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ABSTRACT. We define and study a bigraded knot invariant whose Euler charac-
teristic is the Alexander polynomial, closely connected to knot Floer homology.
The invariant is the homology of a chain complex whose generators correspond
to Kauffman states for a knot diagram. The definition uses decompositions of
knot diagrams: to a collection of points on the line, we associate a differential
graded algebra; to a partial knot diagram, we associate modules over the al-
gebra. The knot invariant is obtained from these modules by an appropriate
tensor product.

1. INTRODUCTION

The Alexander polynomial can be given a state sum formulation as a count of
certain Kauffman states, each of which contributes a monomial in a formal variable
t [6]. In [22], this description was lifted to knot Floer homology [23, 25]: knot
Floer homology is given as the homology of a chain complex whose generators
correspond to Kauffman states. The differentials in the complex, though, were
not understood explicitly; they were given as counts of pseudo-holomorphic curves.
A much larger model for knot Floer homology was described in [14], where the
generators correspond to certain states in a grid diagram, and whose differentials
count certain embedded rectangles in the torus. The grid diagram can be used to
compute invariants for small knots [1, 4], but computations are limited by the size
of the chain complex (which has n! many generators for a grid diagram of size n).

The aim of this article is to construct and study an invariant of knots, H(K),
with the following properties.

(H-1) Letting F =7Z/2Z, H~ (K) is a bigraded module over the polynomial alge-
bra F[U]. That is, there is a vector space splitting H™ (K) = ®q,.H, (K, s),
and an endomorphism U of H™(K) with U: H; (K,s) = H;, ,(K,s—1).

(H-2) If D is a diagram for K, with a marked edge, then H~(K) is obtained as
the homology of a chain complex C~ (D) associated to the diagram.

(H-3) The complex C~ (D) is a bigraded chain complex over F[U], which is freely
generated by the Kauffman states of D.

PSO was partially supported by NSF grants DMS-1258274, DMS-1405114, and DMS-1708284.
7Sz was partially supported by NSF grants DMS-1006006, DMS-1309152, and DMS-1606571.
1



2 PETER S. OZSVATH AND ZOLTAN SZABO

(H-4) The graded Euler characteristic of H~(K) is related to the symmetrized
Alexander polynomial Ak (t) of the knot K, as follows: there is an identi-
fication of Laurent series in Z[t,t7!]

R s Ak()
(1.1) dzﬁ(f1)ddlde (K, s)t *ﬁ'

From its description, this invariant comes equipped with a great deal of algebraic
structure, similar to the Khovanov and Khovanov-Rozansky categorifications of the
Jones polynomial and its generalizations. The structure also makes computations
of the invariant for large examples feasible. In this paper, we also give an algebraic
proof of invariance, hence giving a self-contained treatment of this invariant.

Building on the present work, in [19], we generalize the constructions to define an
invariant with more algebraic structure. In [17], we relate the constructions here
and their generalizations from [19] with pseudo-holomorphic curve counting, to
give an identification between these algebraically-defined invariants and a suitable
variant of knot Floer homology [17]. See [21] for an expository paper overviewing
this materal. A generalization of these constructions to links is given in [18].

1.1. Decomposing knot diagrams. The knot invariant H~(K) is constructed
by decomposing a knot projection for K into elementary pieces, and using those
pieces to put together a chain complex whose homology is H™(K).

In a little more detail, a decorated knot diagram D for K is an oriented, generic
knot projection of K onto R?, together with a choice of a distinguished edge, which
meets the infinite region. The projection gives a planar graph G whose vertices
correspond to the double-points of the projection of K. Since G is four-valent,
there are four distinct quadrants (bounded by edges) emanating from each vertex,
each of which is a corner of the closure of some region of R*\ G. Let m denote the
number of vertices of G. Clearly, G divides R? into m + 2 regions, one of which
is the unbounded one.

Definition 1.1. A Kauffman state (cf. [6]; see also Figure 1) for a decorated knot
projection of K is a map K that associates to each vertex of G one of the four
in-coming quadrants, subject to the following constraints:

e The quadrants assigned by K to distinct vertices are subsets of distinct
bounded regions in R?\ G.

o The quadrants of the bounded region that meets the distinguished edge are
not assigned by K to any of the vertices in G.

Each Kauffman state sets up a one-to-one correspondence between vertices of G
and the connected components of R? \ G that do not meet the distinguished edge.

In [6], Kauffman describes the Alexander polynomial of a knot as a sum of monomi-
als in ¢ associated to every Kauffman state. We recall this description (with slight
modifications to suit our purposes).

Definition 1.2. Label the four quadrants around each crossing with 0, and i%,
according to the orientations as specified in the second column of Figure 2. The
Alexander function of a Kauffman state K, A(K), is the sum, over each crossing,
of the contribution of the quadrant occupied by the state. The Maslov function of a
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FIGURE 1. Decorated knot projection for the left-handed
trefoil. The distinguished edge is marked with a star. We have
illustrated one of the three Kauffman states for this projection.

Kauffman state K is obtained similarly, with local contributions as specified in the
third column of Figure 2.
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FIGURE 2. Sign conventions for crossings, and local
Alexander and Maslov contributions. The first column il-
lustrates the chirality of a crossing; the second the Alexander con-
tribution of each quadrant; the third the Maslov contribution.
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Let & = &(D) denote the set of Kauffman states. Kauffman shows that the
Alexander polynomial is computed by Ag(t) = > e (—1)MEFAX) - (Kauff-
man’s description is slightly different; he does not define the integer M (K), only
its parity, which suffices to compute the Alexander polynomial.)

In [22], we gave a description of knot Floer homology as the homology groups
of a chain complex whose generators are Kauffman states, with bigradings given
by the M and A functions defined above, and whose differential counts pseudo-
holomorphic disks. In certain special cases (for example, for alternating knot di-
agrams, after a possible change of basis), these differentials could be computed
explicitly; but in general, their computation remained elusive (compare [14]).

In the present paper, we define H~ (K, which is the homology of a chain complex
C~ (D) associated to a diagram. Its generators are Kauffman states, and its dif-
ferential is described algebraically. The construction will involve decompositions of
the knot diagram D, as follows.

Given a generic, oriented knot projection in the xy-plane, we will consider the
intersection of D with half-planes y > ¢ and y < ¢, for generic values of ¢. Inter-
sections with y > t are called upper partial knot diagrams, and intersections with
y < t are called lower partial knot diagrams. The decorated edge of D will contain
one of the points with minimal y value. See Figure 3.
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FicUure 3. Slicing the trefoil diagram. The y = ¢ slice for
the diagram on the left, gives the line with 4 marked points (and
orientations) in the middle. The y > t upper diagram is on the
right.

Our knot invariant will be constructed out of invariants for upper and lower knot di-
agrams. In the spirit of bordered Floer homology [9], we will associate the following
algebraic objects to this picture:

e an algebra associated to the intersection of the knot diagram D with generic
lines y = t.

e a “type D structure” (in the sense of [9], recalled here in Section 2.4)
associated to each (generic) upper diagram.

e a right A, -module associated to each (generic) lower diagram.

Given this data, the complex C'~ (D) is obtained, for generic ¢, as the tensor product
(in the sense of [9], recalled here in Section 2.5) of the invariant associated to the
y >t upper diagram with the y <t lower diagram, where the pairing is taken over
the algebra associated to y =t slice.

In more detail, the intersection of the knot diagram D with a generic horizontal
line y = ¢ can be encoded as a line equipped with 2n points p1,...,pa, (i.e. where
the knot meets the slice), half of which are oriented upwards, and half of which are
oriented downwards. Let S denote the subset of those points oriented upwards.
We will define an algebra associated to this configuration. The points subdivide
the line into 2n — 1 bounded intervals, and two unbounded ones. There are certain
distinguished basic idempotents in the algebra which correspond to choices of n of
those bounded intervals. These algebras are constructed in Section 3.

We will describe certain natural modules over this algebra in terms of the following:

Definition 1.3. An upper Kauffman state for an upper diagram y >t is a pair
(K, I) where

e K associates to each crossing in the upper diagram one of the four adjacent
quadrants.
e [ is a basic idempotent for the y =t algebra.

Moreover, these data are required to satisfy the compatibility conditions:

o The quadrants assigned by K to distinct vertices are subsets of distinct
bounded regions in the upper diagram y > t.

o The unbounded region meets none of the intervals in the idempotent I .

e Fach bounded region in the upper diagram y >t either:
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— contains a quadrant associated to some vertex by K, and meets none
of the intervals in the idempotent I ; or

— meets exactly one of the intervals in the idempotent I, and is not
associated to any verter by K.

It is easy to see that any Kauffman state can be restricted canonically to give an
upper Kauffman state on any of its upper diagrams; whereas upper Kauffman states
on an upper diagram might not extend to give a global Kauffman state.

(X X [N

FIGURE 4. Upper Kauffman states. Here are all three upper
Kauffman states for the upper diagram obtained from the trefoil
diagram in Figure 3, with idempotent I represented by the pairs
of darkened intervals.

The type D structure of an upper diagram is generated by its upper Kauffman
states.

We will also describe bimodules for enlarging the upper knot diagram. Specifically,
we will associate bimodules to crossings, caps, and cups, in Sections 5, 8, and 9
respectively. These bimodules are generated by certain localized Kauffman states,
and the type D structure of an upper diagram is built as a tensor product of the
bimodules associated to these various pieces. Tensoring together all the pieces gives
the desired chain complex C~ (D) whose generators are Kauffman states.

The topological invariance of H~(K) is established in Theorem 11.5. The proof
proceeds by showing that H~ (D) is invariant under planar isotopies of the knot
diagram, and then locally verifying invariance under the three Reidemeister moves.
In fact, invariance under Reidemeister moves 2 and 3 are part of the “braid re-
lations” that the crossing bimodules satisfy (see Section 6), while Reidemeister 1
invariance is an easy computation.

The complex C~ (D) is a chain complex over the polynomial ring in one generator
U. We can set U = 0 to get another chain complex C(D) whose homology H (K)
is also a knot invariant.

Knot Floer homology [23] is an invariant with the above properties, according
o [22]. The differentials appearing in the original definition of knot Floer homol-
ogy involve analytical choices; algebraic constructions over a larger base ring were
given in [15] and [2], and a chain complex with many more generators was given
in [14]. The invariant H(K) corresponds to the version of knot Floer homology
denoted @{(K ) and H~(K) corresponds to another version of knot Floer ho-
mology, denoted HFK™ (K). In [17], we verify that H(K) and H~(K) coincides

with knot Floer homology Iﬁ:‘T{(K) and HFK™ (K).

The methods of this paper are conceptually similar to the computation of Heegaard
Floer homology groups of three-manifolds by factoring mapping classes [11]; but
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the present constructions are ultimately algebraic in nature, as is the invariance
proof we give here; compare [28]. Although the bimodules we write down here
might seem ad hoc in nature; the holomorphic theory did give us guiding principles
for what to look for; see Section 4.4. (See also [17])

1.2. Organization. In Section 2 we discuss the algebraic preliminaries, based on
the algebra from of [12], using throughout the notions of bimodules of various
types (DD, DA, and AA). In Section 3 we describe the algebras associated to
knot diagram slices, along with a canonical (invertible) dualizing bimodule of type
DD. In Section 4, we associate natural type DD bimodules to crossings, which
are simple to describe. In Section 5 we construct the corresponding type DA
bimodules, which are most useful to work with. These bimodules induce a braid
group action on the category of modules over our algebras, as verified in Section 6.
In Section 7, we construct the type DD bimodules associated to a critical point
in the knot diagram, and verify the “trident relation”, which describes how these
bimodules interact with nearby crossing bimodules. The critical point bimodules
have two kinds of corresponding type DA bimodules: the bimodule associated to
a maximum, constructed in Section 8, and the bimodule associated to a minimum,
constructed in Section 9. The theory is equipped with several symmetries, collected
in Section 10. In Section 11, we construct the knot invariant from the constitutent
bimodules, and verify its invariance properties. In Section 12 we verify a few basic
properties of this invariant.

A bordered theory for tangles in the grid context was developed by Ina Petkova
and Vera Vértesi [24]; compare also [10]. In a different direction, Rumen Zarev [27]
constructed a “bordered sutured” invariant that can also be used to study knot
Floer homology. Explicit computations of )ik (K), for three-stranded pretzel knots,
were done by Andrew Manion. A version of this construction for singular knots is
also studied by Manion [13].

In [19], we give a slight variation on the present construction, together with a
sign refinement. The techniques from that paper lead to efficient computations
of H-(K) for large knots [20]. Similar to fast computations for Khovanov ho-
mology [3] for non-alternating projections, there are various cancelling differentials
in the invariants associated to partial knot diagrams that allow for fast computer
calculation. Details will be explained in [19]. As an illustration, we took the
Gauss codes (which specify a knot up to reflection) for the knot Kj from [5],
to obtain a 91-crossing presentation of K. The Poincaré polynomial of H (K),
Pg(m,t) =3, dim Hy(K, s)m®*, is given by

2t mS + 3 (Tm® + 3m3 + m) + t2(10m* + m3 + 16m?* + m + 3)
+t(Tm® +2m?* +39m + 2+ 3m ™) + (4m? + 2m + 53 + 2m ! + 2m?)
+t 7 Tm+2+39m +2m 2+ 3m ) + 210+ m T 4+ 16m % +m 3 4 3m )
+t73(Tm ™ 4 3m 73 4+ m ) + 2t tm 2,
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2. ALGEBRAIC PRELIMINARIES

We recall some algebraic preliminaries from bordered Floer homology. Further
background on A, algebras can be found in [7]. Most of this material (except
Section 2.9) can be found, with more detail, in [12].

2.1. Algebras. In this paper, we will be concerned with differential graded alge-
bras A (DG algebras) in characteristic 2.

The DG algebra A is an abelian group equipped with a differential pu;: A — A, and
a multiplication map po: A® A — A, satisfying the usual compatibility conditions

pi=0;
p2 0 (p1 @ Id +Id ®pu) = p1 o po;
p2 o (2 @ Id) = pg o (Id @pz).

(The latter two are the Leibniz rule and associativity rule respectively.) It is cus-
tomary to abbreviate p1(a) by da and ps(a®b) by a-b.)

Our algebras are strictly unital; i.e. they are equipped with a distinguished multi-
plicative unit 1 which is a cycle. We will typically think of our algebras as defined
over a ground ring k, which in turn is a direct sum of finitely many copies of
F = Z/2Z, equipped with a vanishing differential. This means that there is a
distinguished subalgebra of A, identified with k, whose unit 1 is also the unit in
A. Moreover, A as a bimodule over k, u; as a bimodule homomorphism, and
po: ARk A — A is a bimodule homomorphism. (Our algebras will be typically
not finitely generated over the ground ring k.)

2.2. Gradings. Our algebras will be equipped with gradings, a Maslov grading,
which takes values in Z, and an Alexander multi-grading which takes values in
some Abelian group A = A4, compatible with the algebra actions as follows.

The algebra A is equipped with a direct sum splitting A = @(d.@ez@/\ Age. A
non-zero element a € Agy is called homogeneous with grading (d;¢); or simply
homogeneous with respect to the grading by Z ® A, when we do not wish to specify
its actual grading. Similarly, if a € @, Aa.¢ for some fixed £ € A, we say that a
is A-homogeneous (with grading ¢). We require

w1t Age — Ad—1. pot Adyiey © Adgity = Ady+doitr+£o-
In our present applications, the group A4 is (%Z)m cQ™.
The algebras considered here will satisfy the following further condition:

Definition 2.1. We say that the Alexander multi-grading on A is positive over k
if the following two conditions hold:

o k is the set of algebra elements in A with Alexander multi-grading 0.
o For ay,...,ap with Alexander multi-gradings A1,..., ¢, if Zle Ai =0,
then each \; = 0.
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In fact, in this paper k will consist of homogeneous elements with bigrading (0;0).

2.3. Modules. We will consider several kinds of modules over our algebras. A right
differential module over A is a right k-module M , equipped with maps my: M —
M and mo: M ®x A — M satisfying

mi = 0;
mg o (mp @ Id+1Id®ui) = mq o may;
mg o (mg ® Id) = mq o (Id ®us).

We will consider modules that are strictly unital, meaning that mo(z,1) = x for
all x € M. In this case, mso is a right k-module map mo: M ®yx A — M.

Weakening associativity, one naturally arrives at the notion of an A,, module M .
A right Ase module over A is a right k-module M, equipped with maps
i—1

—
mi: M@k ARk - Qx A — M
for i > 1, satisfying the following strict unitality conditions:
(1) mo(z®1) =z forall z € M

(2) mi(z®a1®---®a;—1) =0 if i > 2 and there is some 1 < j <4i—1 with
ajzl;

and a compatibility condition which is perhaps best phrased in terms of the bar
i

—~
construction. (See Equation (2.1) below.) Define 7*(A) = @;oj A ®xk -+ Qi A,
with the convention that the 0* tensor product of A is k, which is a chain complex,
with a differential induced by p; and po; i.e.

i
d(dl®'~'®ai)Zzal®~'~®aj—1®u1(aj)®aj+1®--~®ai
j=1

1—1
+> a1 @ ®ajo1 @ pa(a; ®aj) @ Da;,
j=1

with the understanding that d vanishes on T°(A). Consider T*(M) = M ®y
T*(A). The maps m; (i > 1) induce a map m: T*(M) — T*(M) by the formula

m($®a1®-~-®ai)szj+1($®a1®'“®aj)®aj+1®"'®ai
j=0

The compatibility condition is equivalent to the condition that
(2.1) m(m(z ® a)) + m(z ® d(a)) = 0;

i.e. the map dy,: T*(M) — T*(M) given by dy,(z®@a) =m(zr®a) + = ®d(a) is
a differential.
Left differential modules and A,, modules are defined analogously (though in ad-

herence with the conventions laid down in [9], our A modules will typically be
right modules). A differential module is an A, module with m; = 0 for all ¢ > 3.
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Gradings are as follows. The modules M we consider will typically have a Maslov
grading by Z, and a further Alexander multi-grading set S, which is a set S
with an action by A4. That is, there is a direct sum splitting (as k-modules)
M = ®dez,ses Myg,s and we assume that each summand My, is a finitely generated
k-module. The actions m; will be graded as follows.

mi: Magss @ Adysey @ - Adi gty = Mg izt o ismizty

We will typically record the algebra A as a subscript for the A, -module M,
writing M4 if M is a right A, -module, and 4 M if M is a left A, -module.

Given two A, modules M4 and N4, a morphism from M4 to N4 is a sequence
i—1
—_—~
of k-module maps {¢;: M4 Qx ARk -+ @k A — Na}i>1. A morphism naturally
induces a map ¢: M4 ® T*(A) — Na® T*(A) by

Q($®a1®“'®an):Z¢i+1(ﬁf®al®"'®ai)®ai+1®“'®an-
=0

When this induced map is a chain map, we say that the morphism is a homomor-
phism. More generally, the space of morphisms can be given a differential, so that

dMor(?) :dNOQ—’—?OdM

Let 9004 resp. 49Mod denote the category of right resp. left A, modules over
A. This is a differential category (so the morphism spaces are chain complexes).
Specifically, given M4, N4 € MMod 4, let Mor4(M, N) denote the chain complex
whose elements are maps {¢;: M ® A"™! — N};>1, with differential given by

i
(dgb)z(x, aly ..., ai_l) = Z ¢i_j+1(m§»\4(x, Ay, ..., aj_l),aj, ey ai_l)
j=1

i
+ me\ijﬂ(qu(x,al, N ,aj,l), (Zj, e ,ai,l)
j=1

i—1
+ Z¢i(w7a1a v aMl(aj)v s 7ai71)
=1

i—2
+ Zd)i_l(l‘,al, e ,ILLQ((I]‘, (1j+1), ey CLi_l).
Jj=1

There is a convenient graphical representation of formulas such as the one above.
We represent elements of M by dashed arrows, elements of 7*(A) by doubled
arrows, and various maps between them by labelled nodes. For instance, the map
m: M ® T*(A) — M, the morphism ¢: M ® T*(A) — N, and the differential
d: T*(A) = T*(A) are represented by the pictures

e 4

m
|
I

i s SR
= =
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Using the map A: T*(A) — T*(A) ® T*(A) defined by A(a; ® -+ ® a;) =
Yl a1 @ ®a;) @ (ai41 ® -+ ®aj), the differential of ¢ can be written:

SRR
;7+7+¢>‘é

dp =

-F - e----

- <-3<-----

Let M4 be a right A, -module over k, with a (Z-valued) Maslov grading and an
Alexander multi-grading with values in S. We can form the opposite module 4M
which is a space of maps from M to F, also equipped with a Maslov grading and
a grading by S,

(2.2) AM = P Homp(M_g_,F),
d€Z,s€S

with action specified as follows. For fixed ¢ € Homp(M,F) and ay...,a,-1 € A,
let m;(a1 ®...a;—1 ®¢) be the homomorphism from M to F whose evaluation on
x is given by ¢(m;(x ® a;j—1 ® --- ® a1)). (Note that the tensor factors appearing
here are over Z/27Z; when M is strictly unital, we can think of the tensor factors as
taken over k; with the understanding that in a;_1 ® - - - ® a1, the bimodule actions
of k on the a; are also opposites.)

2.4. Type D structures. A left type D structure over A is a left k-module
X, equipped with a k-linear map 6': X — A ®y X, satisfying the compatibility
condition (2 ®Idx)o (Idg ®5') o8t + (1 ®Id) ot = 0. A right type D structure
is defined analogously.

The maps will be drawn

L 51

L/
1 —

H2 ({1
[

As in the case of modules, our type D structures will have a grading by Z (the
Maslov grading), and an Alexander grading with set set S = Sx, a set with an
action by A4. (In our case, this will typically be a quotient of A4.) Thus, X is
given a direct sum splitting X = @dEZ;ses X5, where each X . is a k-module.

=0
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(In fact, in the cases of relevance to us, X will be finitely generated as a k-module.)
The actions respect these gradings, in the sense that

1.
o X5 — @ Ado‘,éo ® Xayss,-
do+di=d—14p+s1=s

We abbreviate this, writing 6': X4 — (A® X)g_1.5-

A left type D structure X induces a left differential module A X X in a natural
way. As a left A-module, the space is ARk X ;i.e. given a € A and b@x € ARk X,
we define ma(a,b® ) = ua(a,b) ® . The operator m; = pp @ Idx +(pe ® Idx) o
(Id 4 ®6%) which can be graphically represented by

induces differential on A ®x X = AKX X; i.e. m? = 0. It is easy to see that the
differential and the A-action satisfy a Leibniz rule; i.e. AKX X is a differential
A-module. (This is the special case of a more general construction: it is the tensor
product of A, viewed as a bimodule over itself, with the type D structure X.)

Conversely, let M be a left DG-module over A that splits as a left A-module as a
direct sum of modules that are isomorphic to left ideals in A by elements of k; i.e.

(2.3) M=A Yy
geG

for some finite set G, and a map Y: G — k. There is a k-submodule of M,
X =@ cck Y(g). Restricting the differential m; to X gives a map 6': X —
A ® X = M; the hypothesis that m? = 0 is equivalent to the condition that 4*
determines a type D structure.

We will typically record the algebra as a superscript for a type D structure, writing
AX to denote a left type D structure X over A. There is an analogous notion of
right type D structures; for a right type D structure, we record the algebra (as a
superscript) on the right, e.g. writing X*.

Analogously, we let A9Mod and Mod* denote the category of left resp. right type
D structures. For this category, Mor(AP, AQ) is defined to be the chain complex
of maps h': P - A®y @, where the differential is specified by

d(h') = (uf' ®1dg) o h' + (uz' ©1dq) o (I1da ®h') 0 8p + (13 ®1dg) o (Ida ®bg) o .
There is also a composition map, which is a chain map Mor(AP, AQ)@Mor(AQ, AR) —
Mor(AP, AR), defined by taking f!® g' to

(2.4) (fog) = (n2®ldz)o (Ida®g)o f.

If “X is a left type D structure, we can form the opposite type D structure as
follows. As a k-module, YA is a space of vector space maps from M to F:

X' P Homp(X_yy,F).
d€Z;seS
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This inherits naturally the structure of a right k-module: the action of ¢ € k on
¢: M — F is the map that sends « to ¢(¢c-x). The requisite map PRED G YA®A
is adjoint to the map &' for “X; i.e. given ¢ € YA, define 3" (¢) € Hom(X,F) ®y
A C Hom(X, A) to be the map that sends x to (', #), where

(,): A® X @ Hom(X,F) —» A

is induced by the evaluation map.

2.5. Tensor products. We recall the pairing between A,, modules and type D
structures from [9], which in fact can be thought of as a model for the derived
tensor product. (See for example [12, Proposition 2.3.18])
Fix first a type D structure AX . There are maps for integers j > 0 with
J

(2.5) M X = ARk - Qk AKX,
with the following inductive definition:

e 60 is the identity map;

e ¢! is as specified by the type D structure;

e and finally, 6 = (Id ge;-1 ®35%) 0 6771,

The sum Z?io 87 is notated

(Note that in general, the image of § is contained in ([[_, 7*(A)) ® X .)

Recall that if M is a right A, -module and X is a left type D structure, then
under suitable circumstances, we can form the tensor product M X X . This is a
chain complex whose underlying vector space is M ®y X, and with differential
(oo}
dp@a) = (mj @ldx)o (p@d(z))
j=0

| ! 5 :
1 51 : 5
=m o+ L/ o= 17
Lonome . mo
L CI [

In general, the sum appearing in the definition of 9 has infinitely many terms.
The suitable circumstances needed to define 0 are those where the above sum
is finite. For instance, if the module M has the property that for all p € M,
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mjt1(p,a1,...,a;) = 0 for all sufficiently large j and any sequence as,...,q;,
then the sum is guaranteed to be finite. Such an A, module is called a bounded
Aoo module. Similarly, finiteness is guaranteed if X has the property that for all
x € X, there is a j with the property that 7z = 0 for all sufficiently large j. Such
a type D structure is called a bounded type D structure. To recapitulate, M K X
exists if either M4 or AX is bounded.

