cannot generate
dynamic CIRs with spatial or temporal correlation based on
a user’s motion within a local area [1], [6], [17]. In other
words, CIRs of two closely spaced locations are generated
independently, although one would expect the CIRs to be
highly correlated if the users were truly close to one another
[15]. It stands to reason, and is borne out by measurements,
that two close users, or a user moving in a small area, should
experience a somewhat consistent scattering environment [2].
Thus, spatial consistency has become a critical modeling
component in the 3GPP Release 14 [11]. Challenges exist
for drop-based models to be spatially consistent, since nearly
all temporal and spatial parameters would need to vary in a
continuous and realistic manner as a function of small changes
in the user’s location.

Lack of measurements poses a challenge to accurate spa-
tially consistent channel modeling, especially for mmWave
frequencies. Using field measurements to create and validate
the mathematical channel models is one way to ensure accu-
racy and to gain theoretical insights. The NYUSIM channel
model uses realistic large-scale and small-scale parameters for
various types of scenarios, environments, and antenna patterns
based on massive datasets from measurements at 28, 38, and
73 GHz in urban, rural, and indoor environments [4], [6], [15].
Local area measurements were conducted in a street canyon at
73 GHz over a path length of 75 m, where the receiver moved
from a non-line-of-sight (NLOS) environment to a line-of-
sight (LOS) environment [18]. The measurements [18] provide
a basis for the proposed model with spatial consistency.

The NYUSIM channel model simulator operates over a
wide range of carrier frequencies from 800 MHz to 100 GHz
[1], [6], and provides temporal and 3-D spatial parameters
for each MPC, and generates accurate CIRs, power delay
profiles (PDPs) and 3-D angular power spectrums. The spatial
consistency extension proposed here allows the simulator to
use additional parameters such as the velocity, location, and
moving direction of a user to reproduce realistic CIRs received
by the moving user with spatial consistency.

This paper presents a modified channel coefficient genera-
tion procedure for spatial consistency under the framework of
the NYUSIM channel model [2], and compares the simulation
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results with 73 GHz measured data from the street canyon
measurements [18], and is organized as follows. Section II
overviews existing models that consider spatial consistency,
and provides current approaches for channel tracking. Section
III describes the impact of spatial consistency on the NYUSIM
channel model, and describes the modified generation proce-
dure for spatial consistency. Section IV presents the actual
channel transitions and resulting CIRs when a user moved in
a street canyon based on the measurements. Conclusions are
presented in Section V.

II. EARLY RESEARCH ON SPATIAL CONSISTENCY

Due to the requirements of mmWave communications in
mobile and vehicle-to-vehicle (V2V) communications [19],
modern channel models and simulation techniques must ad-
equately characterize changing environments, and generate
continuous channel realizations with statistics that are lifelike
and usable for accurate simulation for beamforming and other
MAC and PHY level design. Channels can be categorized
as stationary channels or non-stationary channels based on
the rate of the change of the propagation scenarios. Channel
modeling and simulations for non-stationary channels where
the scattering environment changed significantly, is studied in
[20]. This channel model and simulation method emulated the
time-variant nature of a real channel, and realized channel vari-
ations in a single channel realization. The channel modeling
approach in [20] can also be extended to stationary channels
where the channel parameters are renewed over time while
still fulfilling the stationary condition [20]. Spatial consistency
represents the smooth variations for the stationary channels
when a user moves, or when multiple users are located closely,
in a local area over 5-10 m.

At microwave frequencies, early statistical CIR models for
correlated multipath component amplitudes over one meter
local areas due to the small-scale movement were devel-
oped from 1.3 GHz measurements, and associated chan-
nel simulators, SIRCIM/SMRCIM, were developed based on
this model considering spatial and temporal correlation [21].
Specifically, the simulators considered the motion, the cor-
responding Doppler spread, and the resulting phase shift on
individual multipath components over a local area [22], [23].
SIRCIM/SMRCIM simulators were implementations of spatial
consistency, before the term was even coined.