Let M be a right A, module with Alexander grading set S and X a left type
D structure with Alexander grading set T'. Then the tensor product M K X is
naturally graded by the product of Z (the Maslov grading) and the Alexander
grading set S xpa T = (S xT)/A4.

2.6. Bimodules. If A and B are two differential graded algebras over ground rings
j and k respectively, a left/left type DD bimodule is a type D structure over the
tensor product A ® B. In particular, it is a left module over j ®p k. A left/right
type DD bimodule is a left/left type DD bimodule over A ® B°P.

A left/right type DA bimodule is a j — k bimodule equipped with maps for ¢ > 1:

i—1
——N—
6 X @Bk ®k B— A®; X,
satisfying the structure equation

O:(ﬂf@ldx)oall(x(gal(@®az_1)
i—1
+Z5i1(93®a1®"'®aj_1®,uf(aj)®aj+1®...®ai_1)
j=1

i—2
+Z6Z—1(:r®a1®...®aj,1®u§(aj®aj+1)®aj+2®...®aiil)
j=1

+> (it @Tdx) o (Ida @0} ;1) 0 (0} (@ a1 ® @ aj_1) ®a; @ @ a;_1)

j=1

Here, we think of B as the algebra of inputs, and A as the output algebra.

Example 2.2. Fiz an algebra A over k. The identity bimodule AIdA 1s the type
DA bimodule whose underlying k-k bimodule is k, so that the maps 5]1 have the
form

j—1

——
b Aok e A A
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and whose operations are given by 63(a) = a, and 5]1 =0 for j=1 and j > 2.
Example 2.3. Let ¢: B — A be a homomorphism of DG algebras over a base ring

k. This can be viewed as a bimodule A[¢]B with a single generator over k, which
we denote 1, with 03(1,b) = ¢(b) ® 1 and 6] =0 for j #2.

Our DA bimodules X 4 will be bigraded as in Section 2.2. Specifically, there will
be some set S with action by Ag @ Ag, and X = ®(d;s)€Z€BS X(a;s)- The actions
respect these gradings as follows:

0t Xayis Ok Baaits @1+ @1 Basse, = (A®X)i o 5 aaesi_, e,

A left/right type AA bimodule over A and B is a left/right bimodule over I(.A)
and I(B), equipped with maps indexed by integers 4,5 > 0,
i J
—
mi): A®pa) @ @ AR @ X Ry BRyp @ @B — X.

defined for all non-negative integers ¢ and j, satisfying a structure equation which
we will state shortly. The maps can my;;|; can be assembled to form a map

m: T*(A) @14y @M @ys) T*(B) = M
that is represented by the diagram
a

b

X
|
I
|
|
|
+
m
|
I
|
|
|
|

and satisfies the structure equation (for all a € T7*(A) and b€ T*(B)):

\

+ a

b a b

/ U Y

A A

7 N\ N

X

|

I

|

|

|

N

m

|

I

|

|

|

l

[SUE=RIS
I <=

X
|
I
|
|
|
N3
m
|
I
|
|
|
|

As a basic example, if A is a DG algebra, we can view it as a bimodule over itself;
in this case, we write 4.A4. The operation mgy|o is the differential on the algebra,
myjijo(a®b) =a-b, and mo(b®c) =b-c, for any a,b,c € A (except now b is
viewed as an element in the bimodule). All other operations vanish.

Bimodules have opposites, defined by the straightforward generalization of Equa-
tion (2.2). For example, the bimodule 4A 4, the opposite bimodule of 444, con-
sists of maps from A — F; more precisely given (d,f) € Z P A,

(2.6) Z(d,é) = HomF(A(—d,—é)’ F).
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This has operations
m0\1|0(95 () = (2= p(de))
myjip(a® (z— ¥(x))) = (z = P(z - a))
mop (2 = P(2) @ b) = (z = P(b- x))
A right/right type AA bimodule over A and B is a left/right bimodules over .4°P
(the “opposite algebra”) and B.

A morphism between type DA bimodules h': AXp — Vg isa sequence of maps
j—1

—N—
{hjl: X QB @B — A®; Y};";l, abbreviated
B

'

The differential of A' is the morphism dh'! represented as the sum

A homomorphism is a morphism whose differential is zero. Two homomorphisms
are homotopic if their difference is the differential of another morphism.

Morphisms can be composed; given morphisms f': AXp — 4Y5 and gl Ayg —
AZB, the composition is defined by the picture

7

+

7

g 1
|

A

M2
I'e

Morphisms, homomorphisms, and homotopies can be defined for bimodules of other
types in a straightforward way; see [12, Section 2.2.4].

2.7. Tensor products of bimodules. We recall here the tensor products of var-
ious types of bimodules; see [12, Section 2.3.2] for details. Let A, B, C be three
differential graded algebras over base rings i, j, and k respectively, and and let
AXy and PY; be type DA bimodules, their tensor product X XY is a type DA
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bimodule structure on the vector space X ® Y (where the tensor product is taken
over the ground ring of B), with structure maps §': X ®;Y — A®; X ®; Y which

can be represented as
| /
|
|

s
V4
o

e

Here the map Jy is obtained by iterating 81 (as in Equation (2.5)).

!
!
|
|
|
|
|
+

The following is immediate from the definition:

Lemma 2.4. Let A, B, C, and D be four differential graded algebras, and fix type
DA bimodules “Xp and BY: and €Zp. Then, there is an isomorphism

(AXpR BY,)R “Zp 2 AR (PY, K Zp).

Given a type DA bimodule AXg and a type DD bimodule B Y€, their tensor
product AxXzX5B Y ¢, when it makes sense, is a type DD bimodule over A and C.
The type DD structure map is described by

!

!

|
~

dy

7N\
o

2

2.7)

(%)
- e

h

where II(by ® -+ ® bj) = by ---b;.

Of course, the sum implicit in the above description is not always finite; we describe
a case where it is. (See also [12, Section 2.2.4].) Consider the map

8 Y = (B¥) @Y ® (C%)
obtained by iterating _51 (i.e. so that the map dy appearing in Equation (2.7) is
given as dy = ) 77 03 ).
Definition 2.5. For fized integer j > 1, alength 7 B-sequence out of y € X is any
sequence of algebra elements (b1,...,b;) in B with the property that, for a suitable
choice of z € X and sequence (c1,...,¢;) inC, (hi® - ®b;)2Q (c1® - Q¢;)
appears with non-zero multiplicity in 57 (y).

Definition 2.6. Fiz DG algebras A, B, and C, and bimodules “*Xp and BY©.
We say that X is Y -compatible over B, or when it is unambiguous, simply Y -
compatible if for any non-zero x®y € XQVY , if j is a sufficiently large integer, then
for any length j B-sequence out of y (b1,...,b;), we have that 6}+1(X, bi,...bj) =
0. Similarly, a morphism ¢ € Mor(X, X') is called Y -compatible if for any x ®
y € X®Y, if j is sufficiently large, then for any length j B-sequence out of y
(b1,...,bj), we have that gf)}ﬂ(x,bl, ...,b;) =0. If X and X' are Y -compatible,
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we say that they are Y -compatibly homotopy equivalent if there are Y -compatible
morphisms ¢: X — X', v: X' - X, h: X - X, and V: X' — X', so that
dp=0, dp=0, o =1Idx +dh and ¢pot =Idx +dh'.

Proposition 2.7. Fiz “Xz and BY€. If X is Y -compatible, we can form the
type DD bimodule X XY , as defined in Equation (2.7). Moreover, if AXg 1s also

Y -compatible, and it is Y -compatibly homotopy-equivalent to X , then X XY and
X'KY are homotopy equivalent type DD bimodules.

Proof. It is straightforward to see that the Y -compatibility ensures that all the
infinite sums appearing in the needed maps are all finite. O

For a very simple special case, suppose that AXp has the property that for all
sufficiently large 7, 5} = 0; then X is Y -compatible for all Byc.

Lemma 2.8. Let A and B be DG modules, and let “Mp be a type DA bimodule
with the property that (5]1» = 0 for all sufficiently large j. Then, M is homotopy
equivalent to a type DA bimodule with 5} =0 for j>2.

Proof. Let M’ be the bar resolution of M ; see [7] or [12], A M} = A MzRPBarP K3
Bp. The desired homotopy equivalence is obtained from the homotopy equiva-
lence ®1dg — BBar® Ky Bz by tensor product with the identity map on M.
(Boundedness of M’ ensures that this is a homotopy equivalence; compare [12,
Lemma 2.3.19].) |

We have the following version of associativity (compare [12, Proposition 2.3.15]):

Lemma 2.9. Let A, B, C, and D be four differential graded algebras; AXp and
cZP are bimodules of type DA ; and BYC is of type DD . Suppose that AXp and
¢ ZP are both bounded, in the sense that for sufficiently large 7, 5;- =0. Then,

(AXpR BYOYR (2P ~AXp R (BYCR 2P).

Proof. This is clear if (5]1- =0 for all j > 2 on AXgp. We can reduce to this case
by Lemma 2.8. O

2.8. Taking homology of bimodules. By the “homological perturbation lemma”,
Ao structures persist after taking homology. (See for example [7] for the case of
algebras.) We will make use of the analogous result for bimodules.

We start with a standard result from homological algebra:

Lemma 2.10. Let k = F* for some k. Let Y be an S-graded chain complex
over k, and Z = H(Y). Then, Z is also an S-graded chain complex (with trivial
differential), and there are S-graded chain maps f: Z —Y and g: Y — Z and
an S-graded map T:Y —Y satisfying the identities
ToT=0 Tof=0 goT =0
gof=1dy fog=Idy+00T +To0.

We will use two versions of the homological perturbation lemma:
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Lemma 2.11. Let 4Yp be a strictly unital A bimodule with grading set S, let
Z denote its homology. Let f: Z — Y be a homotopy equivalence of S -graded
complexes of k-modules as in Lemma 2.10. Then there is an Ao bimodule struc-
ture on Z , denoted 4Zp, and an As, homotopy equivalence ¢: sZp — AYp with

Gojijo = f-

Proof. By hypothesis, we have maps f: Z — Y and ¢g: Y — Z so that fog =
[d+0oT + T od. The differential on Z vanishes; i.e. mg;)o = 0. Operations
myp1; with 4+ 7 > 0 are described by

+
D<=

m?(a@x®b) = a

x b+
N/
L N\«

> <o
D<o
D<o

N
7
N\

(== Q —
- QeSS e N

- QSN SN S e

where a1 ® -+ ®a; €a € T*(A) and b1 @ --- ®@b; = b € T*(B); and each node
laebelled by m contains an operation mg i, with a +b > 0; where the splitting
operator A is generalized to have arbitrarily many outputs. With those operations,
we have an A, -bimodule homomorphism defined by ¢g1j0 = f and ¢;;; with

1+ 7 > 0 specified by
X b +
j /
! \

Pla®x®Db) = a
m

D> <=2
D> < o
+

N

l
T
!

RS ESeEwe-N

(again where each m-labelled node must have at least two inputs). With these
definitions, it is straightforward to verify that ¢ is a homotopy equivalence of A,
bimodules; compare [7]. Strict unitality of both m? and ¢ follows immediately
from these explicit descriptions of m? and ¢, the conditions that 72 = fo T =
T o g =0, and the strict unitality of Y. 0
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51(x®b): x b+ x b + X b + -
v o4 vV
f/ f A f A
Yoo e
l l 1
g T T
he l l
i ) |
l - g T
v
[ l
-9
o
1

FIGURE 5. ¢! action on Z

We will also use a variant for DA bimodules:

Lemma 2.12. Let *Y3 be a strictly unital type DA bimodule with grading set S,
and let AZ be type D structure over A. Suppose that there are type D structure
homomorphisms f: Az 5 Ay (i.e. as the notation suggests, we are forgetting
here about the right B-action) and g: AY 547 and a type D structure morphism
T:4Y — A so that

fog=1dz, gof=Idy+dT, ToT =0.
(Here, ToT denotes the composite of type D structures; see Equation (2.4).) Then
AZ can be turned into a strictly unital type DA bimodule, denoted AZxs ; and there
is an Ao homotopy equivalence ¢: AZg = Yy with ¢l =f.

Proof. AZ is already equipped with an action §1. For j > 1, operations 5]1 on
b=1"b; @ ®bj_1 are specified by in Figure 5 similarly, define ¢{ = f, and for
j>1,¢" on b=>b; ®---®@b;_1 is as shown in Figure 6 O

2.9. Koszul duality. Let A and B be two differential graded algebras A. Let
AXB be a type DD bimodule and gY4 be a type AA bimodule. We say that
these two bimodules are quasi-inverses if there are homotopy equivalences

AXBR gYu~"1ds and pgYaX X8 ~ 5145,
and 4 X5 resp. Y4 as a quasi-invertible type DD resp. type AA bimodule.
To see that X and Y are quasi-inverses, it suffices to exhibit homomorphisms
¢t " XBR Y4 — Aldg and ¥: gV R “XB 5 51d® so that the maps
TdaMpt: 4 ALK AXBR V4 — 444
' K1dg: gYa KAXB K gBs — sBs
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P(x®b) = x b+ x b + -
y ol
f/ I A
! I Z
l 1
T T
l l

| 1

! &
11
L

FIGURE 6. ¢' morphism

induce isomorphisms on homology, according to [12, Corollary 2.4.4].

Definition 2.13. Let k be a ring that is a finite direct sum of F. Let A and
B be two DG algebras, both of which are positively graded over k (in the sense of
Definition 2.1), with Alexander grading specified by the same Abelian group A =
A4 = Ag. A bimodule “X5B is called a Koszul dualizing bimodule if it satisfies
the following properties:

(K-1) AXPB is graded by Z.® A, where the action of Aa @ Ag is specified by the
map Aa ® Ag — A given by (a,b) — (b—a).

(K-2) AXB has rank one; i.e. there is an isomorphism “XB = k as bigraded
k-k bimodules. (In particular, “XPB is supported in bigrading (0;0) ).

(K-3) “XB is quasi-invertible.

If such a bimodule ezists, A and B are called Koszul dual to one another.

For a Koszul dualizing bimodule, it follows that
(2.8) §s'(xP) c @ AreXP @B,
AEAN\O
(Indeed, this conclusion holds even for AXB as in the definition that do not satisfy
Property (K-3).)

Definition 2.14. If AXB s q type DD bimodule, we can form the candidate
quasi-inverse module

(2.9) AMor(AXB ® By, A 1d4) = 5By K X" K 4 A

Lemma 2.15. For a type DD bimodule “ X5 satisfying properties (K-1) and (K-

2), the candidate quasi-inverse module has a subcompler k X BY X k which is
isomorphic to k.
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Proof. For any DD bimodule, k K BYA X A is a subcomplex of the candidate
quasi-inverse module. Comditions (K-1) and (K-2) ensures that Equation (2.8)

holds, so the induced differential on k X BYA X A is simply the differential on A;

and therefore kK" X" Kk is a subcomplex. Condition (K-2) now gives the desired
identification of the subcomplex with k. O

Lemma 2.16. Fix k as above in Definition 2.13, and let AXB pe q type DD
bimodule satisfying Conditions (K-1)-2.8 of Definition 2.13. Suppose that the in-
clusion map from k to the candidate quasi-inverse module coming from Lemma 2.15
induces an isomorphism on homology. Then the candidate quasi-inverse module is
a quasi-inverse of AXB

Proof. Let gY4 be the candidate quasi-inverse. Our goal is to show, under the
stated hypotheses, that zpY 4 is a quasi-inverse to AXEB

To this end, consider a DA bimodule by tensoring X with Y:
AXBR sV = AXER 5B RPX R 4 AL

The differential on this bimodule is given pictorially by:

X B X A X B X A X B X A X B XA
| |
ok oL
+ B, + + o
= 7
Mij1jo mgi, st

| ! l

A

(Arrows that output 1 € A, which would appear in the second, third, and fourth
terms, are suppressed.) There is a natural map h: AXB K BY 4 — A Id 4, defined
by  ® ¥ — ¢(x ® 1), where here 1 € B is the unit; i.e. given x € X and
Y eY =AMor(*XE R gBp,A1d4), @1 € *XP K Bg, so Yz ®1) € AIdy.
This natural map can be viewed as a DA morphism. Recall that a DA morphism
AXBR gYa — A1dy is specified by a sequence of maps indexed by j > 1:

j—1

B AXBRgY A QAR -
it BYARAR R A— A
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The morphism under question has h} =0 for j > 1, and it was specified above in
the case where 7 = 1. Pictorially, h is represented as follows:

XBXA
|1

F

K

Where here K denotes the Kronecker pairing, and 1 is dual to the map 1: F — B.
The verification that h is a DA bimodule homomorphism is straightforward.

So far, we have not used the hypothesis on the homology of Y4 (which is needed
to verify that h is a homotopy equivalence). From the hypothesis, there is a rank
one bimodule gZ4; this is the bimodule structure induced on k from its quasi-
isomorphism with pY4 as in Lemma 2.11. Let ¢: gZ4 — Y4 be the induced
bimodule quasi-isomorphism. In more detail, denote the isomorphism k = X by
¢ — x,: taking its dual and using an isomorphism k = k induced from an F-
basis for k (which in our case is supplied by the basic idempotents), we get an
isomorphism k — X denoted ¢ — Z,. Now, dopjo(t) =107, @ 1.

We claim that on the bimodule gZ 4, for all £ >0,

(2.10) my1j0 = 0.

So see this, observe that, the image of my1jo(b1,...,bx—1,%) is supported in the
portion in grading A(x) + A(by) + - -+ + A(bx—1) which, since A(z) = 0 (because
of Condition (K-2)), means that A(by) + -+ + A(bg—1) = 0. By positivity of the
grading on A, we conclude that each A(b;) = 0, and hence that each b; € k; so these
algebra elements have Maslov grading 0. Since Z is supported in Maslov grading
0, as well, we conclude from the grading conventions that k = 1, as required by

Equation (2.10). Similar reasoning shows that for the bimodule homomorphism,
for all £ >0,

(211) ¢k|1‘0 = 0
To verify h is a DA bimodule quasi-isomorphism, consider the induced AA-
bimodule homomorphism

(Id4®h): 2 A4 RAXBR gV = qA4 RAXBR B R pX AR 4 A4 — 4Au.

To verify that it is a quasi-isomorphism, we form the following composite

JAARAXBR 57, B AR X RBRX KA AE A
which we denote k. From Equation (2.10), we conclude that the chain complex on
the left is identified with A. From Equation (2.11), we conclude that that rg|;|o is

the chain map (Id4 ®hi)o (Id4mx ®do|1]0) that sends a®z, @¢ to a; in particular,
it is an isomorphism of chain complexes. (I
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Remark 2.17. In fact, if AXB s quasi-invertible, the quasi-inverse is always
given by the above bimodules by the argument from [12, Proposition 9.2]; i.e. there
are quasi-isomorphisms:

BY4 ~ Morg(sBgs, 5Y.A)
~ Mor*(*XB K zBg, " XB K 3Y5)
~ Mor* (1 XB K zBg, A 1d4);

the first of these is true for arbitrary gY.a, the second uses the fact that XX induces
an equivalence of categories, and the third uses the fact that X and Y are quasi-
1nuerses.

3. THE ALGEBRAS

We describe differential graded algebras used in the construction of our knot in-
variant. In fact, we will find it convenient to work with a more general con-
struction B(m,k,S), where 0 < k < m + 1, and § is an arbitrary subset of
{1,...,m}. The integer m is called the index. The integer k is the number of
occupied positions; together with the index, it determines the base ring k = I(B).
When 81 C 8o € {1,...,m}, then B(m,k,S1) will be a differential subalgebra of
B(m, k, 82) .

When S = ), the differential on the algebra B(m, k, ) = B(m, k) vanishes. In fact,
this algebra is the quotient of a larger algebra By(m, k), which we define first.

When constructing the knot invariant for a knot with bridge number n, we will
have m = 2n, k =n, and S will correspond to those (n) strands that are oriented
upwards. In fact, for the purposes of the knot invariant, it would suffice to work in a
summand corresponding to certain idempotents; see Remark 11.12. We have chosen
to use the larger algebra in our constructions, as it satisfies a duality described in
Section 3.8.

3.1. The algebra By(m,k). We define By(m, k), which is a graded algebra over
F[U1,...,Uy], whose (Alexander multi-grading) set is (3Z)™. (See Section 2.2.)
Basic idempotents in By(m, k) correspond to idempotent states, or I-states for short,
x = (x1,...,xk), which are increasing sequences of integers

(3.1) 0<z <...<zp, <m.

The basic idempotent corresponding to x will be denoted by I. The elements I,
are generators of a ring k = I(m, k) satisfying:

| Ik ifx=y
Ix.Iy{O ifx#£y.
Remark 3.1. Recall from Section 1 that these idempotents can be interpreted as
marking intervals which are intersections of the regions in a knot diagram with the
y =t slice. In fact, the basic idempotents referred to there do not allow for the
unbounded intervals, corresponding to replacing Equation (3.1) by the condition

(3.2) 1<z < <xp <m-—1.

Our basic idempotents now will be as in Equation (3.1); we return to the restricted
case in Section 12.
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The unit 1 in the algebra is given by the sum of the basic idempotents.
Given an I-state x, define its weight v* € Z™ by
(3.3) vf = #{z € x|z > i}.

Given two I-states x and y, define their minimal relative weight vector w*y €
(3Z)™ to be given by

Xy
%

y

1
X
w 5’111 —vi’.

Bo(m, k) is defined so that there is an identification of F[Uy,...,U,,]-modules
I - Bo(m, k) - I, 2 F[Uy,...,Uy]; denote the identification by

G FU, ... Un] = L - Bo(m, k) - I,
A grading by (3Z)™ on L - Bo(m, k) - I is specified by

(3.4) w(d(UPt .. Ulm)) = w™Y + (ty, ... ),
for non-negative integers t1,...,ty, .
Multiplication
(Te Bo(m, k) - Ty ) = (T Bo(m, k) - L) = (L Bo(m, k) - 1)
is the unique non-trivial, grading-preserving F[Uy, ..., U, ]-equivariant map. Ex-
plicitly, given I-states x, y, and z, if we define ¢g*¥% = Uk ...Ut» where

ti =w Y +w)”® —w”, then for a,b € F[Uy,...,Up],
¥ (@) 5 67(6) = 6*(a - b- 7).

Suppose that x is an I-state with j — 1 € x but j € x. Then, we can form a new
Lstate y = xU {7} \ {j — 1}, and let R¥ = ¢*¥(1). We define

{x|j71€x,j€x}
so that

L R =

RY ifj—1lexandj¢x
0 otherwise.

Similarly, let LY = ¢¥*(1), and L; =3 LY. Less formally R; moves

{y|j€y,j—1€y}
one of the coordinates of an I-state from the (j — 1)*! position to the j*, and L;
changes it back from ;" to (j —1)**. The elements L; and R; are called the left
shifts and right shifts respectively. See Figure 7.

For i =1,...,m, U; induces an algebra element in By, defined by > ¢**(U;).
For notational simplicity, we also denote this induced element by U; .

Proposition 3.2. The weight function from Equation (3.4) descends to a grading

w = (wi,...,wy) on By(m,k) with values in (3Z)™.

Proof. It suffices to show that
w(d™Y (1) x ¢¥*(1)) = w(@™¥ (1)) + w(¢¥*(1)).

which follows from the definition of ¢g*¥-%. O
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FIGURE 7. Picture of algebra elements in By(4,3). Idempo-
tents Iy 23y and Ig; 53y are pictured here; the algebra elements
Ly and R; which connect them are indicated (e.g. Iio2,3) - R1-
If1,2,3 is non-zero). Here, Ij 23y - R1 - L1 = Ijo 23y - Ur.

We have no further need to distinguish the product on the algebra By(m, k) from
other products; so we will abbreviate a xb by a-b.

In the notation from Section 2.2, By(m,k) is graded by the Abelian group A =

(3Z)™. Recall that an element a € By(m,k) that is supported in some fixed

grading A € A is called homogeneous.

Proposition 3.3. The algebra Bo(m, k) is generated over F by the elements L;,
R;, U;, and the idempotents I .

Proof. Let a be a homogeneous algebra elements with Ix -a-Iy, =a. If x =y,
then a factors as a product of U;. Otherwise, suppose that some i = x; > y;;
and indeed choose ¢ minimal with this property. Then, it is easy to see that we
can factor @ = L; - b. Otherwise, there is some y; > x; = i, and we can choose t
maximal with this property. Then, we can factor a = R;y1 - b. In both cases, the
total weight of b is smaller than that of a, so the result follows by induction on
weight. ([l

3.2. The B(m, k). The algebra B(m, k) is the quotient of By(m, k) by the relations

(3.5) Lis1-Li=0
(3.6) R;- Rit1=0;
and also, if {z1,...,2x} N{j— 1,7} =0, then
(3.7) L. U; = 0.

As we shall see, the relations Equations (3.5) and (3.6) guarantee that algebra
elements in B(m, k) cannot move coordinates in the idempotents states by more
than one unit. We formulate this quotient operation as follows:

Definition 3.4. Let J be the (two-sided) ideal in Bo(m, k) that is generated by
Lit1-L;, R - Riy1, and I - Uj, when {z1, ...,z } N{j— 1,5} = 0. Let B(m,k)
be the quotient of Bo(m, k) by this two-sided ideal.

Note that J is generated by elements that are homogeneous with respect to the
weights. Thus, the weights induce a grading on the quotient algebra B(m, k).
The ideal J can be understood concretely. To do so, we set up some notation.