Generally, the small-scale spatial autocorrelation coefficient
of the received signal voltage amplitude decreases rapidly
over distance, and the correlation distance of individual MPC
amplitude is only a few to a few tens of wavelengths. The cor-
relation distance of the received signal voltage amplitude in a
wideband (1 GHz) transmission is only 0.67-33.3 wavelengths
(0.27-13.6 cm) at 73 GHz, depending on antenna pointing
angle with respect to scattering objects [1], [24]. Furthermore,
the amplitudes of individual MPCs in an 800 MHz bandwidth
decorrelate over 2 and 5 wavelengths (2.14 and 5.35 cm)
at 28 GHz in LOS and NLOS environments, respectively
[25], [26]. Spatial consistency, however, is different from
small-scale spatial correlation. Spatial consistency refers to

Fig. 1. 2-D map of TX and RX locations for local area measurements at 73
GHz in a UMi street canyon environment in downtown Brooklyn [18]. The
yellow star is the TX location, blue dots represent LOS RX locations, and
red squares indicate NLOS RX locations. North represents 0◦.

the similar and correlated scattering environments that are
characterized by large-scale and small-scale parameters in
the channel model [2], [15]. The large-scale parameters have
a much longer correlation distance of 12-15 m [11] since
the scattering environment does not change dramatically in a
local area. Small-scale fading measurements [24] support the
hypothesis of spatial consistency extending well beyond one
meter since the amplitude of individual MPC, and the total
received power varied smoothly and continuously over 0.35
m (the longest distance measured) [25].

Both statistical and deterministic channel models need to
be spatially consistent for use in studying adaptive signal
processing for mobile scenarios. Statistical channel models
rely on large-scale parameters (shadow fading, the number of
time clusters, the number of spatial lobes, delay spread, and
angular spread) and small-scale parameters (time excess delay,
power, AOA and AOD for each MPC) from measurements
[15], whereas deterministic channel models rely on geometry
and ray-tracing techniques to acquire the channel information
[8], [10].

A. Deterministic Channel Models with Spatial Consistency

Spatial consistency is easier defined and maintained in de-
terministic channel models, since the locations of the scatterers
in the environment are identified in the site-specific channel
models [13]. The powers, angles, and delays of MPCs can be
easily calculated from the relative change of locations of the
RX and scatterers based on geometry, generally through the
use of ray tracing [27].

The MiWEBA channel model [10] is quasi-deterministic
at 60 GHz, and uses a few strong MPCs obtained from ray-
tracing techniques. Several relatively weak statistical MPCs
are added to ray-tracing results to maintain some randomness
in the channel. The METIS map-based channel model [8]
is also a channel model that uses ray-tracing techniques to
acquire large-scale parameters for a specific environment,



and uses the map-based large-scale parameters, along with
measurement-based statistical small-scale parameters [8].

B. Statistical Channel Models with Spatial Consistency
For statistical (e.g. stochastic) channel models, spatial con-

sistency is a challenge since they tend to be drop-based, and
cannot generate a time-evolved CIRs in a local area. Thus,
geometric information and correlation statistics are necessary
for these models to obtain the proper correlated values of large-
scale and small-scale parameters for closely spaced locations.

5GCM [13] proposed three approaches for spatial consis-
tency. The first approach uses spatially correlated random
variables to generate small-scale parameters such as excess
delays, powers, and angles. Users located nearby share cor-
related values of small-scale parameters. Four complex Gaus-
sian identically and independently distributed (i.i.d) random
variables on four vertices of a grid having a side length
equal to the correlation distance are generated first. Then,
spatially consistent uniform random variables at any location
within the grid are formed by interpolating from these four
Gaussian random variables [13]. The problem with this method
of ensuring spatial consistency is that the system needs to store
the values of random variables for grids around the user in
advance, and requires a large storage space [14].

The second approach is the geometric stochastic approach
[13]. In this approach, large-scale parameters are pre-computed
for each grid having a side length equal to the correlation dis-
tance of the corresponding large-scale parameter. The small-
scale parameters are dynamically evolved both in the temporal
and spatial domain, based on the time-variant angle of arrivals
(AOAs) and angle of departures (AODs), and cluster birth and
death [28].

The third approach, the grid-based geometric stochastic
channel model (GGSCM) [13], uses the geometric locations
of scatterers (i.e., clusters). A cluster is defined as a group
of rays coming from the same scatterer, and these rays
have similar angles and delays. The angles and delays of
the cluster and multipath components in the cluster can be
translated into the geometrical positions of the corresponding
scatterers. Thus, the time evolution of angles and delays can
be straightforwardly computed from the relative changes of
the user position, and have very realistic variations.