Definition 3.5. Two I-states x and y are said to be far if there is some 1 =
1,...,k with |z; — y;| > 1; otherwise they are called close enough.
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FIGURE 8. The ideal Z(x,y) is generated by U;Us, Us, Us,
U8U97 and U11.

Given two I-states x and y, we define an ideal Z(x,y) C F[Us,...,Uy]. If the
I-states x and y are far, let Z(x,y) = F[U1,...,Uy,]. If x and y are close
enough, let Z(x,y) be the ideal generated by monomials U,y - - - U;, taken over all
0<i<j<m where i and j satisfy the following conditions:

e i,j€{0,....m}\ (xNy)
e for all integers ¢t with i <t < j, t€xNy.
e wyY =0 foralli+1<t<j.

Definition 3.6. For i < j as above, we call the interval [i + 1,j] a generating
interval for x and y. (Observe that a generating interval can have i +1 = j, and
this corresponds to Uj.)

Proposition 3.7. For all I-states x and y, Ix - J - I, = ¢*Y(I(x,y)).

Proof. Let 7 = @, , ¢*¥(Z(x,y)). First we prove Z C J; ie. for any two
I-states x and y we have ¢*Y(Z(x,y)) C J.

If x and y are far, so that Z(x,y) = F[Uy,...,Uy], then we claim that ¢*Y(1)
can be factored as a product a - R Ryy1-b or a- LiLy_q - b for some ¢t. This is
obvious, for example if there is an 4 with z; > y; + 1, then ¢*¥Y (1) decomposes as
a-Ly-Li_q-b, where t = x;.

If x and y are not far, we show that for all generating intervals [i + 1, j] for x and

y, the algebra elements ¢*¥ (U1 ...U;) arein J.

Consider first the case where ¢ +1 = j. Then, ¢*¥(U,) can be factored as a - I, -
Uj - b, where j — 1,7 ¢ w. In general, if i < j is a generating interval for x and
v, @Y (Uiy1---U;) has a decomposition as

(@ Liy1---Lj 1) Ly -Uj-Rj_1---Riy1-b,

where j —1,j ¢ w. In these cases, Iy - U; € J. (For example, for the I-states x
and y in Figure 8,

GITs) = (1) Ty Uy Y1)
@Y (Uyy) =¢*W (1) Ly -Upy - Lo where w = {1,4,5,6,7,8,9,12}
Y (U Uz) = ¢*%(1) Iy - Uz - ™Y (1) where w = {0,3,4,7,8,10,12})
This completes the proof that Z C 7.

To prove that J C Z, we first prove that Z is an ideal; i.e. if a is an arbitrary
algebra element, then a-Z C 7; and also Z-a C Z. In view of Proposition 3.3, it
suffices to verify this in the case where a = I, - U;, Iy - R;, or Ix - L;.

When a = Iy - U;, the result follows readily.
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By symmetry, we can consider the case where a = Ix- R; -1, # 0. Let ¢ denote the
index with z; =4 —1 and y; = 9. We wish to show that Ix - R; - ¢¥*(Z(y,z)) C
¢*?%(Z(x,z)). There are cases:

(1) If x and z are far, the statement is vacuously true.

(2) If y and z are far, but x and z are close enough, then z; = i — 2 and
g¥"* = U,;. Futhermore we have i € x, i—1 € z, and w, * = 0. It follows
that U; € Z(x,z) and this finishes the argument in this subcase.

(3) If y and z are not far, and x and z are not far, as well, then there are
two subcases according to the value of z;.

(3a) If z; =i, the generating intervals for x,z are contained in the gener-
ating intervals for y,z, and the containment is clear.

(3b) If z; =i — 1, there can be at most one generating interval for (y,z)
which is not also a generating interval for (x,z), and that is an interval
which terminates in ¢. Since ¢*¥'* = U, it follows that

L Ri - ¢V (UjUjgr - Uia) = ¢°%(UsUjgr -+ Us).
The containment ¢*Y(Z(x,y)) - R; - I, C ¢**(Z(x,2z)) follows symmetrically.

We must now verify that the definining relations for J are contained in Z. Clearly,
if Ix - R; - Ri+1 - Iy is non-zero in By, then x and y are too far, and so Z(x,y) =

F[Uy,...,Un], proving the containment. The same argument works for L;;1 - L;.
Finally, if x N {i — 1,7} = 0, then U; is a monomial corresponding to a generating
interval for (x,x), so U; € Z(x,X). O

The following lemma will be useful later.

Lemma 3.8. Let a € B(m, k) be homogeneous, and suppose that w;(a) € Z. Then
a- R; # 0 implies that a - U; # 0; similarly, R; - a # 0 implies that U; -a # 0.

Proof. Suppose that b=a-R; #0, and b =I.-b-I,. Since w;(a) € Z and b # 0,

it follows that w)¥ = 1. Thus, it follows that ¢ is not in any of the generating
intervals for x and y,so b-U; # 0, so a-U; # 0, as well. g

Proposition 3.9. A homogeneous non-zero algebra element a = Ix-a-I, € B(m,k)
is uniquely characterized by its initial (or terminal) idempotent and its weight.

Proof. Fix initial and terminal idempotent states x and y. By Proposition 3.7,
I - B(m, k) -1, is the quotient of the polynomial algebra F[Uq,...,Uy,] by an ideal
which is homogeneous with respect to the weights. An element of this quotient
space in turn is uniquely determined by its various weights.

Note that the weight of @ modulo 1 determines w*Y. It follows that x and w(a)
determines y. O

3.3. Defining B(m,k,S). Let S C {1,...,m} be a subset. Define B(m, k,S) to
be the differential graded algebra obtained by adjoining new algebra elements C;
for i € S to B(m,k), which satisfy the following properties:

e The C; commute with all other algebra elements in B(m, k,S).
e The square of C; vanishes.
e The differential of C; is U;.
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This construction can be done since the U; are in the center of B(m,k,S) and
dU; = 0. More formally, if S = {i1,...,4,}, then B(m,k,S) is defined by the
formula

B(m, k)[CLl, ceey Cln]

B(m,k,S) = .
(m. k. 5) {C? =0,dC; = Uj}jes

The algebra B(m, k,S) is equipped with a distinguished basis as an F-vector space,
with basis vectors corresponding to the following data:

e A pair of idempotents x and y that are not far,

e a monomial p in F[Uy,...,Uy] that is not divisible by any monomial as-
sociated to any generating interval for x and y,

e a (possibly empty) subset J of S.

The corresponding algebra element is ¢*¥ (p)-[] jed C;. We call these basis vectors
pure algebra elements.

3.4. Gradings. Note first since B(m, k) is obtained as a quotient of By(m, k) by a
w-homogeneous ideal, the w-grading by ($Z)™ descends to a grading on B(m, k).
The w-gradings extend to B(m,k,S), by declaring w;(C;) =1 if i = j and 0
otherwise.

Explicitly, for 1 < i < m, the i*" weight w; of L; and R; is 1/2, and w; of U;
and C; is 1, and w; vanishes on L;, R;, U;, and C; with j # 4. These functions
each induce gradings on B(m, k,S); i.e. if a and b are homogenous elements with
a-b#0, then w;(a-b) =w;(a) + w;(b).

We will consider the following specialization, called the Alexander grading:

(3.8) Alex(a) = =Y wq(a) + > _ wi(a).

seS tgS

For i =1,...,m, there is a filtration m; B(m,k,S) with values in {0, 1}, specified
by the function on pure algebra elements b so that m;(b) = 1 if b is divisible by
C; and 0 otherwise. This extends to a filtration on the algebra:

B(m, k, '5) = B(ma kv‘s)mlzo D B(m7 kv S)mf:lv

where B(m, k,S)m,—. for ¢ =0 or 1 is the vector space spanned by generators a €
B(m, k,S) with m;(a) = ¢. We call this a filtration, because the differential on the
algebra d preseves B(m, k,S)m,=0, but not B(m, k,S)m,=1. Elements of B(m, k,S)
that are contained entirely in B(m,k,S)m,=0 or B(m,k,S)m,=1 are called m,-
homogeneous. Note that >_."; m; induces a Z-grading on B(m,k,S) that drops
by one under the differential. We will be interested in a different normalization of
this, the Maslov grading, defined by

(3.9 m(a) =#( C; in a) — QZwS(a) = Zmi(a) - 2Zws(a).

seS seS

3.5. Examples. When k& =0, B(m,0) 2 F; where 1 = Ij. The elements L;, R;,
and U; are zero. When k =m+ 1, B(m,m + 1) = F[Uy, ..., Uy,]; there is only one
idempotent 1 =TI my-
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Some other examples can be illustrated by the use of path algebras. Given a directed
graph T', the path algebra is the F-vector space generated by sequences of edges
e1 % -+ -x e, where the terminal vertex of e; is the initial vertex of e;11. We include
also trivial paths, based at any vertex. If two paths can be concatenated, then their
product is the concatenation; otherwise it is zero.

For example, consider Figure 9, which is a graph with two vertices and four edges.
Two of the edges (closed loops) are labelled by U, but they are not the same, as
they have different initial points. Identifying LR and Rx*L with the corresponding
closed loops labelled by U, we obtain the algebra B(1,1).

R
U m U
GHCR IO
w

FIGURE 9. Picture of B(1,1). The two idempotents I;g) and
I;;, are pictured, with arrows corresponding to algebra elements
connecting idempotents. The algebra B(1,1) is the quotient of the
pictured path algebra, where R x L and L x R are identified with

the two closed loops labelled by U (that are distinguished by their
starting points).

| [e[T1 el mEON
N O N

FIGURE 10. Picture of B(2,1). The three idempotents Iy,
I{1y, and Iyoy are pictured, with arrows corresponding to alge-
bra elements connecting idempotents. The algebra B(2,1) can be
thought of as a quotient of the pictured path algebra, divided out
by relations Ry« Ry =0, LoxL; =0, RjxL; =U;, LyxR; = Uj;,
Ul*UQZUQ*U1.

3.6. Symmetries in the algebras. Consider the map p: {0,...,m} = {0,...,m}
with p(i) = m — ¢. There is a map

(3.10) R: B(m, k,S) — B(m, k, p,,(S))

where p!. (i) = m + 1 — i, characterized by the following properties:

o R(L) =T,.

e If a € B(m, k) is non-zero and homogeneous with weights (w1 (a), ..., wn,(a)),
then R(a) = b is the non-zero element that is homogeneous with weights
given by w;(b) = wmi1-i(a).
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FIGURE 11. Picture of B(2,2). The three idempotents I 1y,
Ijo,2}, and Iy, 53 are pictured, with arrows corresponding to alge-
bra generators. The algebra B(2,2) can be thought of as a quo-
tient of the pictured path algebra by R; x L, = U;, L; * R; = U;,
Ui * Lo = LoxUy, Uy * Ro = Ryx Uy, Uy x Ly = Ly x Uy, and
UQ*Rlle*UQ.

We extend this to B(m, k,S) D B(m, k) by requiring R(C; - a) = Cy1—j - R(a).
Note that forall i =1,...,m and j €S,

R(L;) = Rmt1—i R(R;) =Lyp+1—i RU;) =Upnsi—i R(C;) = Cryi—j
Clearly, this induced map R induces an isomorphism of algebras.

Another symmetry identifies the algebra with its “opposite” algebra. Specifically,
the map o(Ix) = Ix extends to an isomorphism of rings

(3.11) o: B(m,k,S) = B(m,k,S)°P,
with O(Ll) = Ri, O(Rl) = Li, O(UZ) = Ui, and O(Cj) = Cj.

3.7. Canonical DD bimodules. Let
(312) Bl :B(m, kl,Sl), BQ = B(m7k2,82)
where k1 + ko =m+1 and S; = {1,...,m} — S;.

Note that there is a natural one-to-one correspondence between the I-states for By

and By: if x C {0,...,m} is a kj-element subset, then its complement x’ is a ks-
element subset of {0, ..., m}. In this case, we say that x and x’ are complementary
I -states.

We define a DD bimodule By and By as follows. Let K be the F-vector space
whose generators ky correspond to I-states for B(m, ki,S1). We give K the struc-
ture of a left module over I(B;) ® I(Bz), determined by

_ | kx if x=y and w is complementary to x
(Ly ® Tw) - b = { 0  otherwise.

The algebra element

A=Y (Li®Ri+Ri®L)+ » C.oUs+ > U@Ci € B @B
i=1 sES) teSs
specifies a map §': K — By ® B, ® K by 6*(v) = A®v (where the tensor product
is taken over I(B;) ® I(B2)).

These data can be represented graphically, as follows. Take m vertical segments,
and orient them arbitrarily. The upwards pointing segments specify Sy and the
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downwards pointing ones specify S;. We draw a horizontal arc crossing each of
the vertical segment as a placeholder, and keep only half of each vertical segment
above (resp. below) the horizontal arc if the segment is oriented upwards (resp.
downwards). The horizontal arc is divided into m+ 1 intervals by the vertical arcs.
An element of ky is represented as a collection of m + 1 dark dots corresponding
to the intervals in the horizontal segment, each of distributed either above or below
te horizontal segment. The set of intervals whose dots are below give x. When
illustrating generators of B; ® Ba ® K, we draw the algebra element from B; below
the diagram for kyx and the algebra element from By above. See Figure 12 for an
illustration.

(51 o0 — 9 + .1.U2
e A% e
Cy U,
51 .l.x. — Q[. + .1% + .l.x. + .l.xa
U, Cq
C U.
51 .1.‘. — H/{. + .:]“. + .1.&3

FIGURE 12. The canonical DD bimodule. In the left column,
we have the three generators for the DD bimodule, with By =
B(2,1,{2}) and By = B(2,2,{1}). They correspond to the I-
states {2}, {1}, and {0} respectively. To the right we have the
non-zero terms in the differential. To read off the algebra element
in By, reflect the picture vertically. For example, if the three
generators on the left are denoted E, F', and G, then the first
equation expresses 61 (E) = (La @ Ry) @ F 4+ (C2 @ Us) ® E.

Lemma 3.10. The map &' satisfies the type DD structure relation.

Proof. This is equivalent to the statement that dA + A- A = 0, thought of as an
element of By ® By. We consider the four types of terms A: L, ® R;, R; ® L,
C;®U; when i € S1, and U; ® C; when ¢ € So. In dA+ A- A, some of the terms
cancel since U; and C; are in the center; other terms cancel when the indices i and
j are sufficiently far (| —j| > 1). When |i — j| = 1, terms of the first type and the
second type cancel. When i = j, a term of the first and second type cancel with
differentials of terms of the third or fourth type. O

The two out-going algebras B; and By are graded by %Zm,

gr, (a1) = (wi(a1),...,wn(ar))  grp,(az) = (wi(az),...,wn(a2));

the canonical DD bimodule is also graded by %Zm where (v1,v2) € %Zm & %Zm
acts on w € %Zm by (v1,v2) - w = (v; — vy + w). In fact, the module is supported
in grading 0; i.e. for each term a; ® ay in A specifying 6, gr, (az) = grp, (a1).

3.8. The canonical DD bimodule is invertible.
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3.8.1. A candidate for the inverse module. The main result is to prove that the
bimodule defined in the previous section is invertible. Let

Vg, 5, = Mor® ((5, (B2)5,) K, (°72K), " I5,).
This is naturally a Bs-Bj-bimodule (of type AA, with both actions on the right).

As a vector space, Y is spanned by elements of the form (6|b), where @ € By
and b € By, where here B is opposite bimodule to B, thought of as a bimodule
(as in Equation (2.6)), subject the restriction that the left idempotent of @ is
complementary to the left idempotent of b. Recall that By is the By-module
consisting of maps from By to F. This is a left-right Bs-Bs bimodule by the rule

r-a-y=(E—aly & ),

for o,y € By and @ € B,. We can take these generating vectors so that @ is dual
to a generating algebra element in Bs; note that the right idempotent of a is the
left idempotent of its dual a.

The differential on Y has terms (alb) — (L; - a|R; - b), (alb) — (R; - a@|L; - b),
and furthermore (a|b) — (U; - a|C; - b) if i € S1; otherwise (a|b) — (C; - a|U; - b).
Finally, there are terms (a|C; -b) — (a|U; - b) or (U; - alb) — (C; - a]b). The action
by Bs-Bj is given by

(@p) - (b2 @ by) = (£ > a(by - )| by)

We draw pictures of this action as follows. We draw a pair (a|b) where a and b are
pure algebra elements, by drawing first a graphical representation of a (dual to @)
on top of a graphical representation for b. In this picture, the right idempotent of
b is on the bottom, and the right idempotent of @ is the initial state (on the top)
of a. See Figure 13.

FicURE 13. Graphical representative of elements of Y.
Here we have a picture of (Ly - U2 - C3|L; - Lo - Us) in Y, thought
of as an element of B(2,1,{1,2}) ® B1(2,2,0).

3.8.2. An example: Consider By = B(1,1,{1}) and By = B(1,1,0). The algebra
By has generators L, R, and U, and idempotents Iyoy and Iy;y. Moreover,

I{O} . R . I{l} == R I{l} . L . I{O} == L,

while B; has the same generators, and an additional C'. The bimodule decomposes
into four summands, according to the right idempotent of (a|b).

In right idempotent Ig1y ® Iyoy, the complex further decomposes into summands.
One of these summands contains the single element (I;1}[If0y). Another summand
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is the square

(I - UlTgoy) Iy |U - Lioy)

(ZIL)
/ \
\ /

(3.13) Iy |C - Tioy)

See Figure 14 for a picture. (In fact, there are infinitely many different summands.)

T
Tl .

FIGURE 14. Terms in the differential of Y. We have drawn pairs
of algebra elements; the top algebra element should be dualized to
get the corresponding generator.

In right idempotent I;p, ® Iy, there is a collection of acyclic complexes. For
example, in the portion with total weight 1/2, we have:

5.14) (RiLj0y) Ty 1)

In the portion with total weight 3/2, we have:

(RIC -Ij0y) —— (Iy|L-C)
(R-ULypy) —— (Ijoy - UIL) —— (R|U - 1j0y) —— (Lyoy|L - U).

(3.15)

3.8.3. The candidate is the inverse. We show now that the candidate inverse from
Section 3.8.1 is indeed the inverse for the canonical type DD bimodule, by verifying
the hypotheses of Lemma 2.16. Continuing notation from earlier, the algebras B
and B, are as in Equation (3.12); Y is as in Section 3.8.1, generated by pairs (alb),
with a € By and b € B;.

Proposition 3.11. The rank of thelomology group of Y is (ml;"l) ; it is gen-
erated by the elements of the form (Ix|Iy), where x and x' are complementary
idempotents.
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Lemma 3.12. The candidate complex Y decomposes into a direct sum of com-
plexes C(Z,x,y), indexed by idempotent states x and 'y and Z € (%Z)m, where
C(Z,x,y) is the vector space generated by pairs (alb) where a and b are pure
algebra elements with Iy -a =a and b-Iy, = b, and w(a) + w(b) = Z.

Proof. Since the left idempotent of a is the right idempotent of @, the splitting by
idempotents corresponds to the splitting of Y according to right idempotents. The
fact that the splitting by Z is well defined follows immediately from the definition
of . (More abstractly, it is a formal consequence of the fact that ¢' on the
tautological DD bimodule is specified by an algebra element A = 3" a; ® b; where
the weight of a; equals the weight of b;.) O

Write the differential 0 on Y as a sum of terms 9 = Z?il 0;, where 9; involves
terms on the *" strand. More precisely, there is a differential d;: B(m, k,S) —
B(m, k,S) that vanishes unless ¢ € S, in which case d;(C;) = U;, but d;(C;) =0
for all j # ¢ and d;(L;) = d;(U;) = d;(R;) =0 for all j=1,...,m. Define

(3.16)

‘ (dlalb) + (]%z . 6|Li . b) + (Li -E|Ri . b) + (Cz -E|Ui . b) if i € Sy,

where d;: Bs — B is dual to the differential d;: By — Bs.

Lemma 3.13. The differential d on Y can be written as & = Yy .-, 0;, where
0?2 =0 and 9;00; =0;00; fori#3j.

Proof. This can be seen directly. A little more conceptually, on homogeneous
generators (a|b) where a and b are pure algebra elements, the functions w;(a) for
j=1,...,m and

ey my(b) ifjes
(3.17) m;(@lb) —{ 1—mj(a) ifjeS,,

for j =1,...,m induce a filtration on C(Z,x,y) by (3Z)™ x {0,1}™. Restricting
to values with j # i, we have a filtration on C(Z,x,y) with (1Z)™~! x {0,1}™~1.
The associated graded object is clearly (C(Z,x,y),9;).

Proposition 3.14. Fiz idempotents x and 'y and a total weight Z ; suppose more-
over that the weight Z is non-zero. Then there is a position i with the property

that H.(C(Z,x,y),0;) =0

Proposition 3.14 is proved using the following lemma:

Lemma 3.15. The chain complex (C(Z,x,y),0;) splits into subcomplexes indexed
by (3Z)™* x {0,1}™~1 that are spanned by (alb), where a and b are pure al-
gebra elements whose weights w;(b) with j # i and values m;(alb) (as defined in
Equation (3.17) above) for all j # i are specified.

Proof. This follows from the form of 0;: it does not involve any of the C; with
j # i, and it does not change the weight of b away from 3. O
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Lemma 3.16. For fited Z and i € {1,...,m}, x, y and (3Z)™' x {0,1}™*,
consider the corresponding subcomplex C of (C(Z,x,y),0;) as in Lemma 3.15.
Then H(C) # 0 precisely when there is a single element in C'. When the homology
of C is non-zero, there are pure algebra elements a and b, and a single generator
(@lb) in C; and one of the following holds:

o w;(a) =w;(b)=0
o w;(a) +w;(b) =1
o w;(a)+w;(b) =1 and either a =ag-C; or b="by-C;.

In particular, writing z; = w;(a) + w;(b), if H(C(Z,x,y),0;) #0, then z; < 1.

Proof. When z; = 0, the statement is clear; otherwise, there are cases, according
to the local picture of the summand of C(Z,x,y) near i. Specifically, if C(Z,x,y)
contains an element (a|b) with a = Ix-a- Iy, we consider separately the two cases:

(C-1) i—1,iew.
(C-2) Exactly one of i —1 or 7 is in w.

There is a third case, where neither i—1,¢ € w; but that is symmetric to Case (C-1)
by a symmetry that exchanges roles of B; and Bs, and then dualizes C'.

There are five further subcases of Case (C-1), as follows. if 4 — 1 and i are the
jt" and j + 1% terms in the sequence w, we further subdivide according to the
placement of the j** and the j + 1% terms in the sequence of x. Since x and w
are not too far, the pair {j, 7+ 1} must be one of {i—2,i—1}, {i,i+1}, {i—2,4},
{i—1i+1}, {i—1,i}, {i—2,i+1}.

The cases where {j,j+1} ={i—2,i} and {i—1,i+ 1} are exchanged by reflection
of through a vertical axis (compare the map R from Equation (3.10)), as are
{i —2,i—1} and {4,7+4 1}. Dropping two symmetric cases, we arrive at the four
pictures in the first three columns of Figure 15.

Similarly, in Case (C-2), if i — 1 € w (which can be arranged after a vertical
reflection) is the 5" term in w and i is the k** one in the left idempotent of b,
then we further subdivide according to the placement of the j** and k' terms in
x and y respectively. These possibilities (after eliminating symmetric duplicates)
are represented in the remaining pictures in Figure 15.
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FiGUure 15. C(Z,x,y) cases.

We consider now Cases (C-1) and (C-2) separately, and further subdivide them into
subcases (that are related to the cases in Figure 15).
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Case (C-1), with z; = 1/2. (The first column in Figure 15.) There is now a
single generator of this type, of the form (a|b) with w;(a) = 1/2 and w;(b) = 0.
so the homology is one-dimensional.

Case (C-1), with z; ¢ Z and z; > 1/2. (Again, this is illustrated in first column
in Figure 15.) This has two further subcases, according to whether i € §; or So
(i.e. whether C; € By or By). If i € S, there are two generators of the complex,
(aUF|b) and (aUF~1C;|b) where k = z;—3 > 1, and a and b are fixed pure algebra
elements with w;(a) = %, w;(b) = 0. To see that both types of terms appear, note
that under the present hypotheses on a = a - I, and w, if a # 0 then U; -a # 0,
as well. Clearly,

0;(aUF|b) = (U}~ Cylb),

so the homology of the corresponding complex vanishes. When ¢ € Ss, the terms

are of the form (aU7*|b) and (aU !|C;b), and the homology again vanishes.
Case (C-1), with z; € Z. When i ¢ Sy, we either have a single element (a|C;b)
with w;(a) = w;(b) =0 (as in the third column of Figure 15; this can also appear

in the second column), or elements of the form (al7|b) and (aU?|C;b), with fixed
a, b so that w;(a) = w;(b) = 0, where j = z; and the differential is given by

0;(aU7|b) = (aUi~Y|C; - b);

so the homology is trivial. The case where ¢ € S works similarly. We either have a

single element element (aC;|b), w;(a) = w;(b) = 0 or elements of the form (a7 |b)
and (anj 71C’i|b). Once again, the differentials cancel out the homology.

Case (C-2), with z; = 1. (This is the fifth or the eight column of Figure 15.)
There are two possibly non-zero elements in the complex. These elements have the
form (a- R;|b) and (a|L;-b), where w;(a) = w;(b) = 0. There are two subcases: in
one subcase, only one of a- R; or L;-b is zero, so we have a single generator. (This
case occurs in the fifth column of Figure 15.) In the other case, when both a - R;
and L;-b are non-zero (which occurs now only in the eighth column of Figure 15),

we have that 9;(a - R;|b) = (G|L; - b), so the homology is trivial.