MmMAGIC channel models have adopted the three afore-
mentioned spatial consistency approaches, and set the first
approach as default since this approach has a more accurate
realization of the mmWave channel [14].

The COST 2100 model is also a geometry-based stochastic
channel model [29], and introduces a critical concept, the
visibility region. The visibility region refers to a region both
in time and space where a group of multipath components is
visible to the user. The multipath components in the visibility
region constitute the CIRs experienced by the user.

III. SPATIAL CONSISTENCY EXTENSION FOR NYUSIM
CHANNEL MODEL

As discussed earlier and in [2], [6], [15], the large-scale
and small-scale parameters should vary continuously as a

TABLE I
HARDWARE SPECIFICATIONS OF LOCAL AREA MEASUREMENTS

Campaign 73 GHz Local Area Measurements
Transmit Signal 11th order PN sequence (length of 2047)

TX Antenna Setting 27 dBi horn antenna with 7◦ HPBW
RX Antenna Setting 20 dBi horn antenna with 15◦ HPBW
TX/RX Chip Rate 500 Mcps/499.9375 Mcps

RF Null-to-Null Bandwidth 1 GHz
TX/RX Intermediate Freq. 5.625 GHz

TX/RX Local Oscillator 67.875 GHz (22.635 GHz × 3)
RX ADC Sampling Rate 2.5 Msamples/s

Carrier Freq. 73.5 GHz
Max TX Power/EIRP 14.3 dBm/41.3 dBm
TX-RX Antenna Pol. vertical-to-vertical

Max Measurable Path Loss 180 dB

function of the user location in a channel realization over
a local area. Under the framework of the NYUSIM channel
model [9], a spatial consistency extension is proposed for
the NYUSIM channel model and associated simulator [2].
A spatial exponential filter is applied to make large-scale
parameters spatially correlated within the correlation distance
of these parameters. The modeling of time-variant small-scale
parameters is motivated by the stochastic geometry approach
[28] and the CIR generation procedure in 3GPP Release 14
[11]. The large-scale path loss is made time-variant, and the
shadow fading is made spatially consistent over a local area.
Thus, the NYUSIM channel model is extended from a static
drop-based to a dynamic time-variant channel model which fits
well the natural evolution of NYUSIM and other drop-based
statistical models.

Two distances should be clarified first, the correlation dis-
tance and update distance. The correlation distance determines
the size of the grid that maintains spatial consistency of
channel conditions. The CIRs of the user moving beyond the
correlation distance, or multiple users separated beyond cor-
relation distance, can be regarded as independent. Each large-
scale parameter has its own particular correlation distance,
and the correlation distance varies according to scenarios and
frequencies. For example, the correlation distance of a large-
scale parameter in the UMi scenario is shorter than the one in
the RMa scenario because of the higher building density. Thus,
extensive propagation measurements for various scenarios and
frequencies are necessary to provide the accurate values of the
correlation distances of large-scale parameters.

3GPP Release 14 [11] provides that the correlation dis-
tances of large-scale parameters in the LOS and NLOS UMi
scenarios were 12 m and 15 m, respectively. Some 73 GHz
measurements in a LOS street canyon scenario suggest that
the correlation distance of large-scale parameters at 73 GHz
is 3-5 m [28]. From the local area measurements at 73 GHz
that will be introduced in the Sec. IV, the correlation distance
of the number of time clusters is 5-10 m.

The update distance is the time interval in which the model
updates the small-scale parameters for MPCs and renews a
CIR. Since the small-scale parameters are time-variant and not
grid-based, the update distance should be much shorter than
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Fig. 2. Omnidirectional PDPs at 16 RX locations in a UMi street canyon in downtown Brooklyn at 73 GHz. Referring to Fig. 1, the receiver moved from
RX81(‘1’ at the ‘RX locations’ axis) to RX96 (‘16’ at the ‘RX locations’ axis). The distance between two successive RX locations was 5 m. The T-R
separation distance varied from 81.5 m to 29.6 m. The visibility condition changed at RX 91 and RX 92 from NLOS to LOS. Absolute time delays are
removed to show the difference of time excess delay and delay spread [18].

Fig. 3. Omnidirectional PDPs at RX81-RX86 to study the correlation distance
of large-scale parameters. The distance between two successive RX locations
was 5 m. The PDPs at RX81 and RX82 are similar; the PDPs at RX83 and
RX84 are similar; the PDPs at RX85 and RX86 are similar.

the correlation distance of large-scale parameters to ensure
accurate modeling while sampling at an arbitrary time or
distance within a local area [22]. 3GPP Release 14 suggested
that the update distance should be within 1 m. During each
update, the channel can be considered as static. That is to say;
the update period is 2 s when the user moves at 0.5 m/s; the
update period is 0.2 s when the user moves at 5 m/s. 1 m
is set as update distance in the NYUSIM channel model for
simplicity.

The details for the generation method of each large-scale
and small-scale parameter are described below.

• Time-variant path loss: The path loss varies smoothly as
the user moves in a local area since the shadow fading
is spatially consistent. The path loss is obtained from the
close-in (CI) path loss model with 1 m free space refer-
ence distance [6], and calculated in every update period
based on the locations of the moving user. The path loss
and shadow fading is critical to the evaluation of massive
MIMO and multi-user MIMO system performance, and
has a large impact on the received power.

• LOS/NLOS transition: LOS/NLOS condition (LOS prob-
ability) determines the value of path loss exponent and
shadow fading. Thus, the path loss in LOS and NLOS
scenarios are much different. The NYUSIM channel

model, as a stochastic model, models the LOS probability
as a distance squared model [24]. The conventional
NYUSIM channel model generates the LOS/NLOS con-
dition independently in each simulation. The LOS/NLOS
does not change during each simulation. A spatial expo-
nential is applied to make the LOS/NLOS condition spa-
tially correlated based on the correlation distance of LOS
probability [2]. Furthermore, when the LOS/NLOS condi-
tion changes, the values of the corresponding parameters
will change during the simulation. For Monte Carlo
simulations, a statistical spatially correlated LOS/NLOS
condition map for a local area is reasonable enough to
evaluate the system capacity. However, in the real-world
transmission, the information of LOS/NLOS condition
in the channel state information (CSI) would be very
important for the base station to decide the transmission
scheme.

• The number of time clusters, the number of spatial
lobes, the number of MPCs in each time cluster: These
three parameters are large-scale parameters that are pre-
computed for each grid since the surrounding scatterers
do not change rapidly within the correlation distance of
large-scale parameters.

• Cluster birth and death: This concept, first presented in
[28], demonstrates the time evolution of time clusters.
When the user moves across grids from location A to
location B in the real world, the time clusters appear at
the location A may disappear at the location B since the
clusters observed at A become very weak. The extension
for NYSUIM channel model generates grid-based large-
scale parameters including the number of time clusters.
Thus, the clusters of A should be discarded, and the
clusters of B should be generated gradually during the
movement. This procedure can be modeled as a Poisson
process with a rate of cluster birth and death. The
probability of the occurrence of cluster birth and death is
denoted as

Pr(t) = 1− exp (−λc(t− t0)) (1)

where t0 is the most recent update time, and λc is the



mean rate of cluster birth and death per second. This
rate varies according to the scenarios, and can only be
obtained from field measurements. The birth and death
always happen to the weakest cluster at the location. If
the numbers of clusters in two grids, A and B, are the
same, only the replacement from an old to a new cluster
will occur. The weakest cluster of A will be replaced
by the weakest clusters of B as one moves from grid
A to grid B. Note that when the cluster birth and death
occurs, only one cluster of A and one cluster of B will be
involved. If the number of clusters in the two grids are
not the same, the cluster birth or death will occur alone.
This gradual replacement of time clusters ensures spatial
consistency in the NYUSIM channel model.