Case (C-2), with z; ¢ Z, and z; = 3+t > 1. (These cases are illustrated in the
fifth and eighth columns of Figure 15.) Suppose that i ¢ So. We can assume that
all the generators a corresponding summand of C(Z,x,y) have the following form
(aR;U? |bUF), (aR;U bC;UF=YY, (aU?|LibUF), and (aU? |L;bC;UF1), for fixed a
and b with w;(a) = w;(b) =0, and j+k+ 1 = 2.

Note that at least one of aR; # 0 or L;b # 0, otherwise the chain complex would
be trivial. If aR; # 0 and L;b = 0, then there are exactly two elements in the
chain complex, (aR;U},b) and (an_l,C'ib), and the differential cancels them.
(Again, cases of this kind can occur in either the fifth or the eighth columns of
Figure 15.) If aR; = 0 and L;b # 0, there are once again two terms, (a, L;bU})
and (@, L;bC;U! ~1), and these two terms cancel in the differential.

In the remaining case where aR; # 0 and L;b # 0, we show that H(C(Z,x,y),0;) =
0, using a further filtration on the complex, induced by the function on pure
algebra elements a and b that associates to (a|b) the " weight of b, w;(b).
This induces a grading on the vector space underlying C(Z,x,y) = @ke%sz.
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Writing ¢ (alb) = (a|d;b), we have that 9; = 9} + L, where 9}: Fr — Fi, and
L: Fr = @), Fe- (We are using the form of J; from Equation (3.16).) Thus, the
associated graded complex on (C(Z,x,y),9;) is equipped with the differential 9%,
and we will show that its homology vanishes.

When k € Z, the complex Fy, is spanned by (aR;U?,bU¥) and (aR;U?,bC;UF1),
and they are connected by a differential in §. Similarly, when & > 1, the complex
Fry1 contains the two elements when (aU7, LibUF), and (aU}, L;bC;UF1), and
these elements are connected by a differential in 9f. Thus, H(F, %) = 0 except
when k& = 0 and 1/2; and Fy is generated by the single element (aR;Uf|b) and
Fi/2 is generated by the element (TU;\Lib). Thus, by a simple filtration argu-
ment, H(C(Z,x,y),d") is computed as the homology of a two-dimensional vector
space generated by these latter two generators (aR;U!|b) and (aU?|L;b); and these
two elements are connected by a differential. This completes the verification that
H(C(Z,x,y),0;) = 0 in this case. See Equation (3.15) for an illustration when
z = 3/2 (and observe that for the diagram, the horizontal coordinate in the plane
measures the filtration considered here). The case where i € Sy works similarly:
the homology of 8 is now supported in F; and F; 44 /2, With generators (aR;|UD)
and (a|L;Ufb), with a cancelling differential.

Case (C-2), with z; = 1. Assume that ¢ € Sy. The chain complex C(Z,x,y) is
spanned by four vectors elements of the form

@lCid), (@Uid), (alilb), (aRi|R;-b),

where a and b are pure algebra elements with w;(a) = w;(b) = 0. One of the
following must hold:

e All four elements are non-zero (which can occur in the ninth column of
Figure 15). In this case,

9;(ali|b) = (aRy|R; - b) + (@|Cib)  9;(alCib) = (alU;b)  di(aRi|R; - b) = (a|U;d),

and the complex has trivial homology. (See for example Equation (3.13).)

e a-R;, =0 and R; -b = 0, in which case also aU; = bU; = 0, so three of
the four vectors are zero, and the remaining vector (a@|C;b) generates the
homology.

e a-R;,=0but R;-b#0. In this case U; -b # 0 (by Lemma 3.8), so two of
the above elements (a|C;b) and (a|U;b) are non-zero. These two elements
are connected by a differential, and the homology is trivial.

e a-R; #0 and R; -b = 0. In this case, once again, two of the above
elements are zero, and the remaining two are connected by a differential,
so once again the homology is trivial.

The case where i € Sy works similarly.

Case (C-2), with z; € Z and z; > 1. Let (a|b) be some non-trivial generator in
the complex, where i € w, so i+ 1 & w. If either a- R; =0 or R;-b= 0, then the
argument works as in earlier cases (i.e. we have a pair of generators that cancel in
homology). Otherwise, as in the case where z; € Z and z; > %, we consider the
filtration by the weight w; of the b component. If i &€ Sy, then for Fj with k> 1,
H(Fy, %) = 0, since the complex Fj, has two terms in it that are connected by a
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differential in 9. The remaining two terms are the generators of Fj with k =0
and %, which have the form (aU}|b) and (aU} ' R;|R;-b); and these two terms are

connected by a differential. The case where 7 € S; works similarly. O
Proof of Proposition 3.14. Let f: {1,...,m+ 1} — Z be defined by

f(i) =#{j|j <iand j € x} + #{j|j <iand j €y}
It is easy to see that 1 — 1 < f(i) <i+1.

Choose n minimal so that the weight z, £ 0. There are three cases:

Case 1: f(n) =n. (Note that in this case, z; € Z.) We claim that H.(C(Z,x,y),0n)

0. By Lemma 3.16, we need only consider cases where z, = 1.

See Figure 16 when n — 1 € x; the cases where n — 1 € y work similarly.

'
.
[ ]
Vi v ' ¥
®.0 e 0 ‘ [ H
1 1 I <
[ ]
N

FIGURE 16. Four cases where f(n) =mn. This is Case 1 from
the proof of Proposition 3.14.

We claim that in all the cases from the figure, we will have an element of the form
(a-Uy|b) (where wy(a) = 0) in the subcomplex. This is clear because in each
case, either n is not contained in a generating interval, or the generating interval
containing n also contains n — 1; but w,—1(a - U,) = 0. Thus, Lemma 3.16
completes the case.

Case 2: f(n) =n+1. (See Figure 17.) Again, we claim that H.(C(Z,x,y),0,) =
0. Note that in this case, z, € % + Z; so by Lemma 3.16, we can assume z, = 3.
The two possible chain complex generators are (a|L, -b) and (a- R,|b). Since
by assumption z; = 0 for ¢ < n, and clearly n is not the left endpoint of any
generating interval (in either By or Bz ), it follows that both alU,, # 0 and bU,, # 0;
and correspondingly a - R, # 0 and L, - b # 0; i.e. both generators are non-zero,
so they cancel in homology.

f!%x/ \#!i

FIGURE 17. f(n) =n+ 1. This is Case 2 from the proof.

Case 3: f(n) =n—1. Since f(m+1) =m+ 1, we can find a minimal j > n so
that f(j) = j. Note that zj_; = 1 (mod 1). We distinguish four further subcases.
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Case 3a: z;_; > 3. By Lemma 3.16, H.(C(Z,x,y),0;_1) = 0.
Case 3b: j<m+1 and z;_; = 3 and z; = 0. We claim that
H*(C(va,y)vajfl) =0.

The two possible generators are of the form (a|R;-b) and (a - L;|b). Since z; =0,

J

o<

!4\4 /49

<e

FIGURE 18. f(n)=n—1 and z;_ = 3.

it follows that a-U;—1 # 0. and b-U;_; # 0, so both generators are non-zero, and

cancel in homology.
Case 3c: j=m+1 and 2, = ;. H.(C(Z,x,y),0,) =0, exactly as in Case 3b.

Case 3d: j <m+1 and z;_; = 3 and z; > 0. Wewill show H,(C(Z,x,y),0;) =
0. We have illustrated five cases in Figure 19. The remaining cases are symmetric,

TE T S T A
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FIGURE 19. f(n)=n—1, zj_1 =1, z; = 1.

obtained by switching the roles of @ and b.

In the first four of these five cases, observe that the corresponding chain complex
contains a non-zero element of the form (a - U,;[b) with w;(a) = w;(b) = 0. Thus,
by Lemma 3.16, the homology is trivial (since the generating intervals on Bs con-
taining j also contain j — 1). In the final case, the homology is also trivial by
Lemma 3.16, since C; is not present in the displayed generator. ([l

Proof of Proposition 3.11. Decompose H(Y') into the summands C(Z,x,y) as
before. Suppose that the total weight Z is non-zero, and choose ¢ as in Propo-
sition 3.14. As in the proof of Lemma 3.13, there is a filtration on the complex
C(Z,x,y) of Y, whose associated graded object is (C(Z,x,y),0;). It follows at
once by an elementary spectral sequence argument that H(C(Z,x,y),0) =0 if Z
is a non-zero weight vector.

It remains to consider summands where the weight is zero. These correspond to
pairs of complementary idempotents, equipped with a vanishing differential. There

are, of course, (") such complementary pairs, as claimed. O

Theorem 3.17. The module Y is a quasi-inverse of the type DD bimodule K.
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Proof. Note that B is positively graded over k, using the grading set A = (3Z)™.
Conditions (K-1)-2.8 of Definition 2.13 are obvious from the construction of K.
The remaining condition of Lemma 2.16 is supplied by Proposition 3.11; so the
result follows from Lemma 2.16. O

3.9. Grading sets associated to one-manifolds. Our knot invariant will be
constructed by tensoring together bimodules with a particular kind of grading set.
We formalize these grading sets presently, and study the boundedness needed for
forming the tensor product.

Let W be an oriented disjoint union of finitely many intervals, equipped with a
partition of its boundary W = Y; UY; into two sets of points. Let Y; consist of
m; points. Let s; denote the number of intervals in W that connect Y; to itself,
and sy denote the number of intervals that connect Y7 to Y5 in W. Let S; be
those points in Y7 for which the oriented boundary of W appears with positive
multiplicity in the oriented boundary of W, and let S; be those points in Y5
for which the oriented boundary of W appears with negative multiplicity in W.
Choose any integer 0 < s < so+1. Let By = B(m1, s+ 51,81), Ba(ma, s+ s2,S2).

We can think of the Alexander multi-grading of B; as taking values in H°(Y;;Q):
the weights of algebra elements are functions on the points in Y;. The sum of
grading groups H®(Y1;Q) @ H°(Y2; Q) = H°(OW;Q) act on HY(W,0W;Q), via
the coboundary map d°: HY(OW) — HY(W,0W).

Remark 3.18. In fact, the grading on the algebras is supported in H°(Y;; %Z) -
HO(Y;;Q). Also, the grading set for our modules is contained in H*(W,OW; %Z) ;
compare Equation (4.5).

Definition 3.19. Fiz W as above. A type DA bimodule 82X31 1s called adapted
to W if it has a Z -grading (compatible with the Maslov grading on the algebra) and
an Alexander multi-grading, with grading set H*(W,0W) as described above, and
it is finite dimensional (as a vector space).

Proposition 3.20. Let Wi be a disjoint union of finitely many intervals joining
Y1 to Ya; and let Wy be a disjoint union of finitely many intervals joining Ya to
Ys. Suppose moreover that W1y UWs has no closed components, i.e. it is a disjoint
union of finitely many intervals joining Y1 to Y. Given any two bimodules BzXél
and B3X§2 adapted to W1 and Wy respectively, we can form their tensor product
B3X%2 X B2Xél (i.e. the infinite sums in its definition are finite); and moreover,
it is a bimodule that is adapted to Wy U W .

Proof. Recall that the grading set of X2X X! is H(Wy, Y3UY2)® HY (W, YoUY))
modulo the coboundary of H°(Y3), which is identified with H'(WoUW;,Y3UY7).
Clearly, the tensor product is finite-dimensional.

Next, we argue the necessary finiteness. Fix algebra elements (ai,...,ap) € By.
Fix generators x1,y; for X! and xo,y> for X2. Suppose that (b; ®---®b;) @ y1
appears in 5g(x1,a1, ...,ap). Since X! is graded, for each point i in Y5 that is
matched by W7 to a point in Y7, we have a constant K, depending only on the
gradings of (ai,...,as) and x; and yq, so that
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(In more detail, consider the component of W; that matched i € Yo with some
i’ € Y7, and let & and 7; be the coefficient of gr(x;) and gr(y;) in that component.
Since X; is graded,

wi(by ® - @bj) +ni =& +wia1 @ - @ ag).

Now let K = |§; +w;(a1 ® -+ ®ay) —n;|.) By the same reasonining, we can adjust
K so that, for any two points ¢ and ¢’ in Y5 that are matched in Wy,

[wi(by ® -+ ® bj) —wy(by ® -+ @ by)| < K.

Suppose that ¢ ® yo appears with non-zero multiplicity in 5}- 41(x2,01,...,05),
then for any point ' in Y5 that is matched by W5 to Y3, we can further adjust K
(depending now on x2 and y2) so that

|U}Z(b1 & ®b]) —’wZ/(C)| S K.

By further adjusting K if necessary (depending only on x5 and ys ), we can arrange
that for any two points ¢ and 7' in Y5 that are matched in W5,

|U}Z(b1 ®®b]) —wzl(b1,7b‘7)| S K.

Grading properties ensure that

4
(3.18) m(x1) + m(xz) — m(y1) — m(y2) + »_m(a;) =m(c) + £ -1

i=1

By the above considerations, for any point ¢ in Y5 that is contained in a path
connected component of WoUW; that meets Y7, there is a bound on w; (b ®- - -®b;)
depending only on x;, X2, y1, Y2, and (ay,...,as).

Suppose next that i € Y5 is contained in a component of Wy U W; that meets Y3
but not Y;. Consider the inital point p of that arc, with respect to the orientation
it inherits from W, and observe that p € S3. The above considerations give a
bound on |w;(by ® --- ® b;) — wy(c)|, again depending only on x1, X2, y1, Y2,
and (aq,...,ar). Finally, observe that since p € Sz, Equation (3.9) shows that we
can adjust K so that (depending on |Ss|) with |m(c) 4+ 2w,(c)| < K. An upper
bound on m(c) is provided by Equation (3.18). Thus, we have an upper bound on
wi(by ® - ® b;) for any 4 in Y5 that is contained in component of Wy U Wy that
meets Y3 but not Y.

Since W5 U W7 has no closed components, we have obtained a universal bound on
any weight w;(b; ® --- ® b;) for i € Yo. That upper bound implies also an upper
bound on j; for if j could be arbitrarily large, we would be able to find arbitrarily
large k so that 6%(y") = by, @ - @ by @ y” . (Here, 6*: X1 — BE* @ X1 is the
map obtained by iterating §'.) But

m(y') =k =m(bn) + -+ m(bmis) + my”),

so since X! is finitely generated, we conclude that m(b,,) + - - 4+ m(b,,+x) can be
arbitrarily large, contradicting the above obtained universal bound on the weight
of by ® --- ® b; at each point in Y5, in view of Definition 3.9.

The resulting bound on j shows that the coefficient of y; Kys in 9(x; K xs) is
a sum of finitely many terms. The result now follows since X2 X X! is finitely
generated. (See Figure 20.) O
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FIGURE 20. In the proof of Proposition 3.20, the total weights
of the algebra elements at the circled points in Y7 and Y3 give
bounds on the weights at points of Y5 (drawn as dark dots) of the
algebra elements in by ® --- ® b;.

4. DD BIMODULES FOR CROSSINGS

Having defined the algebra associated to y = t slice of the generic diagram, we
turn now to the definitions of the modules associated to the partial knot diagrams.
In Section 5, we will construct DA bimodules associated to special partial knot
diagrams, consisting of a collection of vertical strands passing through the region
y1 < y < yo in the plane, containing exactly one crossing. Before doing this, we
construct presently a simpler type DD bimodule associated to such a configuration.

4.1. The DD bimodule of a positive crossing. We describe first the DD
bimodule P; associated to a positive crossing between the i" and (i+1)* strands.

Let 7: {1,...,m} — {1,...,m} be the transposition that switches ¢ and i + 1.
Let

(41) Bl = B(m, kl, 81) and BQ = B(m, kQ, 82),

where k1 +ky = m+1, |S1|+]S2| = m, and S1N7(S2) = 0. We think of the algebra
B; as coming from above the crossing and algebra Bs as coming from below.
P41
i

FIiGURE 21. Positive crossing DD bimodule generators.
The four generator types are pictured to the right.

As an I(m, ka,S2)-I(m, k1, S1)-bimodule, P; is the submodule of I(m, ks, S2) Qp
I(m, k1,S1) generated by elements I, @I, where one of the following two conditions
holds:

e xNy=0or
e xNy={i} and {0,...,m}\ (xUy)={i—1} or {i +1}.

In a little more detail, generators correspond to certain pairs of idempotent states
x and y, where |x| = k; and |y| = k2. They are further classified into four
types, N, S, W, and E. For generators of type N the subsets x and y are
complementary subsets of {0,...,m}, with ¢ € y. For generators of type S, x
and y are complementary subsets of {0,...,m} with i € x. For generators of type
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W,i—1l¢dxand i—1¢y,and xNy = {i}. For generators of type E, i +1 ¢ x
and i +1¢y,and xNy = {i}.

The differential has the following types of terms:

(P-1) Rj ® Lj and L; ® R; for all j € {1,...,m} \ {¢,% + 1}; these connect
generators of the same type.

(P-2) U.jy®@Cj if j €S and Crjy @ Uj if j € Si; these connect generators of
the same type.

(P-3) Terms in the diagram below connect generators of different types:

(4.2)

Note that for a generator of type E, the terms of Type (P-1) with j = i+ 2 vanish;
while for one of type W, the terms of Type (P-1) with j =i — 1 vanish.

Proposition 4.1. The bimodule B2Bip: s o DD bimodule.

Proof. The square of the differential, which we must verify vanishes, is obtained by
either differentiating any of the terms of the Types (P-1)-(P-3) above or, multiplying
together two of them.

We start by analyzing the terms of Types (P-3). Clearly, all of those terms have
vanishing differential. The non-zero algebra elements obtained as products of pairs
of such elements either connect generators of any type to itself, or it connects IN
and S or W and E.

As an example, consider products of terms of Type (P-3) connecting W to itself.
Those products that factor through N give terms

(1®L;) (Uit1 ®Ri+ Rit1R; @ Liy1) =Uiy1 QU; + Riy1 Ry @ LiLi 4
and those that factor through S give
(Li®1)- (R ®Uip1 4+ Lit1 @ Rit1R;) =U; @ Uiy + LiLiy1 ® Ri1 R;.

Note that (Ri+1Ri ® LiLiy1 + LiLit1 ® Ri+1Ri) ® W vanishes for idempotent
reasons: if x and y are pairs of idempotent states with (Ix ® Iy) - W # 0, then

xN{i—1,4,i+ 1} +|yn{i—1,4,i+ 1} = 3.

The terms U;@U,;+1 and U, 11 ®U; cancel with the differentials of terms of Type (P-
2) with j =4 and i+ 1.
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Next consider products of terms of Type (P-3) connecting N to S. The products
that factor through W give terms:

(U1 @R+ Riy1Ri ®Lit1) - (L;i ®1) = LiUj11 @ Ry + Ri11U; @ Liyq.
Similarly, the products that factor through E give
(Ui ® Lig1 + LiLit1 @ R;) - (Riy1 ®1) = Ry U; ® Lty + LiUi11 ® Ry;

thus, these two factorizations give terms that cancel in pairs.

The cancellation of terms of Type (P-3) in pairs or with differentials of terms of
Type (P-2) with j =4 and ¢ + 1 proceeds to other types of generators similarly.

Next, we consider products of pairs of terms of Type (P-1). When j # ¢,i+1, these
terms cancel differentials of terms of Type (P-2) exactly as in the proof Lemma 3.10.
When the generators are of type E and W | there is a possible complication in this
argument, since in that case, the corresponding term with j =i+ 2 or ¢ — 1 of
Type (P-1) might vanish. For example, for terms of type E, and i + 2 ¢ Sy, there
is a possibly non-zero term Cjy2 ® U; 1o of Type (P-2), but the terms of Type (P-
1) of the form L;i2 ® Riy2 and R;12 ® L;1o vanish. However, the differential
of Ciy2 ® U2 vanishes in the idempotents of E (since if I, ® Iy is of type E,
then i+ 1 ¢ x and i+ 1 € y, and either i +2 & x or i +2 ¢ y; in either case,
(Uit2 @ Uit2) - (Iy @ Ix) = 0).

Consider next terms that are products of terms of Type (P-3) and those of Type (P-
1). Typically, these are easily seen to cancel in pairs; the case where support of
the Type (P-1) is immediately next to {4,7+ 1} requires special care. Consider for
example the terms of the form L;is2 ® R;1o. Each term of Type (P-3) commutes
with this term; but both product might be zero. For example, L; ® 1 commutes
with (LH_Q ® RH_Q). Also, if a = L;L;+1 ® R;, then (Li+2 & Ri+2) -a =0 and
a- (Liy2 ® Riy2) = 0.

The remaining terms of Type (P-2) and are easily seen to commute with each other
and with terms of Type (P-3), giving the desired cancellation. O

It is interesting to note that the bimodule has some symmetries; for instance,
(4.3) 62731791, ~ 617627’7@',

by a symmetry which switches the roles of N and S, and fixes W and E.

4.2. DD bimodule for a negative crossing. We can define a type DD bimodule
for a negative crossing. The generators are the same as for a positive crossing.
Terms in the differential are also the same, except that those of Type (P-3) are
replaced by the following:
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(4.4)
Proposition 4.2. The bimodule N; is a DD bimodule.

Proof. This follows exactly as in the proof of Proposition 4.1. Note that Dia-
gram (4.4) is obtained from Diagram 4.2 by reversing all the arrows, and switching

the roles of L; and R;. More formally, for B; and By as in Equation (4.1),

. . . =B1,Bs  BPBP— |
BuB2 £f; is obtained from the opposite module of P;, P, =712 P, using the

isomorphism B; = B7* (denoted o in Equation (3.11)). O

4.3. Gradings. The bimodules P; are graded by the set S = Q™ as follows Let
e1,...,em be the standard basis for Q™. Let
(4.5)

gr(N) = Fon (W) = St gr(|) = “otoe gr(s) = “amee

Now, if (¢ ® b)) ® Y appears in 0X, then
(4.6) gr(X) = gr(a) — 7%7gr(b) + gr(Y),

where 78" is the linear transformation acting by 7, on the standard basis vectors,
and gr(a) = (w1(a),...,wn(a)). Verifying Equation (4.6) is straightforward, using
Equation (4.2).

In the notation of Section 2.2, the grading set of P; is half-integral valued functions
on the the arcs in the diagram, thought of as an affine space for Az, x A, in an
obvious way.

Similarly, for N, the gradings of the four generators N, S, E, W are given by
(4.7)
gr(N) = =5 gr(W) = ZShes gr(B) = S5 ge(S) — S,

Note that the modules determine these gradings only up to an overall additive
shift. The present gradings are consistent with conventions on the multivariable
Alexander polynomial [6]; for further motivation, see Remark 7.3.

4.4. Motivation. The modules 5251 P; and Ba2.B ' N; came from considering a ver-
sion of Lagrangian Floer homology in the four-punctured sphere, shown in Fig-
ure 22, taken with respect to a single (-circle and four a-arcs that go out to the
punctures. Regions in the complement of this configuration are labelled by algebra
elements (as shown in Figure 22, for the negative crossing).
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Ri1®1

FIGURE 22. Four-punctured sphere for a negative cross-
ing. The four punctures are connected by four arcs as shown; an
auxiliary circle meets the four arcs in the points N, W, S, and
E. Regions are labelled by algebra elements as shown.

FIGURE 23. Terms in Equation (4.4) as arising from disks.
The shaded region on the left represents the term (R; ® 1) @ W in
51(S); the one on the right represents the term (L; ® R; 1 R;) ® S
in 64(E).

The arrows in Equation (4.4) count rigid holomorphic bigons, and their contribu-
tion is obtained by multiplying the algebra elements specified by the regions; see
Figure 23 for some examples. This relationship is central to [17].

5. DA BIMODULES ASSOCIATED TO CROSSINGS

Our goal here is to construct certain DA bimodules associated to crossings, which
are in a suitable sense Koszul dual to the DD bimodules constructed in Section 4;
see Lemma 6.2 for the precise duality statement.

For the construction, choose integers k£ and m with 0 < k < m 4+ 1, and let
S c {1,...,m} be arbitrary. Let 7;: {1,...,m} — {1,...,m} be the map that
transposes i and i + 1. Let By = B(m, k,S) and By = B(m, k,7(S)). (Note that
B1 and Bs here denote different algebras than they did in Section 4.) The aim of
the present section is to construct a type DA bimodule B2 ’P,gl , which we think of as
the bimodule associated to a region in the knot diagram ¢, <y < t; that contains
exactly one “positive” crossing, and no local maxima or minima; and the crossing
occurs between the i and (i + 1)*! strands, as shown on the left in Figure 24.
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(Positivity here is meant with respect to a braid orientation, e.g. where all the
strands are oriented upwards, which might differ from the orientation specified by

S)

i i+ 1 i i+ 1

LR IR

FIGURE 24. Positive crossing DA bimodule generators.
The four generator types are pictured to the right.

Consider the submodule P? of I(m,k) ®r I(m, k), consisting of Ix @ I, where
either x =y or there is some w C {1,...,s—1,i+1,...,m} with x = w U {i}
and y=wU{i—1} or y =wU {i+ 1}. Thus, there are once again four types of
generators, of type N, S, W, E as pictured in Figure 24; i.e.

> L NI, =N, > 1,8 I, =8,

1EX 1Zx
Y Iuag-ny W k=W, Y. Iuagsy B L=E
P ¢ x i+1€ex
i—1ex i x

This description has a geometric interpretation in terms of Kauffman states.

Definition 5.1. A partial knot diagram is the portion of a knot diagram contained
in the (x,y) plane with to < y < t1, so that the diagram meets the slices y = t;
and y = to generically. The knot projection divides the partial knot diagram into
regions. A partial Kauffman state is a triple of data (K,y,x), where K is a map
that associates to each crossing one of its four adjacent regions; X 1is a collection
of intervals in the intersection of the diagram with the y = t1 slice; and y is a
collection of intervals in the intersection of the diagram with the y =ty slice. The
regions assigned to the crossings are called occupied regions; those that are not are
called unoccupied. The data in a partial Kauffman state are further required to
satisfy the following compatibility conditions:

e No two crossings are assigned to the same region.

e If a region R is occupied, then x contains all the intervals in RN (y = t1)
and 'y contains none of the regions in RN (y =ts).

o Ifaregion R is unoccupied, then either x contains all but one of the regions
in RN (y=t1) and y contains none of the regions in RN (y =t3); or x
contains all of the regions in RN (y = t1) and the region y contains exactly
one of the regions of RN (y = t2).

The compatibility conditions can be formulated more succinctly as follows: each
region contains exactly one of the following: a quadrant assigned by K, an interval
in RN (y =t1) not contained in x, or an interval in RN (y = t2) contained in y.

The picture is simplified considerably when the partial knot diagram contains a
single crossing. In that case, it is straightforward to see that the generators of the
bimodule P! defined above correspond to partial Kauffman states; K is one of
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N, S, W, or E; y specifies the right idempotent of the generator and x the left
idempotent of the generator.

The bimodules P? are graded by the set Q™ in the following sense. Define gradings
of the generators N, S, E, and W as in Equation (4.5) (only now thinking of these
as generators of P¢ rather than P;). The actions &, respect this grading, in the
following sense. Suppose that X is some homogeneous generator, and ay,...,ap €
By are homogeneous elements, then 6} (X,a1,...,a;) can be written as a sum of
elements of the form b ® Y where Y are homogeneous generators and b € By is
are homogeneous elements of the algebra, with

(5.1) gr(X) + 7 (gr(a1) + -+~ + gr(ae-1)) = gr(b) + gr(¥),

where here gr(a;) and gr(b) denote the weight gradings on By and Bs.

There is also a Z-grading, specified by where the grading of a generator type
coincides with the local Maslov contribution of the corresponding Kauffman state
as in Figure 2. For instance, if all crossings are oriented upwards, then

(5.2) M(N)=-1 M(S)=M(W)=ME)=0.
The modules respect this Z-grading: for X, Y, a1,...,ap,—1 and b as above,

(5.3) M(X) + M(ay) + -+ M(ag_1) + £ — 1 = M(b) + M(Y).

The partial knot diagram with a single crossing in it determines in an obvious way
a collection of arcs. Equation (5.1) can be interpreted as saying that the bimodule
P* is adapted to this one-manifold with boundary, in the sense of Definition 3.19.

We consider first the case where SN {i,i + 1} = (), we will specify these actions
by localizing to the crossing region, defining first bimodules over B(2) = B(2,0) &
B(2,1)®B(2,2)®B(2,3), and then extending them to B(m, k,S) (with SN {i,i+
1} = 0) in Subsection 5.2. The local models when S N {i,7 + 1} is non-empty is
defined in Section 5.3, and it is extended in the general case in 5.4.

5.1. Local bimodule for a positive crossing. We define first a type DA bi-
module P over B(2) = B(2,0) ® B(2,1) & B(2,2) & B(2,3). Note that B(2) is
defined over I(2) =1(2,0) & I(2,1) & 1(2,2) & (2, 3) = 8.

As an I(2)—I(2)-module, P has four generators N, S, W, and E. As an F-vector
space, P is 12 dimensional, and all 12 basis vectors appear on the right hand sides
of the following four expressions, which determine the I(2) —I(2)-module structure:

N=Tgy -N-Igy + Ty - N-Tony + Loy - N Loy + T oy - NI gy
S=Ty-S-Iy+T;1-S -Tgoy +Igay - STy +Io0y - S Tjo

W = I{l} -W. I{O} + 1{172} -W. 1{072}

E = I{l} -E- I{g} + I{O,l} -E- 1{072}.
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Next, we define the 67 and 5 actions on P. Some of these actions are specified
in the following diagram:
(5.4)

1®1+ LiLy ® L1La + RoR; @ RoRy

Here, dashed arrows indicate d] actions; while §; for k& > 1 are indicated by solid
arrows. For example, §1(W) =L; ®S.

Further actions are obtained by the following local extension rules. For any X €
{N,W,E,S} and any pure algebra element a € B(2),

(5.5) 63(X,UrUs - a) = U Uy - 63(X, a).
and also:

e If b® Y appears with non-zero coefficient in 63(N,a), then (b-Us) ® Y
appears with non-zero coefficient in 63(N,a-U;) and (b-U;) ® Y appears
with non-zero coefficient in 63(N,a - Us).

e If b® Y appears with non-zero coefficient in 63(W,a), then (Uz-b) ® Y/
appears with non-zero coefficient in §3(W,U; - a).

o If b® Y appears with non-zero coefficient in 63(E,a), then (U; - b) @ Y
appears with non-zero coefficient in 63 (E,Us - a).

For example, the action 63(W,1) = W combined with the local extension rules
shows that (%(W, Ul) = U2 X W + L1L2 R E.

The above rules uniquely specify the F-linear map 63: P ® B(2) — B(2) @ P(2).
We wish next to specify 3. As in the case for 6, we define these on a basis. More

formally, an algebra element is called elementary if it is of the form p - e, where p
is a monomial in U; and Uy, and

e e {1, Ly, Ry, Lo, Ry, Ly Lo, RoRy}.

Having specified cations 82(X,a), where X € {N,S, W,E} and a is elementary.
we turn to defining 5§(X,a1,a2) where a; and ag are elementary.

Suppose that a; and ay are elementary algebra elements with a1 ® ag # 0 (i.e.
there is an idempotent state x so that a; - Ix # 0 and I - as # 0); and suppose
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moreover that U - Uz does not divide either a; nor az. In this case, 63(S,a1,as)
is the sum of terms:

° RlUf QR E if (a1,a2) = (Rl,RzUQt) and ¢t >0
° LQU{US@E if (al,ag) S

{(UpPth,Ud), (RUP, L US), (LU RUS™} when 0 <n <t
{(UL, U, (RUE, LUP), (LU RyUPMN} when 1<t <n

o LyUY @ W if (ay,a3) = (L2, L1U}*) and n >0
° RlUng QR W if (al,ag) S

(UL Up), (LU RUP), (RUSTH LUP™H} when0<t<n
{(Up, U, (LU, RUY), (RUPH LiULTY)Y, when1<n <t

° LQUfUQn(@N if (al,ag) S

(UMY, LoUY), (RUT, LiLoUY), (LaUTHY, UL} when0<n <t
{(LUE, UMY, (UL, LU (RiUL, L1 LoUPM)} when1<t<n
{(L, U} when 0 =t <n

o RIUUN @ N if (ay,asz) is in the following list:

USRS RUP), (LU, RoRUY), (RUST U when 0 <t <n
2 2

{(RyUp, U (Up, RIUS, (LU, RoRiUE)Y when1<n <t
{(Ru1, UQtH)} when 0 =n <.

For example, 03(S,Ur,U3) = (LoU?) @ E + (R1U U2) @ W .

Extend this to the case where U;U; divides a1 or as or both, by requiring

(5:6)  O(Z (U1Us) - a,b) = 83(Z,a, (UrUs) - b) = (UnUa) - 88(Z,a,b).
Proposition 5.2. The operations 8} defined above give P the structure of a DA
bimodule over B(2) = B(2,0) ® B(2,1) @ B(2,2) ® B(2,3), which is graded as in
Equations (5.1) and (5.3).

‘We prove the above proposition after some lemmas.

Lemma 5.3. The actions 6} respect the gradings, as in Equation (5.1).

Proof. In the present case, the gradings on P are specified by
gI‘(N) _ ei+Zi+1 gr(W) — ei_:i+1 gr(E) — —er;e;,-;.l gr(S) _ —eizeﬁ-l’
Bearing this in mind, the lemma is a straighforward verification using the above

defined actions 6 } . O

Observe that if b ® Y appears with non-zero multiplicity in 5% (X,a1,...,a0-1),
and X is a fixed generator, and the a; € B(2) are elementary for i =1,...,0—1,
then the output algebra b is uniquely specified in Equation (5.1).

Lemma 5.4. Giwen a monomial p in Uy and Uy and an algebra element

ac {p7 Rl D, L2 D, R2R1 D, L1L2 p}a
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there is a uniqgue X € {N,W,E} and b so that b ® N appears with non-zero
multiplicity in 53(X,a). Similarly, given a monomial p in Uy and Us an algebra
element from

ac {p7 Ll'p7 R2'p}7
and a fized state type Y € {W,E}, there is a unique state type X € {N, W, E}
and b so that b®Y appears with non-zero multiplicity in 52(X,a).

Proof. This follows from a straightforward inspection of Diagram (5.4) and the
local extension rules. For example, if Y = N, then if a = p-e where p is a
monomial in Uy and Us, and e € {1,L1La, RoR1}, then X = N. For e = Lo,
write p = UfUy . If x > y, then X = W, and if <y, then X = E. The case
where e = Ry works similarly. O

For any elementary a and Y € {N,W,E} with a ® Y # 0, define I(a,Y’) to be
the generator X € {N, W, E} as defined in Lemma 5.4. Otherwise (i.e. if the pair
(a,Y") is not covered by the lists of Lemma 5.4), define I(a,Y) = 0.

Lemma 5.5. Fix elementary algebra elements ay, as in B(2), with S®a;®as # 0,
an elementary b and Y € {N,W,E} so that b®Y # 0 and

(5.7) gr(S®a; ®az) =gr(beY).

Suppose moreover that aj - ag # 0. Then the element b ® Y appears with non-
zero multiplicity in 03(S, a1, a2) if and only if I(az,Y) # 0 and I(ay,I(a2,Y)) #
I(ay - a2,Y); (i.e. one of them is E and the other is W ).

Proof. This follows from a straightforward inspection of the definition of 63. O

i—1

——f
We introduce a notational shorthand. The maps §;: P@B®---®B = B® P
i—1

~ —_—
naturally extend to maps §}: B& P@B®---® B — B® P, by the rule
5bRrRa®@ - ®a;1)=b-6(x@a-®...a;_1).
Fix elementary algebra elements aj,as € B(2,k), so that S® a; ® az # 0. When
k = 2, aj - as is always non-zero. On the other hand, when k = 1, the actions

83(S, a1, az) are those for which a1-az = 0 and b®Y (as specified by Equation (5.7))
appears with non-zero multiplicity in 63 (92 (S, a1), as).

Lemma 5.6. With the above definition, if a1, as, and az are elementary, then
63(63(S, a1, as), as) + 03(65(S, a1), ag, as)

(58) +5§(S,a1 '0,2,0,3)4’5%(8,&1,@2 '(13) =0

Proof. The above actions d3 defined above vanish on B(2,0) and B(2,3), so Equa-

tion (5.8) is obvious. On B(2,1), the non-trivial §1 actions are

5§(S,R1,R2U§) = RlUf QE 5§(S,L2,L1U1n) = L2U2n ®R W
63(S, Lo, UMY = LyUy @ N 63(S, Ry, U™ ) = RiUF @ N

with k,n > 0. For these, the verification of Equation (5.8) is straightforward.
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In B(2,2), if a1 ® ag ® az # 0, then in fact ay - as - ag # 0; so we wil henceforth
assume that a;-as-asz # 0. We treat two subcases separately, according to whether
or not a; = (U Us)".

Case 1: a; = (U;Uy)". The first and the fourth terms in Equation (5.8) vanish,
and the middle two agree by Equation (5.6).

Case 2: a1 # (U Uz)". In this case, 63(S,a;) = 0, so the second term in Equa-
tion (5.8) is missing. Given Y € {N, W, E}, let

a=1I(ay-az, I(a3,Y)), B=1I(ar-az-a3Y),
v =1I(ay,I(az-a3,Y)), 0 =I(ay,I(az,I(as,Y))).

By Lemma 5.5, b® Y (where gr(S ® a1 ® a2 ® ag) = gr(b®Y)) appears with
non-zero multiplicity in:

e 03(S,a1 - ag,as) if the set {a, 3} equals {W,E}
hd éﬁ%(svalvcb : a3) if {V?/B} = {WvE}
o 03(63(S,a1,a2),a3) if {a, 8} = {W,E}

Equation 5.8 states that either « = 8 = v = § or exactly one of the three relations
(o« = B,8 = v,a = 0) holds. To establish this, we will need the following two
observations about I(a,Z):

Observation 1. If a is elementary and Z is a generator type, then I(a,Z) is
uniquely determined by a and whether or not Z = N, except in the special case
where a = (U Uy)* for some £ > 0. For example, if a = Ly - p or Ry - p, where p
is a monomial in U; and Us, then I(a,Z) =N;if a = Uy - U and Z € {W,E},
then I(a,Z) =W if >y and I(a,Z) =E if z <y.

The generator types {IN, W,E} are further grouped into two classes, {N} and
{W,E}; in this language, the Observation 1 can be phrased as saying that if
a # (U1Us)", the class of Z and the algebra element a uniquely determines I(a, Z).

Observation 2. If a; and ay are elementary and aj - as # 0, then the class of
I(ay,I(aq, Z)) agrees with the class of I(a; - a2, Z).

By the second observation, the class of I(as2 - as,Y) agrees with the class of
I(az,I(a3,Y)), so by the first observation, I(a1,I(az-a3,Y)) = I(a1,I(az,I(as,Y)))
i.e. v =4, so if any two of the conditions (o = 3,8 = ~,a = §) holds, the third
one holds, verifying Equation (5.8) when a; # (UUs)*. O

Proof of Proposition 5.2. Note that in B(2,3), there is only one non-trivial
generator, and it is N; so d; = 0 for all £ > 2. In fact, P! in this case is
simply the identity bimodule for B(2,3), and the A, relation holds. A similar
simplification occurs for B(2,0), where the algebra is one-dimensional, and S is
the only module generator.

We turn to the more interesting cases, in the summands 5(2,1) and B(2,2). Vary-
ing n, we verify the DA bimodule relation with n algebra inputs aq,...,a, (and
one module input), subdividing further each verification according to whether we
are in B(2,1) or B(2,2).

When n =0, the A, relation is clear from the form of 47 .
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When n = 1, terms of the form 6! o 6} cancel in pairs, except in the special case
where a; = (U Uz)*, in which case a term of the form &} 0§} cancels with another
of the form 43 o 41 .

When n = 2, we find it convenient to label the terms in the A, relation as follows:
(5.9)

‘ a1 as ‘ a1 as ‘ ai az
< 1/ [ A |
5 / o / p v
A= 3 B = ! C = I . 1
N | 51 51
I | 3 3
D v a a
ay a ‘ ay a2 ‘ a1
: 14 v l/ v¥
Vgl o} g
D = vy FE = v F= v
% Mzé 05 H2 & 01
L ( . ( .
‘ ayp a2
(51/
G = } /
H2 € 05

So that the A, relation on a DA bimodule with two inputs reads
A+B+C+D+E+F+G=0.
On the algebras we are considering presently, 41 =0,s0 A= B =C=0.

When n = 2, since all actions are U;Us-equivariant, the case where at least one of
a; or ay is (U;Us)? is straightforward: the only two possibly non-zero terms are
D and F, and they cancel.

When n = 2, and we are in the summand in B(2,2), and the starting and ending
generator is in {E, W,N}, the A, relation follows from Lemma 5.5, and the
observation that a; - az # 0. Specifically, in this case, A = B = C = 0, and the 63
actions are defined so that the term in G cancels D and F.

When n = 2 and we are in the summand in B(2,2), and the starting and ending
generator is S, then A = B = C = G = 0, and we find that terms of type F
cancel in pairs, except in the special cases where a1 - ay = (UyUs)?, which are the
cases where D # 0, in which case there is a single cancelling term of type F'. This
is verified by looking at the formulas defining 3. For example, consider an A,
relation with generator of type S, a1 = U*, and as = UL. If 1 <n <, there is a
term of type F', factoring through E, and this cancels against another term of type
D, factoring through W, when n < t; otherwise, it cancels against a contribution
of type D.

When n = 2 and we are in the summand in B(2,1) and the initial generator is of
type {E, W,N}, terms of type D and E cancel except in special cases where E
contributes but a; - a; = 0, in which case there is a cancelling non-zero term of
type G. When the initial generator is of type S, and neither of a; nor as equals
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(U Us)*, the only possible non-zero term, which is of type F, vanishes thanks to
the algebra; for example, in the A, relation 63(S, Ry, R2US) = RUL @ E, and
(5%(E) = R2 ®S, but R1 . R2 =0 in 8(2,1)

The cases where n = 3, the A, relation trivially holds except in the special cases
where the initial generator is of type S. That case was covered by Lemma 5.6.

The case where n > 3 is obvious. O

5.2. Extension. Fix integers k£ and m with 0 < k < m 4+ 1, we extend the
bimodule P to a bimodule B(m’k)?é(m k) 88 follows.

Let a € By(m, k) with a = I« -a- Iy, and suppose that x and y are close enough.
Suppose moreover that a is pure, in the sense that it corresponds to some monomial
in Uy,...,U, under ¢*¥. We define the type of a, denoted t(a), which is an
expression in in Uy, Us, Ry, L1 Ry and Lo, defined as follows:

RoRy U 7202 70 i (a) = wiyr(a) = L (mod 2)
and v, <),
LyLoUl 72 72 i (a) = wiga(a) = 3 (mod 2)
and v} > v,
(@)1
RgUllUi(a)U;}’Jrl(a) 2 if wi(a) € Z and wit1(a) = 3 (mod Z),
and v}, <o),
(@)1 ,
t(a) = LgUf“(a)U;U“’l( )= if wi(a) € Z and wit1(a) = 5 (mod Z),
and v, > v)
RlUf}i(a)foQw"“(a) if wi(a) =% (mod Z) and w;11(a) € Z,
and v¥ < vy
(@)= i (a _
LlUfj”( ) 20, i1(a) if wi(a) =% (mod Z) and w;11(a) € Z,
and v¥ > v
UIU"(“)U;““(“) if w;(a) and w;11(a) are integers.

Similarly, there is a map t from generators of P’ to the four generators of P, that
remembers only the type (N, S, W, E) of the generator of P?.

Definition 5.7. For X € P?, an integer £ > 1, and a sequence of algebra elements
a,...,ap—1 in Bo(m, k) with specified weights, so that there exists a sequence of
idempotent states Xg,...,Xp with

o X=1I X I
e ap =1, -a;- Iy, fort=1,...,0-1
e x; and xiy1 are close enough (for t=0,...,0—1),

define Dy(X,a1,...,ai—1) € Bo(m,k) @ P* as the sum of pairs b®Y where b €
Bo(m, k) and Y is a generator of P, satisfying the following conditions:

e the weights of b and Y satisfy
(5.10) gr(X)+ 78 (gr(a1) + -~ + gr(ae—1)) = gr(b) + gr(Y)

e There are generators Xo and Yy with the same type (i.e. with the same
label {N,S, W ,E}) as X and Y respectively, so that t(b) ® Yy appears
with non-zero multiplicity in 5} (Xo,t(a1),...,t(ar—1)).
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Clearly, Dy =0 for £ > 3. Setting 6+ = Dy, we get
SHW)=L1®S, §{(E)=R,®8S, 06i(N)=04}(S)=0.
Lemma 5.8. Suppose that any a; € I(X¢,Xer1) (the ideal studied in Proposi-
tion 3.7), then the projection of D¢(X,a1,...,as_1) to B(m,k) @ P* vanishes; i.e.
the maps Dy induce well-defined maps
-1
5;: P'@B(m, k)@ --- @ B(m, k) — B(m, k) @ P,
forall 0 =1,2,3.

Proof. For the §1 operations, the result is obvious.

The operation 83 can be written as a sum of 16 terms, corresponding to the terms
in the labels on Figure 5.4.

For example, consider 63(E,a - Uf,,), where w;(a) = w;y1(a) = 0 and £ > 0.
According to Equation 5.4, this can be written as a sum of two terms,
RiiRi-a-UT'@W+a Ul ®E.

We check that for any idempotent states x and y with E-Ix # 0 and Ix-a~Uf+1~Ix #+
0,if Iy -a-Uf,, € J, then the two output terms also vanish. If a is divisible by
a monomial corresponding to a generating interval for (x,y) that is disjoint from
{i,i+ 1}, each output elements are also divisible by such monomials, and the claim
is clear. It remains to check the claim when a-U;; is the monomial corresponding
to a generating interval U;i;---Ug for the incoming element. In this case, the
output is divisible by U;ys---Ug, which corresponds to a generating interval in
both output algebras.

The other non-trivial checks include the following:

635(W, Uy U)) = Uy Ui—1Ui31) @W + LiLi11(Usy - Ui—1) @ E
S3(N,Uip1---Us- L)) = (U; - Ug) @W + LiLi;1U;(Uiya - - Ug) @ E
S3(N, Uy U1 -Li) = (Uy---U)) @W + LiLiy1(Uy - --U;_1) @ E
SY W, Uy - U - =Uy- U1 Li - Lisy1 ®N

(W, Uy Ui_1-R)=Upy---Ui_1 ®N

where the monomials U, ---U; and Ujyq---Ug (with a < 4 and 8 > i+ 2)
correspond to generating intervals for the input, for suitable choices of idempotents;
it is then straightforward to check that the outputs are also zero. The remaining

non-trivial checks are symmetric to the above ones (under the symmetry exchanging
W and E, and L; with R;1).

i Liy1

For 4}, we must show that if a; or az € J, then the output D3(X,ay,az) projects
to zero in B(m, k)®@P?. In cases where min(w;(a1)+w;(az), wit+1(a1)+w;i1(az)) =
1, ie. when (t(a1),t(a2)) € {(R1, R2US), (L2, L1UT), (Lo, UPHY), (Ry, USTH)}, are
considered separately. In all these cases, the generating intervals for a; and as do
not contain ¢ or i + 1, so the result is obvious.

For the remaining cases, the following stronger assertion holds: if a; and ay satisfy

(5.11) min(wi(a1) + wi(az), wir1(ar) + wirr(az)) > 3,
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and a; -ag € J (i.e. aj - ag projects to zero in B(m,k)), and with Iy - a; = a1
then D3(X,a1,a2) € J. For instance, the terms in §1(S,a1,a2) in B(2) that
output LoUUS ® E (all of which satisfy Equation (5.11)) give rise to actions with
ay,as € B(k,m) with Iy - a; - ag = ay - ag with

i€p, wi(a-a)=n+1>1, wipi(a;-az)=1t>1
and output algebra element b = I -b-I, with
icy, i+1¢y wi(b)=t>1

It is easy to see that if aj - as is divisible by a monomial corresponding to a
generating interval of the form U, ---U;, then so is b; checking cases where a; - ag
is divisible by other generating intervals is even more straightforward. Remaining
cases where the output contains W work similarly. Cases where the output contains
N are easily verified, as well. The stronger statement (following Equation (5.11))
now follows. O

For example, 5% (N, RiysRiv1) = RizoRiv 1R, QW + R 5U; Q E.

As another example, choose R; with j # ¢ or ¢+ 1. Then, for all generators X,
63(X,R;) = Rj ® X. (Note that in this example, t(R;) =1.)

As another example, §1(S, R;, RitoRi+1) = 03(S, RiRit2, Rit1) = RiRi42 ®E.
Let 5} =0 forall £>4.

It will be useful to have the following characterization of 43 :

Lemma 5.9. The operation 63(X,ay,az) contains only those terms b® Y where
both Equation (5.10) holds, and one of the following two conditions holds:

(C-1) (t(ar),t(az)) € {(Ry, RoUS), (Lo, LyUY), (L2, U™, (Ry, Uy ™)} and t(b)®
t(Y) appears with non-zero multiplicity in 53 (t(X),t(ay1),t(a2));
(C-2) ar-ay # 0, I(az,Y) # 0 and I(t(a1), I(t(az), t(Y))) # I(t(ar)-t(az), ¢(Y)).

Proof. In the proof of Lemma 5.8, we showed that if we are not in Case (C-1), then
Equation (5.11) holds, and so we conclude that a; - as # 0. Thus, our description
of 63 follows from Lemma 5.5. O

Proposition 5.10. The above maps give P’ the structure of a type DA bimodule
over B(m,k)-B(m, k).

Proof. The proof of Proposition 5.2 adapts, with a few remarks. In the verifica-
tion of the A, relation with two algebra inputs, that proof decomposed accord-
ing to whether we were working in B(2,1) or B(2,2). In the present case, when
(t(a1),t(az)) € {(Ry1, RUS), (Lo, LiU}), (La, UM, ( the Ay relation holds ex-
actly as it did in B(2,1). Otherwise , if a; - as # 0, the proof of the A, relation
for B(2,2) applies, using Lemma 5.9. Finally, if a; - az = 0, then by Lemma 5.9,
the term involving 63 (F or G) vanishes. The term D vanishes by Lemma 5.8.
The verification of the A, relation in B(2,2) shows that the remaining possible
non-zero term, which is of type F, has the same contribution as a term of type F,
G, or D, all of which contribute 0.
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Consider next the case of three algebra inputs a;, as, and az. When a1-a2-a3 =0,
the verification (now in the proof of Lemma 5.6) works as it did in B(2,1). In the
remaining cases, the earlier proof of the Ay relation in B(2,2) (contained in the
proof of Lemma 5.6) still applies, as it hinges on the description of 63 (Lemma 5.5)
which still holds in this case (according to Lemma 5.9). O

5.3. Adding C;, locally. We extend the local bimodule P defined over B(2) to

B(2

a bimodule 77(5))PB(2’8), where S is a non-empty subset of {1,2}.

In the local module P, there were i actions connecting generators of types
{N,W,E} to {N,W,E} or S to S. We extend these to similar actions so that

(512) 6%(X,Cla):C25%(X,a) 6%(X,C2a):Cl5%(X,a)

when the formulas make sense; i.e. the first holds when 1 € S and the second when
2 € S. Similarly, we extend the previous &3 actions so that

Co - 03(S,a1,a2) = 03(S,C1 - a1,a2) = 63(S,a1,C1 - az)
Ol . 531,(8,0,1,(12) = 5%(8,02 . al,ag) = 5?{(8,&1,02 . ag).