IV. LOCAL AREA MEASUREMENTS FOR SPATIAL
CONSISTENCY

A. Measurement Environment and Procedure

Local area measurements were conducted at 73 GHz using
a null-to-null RF bandwidth of 1 GHz [18] to study the spatial
consistency and provided the reference values of several pa-
rameters such as correlation distance of large-scale parameters.
Table I provides the specifications of the measurement system
[18]. The measurements were conducted in a street canyon
(18 m wide) between 2 and 3 MetroTech Center in downtown
Brooklyn, NY. During the measurements, the TX and RX
antennas were set to 4.0 m and 1.5 m, respectively, to emulate
the heights of an access point and a user terminal, respectively.
TX and RX locations are shown in Fig. 1, where RX moved
from the location RX81 to the location RX96 (NLOS to
LOS). The T-R separation distance varied from 81.5 m to
29.6 m. Specifically, the T-R separation distance of NLOS
locations (RX81 to RX91) varied from 81.5 m to 50.8 m;
the T-R separation distance of LOS locations (RX92 to RX
96) varied from 49.1 m to 29.6 m. The distance between two
RX locations was 5 m. Note that the TX antenna pointing
angle was the direction that resulted in the strongest received
power at the starting location: RX81, and was fixed during the
measurements. For each TX-RX combination, the RX swept
five times in the azimuth plane. Each sweep was 3 min, and
the interval between sweeps was 2 min. The RX antenna swept
in half power beamwidth (HPBW) step increments (15◦). A
power delay profile (PDP) was recorded at each RX azimuth
pointing angle, and the measurements at each location resulted
in at most 120 PDPs (some angles did not have a detectable
signal above the noise floor). The best RX pointing angle (the
direction where the RX got the maximum received power) in
the azimuth plane was selected as the starting direction for the
RX azimuth sweeps (elevation remained fixed for all RXs), at
each RX location measured [18].

B. Measurement Data Processing and Analysis

24 directional PDPs (HPBW step increments in the azimuth
plane, 360/15 = 24) [18] of one sweep at each location
were combined to form one omnidirectional PDP to better
illustrate spatial consistency. The denoising was done before

TABLE II
THE NUMBER OF TIME CLUSTERS IN THE FIRST 6 RX LOCATIONS

# of time clusters RX locations
3 81,82
4 83,84
6 85,86

Fig. 4. Omnidirectional PDPs at RX91-RX93. The distance between two
successive RX locations was 5 m. The receiver at RX 91 was in NLOS
condition; The receiver at RX 92 and later locations was in LOS condition.

this synthesis with a threshold of 20 dB below the peak power
of each directional PDP. All 16 omnidirectional PDPs were
aligned only for illustration purposes, and the time excess
delays of these PDPs are shown in the Fig. 2. As the RX
moved towards TX, the received power increased, and the
number of time clusters also increased from 1 up to 6.

To study the correlation distance of large-scale parameters,
the PDPs of the first six NLOS RX locations were studied.
The PDPs are shown in Fig. 3. The number of time clusters
is abstracted into the Table. II based on the time-clustering
algorithm described in [26]. Thus, the correlation distance of
the number of time clusters is about 5-10 m; the correlation
distance of delay spread is also about 5-10 m. The same results
of correlation distance can be found from the rest PDPs at
other LOS and NLOS locations in Fig. 2.

These local area measurements also showed the impact of
LOS/NLOS condition on resulting PDPs. When the RX moved
from RX91 to RX92, the visibility condition changed from
NLOS to LOS. The PDPs at RX91, RX92, RX93 are shown in
Fig. 4. The received power of RX92 was much stronger than
that of RX91, and there were more MPCs at RX92 than at
RX91. These results indicate that the LOS/NLOS condition is
particularly critical to CIRs and cannot be generated indepen-
dently for nearby locations as is currently done in conventional
statistical channel models. The spatially consistent LOS/NLOS
condition would help to predict the CIRs more accurately.

V. CONCLUSION

The spatial consistency extension for the outdoor NYUSIM
channel model has been presented in this paper. The gen-
eration procedure of both large-scale parameters and small-
scale parameters was modified to make these parameters spa-
tially consistent and time-variant. Spatially correlated random



variables were applied to characterize the grid-based large-
scale parameters; A geometry-based approach was applied to
obtain the time-variant small-scale parameters such as time-
variant AODs and AOAs, and time cluster birth and death.
The static large-scale path loss of drop-based simulations
was transformed into a time-variant parameter. The local area
measurements in a street canyon were also presented and
analyzed in this paper, which indicated that the correlation
distance of the number of time clusters and delay spread is
about 5-10 m in a UMi street canyon scenario. More field
measurements should be conducted to obtain parameters for
spatial consistency in various scenarios. The modern channel
models with spatial consistency will help in the design of beam
tracking and beamforming in system level, and will estimate
the channel more accurately for transient simulations.
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