For example, 5% (ClR1, CQRQ) = 6§(CngR1, RQ) = Rlclcz X E.
We specify further 43 actions from S to {N, W, E}:
63(S,C3) = Ri @ W

83(S,C1) =Ly ®E 63(S,01Cs) = CoR1 @ W + C1 Ly @ E
(55(8 Ung) =U1L,®E (5%(8, UlClCQ) =UCoLy @ E
6%(8 OlUg) =RiU,@W 521(870102[]2) =Ci1RU; @ W
6%(3 R102) =R ®N 621(S,R10102) =RiCo®N
(5%(8 LgCl) =L, ®N 6%(8,01[/202) =Ci1L,®N
51(S, RiCiT:) = Rill, ® N 64(S, RiC1UsCy) = RiCyUs @ N
(5% (S UlLQCQ) = LU ® N (5%(8, U]_C]_LQCQ) =U;L,Co ® N

These are extended to commute with multiplication by U1Us (as in Equation (5.5)).

By Equation (5.12), the actions 63(S,1) = S gives rise to actions (S, Cq) =
C1 ®S. The first action listed above, i.e. the relation §3(S,Cy) = Ry @ W, is now
a consequence of this fact, together with the A, relation with module element S,
the single algebra input Cs, and output module element S. The second action on
the above list follows symmetrically. The actions on the left column of rows three,
five, and seven respectively are forced by the following 3 actions (with & =0)

83(S,UL,Up) = LUy @ E
03(S, Lo, U1) = Ly ® N
63(S, RiUz,Uh) = RiU; ® N
and the A. relations with inputs (S, Uy, C2), (S, Le,C1) and (S, R1Us,C1) re-
spectively. The remaining actions on the left column follow symmetrically. The

actions in the second column follow from actions from the first column column of
the form (S, da) and A relations with inputs (S, a).

Lemma 5.11. For any S C {1,2}, the above actions induce a type DA bimodule

structure on 5(2,7(3))PB(27$)‘
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Proof. It suffices to prove the lemma in the case where S = {1,2}. For example,
if & = {1}, the outputs of the 6;. actions lie in the subalgebra B(2, {2}).

We consider the Ao, relation with n incoming algebra elements aq, ..., a,.

It is a straightforward verification to check that the actions defined above are con-
sistent with the A, relation with n =1 input.

When n = 2, and the incoming generator is not S, the A, relation follows from
Equation (5.12) together with the A, relation with & = 0.

When n = 2 and the incoming generator is S, label the terms in the A, relation
as in Equation (5.9). The key point to verifying this relation now is that when
differentiating a; or as (in terms B or C above), the Uy or Us-power can change
by at most one so the corresponding 63 action with a; and ay is non-zero when the
action with (dai,as) and (aq,das) is. However, there are borderline cases where
this change in the U; or the Us power is enough to to turn off one of those actions.
These are precisely the cases either the product ajas acts non-trivially (i.e. where
D contributes), or there is an iterated 63 (i.e. E contributes).

For example, consider the case where a; = U'CY, and ap = UL with n,t > 0, and
consider the terms where the output generator has type E. We have the following
non-zero terms in the A, relation:

A0 0<n—-1<t, B0 0<n<t, D#0&en=t>0,
E#0en=0,t>0;

Thus, for all choices of n,t > 0, there are either no non-zero terms or exactly two,
and so the A, relation holds. Other cases where n = 2 and the initial generator
is of type S work similarly.

Consider the case where n = 3. Recall that the algebra has a filtration in {0,1} x
{0,1} given by the functions (mj, my), with the property that if a is a pure algebra
element not divisible by C;, then m;(a) = 0 and m;(Cja) = 1. Clearly, the
operations 0, respect this filtration, in the sense that if a (mj, ms)-homogeneous
element b ® Y appears with non-zero multiplicity in (5} (a1,...,a¢—1), and each a;
is homogeneous (with respect to ), then for j = 1,2,

T

1

(my(b), m2(b)) < » (mi(ax), ma(ax)).
k=1

For the terms that preserve this {0,1} x {0, 1}-filtration, the A, relation with 3
inputs is an immediate consequence of Proposition 5.10. Consider next terms that
drop filtration level by one. Note that each §} action of this type has ¢ = 2 and
end in the span of {N, W, E}, while all 63 actions start from S. It follows that
there are no such terms that appear in the A, relation with 3 inputs. (It also
follows that there are no terms of this kind in the A, relation which drop by more
than 1.)

For n > 3, the A relation is easy. (Il
5.4. The general case of P'. Let By = B(m,k,S), where 0 < k < m + 1

and S C {1,...,m} is arbitrary; and let By = B(m,k,7(S)). In cases where
SN {i,i+ 1} # 0, we must modify our earlier constructions as follows.
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Extend the type t(a) to be a monomial in Uy, Us, Ly, Lo, Cy, Co, Ry, Ra, so that
t(CiJrl . a) = CQ . t(a) if CiJrl - a 75 0,

and ¢(a) is as defined before when a is a pure algebra element not divisible by C;

or Ci—i—l .

Let t(S) C {1,2} be the set with 1 € ¢(S) iff i€ S and 2€¢(S) iff i+1€S.

Definition 5.12. For X € P? and a sequence of pure algebra elements a1, ..., ap_1
in Bo(m,k,S), so that there exist a sequence of idempotent states Xo, . ..,Xs with

[ ] X:IXo'X'le
o ay =1y -ap- Iy, fort=1,....¢
e x; and Xiy1 are close enough (for k=10,...,0—1),

define Dy(X,a1,...,ar—1) € Bo(m,k,7(S)) @ P* as the sum of pairs b®@Y where
b € By(m, k,t(7(S))) and Y is a generator of P!, satisfying the the conditions of
Definition 5.7, with the understanding that now §;(Xo,t(a1),...,t(ai—1) is com-
puted using the crossing over 3(2”5”(5))}’3(2’,5(3)) ; and the additional condition that
forany k#4i ori+1,and any m=1,... 0—1,

Dg(X,al,...,Ck . am,...,ag_l) = Ck . Dg(X,al,...,am,...,ag_l).
Lemma 5.13. If any a; € Z(X¢,Xt+1), then the projection of D¢(X,aq,...,as—1)
to B(m, k) @ P* vanishes; i.e. the maps Dy induce well-defined maps

-1

6p: PP B(m,k,S)®--- @ B(m, k,S) = B(m, k,7(S)) ® P,
forall £ =2,3.

Proof. Lemma 5.8 takes care of most of this; we must check further the additional
52 actions from S to {IN, W, E} listed in the beginning of this subsection; but this
is straightforward. O

Proposition 5.14. The above maps give P* the structure of a type DA bimodule
over B(m, k,7(S))-B(m,k,S).

Proof. This follows easily from Proposition 5.10, handling terms with C; inputs
as in Lemma 5.11. O

5.5. The negative crossing. Consider the map R: B(m, k,S) — B(m, k,S) from
Section 3.6. Recall that o(a - b) = o(b) - o(a), o(Ix) = Ix, o(L:) = Ry o(R;) = Ly
o(Uy) =U; and o(C;j) =Cj forall t=1,...,m and j € S.
Let N be generated by the same generators {N,S, W, E} as before. If 6] (X) =
b®Y in PY, then 61(Y) = o(b) ® X in N If 63(X,a) = o(b) ® Y in P!, then
63(Y,0(a))) = o(b)®X in N If 63(X, a1, a2) = bQY in P, then §3(Y,0(az),0(a;)) =
o) ® X.
More succinctly, the opposite module of P? is identified with

32(fi)81 = B fggp = BINZ;Q,

under the identification of B;® = B, for t = 1,2 (Equation (3.11)).
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For example, in A?, we have actions
5i(S)=Ri®@W+Liy1 ®F
6(E,R;)) = Riy1 Ry ®@N
65 (W, R,U", Riy1) = Ry Ul @ S.
Proposition 5.15. The above maps give N the structure of a type DA bimodule
over B(m,k,7(S))-B(m,k,S).

Proof. This is a formal consequence of the above definition. (Il

5.6. Gradings and partial Kauffman states. As noted earlier, P! is adapted
to the underlying manifold. Thus, its grading set takes values in H'(W,0W). We
can specialize to a simply Q-graded-graded setting as follows.

Recall (Equation (3.8)) that the algebra has an Alexander grading with values in
Q, obtained from the map ¢: %Zm — %Z defined by

-1 ifies
QS(ei)_{l ifigS.

There is an induced grading on the bimodule, given by
(5.13) A(X) = ¢(gr(X));

which we can think of, more abstractly, as the evaluation of the grading, thought
of as an element of H'(W,0W), against the element [W,d] € Hy(W,0W) induced
by the orientation of W.)

It is now an immediate consequence of Equation (5.1) that
A(X,a1,...,a0) = A(X) + A(ar) + - - + Aag) = A(b) + A(Y),
if b®Y appears with non-zero multiplicity in 5}+1(X, ay,...,ap).

Proposition 5.16. The Q-valued Alexander grading on generators from Equa-
tion (5.13) for the crossing bimodules is computed by the local Kauffman contribu-
tions displayed in Figure 2.

Proof. This a straightforward check using Equation (5.13), (4.5), and (4.7), consid-
ering all the possible orientations of the braidlike positive and negative crossing. [

6. BRAID RELATIONS

We prove that the DA bimodules P’ and N satisfy the following braid relations:

Theorem 6.1. Fiz m, k with 0 < k < m+1, ¢ with 1 <i < m—1, and
Sc{l,...,m}. Let By = B(m,k,S) and By = B(m,k,7;(S)). Then,

(6.1) Bipg, B BNL ~ Brldg ~ BINE R Bpy

Gwen j # i with 1 < j <m—1, let Bs = B(m, k,7;7:(S)) and By = B(m, k, 7;(S)).
If li—jl>1

(6.2) Bopl B Bepp ~ Bopy ) Bapl
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while if j =i+1, let Bs = B(m, k, 7,7417:(S)) and Bs = B(m, k, 7;7i+1(S)) ; then,

(6.3) Bspi, PRI RB2pl ~ Popitl g Bopl & Bapptt,
I I L
AL e Al

ol la,

FiGure 25. Bimodules and algebras appearing in Theorem 6.1.

We will prove the above with the help of the following:

Lemma 6.2. Fiz m, k with 0 < k < m+1, ¢ with 1 < i< m-—1, and
S c{l,...,m}. Let By = B(m,k,S), By = B(m,k,7(S)), B, = B(m,m+1—
kAL ....m}\S). Let B2PZ§1 be the DA bimodule from Section 5, and let BVBLC
be the canonical type DD bimodule from Section 3.7. Then,

(6.4) Bapl RBBIC ~ BBip,
(65) BQNZ; X Bl,B’lIC ~ Bz,B'l./V'i
where the type DD bimodule appearing on the right is the one defined in Section 7.

Proof. We start by verifying Equation (6.4); and for simplicity, we assume ¢ = 1.
The computation depends on S N {1,2}.

We start with the case where {1,2} C S. In fact, in this case, P' KK = P;.
The arrows connecting N, W, and E are all induced from > actions on P*. For
example, the differential from N to E labelled by LiLs ® R; from Figure 4.2 is
obtained by pairing the term L; ® Ry term in the canonical DD bimodule pairs
with the action 63(N, L;) = L1Ls ® E in the P!, as shown on the left diagram:
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C1®@Ua + U2 ®C1

C1®@Uz+U2®Cy

C1 ® Uz

FIGURE 26. P! KK when SN {1,2} = {2}

On the right, we demonstrate how to construct the term (Co ® U;) ® N in §1(N)
(of Type (P-2)).

The differentials into S come from the 6%_ action on P, and the differentials out
of S come from &3 and 3 actions on P?. For example, the two terms out of S
involving the generator E arise as follows:

S |
s | '
I | 1
B ok
v RN
oL : =% \:/ Re Sl Z,
L\ K
Vol B T e
E L . \e
E

(Note that since K bimodule is a left/left bimodule, the multiplication appearing
on the right is taking place in (B})°P.)

Terms of Type (P-1) are easily constructed from pairing differentials in the identity
DD bimodule with the part of P? that behaves like an identity bimodule.

Consider next the case where SN {1,2} = {2}. Then, P! X K is given as in
Figure 26, and outside actions (i.e. of Type (P-1) and (P-2) with j # 1,2). Consider
the map h': PIXK — P,

1 _ ) S+ (U2®C)®E ifX =8
(%) = { X otherwise.
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U1 ® C2 + U2 ®C1

FIGURE 27. P!XK when SN {1,2} =0.

Let g': P, — P! XK be given by the same formula. It is easy to verify that h!
and ¢! are homomorphisms of type DD structures, h'og! =1d, and g' oh! =1d.

The case where SN {1,2} = {1} works similarly.
When SN {1,2} =0, PLXK is given as in Figure 27
Consider the map h': PR K — P,

px)= [ STE2®C0) E+(Ri®©C) W ifX=8
X otherwise.

Let g': P, — PLX K be given by the same formula. It is easy to verify that h'
and g' are homomorphisms of type DD structures, h'og! =1Id, and g'oh! =Id.

Equation (6.4) in cases where ¢ # 1 works the same way. Equation (6.5) can be
proved similarly. (Or alternatively, it can be seen as a consequence of Equation (6.4)
and the symmetry of the bimodules, phrased in terms of the opposite algebras.) O

Lemma 6.3. Equation (6.1) holds.

Proof. Since (P'RN)KK ~ PIR(N'KK) ~ PIRN; (by associativity of X and
Lemma 6.2), the verification that P! KN ~ Idg, , will follow from the identity
(6.6) PIRN; ~K,

which we verify presently. For notational simplicity, we assume that ¢ = 1.

The verification of Equation (6.6) can be divided into cases, according to SN{1,2}.
Consider first the case where SN{1,2} = {1,2}. Classify the generators of P*KN;
into types, labeled XY, where X,Y € {N,S,W,E}, where the first symbol X
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denotes the generator type in P* and Y denotes the generator type in AN, as
illustrated in Figure 28.

Bl el .

B ... .

FicUre 28. Tensoring bimodules on the left; at the right, the
generator type of NE=NXEKX 1.

By a straightforward computation, we find the following kinds of differential: the
outside actions, C1 ® Uy, Co ® Us, and additional arrows indicated on the diagram
on the left of Figure 29. Canceling arrows (i.e. setting N = NN + (1 ® R;)WS +
(1® Ly)ES and S = SS; and noting that the quotient complex is acyclic) gives the
diagram on the right (in addition to the C; ® U; arrows for i = 1,2 and the outside
arrows). This is, in fact, the canonical DD bimodule, verifying Equation (6.6).

Similarly, if SN{1,2} = {2}, we compute the bimodule to be as given in Figure 30.
Again, we have suppressed the outside arrows, and additional arrows of the form
Cs ® Uy that connect every generator to themselves. By contrast, we did include
self-arrows of the form U; ® C1, since not all generator types have these kinds of

YR+ 1T R Y

I®1

IT®1
TR+ Ty QT
Ry ® L1+ L2 ® Ro

SS

FIGURE 29. Arrows in P'XA; when Sn{1,2} ={1,2}.
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YT+ TTR Y

FIGURE 30. Arrows in P'XN; when SN {1,2} = {2}.

terms. We can reduce to the previous case by changing basis; replacing SS by
SS+(R1 ®C1) @ WS. A similar computation works for SN{1,2} = {1}, only now
the reduction to the previous case involves the change of basis SS+ (L ®C3) @ ES.
Finally, when SN{1,2} = 0, we get a bimodule which can be reduced to the earlier
case by the basis change SS+ (R1 ® C1) @ WS + (L, ® C3) @ ES.

Once again, cancelling arrows we find that this gives the identity DD bimdoule.
The other two computations needed to verify Equation (6.6) work similarly.

Having verified that P' K N? ~ 51 1dg, | the verification that N K P ~ Br1dg,
is a formality:

B B B _iB
d=Td="Py RPN, ~ s N RpP

op .
1 ==t

B;pfi B1 4 B2 4
= P B;’P IX NBTP = Nl’j’2 |Z| 7)32

Lemma 6.4. Equation (6.2) holds.

Proof. In view of Lemma 6.2 and the invertibility of C, it suffices to show that
PIRP;, ~ P XP;.

Note that generators for both bimodules in Equation (6.2) correspond to partial
Kauffman states in the partial knot diagrams contianing the two crossings. Clearly,
these generators are independent of the order; to see that the bimodules are in-
dependent of the order, it suffices to construct a third, more symmetric bimodule
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(where we think of the two crossings as appearing in the same level), that is quasi-
isomorphic to both.

Generators for this bimodule will also correspond to partial Kauffman states. There
will in general be 16 generator types, labelled by pairs of letters among N, S, W,
and E, corresponding to the four local choices at each of the two crossings. The
computation is mostly straightforward. In the special case where the two crossings
are adjacent, there are only 15 generator types: there are no generators of type
EW. This occurs, for example , when ¢ = 1 and j = 3; see Figure 31. In
this case, the DD bimodule is as specified in Figure 32 (where, as usual, we have
suppressed here the distant arrows and the additional arrows of the form U, (i) ® C;
or C-(1) ® Uy). O

\J\
VO

FIGURE 31. When the two crossings appearing in Equation (6.2)
are adjacent, there are only 15 types of partial Kauffman states; a
partial Kauffman state cannot associate E to the crossing on the
left and W to the one on the right.

Lemma 6.5. Equation (6.3) holds.

Proof. We describe the case where ¢ = 1. We first compute B3P§2 X 62’6/1731.
Again, generators correspond to partial Kauffman states, which we now label as an
ordered pair, showing which crossing is associated to which region; see Figure 33.
When {1,2,3} C S, after cancelling arrows, we find that the bimodule is given
as in Figure 34, along with the usual outside arrows and self-arrows of the form
Ci®Uy,7, (i) or Ui®C4,7 (i), depending on whether or not i € §. When {1,2,3}NS
is a proper subset of {1,2,3}, we need to apply additional homotopies to obtain
this bimodule, as in the proof of Lemma 6.2.

Tensoring this on the left with 2 P};S , and following the labelling conventions from
Figure 35, we find that the bimodule is homotopic to one of the following form from
Figure 36, along with the usual outside arrows and self-arrows.

Tensoring in the other order gives the same bimodule; this can be seen quickly
from a symmetry on the answer. The picture after the Reidemeister move can be
realized as a rotation by 180° (i.e. rotate the leftmost picture in Figure 35). There
is a corresponding action on the algebra, exchanging the two tensor factors of the
algebra, and further exchanging R; and Ls_;. The corresponding symmetry of
the bimodule can be realized by rotating the description from Figure 36 by 180°.
The fact that the bimodule is fixed by the symmetry implies the claimed invariance
under Reidemeister 3 moves. ]

6.1. Other symmetries in the crossing bimodule. The canonical DD bimod-
ules commute with the action of the braid group, in the following sense.
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FIGURE 32. P'X7P,. This is drawn on the torus; e.g. the arrows
that point off to the right wrap around to the left.

AL
B
N A

FicUure 33. At the right, we have shown a generator of type
SW; or equivalently, Xoq4.
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Ry ® L1L2 R1 ® L1L2

X45 X23
— B Q =
P _
el e o2
S S NEE
™~ —
@ &
® ®
Fl Xoa X3 |38
5 a
¥ =
m —
) ~_
— B ® -
) ~_
elle o||%
S & NN
Xos Xi2

R3R2 ® L3 R3R2 ® L3

FIGURE 34. 5:PZ XB2.81 P, when {1,2,3} C S

N, N

S\J \W

FiGUure 35. We illustrate here generators of type Y15 and Yay respectively.

Lemma 6.6. Fiz 0 <k <m+1 and an arbitrary subset S C {1,...,m}, and let
B = B(m, k,S), By = B(m, k, 7;(S))
By =Bmm+1—Fk{l,....m}\S) By=Bmm+1—Fk{l,...,m}\7(S))

. . ; ! ’ ) !/
There is an equivalence BQPlgl X BuBiC ~ 317316, X Ba:B2jC .
2

Proof. This is an immediate consequence of Lemma 6.2, and the symmetry of the
P; from Equation (4.3). O

7. THE DD BIMODULE OF A CRITICAL POINT

In Sections 8 and 9, we will construct DA bimodules 52 Qp; and 5 'Op; (where the
algebras will be made precise shortly) associated to a region in the knot diagram
where there are no crossings and a single critical point, which can be a maximum
(as in Section 8) or a minimum (as in Section 9). In the present section, we will
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Ry ® L1L2L3

s —
Yis &/ —Ys5 Y34

R3®1 Ro®1

Li1®1
€N ® Ty
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Yos Yi3
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I ~ 3 = N
@ ® | |®/~
) o = ol
w ‘3 5 w N
2 N
1® Lo 1® Ly
—_— —_—
YOl - Y02 —_— Y12
Uz ® Ra Us ® Ry

R3R2R; @ L3

FIGURE 36. 5573;‘33 XBs P2 RB2.8; P,

construct a type DD bimodule, called the type DD bimodule for a critical point,
BuBzg which is related to the aforementioned type DA bimodules via equivalences

’ ’
B2 R PP~ B2Brg and B0y R PP~ BrBig

(See Propositions 8.4 and 9.5 for precise statements.)

Fix integers ¢, k, and m with 1 < ¢ < m+4+1 and 0 < k < m+ 1. The
algebras appearing in the bimodule for a critical point are specified as follows. Let
e {1,...,m} = {1,...,m+ 2} be the function

N ifj<e

Let By = B(m,k,S1) and By = B(m +2,m+ 2 —k,Ss), where S; C {1,...,m}
and S; C {1,...,m + 2}, so that ¢.(S1)NS2 = 0 and |Si| + [S2] = m + 1
and |S2 N{¢,c+ 1} = 1; equivalently, So = ¢.({1,...,m}\ S1) U {c} or S =
oc({1,...,m}\ S1)U{c+1}.
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In this section, we construct the type DD bimodule for a critical point, denoted
g, = BB 2€., where here ¢ (which we will sometimes drop from the notation)
indicates where the critical point occurs.

Having specified the algebras, we now describe the underlying vector space for &,..

We call an idempotent state y for By an allowed idempotent state for Bs if
lyn{c—1,¢c,e+1} <2 and cEy.

There is a map ¢ from allowed idempotent states y for By to idempotent states

for By, where x = ¢(y) C {0,...,m} is characterized by

(7.2)  |yn{c—1lc,c+ 1} +xn{c—1} =2 and de(x)Ny = 0.

As a vector space, &. is spanned by vectors that are in one-to-one correspondence
with allowed idempotent states for Bs. The bimodule structure, over the rings of
idempotents I(B;) and I(B2), is specified as follows. If P = Py, is the generator
associated to the idempotent state y, then for idempotent states x and z for B
and By respectively,

| Py ify=zand x=1(y)
(Lk®l,) Py = { 0  otherwise.

To specify the differential, consider the element A € By ® Bs

(7.3) A=(1®LeLet1) + (1@ Rey1Re) + Y R ® Ly + Lj @ Ry(j)

Jj=1

(1®ClUcy1) ifceSy +§: C;@Uyy ifjeES
(1®U¢:Cc+1) ife+1 ESQ, Uj®0¢(j) 1f]§81 ’

j=1

where we have dropped the subscript ¢ from ¢. = ¢. Let
3'(Py) = (Iyyy ®Iy) - AR Y Py,

where the latter sum is taken over all allowed idempotent states z for Bs.

BuBzg - defined above, and equipped with the map

ot E.— (Bl & Bg) ® &,
specified above, is a type DD bimodule over By and Bs.

Lemma 7.1. The space

Proof. The proof is a straightforward adaptation of Lemma 3.10. (]

It is helpful to understand &. a little more explicitly. To this end, we classify the
allowed idempotents for By into three types, labelled X, Y, and Z:

e yisoftype X if yNn{c—1,¢,c+1} ={c—1,c},
e yisoftype Y if yn{c—1,¢,c+ 1} = {c,c+ 1},
e yisoftype Z if yn{c—1,¢,c+ 1} = {c}.

There is a corresponding classification of the generators P, into X, Y, and Z,
according to the type of y; see Figure 37.

With respect to this decomposition, terms in the differential are of the following
four types:
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o o °
o/o\o o/o\o o/o\o
X Y z

FicURE 37. DD bimodule of a critical point. Three gener-
ator types are illustrated.

(P-1) R;j® Lg(jy and L; ® Ry(;y for all j € {1,...,m}\ {c—1,c}; these connect
generators of the same type.

(P-2) C;® Us(s) if jeS; and U; ® O¢(j) ifje{l,.... m}\&

(P—3) 1® UCCC+1 ife+l1eSyor1® CcUc—i-l if ce Ssy.

(P-4) Terms in the diagram below connect generators of different types.

(7.4)

With the understanding that if ¢ = 1, then the terms containing L. 1 or R._1 are
missing; similarly, if ¢ =m + 1, the terms containing R.y and L.;2 are missing.

7.1. Grading sets. For any generator P of &, if (a2 ® a1) ® QQ appears with
non-zero multiplicity in d*(P), then for all i =1,...,m, wi(a1) = wy,(;)(az) and
we(ag) = wet1(ag). This is obvious from the form of the bimodule (Equation (7.3)).
In the language of Section 3.9, we can express this by saying that the bimodule is
supported in grading 0 in Hy(W,0W), where W is the partial knot diagram with
a single critical point in it.

7.2. Critical points and crossings. Later, we will study in detail how the bi-
modules of critical points interact with the bimodules associated to crossings. For
the time being, we will content ourselves with the following special case, where the
critical point and the crossing are connected to each other.

To set notation, let ¢.: {1,...,m} — {1,...,m + 2} be the function

j ifj<e
Ye(j) = c+1 ifj=c
j+2 ifj>¢
ie. Yo ="Tey10 Pe = Te O Pet1-
Lemma 7.2. Fiz integers 0 < k < m+1, and an arbitrary subset S; C {1,...,m},

and let By = B(m, k,81), By = B(m+2,m+2—k,Ss) Bs = B(m+2,m+2—k,S3),
By=B(m+2,m+2—k,S4) where

82 :¢C+1({1,,m})\51)u{c+1} or 82 :¢C+1({1,...,m}\Sl)U{C+2},
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S5 = 7.(S2) and Sy = 7.41(S3). There is homotopy equivalence of graded bimod-
ules:

(7.5) Bspg B BB~ BN R Baubig,
Remark 7.3. The gradings on the crossing bimodules were chosen so that Equa-

tion (7.5) holds as a bigraded module map.

The above lemma is a straightforward computation, using the following trident
bimodule BrBsT .

Generators correspond to pairs of idempotents x and y for B; and B3 with the
following properties:

e Letting, then 9.(x) Ny = 0.

o lyl=x+1

e lyn{eet1}>1

o if [yN{c,c+ 1} =2 then either c—1 ¢ x and c—1¢y or ¢ ¢ x and
c+2¢y

We separate these pairs into four types:

x,y) isof Type Pif c—1¢x and c— 1€y (so {c,c+1} Cy)
x,y) isof Type Q if c€x and c+2¢y (so {c,c+1} Cy)
x,y) is of Type X if c &y

x,y) isof Type Y if c+ 1€y

)

(
(
(
(

i

See Figure 38 for a picture. (Note that these generator types correspond to the
partial Kauffman states in the sense of Definition 5.1 of the diagram containing the
maximum and the crossing, with the understanding that the incoming idempotent
is complementary to idempotent state coming from the top of the diagram.)

@] @]

iy AR s

FI1GURE 38. The four generator types of the trident bimodule.

Let Txy be the corresponding generator of 7. As a left module over I(B;)®1(Bs),
the action is specified by (Ix®1y)-Txy = Txy. The differential has the following
types of terms:

(1) Rj®L; and L; ® R; for all j € {1,...,m}\ {c}; these connect generators
of the same type.

(2) C;@Uy, ;) if jeSi\{c} and U; ® Cy, 5y if j € {1,...,m}\ (S1U{c});
these connect generators of the same type.

(3) C.® Ucts ifceS; and U, ® Cc+1 if c€S;
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(4) Terms in the diagram below connect generators of different types:

Le®Uetr1 +1® LeLey1Leya

-
—_
®P _ QQ_,:J
r\h R:.®1 :
; :
M - ®
+ S ® 0
< N
Sle I+
® — + ™
» TS
: 3
o 1® Ley1 ®
[s]
pa, G ———
Uc®Reqp1 +Re @ LeLeya

(7.6)

Proof of Lemma 7.2. A straightforward computation identifies both sides with
the trident bimodule specified above, after a possible homotopy (as in the proof
of Lemma 6.2). The fact that the map respects gradings follows quickly from the
grading conventions; see Equations (4.5) and(4.7). O

8. THE DA BIMODULE ASSOCIATED TO A MAXIMUM

We will describe now the type DA bimodule ©2 Q%,l of a region in the knot diagram

where there are no crossings and a single local maximum, which connects the ¢t*
and the (c+1)%¢ outgoing strand. The algebras are specified as follows. Fix integers
c, k,and m with 1 <c<m+1and 0<k<m+1., and let

By = B(m,k,S1) and By =B(m+2k+1,8),
where S; C {1,...,m} is arbitrary, and S C {1,...,m + 2} is given by
82 = d)c(Sl) @] {C} or 82 = (Z)c(Sl) U {C + 1}

The two cases as corresponding to the two possible orientations of the strand with
the maximum; see Figure 39.

FIGURE 39. Picture of maximum. Here the maximum is ori-
ented from left to right, so So N {c,c+ 1} =c.

"

c—1 c c+1 c+2

As in Section 7, an allowed idempotent state for Bs is an idempotent state y for Bsy
with ¢ € y and |[yN{c—1,c¢+1}| < 1. There is a map ¢’ from allowed idempotent
states for By to idempotent states for B, given by
71 .
/ o @ (Y) ife+r1l¢gy
Vi) = { o ly)uf{c—1} ifc+ley
Observe that ¢'(y) = {0,...,m} \ ¢¥(y), where ¢ is the map from Section 7 (c.f.
Equation (7.2)).
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A basis for the underlying vector space of 829%1 is specified by the allowed idem-

potent states for By. The bimodule structure, over the rings of idempotents I(3})
and I(B,), is specified as follows. If Q, is the generator associated to the allowed
idempotent state y, then for idempotent states x and z for B} and Bs respectively,

Iz'Qy-Ix_{ Qy ify=zandx=1'(y)

0 otherwise.

The map 41 : BQQ%i — B2 ®1(8,) 629%,1 is given by

UcCc+1 lfC+1€82
Qy — I - <Rc+1Rc + LeLey + { ClUory ifceSs, }) ® EZ:QT

where the sum is taken over all allowed idempotents z for By.

We split the bimodule 52 Q%,l =2 X @Y & Z according to the types of the corre-
sponding idempotents as defined in Section 7; i.e.

X = @ Qy Y= @ Qy

{y|yﬂ{c—1,c,c+1}:{c—1,c}} {y|yﬂ{c—l,c7c+1}:{c,c+1}}

Z= D Qy.

{v|yn{e-Lect1}={c}}

With respect to this splitting, d1 can be expressed as follows. If ¢ € Sy, then
51 (X) =C.Upi1 ® X + Re1Re®Y
61(Y)=C.Upy1 ®Y + LeLey1 ®X
5%(Z) =C.Uc11 ®Z;
whereas if c+1 € S,
51(X) =U.Cor1 @ X+ R 1R ®Y
51(Y)=U.Cot1 ®Y + LeLey1 ®X
5%(Z) =U.Ce41 ®Z;

To define 81, it is helpful to have the following:

Lemma 8.1. Let x' and y’ be two idempotents for B} that are close enough, and
x be an allowed idempotent state for By with i)' (x) = x'. Then, there is a uniquely
associated allowed idempotent state y with ¢¥'(y) =y’ so that there is a surjective
map Ox: Ix - By - Iy — Ix - By - I, that maps the portion of Iy - By - Iy with
weights (Wi, ..., wy,) surjectively onto the portion of Iy - By - Iy with wy ;) = wj
and we = wey1 = 0, and that satisfies the relations ®x(U; - a) = Uy (;) - Px(a) and
Ou(Cj-a) = Cy ;) - Px(a) foranyicl,...;m, j€ 8], and a € Ly - By - Iyr.

Proof. Recall the weight v* of idempotents, as defined in Equation (3.3). Since
x" and y’ are close enough, then there is some integer j € Z so that exactly one
of the following holds:



KAUFFMAN STATES, BORDERED ALGEBRAS, AND A BIGRADED KNOT INVARIANT 75

() @1 0) = (3.4) and (02 4.0¥) = (+1.4)

(@) WEyer) =g =1 and (4,0 ) = (j=1,j-2)
(6) (W1,07) = (g —1) and (v)_,0¥ )= (= 1,j - 1)
(6) (1, 0) = (G —1) and (0 4, 0¥) = (g~ 1)

(1) Wy0) = (g = 1) and (04, 0¥) = (4,)

(8) (1, 0X) = (i —1) and (vYy,0¥) = ( +1,j)

In each of these cases, we claim that there is a unique allowed idempotent state y
for By with ¢'(y) =y’ so that

(8.1) (02_y,0Y) = (V2 1,07).

c—17%c

To specify y, it suffices to specify its type, as we do in the eight cases listed above:

(1 is of type Z; y is of type Y.

is of type Z and y is of type Z

is of type Z; y is of type X.

is of type X and y is of type Y.

is of type X and y is of type Z

and y are both of type X or both of type Y
is of type Y and y is of type Z

is of type Y and y is of type X.

KoM oXomoXoW XX

0 ~J O U~ W N
o D=2

(
(
(
(
(
(
(

Recall that there are graded identifications

¢~ WY cF[U,...,Up] = Lo - Bo(m, k) - Iy

@Y FlUh, ..., Upto] = Ix - Bo(m + 2,k + 1) - I,
The ring map
o: FlUy,...,Uyn] = FlU,...,Unyo)
with ¢(1) =1 and p(U;) = Uy(;) induces a map
Io - Bo(m,k) - Iy — 1o - Bo(m +2,k+1) - 1

that maps the portion of Ly - By(m, k) - I, with weights fixed at (wf,...,w],)

’ m

onto the portion of Iy - Bo(m + 2,k + 1) - I, with weights fixed at w; = w;(i) and
We = Wet1 = 0.

In the eight above cases, we check that ¢(Z(x’,y’)) is mapped into Z(x,y). In all
cases other than Case 6, there are no generating intervals for (x’,y’) that contain
c¢—1 in their interior. Moreover, the images of these generating intervals under ¢,
are generating intervals for (x,y). In Case 6, there is a generating interval [p, q]
with p < ¢—1 < ¢. If, furthermore, x and y are of type X, then [c+2,...,¢+2] is
a generating interval for (x,y), so Z(x’,y’) is still mapped into Z(x,y). Similarly,
if x and y are of type Y, [p,...,c— 1] is a generating interval for (x,y), so once

again Z(x’,y’) is mapped into Z(x,y).

It follows that ¢ induces the map ®x on B(m,k) C B}, which we can extend so
that ®,(a - Cj) = Cy(jy - Px(a) for all j € S] to get the map required by the
lemma. (]

Lemma 8.2. Suppose that x|, x5, and x4 are three idempotent states for BY, so
that xj is close enough to X, for i =1,2; and choose any x1 so that (x1) = x] .
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Let xo be the idempotent state associated to (x1,x),%x%) as in Lemma 8.1, and
then x3 be associated to (X2,x%,x%) by that lemma. Then, there is a commutative
diagram:

(g - Bl L) @ (L - By - Lg) —2— Ly By I

<1>x1®¢>,c2l bel

(I, - Bo L)) @ (I, - By - Iy,) —2— Iy, - By - Iy,

where ph and ps are multiplications on B} and B respectively.

Proof. Commutativity of this diagram is an immediate consequence of the fact
that ® preserves the weights, which in turn determine the multiplication on the
algebras. (Il

If a =1¢-a-1I, € B(m,k) C B} is a non-zero algebra element, and x is any
allowed idempotent with ¢/(x) = x', let §3(Qx,a) = Px(a) ® Qy, where y is the
idempotent from Lemma 8.1 associated to (x,x’,y’); i.e. ®x(a)-I, = Px(a).

Theorem 8.3. These actions give BZQ%,l the structure of a DA bimodule that is
adapted to the corresponding partial knot diagram (containing a single mazimum,).

Proof. Consider the case where c+1 € Sy; the case where ¢ € Sy works similarly.

The Ao relation with no incoming algebra elements has the form

+ $

Lh
(8.2) v+ Z
/5% Ba I
B |
P 2 $ )/ +

The terms that change type from X to Y and back to X (contributing on the left
to Equation (8.2)) contribute (Rey1 - Re - Le - Ler1) @ X = U, - Upgq @ X; which
cancels with d(Ceq1-U.)®X (contributing on the right to Equation (8.2)). A similar
argument works for generators of type Y. Since U.U.4+1 ® Z = 0, Equation (8.2)
now follows.

The Ay relation with one algebra input follows from the equations
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and
N | 4
& o
(8.4) ¥ + - =0
p L

We verify Equation (8.3) for incoming algebra elements a = I-a-I,, . For the terms
in 6{ that preserve type, U.C.y1, both have the same contribution: multiplication
by U, - Cc41 induces an endomorphism of Iy - By - I, that maps the portion with
we = Wer1 = 0 injectively into w. = wer1 = 1 (since the generating interval for
(x,y) containing ¢ or ¢+ 1 contains both ¢ and ¢+ 1).

Consider next the terms (L.L.y1 and R.y1R.) where 8] changes the type of the
idempotent. When 5 changes the type of the idempotent, as well, both terms
in Equation (8.3) vanish, since in that case the outgoing algebra element moves
too far. Finally, consider the the case where § preserves the idempotent, and
suppose the incoming generator is of the form @, where x; is of type X and
Y'(x1) = x. Let x2 be the allowed algebra element of type Y with ¢/(x2) =y,
so that Ix, - LeLet1 = LeLetr - Ix, . The cancellation of the corresponding terms
in Equation (8.3) now follows from the easily verified identity ®x,(a) - LeLey1 =
L.L.y1-Px,(a). The case where the incoming generator is of type Y follows from
the similar equation: ®x,(a) - Rey1Re = Rey1Re - P, (a).

Equation (8.4) follows from the fact that Cy_(j) - ®x = ®x - C; for all j € S;.

The relation

e m - -
K

>
[y

+ /5
‘ s
a J

is equivalent to Lemma 8.2. Since d; =0 for £ > 2, the A relations now follow.

To verify the grading, note that all the algebra output in the bimodule satisfy
We(b) = wet1(b). Combined with the grading properties from Lemma 8.1, it follows
that Q¢ is graded by H*(W, W), where W is specified by the partial knot diagram,
and the module is thought of as supported in grading 0. To verify the Maslov
grading, note that all the algebra outputs appearing in 6 have Maslov grading
—1. We can think of Q¢ as supported in Maslov grading 0. It follows readily that
Q¢ is adapted to W, as in Definition 3.19. ]
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It is convenient to summarize this as follows: when ¢+ 1 € Sy, the 6% actions are
specified by the following diagram:

CeUcta CeUcy1

Q LcLeyr Q

—
Xe— Y
Req1Re
CcUcta

)

Z

and the J3 actions are specified by the diagram

Reyo2Re—1 ® ReRe—1
D, G e —

Lc—ch+2 ® Lafch
5

once we include outside actions L; ® Lg_ (), i @ Ryiy, Ui @Ug;y and C; @ Cy_(5)
for i € {1,...,m} and j € S, with the further understanding that 43 is extended
to be multiplicative in the incoming algebra elements.

Proposition 8.4. Q° is dual to the module E. from Section 7, in the following
sense. Let By = B(m,k,S81), where S C {1,...,m}; B} = B(m,m +1-k,S87),
where 8 ={1,...,m}\ S1; and By = B(m,m+1—k,S5), where So = S U {c}
or S{U{c+1}. Then, BQQ%Q X BuBic ~ Babig

Proof. This is straightforward to check using the definitions. ]

8.1. A special case. When there is a single maximum, and no other strands, we
define a type D structure over the algebra B = B(2,1,{1}) or B(2,1,{2}), B2y,
This type D structure has one generator Z with If1y-Z = Z, and Y (Z) = C1ULRZ
or 61(Z) = U0y ® Z, according to how the strand is oriented. Obviously, this can
be thought of as a degenerate case of the earlier construction, where the incoming
algebra B] = B(0,0,0) 2 F.

8.2. Partial Kauffman states and grading sets. Formally, the generators can
be thought of as corresponding to partial Kauffman states. There are no crossings,
and it has the following types of regions:

e one of these regions does not meet the top slice, and so it must be “unoccu-
pied”, and so its only intersection with the bottom slice must be occupied,

e one of these regions meets the top slice in one interval and the bottom in
two: thinking of this region as “occupied” gives the generator of type Z;
thinking of it as unoccupied gives the other two generator types X and Y,

e all other regions meet both the top and the bottom slice in one interval
apiece; they can be either occupied or unoccupied.
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The bimodules can be graded by %Zm exactly as in the case of Section 7. The
fact that 6} respects this grading is contained in Lemma 8.1; the fact that &}
respects it is clear. As in Section 7.1, the grading set of can be thought of as %Z—
valued functions on the arcs in the partial knot diagram. This grading is consistent
with the grading of I by %Zm, combined with the induced grading on the tensor
product, Proposition 8.4.

9. THE MINIMUM

Fix integers 0 <k <m+1 and some 1 <c<m+ 1, and let
(9.1) B = B(m + 2,k + 1,81) and By = B(m, k‘,SQ)

and where Sy C {1,...,m} is arbitrary and &1 = ¢.(S2) U {c} or S = ¢(S2) U
{c+1}, where ¢, is the function from Equation (7.1). We will describe a bimodule
B O%, that will correspond to introducing a new minimum (or cup) in the diagram
that connects the incoming strands ¢ and ¢+ 1. (We will be primarily interested
in the case where m = 2n, k =n = |S|.) Note that we follow the convention that
B is the incoming algebra and Bs is the outgoing algebra; thus the notation for
B1 and Bs is opposite to the one used in Section 8.

9.1. Description of the bimodule when ¢ = 1. We start by describing B U3,
when c=1and 2€ S; (andso 1 ¢ Sy).

A preferred idempotent state for By = B(m +2,k+1,85) is an idempotent state x
with xN{0, 1,2} € {{0},{2},{0,2}}. We define a map 1 from preferred idempotent
states of By to idempotent states of By, as follows. Given preferred idempotent
state x for By, order the components x = {x1,...,z511} so that x; < -+ < Tpy1.

Define
w(x)_ {O,x3—2,...,xk+1—2} if |Xﬂ{0,1’2}|:2
T {xe—2,.. ey — 2} if | xN{0,1,2}| =1

Generators of the DA bimodule 0! = 52 U%% correspond to preferred idempotent
states, and the bimodule structure over the idempotent algebras is as follows. If x
is a preferred idempotent state, let Tx be its corresponding generator. Then,

| Tx ifx=zandy =19(x)
Iy T Lo = { 0  otherwise.

The bimodule structure is expressed in terms of the following oriented graph T'.
The vertices of I' correspond to words {C2, L1Co, Ra, U}, LiU}}4>0, with the un-
derstanding that UY = 1. The graph comes equipped with the following oriented
edges, labelled by words of the form {1, Ly, U, U{Ca, RiU{C2}t>0.n>0:

An edge labelled 1 from Ry to Rs.

An edge labelled 1 from L1Cs to L1C5.

An edge labelled L1C5 from 1 to L1C5.

An edge labelled Ly from Cy to L1Cs.

An edge labelled Ry from from 1 to Rs.

An edge labelled Us from 1 to Cs.

An edge labelled Ly from Rs to Cs.

For each n > 0, an edge labelled U7* from L,;C5 to LU 1.
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QUl Co

FIGURE 40. Operation graph for a minimum when 2 € S;.

e For each ¢t > 0, an edge labelled RU} from L;Cy to U?.

e For each s > 0 and ¢ > 0 so that s+ ¢ > 0, an edge labelled CoU7 from
Ul to Ut~ and another with the same label from UfL; to U™ L, .

e For each s > 0 and ¢t > 0 with s+¢ > 0 an edge labelled CyU{L; from
Ut to UFT1L,.

e For each s >0 and ¢ > 0, an edge labelled CoU? Ry from UfL; to Uf“‘.

e For each n > 1, an edge labelled U}* from C5 to U{’fl.

e For each n > 1, an edge labelled U*L; from Cy to ULy

See Figure 40 for an illustration.

Fix a sequence aq,...,ar—1 of pure algebra elements in B(m + 2,k 4+ 1,51). We
call the sequence an preferred sequence if the following conditions are satisfied:
(U-1) there are idempotent states xi,...,xy so that Iy, - a; - I = q, for
i=1,....,0—1,

(U-2) The idempotent states x; and x, are preferred idempotent states.

(U-3) Each C; with j € &\ {2} divides at most one of the ay.

(U-4) There is an oriented path eg,...,ep in T’ beginning at CyLy if 0 € x; and
at Ry if 0 € x7. The label on the edge e;, thought of as an algebra element
in B(m+ 2,k +1,81), has wi(a;) = wi(e;) and we(a;) = wa(e;); and a;
is divisible by Cs if and only if e; is divisible by C2, none of the internal
vertices are at Ry or L1C5, and the terminal vertex is at L1Cs or Rs.

Xit1

O-
O-
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For a preferred sequence, there is at most one pure non-zero element b € By char-
acterized by the following properties

(PS-1) b=Tyx,) b
(PS-2) For j € Sy, C; divides b if and only if 1o divides some ay,
(PS-3) For i=1,....m, wi(b) = 35_ ] wira(ay).
-1

—~
Define maps 4, : BQU};I QB @B = B2 ® BQUEI by specifying them on
sequences ai,...,ap—1 € B(m+2,k+1,81) for which there are idempotent states
X1,...,%X¢ with Iy, - a; - Ix,,, = a; and the a; are pure. For such a sequence,
the operation 5% (Tx,,a1,...,a¢-1) is non-zero only if the sequence is a preferred

sequence, and we define (5} (Tx,,01,...,a0—1) = b® Tyx,, where b is the algebra
element specified by the sequence. For ¢ = 1, we define §1 = 0.

For example, sequences (ay,...,as—1) for which &§;(T,ay,...,as) is non-zero (for
suitably chosen T') include the sequences

(92) (LQ,Ll), (Rl,Rg), (LQ,Ul,RQ), (Ul,CQ);

the first comes from a path from Ry to L;C5; the second comes from a path from
L1Cy to R, the third goes from Ry to itself, and the last goes from L;C5 to
itself). The loops labelled 1 also give rise to the following actions: if x; and xs
are preferred idempotent states, then:

5%(Tx17Ri) = Ri_g X ':[‘x2 if ¢ > 2 and le . Rz = Rl . IX2

61Ty, Li) = Lio® Ty, ifi>2andifIy, -L; = L; Iy,
5%(TX17 Uz) =U;—2® Tx1 ifi>2
03(Tx,,Cj) =Cj 2 @ Ty, if2<jeS.

As an illustration, we list some other preferred sequences:

n n

n
(UrR1, L1Co, Cy), (Ly,U1,Us, ..., Uy, Us, L), (U7, Cy, ..., Cy).

So far, we described the case where 2 € S;. In cases where 1 € §1, we modify the
earlier construction slightly as follows: in the description of the graph I', switch the
roles of Uy and Uy, Ly and Ry, Ry and Lo, Cs and C7. To read off the actions,
allowed idempotent states with 0 € x correspond to the starting vertex L, and
those with 0 ¢ x correspond to RoC;. With this adjustment, the bimodule is
defined as before. See Figure 41 for a picture.

Proposition 9.1. The above maps 5, on BQU}gl satisfy the DA bimodule rela-

tions; and U is adapted to the one-manifold underlying its knot diagram (Defini-
tion 3.19).

Proposition 9.1 will be proved after we give an alternative construction of U', later
in this section. The significance of U! is formulated in the following:

Lemma 9.2. U! is dual to &, in the following sense. Fix arbitrary integers
0 <k<m, asubsequence So = {uy,...,us} C{1,...,m}, and let

S1={Lu1 +2,...,us+2} or S1=1{2,u1 +2,...,up + 2},
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QU201

FIGURE 41. Operation graph for a minimum when 1 € &;.

S3 = {1,...,m+2}\81; B = B(m+2,k+1,81), By = B(m,k782), and Bs =
B(m+2,m+1—k,S3). Then, there is an equivalence 821551 X BBy~ B2Bag

Proof. The generators of U! corresponding to idempotent states with x1{0,1,2} =
{2}, {0}, and {0,2} respectively induce generators in %20z, ® BB K correspond-
ing to generators of € of type X, Y, and Z, in the notation of Section 8.

If 2 € 81, we can pair the actions from Equation (9.2) (counting the last one twice)
with the differential from IC to give the differentials

X5 (1®LiLl)®Y, Y= (1®RR)®X, Y= (1CU)RY
X->1eCU)eX, Z—(11CU)RZ

appearing in the description of 52:53&; . The loops labelled 1 induce §3 actions by
the part of the algebra with w; = wy = 0. These actions give rise to the remaining
terms for the differential in £;. The case where 1 € §; works similarly. [l

9.2. An alternative construction. We describe a B> —B; DG bimodule M that
is quasi-isomorphic to the bimodule Be Op, with ¢ =1. Proposition 9.1 will be an
immediate consequence of this construction. We continue with the hypothesis that
2 € &1, returning to the other case at the end of the subsection.

Let T = Z{x‘m:l} I € By. There is a natural inclusion of ¢: By — I- 857 -1,

whose image consists of the portion of I-B; - I with w; = ws = 0. In particular,
d(R;) =1-Riyo and ¢(L;) =1-L;1o. Thus, we can think of I-B; as a left module
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for By; it is also a right module for B;. Consider the bimodule
B,Mp, =1-B1/L1Ls- By,

thought of as a By-Bi-module, i.e., with mq1)9(b, a) = ¢(b) - @ and mgp11(a,a’) =
a-a'; and equipped with the equipped with the endomorphism 9 = d + U;C5.

In the next lemma, we describe the left Bs-module strcture on M, using the fol-
lowing notation. Fix an algebra element a € 1, and consider I-a. This generates
a left I(B2)-module, under the identification I(B;) = I-I(B3)-I. Thus, we can
form a new left By-module By ®1(5,) I(Bs) - Ia, which we abbreviate Bs Ru(By) @
In general, there is a quotient map of left By-modules By ®y(5,) a — Bz - a.

Lemma 9.3. Consider p,Mp, equipped with endomorphism mgj1j0 = O as a left
module over By. There is an isomorphism g, M = @ai Ba ®y(s,) ai, where the a;
are chosen from the generating set

(9.3) {RUS, Uy, CaRUS, CoUL, LUt UL, CoUthso0.n>0-

Proof. Consider any a = Ix-a-I, with x; = 1, and with non-trivial projection to
1-B1/LiLsy-By. If y; =0, then a = L1UY - ag with wy(az) = wa(az) = 0; indeed,
in this case, a = a4LU{ (where @) and a} differ in their initial idempotent). If
y1 = 2, then a = b- RyUS or b- RyULCo. Finally, if y; = 1, then a = b-US or
a =b-U}. This shows that the generating sets are as enumerated above.

So far, we have identified the Bs-orbits g, M = @, Bs-a;, where the a; are as listed
above. For each of the above summands, the identification By - a; = By ®y(p,) a; is
equivalent to the statement that if x is an idempotent state with 1 =1, b=1-b-1
is an element of By with w(b) = wa(b) =0, and Iy - b-a; = 0, then Ix -b=0.
But this follows from Proposition 3.7, together with the fact that that if x is an
idempotent state for By with 1 = 1 and y is another idempotent state, then no
generating interval (in the sense of Definition 3.6) can contain exactly one of 1 or
2, whereas none of the a; enumerated above is divisible by U1Us. O

According to the above lemma, p,Mp, can be thought of as a type DA bimodule
with generating set specified in the lemma (see Equation (2.3)); i.e. there is a type
DA bimodule 2 X33, so that g, Mp, = Bo®P2Xp, . There is a much smaller model
for this type DA bimodule using the following:

Lemma 9.4. The inclusion map (Bz-L1C3) ® (Ba- Ra) C g,Mp, induces an
isomorphism in homology.

Proof. In view of Lemma 9.3, we can define H: M — M by specifying
H(by - RoU3) = by RoUS ' Co
H(by - Ug') = boUy ' Cy
H(by - CoUT) = byUl
H(by) = H(by - Ry) = H(byCoRUL) = H(bo - LiUY})
= H(by - CoRUS) = H(by - LiCoU}) =0

for all n > 0, t >0, and bs € By (thought of as the subalgebra of I-8; -1 with
wy = wg = 0). It is straightforward to verify that Id4+0 o H + H o 0 is projection
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onto the image of (BQ . Lng) D (BQ . Rg) C 52M51 . For example, if a = b - OQUln
with n > 0, then 9o H(a) = a + (dbo)Uy™", and H o d(a) = (dbo)U™*; so
(Id+0o0 H+ Hod)(a) =0. O

Proof of Proposition 9.1. We continue with the hypothesis that 2 € S;. By
Lemma 9.4 (and the homological perturbation lemma, in the form of Lemma 2.12)
(By - C3L1) ® (B - Rs) inherits an A, bimodule structure quasi-isomorphic to M .
To this end, note that the maps H appearing in Lemma 9.4 are Bs-linear, and so
they can be thought of as morphisms of type D structures as in Lemma 2.12.

The induced DA bimodule structure on (B -CoLi) @ (B2 - Ry) coincides with
the bimodule structure on 22 U%;l . In a little more detail, the labels on the edges
e1,...,€p_1, associated to the algebra elements ai,...,as_1 are chosen according
to the following rules:

e labels for the possible edges e; out of v1 = Ry or L1Cs are chosen so that,
according to Lemma 9.3 we have by € By with v; -a; = by - v2 (thinking of
v; as certain left Bs-module generators of M from Equation (9.3));

e labels for the edges e; with 1 <i < £ —1 from v; to v;11 (thought of as
certain elements of B;) are chosen so that, according to Lemma 9.3, there
is b; € By with v; - a; = b; - w;, and Viy1 = H(’LUZ)

e For the choices of final edges e;—1 into (with v, = Ry or L1C3), once again
the labels were chosen so that for some by,_1 € By, vp_1-ap_1 =bp_1 - vy.

Thus, as in Lemma 2.12, the induced DA bimodule structure associates to the
sequence ai,...,a¢_1, is the product b = by ---by_1, which in turn is the output
element associated to the pure sequence in our definition of §} from Section 9.1.

Observe that for all sequences a; ® -+ ® ag_1 appearing in the A,, operations,
Zf;ll wi(a;) = Zf;ll wa(a;). This, together with Property (PS-3) amounts to the
statement that U’ is graded by the set H'(W,0W). Observe also that for each
preferred sequence ay,...,as—1, we have that Zle ma(a;) — 2ws(a;) =1—£. (To
see this, note that the change in the vertical coordinate of an arrow labelled by an
algebra element a in Figure 40 is given by ma(a) —2ws(a) —1.) This, together with
Property (PS-2) ensures that the operations respect a Z-valued Maslov grading.
Obviously, U is finite dimensional. We have thus verified that ¢ is adapted to
the one-manifold underlying the partial knot diagram with a left-most minimum.

When 1 € §7, the above discussion applies with straightforward notational changes,
switching the roles of U; and U, L1 and Ry, Ry and Ly, Cy and C;. For
example, the analogue of Lemma 9.3 holds, where now a; are chosen from

{Luf, Up, CiLUY, CGUf,  ReU;s, Us, CiUsliso0m>o0-
The analogue of Lemma 9.4 gives a model generated by (Bs-ReC4)® (Bs-Lq), with
Ao structure obtained from the graph I' with the corresponding modification. [
9.3. The bimodule of a minimum with arbitrary c. Having defined BZU%I

for ¢ =1, we can inductively define it for arbitrary ¢ by the relation

(9.4) Baug, = P20y BPPg, R Bpgl



KAUFFMAN STATES, BORDERED ALGEBRAS, AND A BIGRADED KNOT INVARIANT 85

with algebras B; and Bs chosen as in the beginning of the section; and Bz =
Bm+2,k+1,7.-1(S1)) and By =B(m+2,k+ 1,7, 0 7.—1(S1)) . See Figure 42.

FIGURE 42. To define 3¢, tensor 8¢~ with P¢ and P!, as shown.

Proposition 9.5. Choose By and Bz as in Equation (9.1), and let B} = B(m +
2m+2—kA{l,...,m+2}t\S1). Then B"‘U%l is a type DA bimodule that is
adapted to the one-manifold underlying its partial knot diagram, and it is dual to
E., in the sense that

(9-5) Baise ® BuBig ~ BaBig

1 c:
Proof. The tensor product defining U¢ is well defined thanks to Proposition 3.20,
and induction on c.

Equation (9.5) is verified by induction on ¢, and the basic case ¢ = 1 is Lemma 9.2.
For the inductive step, we compute:

SESURE R JC ol B

12

826%11 X <13’1ch1 X <B47)é3 X BB,B’BIC>)

12

5551 ® (Bipgé—l X (Bépgi X BQ’B%))

R

B! pc—1 Bl e Bsgre—1 By,B,
Py w Bpg (B R B
~ Bipc—1 Bl e BY,Bs
~ PR Bpg ) Befeg,

! / ’
~ Biperl® Bs gt ) BB,

3 1

’

~ Bubag

using associativity of X (Lemmas 2.4 and 2.9), Lemma 6.6, the trident relation
(Lemma 7.2), the inductive hypothesis, and the fact that P and N are inverses
(Equation (6.1)). Lemma 2.9 applies, since the bimodules P* for any k have 6;=0
for all j > 3. The steps (skipping associativity) are illustrated in Figure 43. (]

9.4. The terminal Type A module. We have described the DA bimodule as-
sociated to a local (but not global) minimum. For the global minimum, we give
the following different construction. Note that the algebra immediately above the
global minimum has B = B(2,1,{2}) or B(2,1,{1}), depending on the orientation
on the global minimum (left to right or right to left). Consider first the case where



86 PETER S. OZSVATH AND ZOLTAN SZABO

d—

JU
| |

(

)
(

\
) ) U |

U

FIGURE 43. Pictures of bimodules appearing in the inductive
step of Proposition 9.1. Boxed components correspond to type

DD bimodules, the rest correspond to type DA bimodules.

B = B(2,1,{2}). Since the outgoing algebra has no strands (and so it can be
thought of as ), the we construct a type A module over the incoming algebra.

As a vector space, tUp(2,1,{2}) is a two-dimensional, with generators X and Y.
The right I(B(2,1,{2}))-module structure is determined by

(9.6) X=X-Ij;; Y=Y I.

The right module structure is determined by the formulas:

(9.7) X-In=Y Y R =X X -Co=Y- -Cy=0.
The idempotent relations imply that X - Ro = 0. It follows that
X -LUi=Y Y R U =X X -Uj=X Y Ui =Y,

for all ¢ > 0; and U,y acts trivially.
Defining M(X) = M(Y) =0, it follows that tU has a Z-valued Maslov grading.

Unlike the modules encountered thus far, ¢tU is not graded by Alexander set, which
in this case is %Z. However, it is filtered by it, in the sense that if a is a homoge-
neous element with ms(X,a) # 0, then wa(a) — wy(a) <0.

An analogous construction works for B = A(1,{1}). In that case, X = X - Iy,
Y =Y - Ijy;; and actions are determined by X - Ry =Y, Y- -Ly =X, X-C; =
Y - C; = 0. Again, this module is filtered.

Both versions of tU have an associated graded object, with two generators X and
Y satisfying Equation (9.6). The actions by Ly Lo, Ry, Ry, Uy, Uy are all 0;
the action by Cy or Cy (whichever is in the algbera) is also 0.

Proposition 9.6. Let Y be a type D structure over B = B(2,1,{1}) or B(2,1,{2}),
with equipped with a Z-valued Maslov grading and a %Z-valued Alexander grading.

Then, the tensor product tOKY is naturally Z-graded (by the Maslov grading) and

it is filtered by the Alexander grading. Its associated graded object coincides with

the tensor product tORY.

Proof. The sums in the tensor product are finite since tU is bounded. The Maslov
gradings on Y and tU induce Maslov gradings on the tensor product as usual, and
the Alexander grading on Y induces an Alexander function on tO XY . Since 0
is the associated graded object for tU, it follows that the associated graded object
for tURY is tORY . O
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10. SYMMETRIES

We note some symmetries in the algebras and bimodules described above.

One symmetry, which can be visualized as rotation through a vertical axis, is in-
duced by an isomorphism between the algebras. That is, consider the isomorphism
R: B(m,k,S) — B(m, k, p(S)) defined in Equation (3.10). As in Example 2.3, this

map gives a DA bimodule, denoted [R] = B(m’k’p(s))[R]B(m’hs).

The bimodules for crossings and critical points are symmetric under this vertical
rotation, according to the following:

Lemma 10.1. Fiz integers ¢, k, and m, with 1 <c<m+1 and 0 <k <m+1;
and fir Sy C {1,...,m}, Sy C {1,...,m + 2} so that So = ¢.(S1) U {c} or
Sy = ¢(S1) U {c+ 1} (with ¢. as in Equation (7.1)). Let By = B(m,k,S1),
By = B(mkaSQ); /1 = B(mvkvp;n(sl)): and 8/2 = B(mvkvp;m+2(82)) (USing
notation from Section 3.6). The following identities hold:

% [R]s, 1505, =T Op R, TR]s, B UG, = B0p B (R]s
Also, forany i =1,...,m—1, let B3 = B(m, k,7(S1)) and B = B(m, k, p,,(7(51))
we have identities

%iR]s, @ 5Py, ~ PP KR, P [R]s, BN, ~ NG R TR],

Proof. It is easy to see that [R]K K =2 KK [R].

The above results then follow from the invertibility of the DD bimodule, and the
easily verified identities [R|KE, = &y q2- X [R] and [R]XP; = P,,,—; K[R], where
the latter isomorphism preserves N and S and switches E and W. ([l

Recall that there is an algebra isomorphism B(m,k,S) = B(m,k,S)°? (Equa-
tion (3.11)). An arb1trary DA bimodule ®2Xp, has an opposite module X , of the
form 5, XB2 = 857 XBop If B; = B(m;, k;,S;) for i = 1,2, we can view the opposite
module X°P as a bimodule over the same two algebras, X°P = [o] K X K [o].
Proposition 10.2. Under the identification B(m,k,S) = B(m, k,S)°P from Equa-
tion (3.11), there are identifications of bimodules QP ~ Q., UP ~ U, (P")P =~
N, and (N*)°P ~ P,

Proof. We claim that P ~ £.. The identification switches the roles of X and
Y, and fixes Z. For each pair of generators in Equation (7.4), there are two arrows,
and the symmetry switches those two arrows; observe that if one arrow is labelled
by a ® b, then the other is labelled by o(a) ® o(b).

The identity (P;)°P ~ N; follows from the definition of N given in Section 5.5. [

11. CONSTRUCTION AND INVARIANCE OF THE INVARIANT

11.1. Topological preliminaries.

Definition 11.1. A pointed knot diagram is a projection of an oriented knot dia-
gram in S?, with a marked point on it. A pointed Reidemeister move is a Reide-
meister move supported in a complement of the marked point.
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The following result is well known; see [8, Section 3].

Proposition 11.2. Any two pointed knot diagrams for the same knot can be con-
nected by a sequence of isotopies (in S?) and pointed Reidemeister moves (in S? ).

Proof. By Reidemeister’s theorem [26], any two knot diagrams for the same knot
can be connected by a sequence of Reidemeister moves. To see that we can arrange
to make those moves disjoint from the marked point p, it suffices to show that p can
be moved through a crossing by a sequence of pointed Reidemeister moves. Suppose
we are attempting to move a crossing across p, situated immediately south of the
crossing. Viewing the knot projection as supported in S?, we can equivalently
move the strand north across the knot diagram, bringing it back north through the
point at infinity, as shown in Figure 44. This move can be realized as a sequence
of Reidemeister 2 and 3 moves disjoint from p. ]

]
J}T{L v

FIGURE 44. Moving an overpass across the basepoint is equiva-
lent to a sequence of Reidemeister moves away from the basepoint.

Consider a pointed knot diagram in the plane, and consider the projection to the y
axis. We say that the diagram is in bridge position if the following properties hold:

e All critical points are either minima or maxima.
e The minima, maxima, and crossings project to distinct points in the y axis.
e The global minimum is the marked point.

There are two kinds of diagrams in bridge position, depending on the orientation
of the global minimum; i.e. left to right (LR) or right to left (RL).

Definition 11.3. A bridge move connecting two diagrams Dy and Ds in bridge
position is any of the following types of moves:

e Creation of a single local maximum and local minimum; or the cancellation
of such a pair. This is called a pair creation or pair annihilation.

e Sliding a mazimum or non-global minimum through a crossing, called a
trident move

e Commutations between distant pairs of special points (each of which is a
maxmimum, non-global minimum, or a crossing), called a commutation
move.

In the above description, “distant” refers to special points not on the same strand,
which are covered by the other two kinds of moves. All of the above moves are
pointed isotopies; they leave the global minimum in place.

If D is in bridge position, there is a pointed diagram D’ in the sphere, by adding
a point at infinity adjacent to the marked point. We say that D induces D’.
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AT =TT =TT
YO =TT
N = TH A

FIcURE 45. Bridge moves. Top row: annihilation and creation
of a pair of local minimum and a maximum; second row: a trident
move. (The three other trident moves are obtained by changing
the two crossings, reflecting through a horizontal line, or both.)
Third row: commutations of a maximum and a distant crossing.

Lemma 11.4. Any pointed knot diagram in the sphere is induced from a planar
knot diagram in bridge position. Moreover if two planar knot diagrams Dy and Ds
of the same type (i.e. LR or RL) induce (planar) isotopic knot diagrams in the
sphere, then they can be connected by a sequence of bridge moves as above.

Proof. Consider the basepoint on the knot projection, and place a second point
p € S? so that the point on the knot with minimal distance to p is the basepoint.
There is a choice here: the orientation on the knot distiguishes the two sides where
p can be placed; e.g. thinking of the knot locally as the z axis, oriented from left
to right, p could either be slightly above or slightly below the x axis. Let a be a
minimal arc from p to the basepoint in K. Stereographic projection from p gives
a planar knot diagram, which we rotate so that a is taken to the portion of the y
axis with y < t. If p was slightly below resp. above the distinguished point, the
resulting diagram is of type LR resp. RL. Perturbing this map slightly (e.g. by
moving p slightly) we can arrange that the resulting diagram is in bridge position.

Performing this construction in a one-parameter family, we get a one-parameter
family of planar diagrams, for which the global minimum is the marked point. In a
generic one-parameter family, the following can occur: two critical points create or
cancel, a crossing crosses a critical point, or any two distant special points project to
the same y coordinate. Crossing this codimension one locus, the diagram undergoes
a pair creation or annihilation, a trident move, or a commutation move. [l

11.2. Constructing the invariant. Choose a knot planar knot diagram D in
bridge position, and slice it up t; < --- < t; so that the following conditions hold:

e for i =1,...,k — 1, the interval [t;,¢;+1] contains the projection onto the
y axis of exactly one crossing or critical point
e for i =1,...,k, t; is not the projection of any crossing or critical point

e there are no crossings or critical points whose y value is greater than ty
(and so [tx—1,tx] contains the global maximum)

e there are no crossings below t;, and the only critical point whose y value
is smaller than t; is the global minium.
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For i = 1,...,k — 1, we have seen how to associate a type DA bimodule to the
portion of the diagram that projects into [t;,t;11]; it is either of the form P7,
N7, Q¢ or U°. The top portion [t;_1,tx] contains the global maximum, where
the incoming algebra has no strands, so the DA bimodule is, in fact, simply a
type D module (see Section 8.1). The bottom portion [—oco,#;] has only the global
minimum, so the outgoing algebra has no strands; there we attach the terminal
type A module tU from Section 9.4. Note that for each partial knot diagram,
the assoicated bimodule is adapted to the one-manifold underlying the partial knot
diagram; and the hypothesis that our diagram is a indeed one for a knot ensures
that the tensor products can always be taken; see Proposition 3.20. It is also worth
noting that the generating sets for all the partial knot diagrams correspond to
partial Kauffman states; this property is evidently preserved by X.

The chain complex C(D) is now obtained as an iterated tensor product (via ®) of
these pieces. It inherits a filtration, whose associated graded object, C(D), can be
computed by exchanging tU with the simpler terminal module t0.

Theorem 11.5. The filtered homotopy type of C(D) is an oriented knot invariant.

The quasi-isomorphism type of the chain complex C(D) does not depend on the
order in which the type DA bimodules are tensored together (Lemma 2.4). Thus, to
check the invariance of C(D), it suffices to check identities between DA bimodules
associated to the bridge moves, which we do in the next section. The proof of
Theorem 11.5 is then given in Subsection 11.4.

11.3. Invariance under bridge moves. We order bridge moves as follows:

(1) Commutations of distant crossings

(2) Trident moves

(3) Critical points commute with distant crossings
(4) Commuting distant critical points

(5) Pair creation and annihilation.

5

We verify the invariance of our invariant under bridge moves in the above order.

Bridge moves involve the interactions of two consecutive pieces in the chopped up
knot diagram, The above procedure associates bimodules to each of those consecu-
tive pieces which we tensor together, and the bridge moves are verified by verifying
identities between the bimodule associated to the two bimodules tensored together
and the tensor of the two bimodules after the bridge move (except in pair creation
or annihilation, which states a relation between the tensor of two bimodules and a
third bimodule, the identity bimodue). Thus, for example, commutations of distant
positive crossings asserts the relation P X PJ ~ PJ K P* when |i — j| > 1, which
was already verified in the verification of the braid relations (Theorem 6.1).

Consider next trident moves. There are four types of trident moves: the one illus-
trated in the second row of Figure 45, the one obtained by changing the crossings
in the picture, the one obtained by mirroring the picture through a horizontal line,
and the one obtained by changing the crossings in the horizontally reflected picture.

Lemma 11.6. The DA bimodules associated to the two pictures before and af-
ter a trident move are quasi-isomorphic; i.e. the following four identities hold,
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corresponding to the four kinds of trident moves:

(11.1) Bapg W Plgt ~ PN B0
11.2 PPt Bag ~ Bong ® OBiogh

Bs c+1 Bape ~ Bsgge By prc+1
) UBz K72 Py, ~ "0, K N81

B3qce Bape+l B3 c+1 Bapre
) g, BEPEH ~ PUgi R B,

Proof. All four identities follow from Lemma 7.2, together with symmetries of the
bimodules, as follows.

Since the K is invertible (Theorem 3.17), Equation (11.1) follows from P¢XKQ°T1 X
K ~ Nt X Q¢ K K ; which follows from Proposition 8.4 and Lemma, 7.2.

Applying horizontal rotation to Equation (11.1) (with m — ¢ — 1 in place of c¢),
together with Lemma 10.1, Equation (11.2) follows from Equation (11.1)

Similarly, observe that
Pogt R Ppg REEIK ~ PO R (Fipg, BB
B} pe Bsjye B2, B!
~ IPBé &( 368“’2_1 & 2 QIC)
~ Bipg, B BBig,
(using Lemma 6.6 twice, Lemma 2.9, Proposition 9.5); and by the same logic,
505, B BNGH R BB~ BN R Bubse,
Thus, Equation (11.3) follows from Lemma 7.2.
Equation (11.4) follows from Equation (11.3) by horizontal rotation. d

Lemma 11.7. The DA bimodules for positive crossings commute with those for
local mazima and minima, in the sense that if |c+ 1 —i| > 0, then (with ¢. as in

FEquation (7.1))
(11.5) P KQO° ~ Q° K P
(11.6) PR ~ ¢ KPPl

Proof. Direct computation, as in the proof of Lemma 6.4, shows that

(11.7) PoORE, ~ O KP;.
Both stated equations now follow from Equation (11.7), the invertibility of K, and
Propositions 8.4 and 9.5; compare the proof of Lemma 11.6. (Il

Lemma 11.8. The DA bimodules for crossings commute with those for distant
critical points.

Proof. Lemma 11.7 handles positive crossings. Multiplying Equation (11.5) on
both sides by N and using the fact that A'* and P’ are inverses of one another
(Equation (6.1)), it follows that negative crossings also commute with local maxima,;
Equation (11.6) shows that negative crossings commute with local minima. O

Lemma 11.9. The DA bimodules for pairs of distant critical points commute.
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Proof. Fix i < j. The lemma states identifications

QXYL PIIRO RO I RY!
VIR~ RYT HRO ~ QRO

To verify the first identity, we tensor on the right with IC, to reduce to the identity
between two type DD bimodules (using Proposition 8.4):

(11.8) QARE . ~YPTRE,

which is easy to verify in the spirit of the proof of Lemma 6.4. Tensoring on the
right with K, the second on the right,

BgUiBZ X BQU%‘:‘:[ X BlvBiK ~ 330%2 X BQ,B’lgj+1
~ By, 1 (Biag M B
~ B0l (g, m B
~ B R BB,

Similarly, /"' RO KK ~ Q'K E;_y, so the second identity also follows from
Equation (11.8).

Consider the third identity, now with ¢ = 1. Tensoring on the right with IC, we
reduce to the easily verified identity /"' X & ~ U' K &;41. (Compare Equa-
tion (11.8).) The cases where i > 1 now follow from the case where i = 1, the
inductive definition of ¢ (Equation (9.4)), and Lemma 11.7.

The fourth identity follows from the third and Lemma 10.1. O

Lemma 11.10. The DA bimodules are invariant under pair creation and annihi-
lations, in the sense that U° X Q! ~ Id ~ Bt K Q°

Proof. Rotating through a vertical axis, i.e. using Lemma 10.1, we see that U¢ KX
Q¢t!t ~ Id implies also that Id ~ U°T! K Q¢. The verification of ¢ K Q! ~ Id
can be reduced to the case where ¢ = 1 using Reidemeister 2 moves, as follows.
First, introduce a sequence of ¢ — 1 positive crossings that carry the ¢! strand to
the far left, and let P be the corresponding bimodule; then let N be its inverse,
ie. NXP ~1d. (Clearly, N is obtained from P by reversing all the crossings
and taking them in reverse order.) (cf. Equation (6.1)). In view of Lemma 11.6,
a sequence of trident moves identifies P X U¢ X Q! ~ §! K Q2 K P. Thus,
if U!' X 0% ~ Id, we can conclude that U° K Q°H! ~ NK P X U° XK Q°t! ~
NRUO'RQPRP~NKP ~Id.

It remains now to verify that U! X Q2 ~ Id. We claim that the generators of
8125132 B2 Qfgl correspond to the idempotents in the algebra B;; see Figure 46.
Specifically, Q%, the generator is constrained to be either of type Y or Z; while in
U1, the generator is either of type X or Z. Thus, in the tensor product, we divide
the generators into four types XXY, XX Z, ZXY, and ZXZ. We claim that

(11.9) SXRY,L)=1,®(ZKZ) 6}(ZRZ R) =R ®(XKY),
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By

B1

FIGURE 46. Generators of 510}32 B2 Q%l . Generators cor-
respond to the idempotents in the incoming algebra B ; the con-
straints on the intermediate generators are as shown.

FIGURE 47. Generator types for 616%2 B2 Q%l .

as can be seen from the following diagrams:

1 2 1 2
Uk, 9% B, Uk, 9% B
| | | |
1 1 v 1 | Z%
| | | |
| <+ | <+
| Ny |
X 5% Z 5%
! | ! |
| w\ﬂ UR)" B VR
MV T + RsB2 g1
2 1
1 1
o 03 i @ 03 v
/z L L /x y 0

If the leftmost strand is downwards, then furthermore
(11.10) 53(PXq,U1) =U; ® (pXq)

for all choices of p € {X,Z} and q € {Y,Z}: when pXq = XX Z, both sides
vanish; for the other cases:

1 2 1 2 1 2
UBZ QBl Bl 682 QBl Bl UBQ QBl Bl
N N
| Zy o v
y 5w g
9 x vy 9
Z A% 1 VA ‘

With these computations in hand, it follows that U'RQ2KK = K, so U'KO? ~ Id.
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If the leftmost strand is upwards, then instead of Equation (11.10), we claim that
53 (XK q,C1) =C1 ® (XK q) for q € {Y,Z}; for example,

1 2
682 QBl B
| Ly
! L
! ~
X (5:1L o
|
S
v C1 51
6 — 2

Again, it is straightforward to verify now that U' X Q2 ~ Id. O

11.4. The invariance proof. We can now assemble the pieces to prove Theo-
rem 11.5; and tie it with the discussion from the introduction.

Proof of Theorem 11.5. The tensor product description gives a chain com-
plex thanks to a combination of Proposition 3.20, and finally Proposition 9.6
when attaching the final stage, to get a filtered complex. Combining Lemma 11.4
with the invariance of the bimodules under bridge moves (Theorem 6.1, Lem-
mas 11.6, 11.7, 11.8, 11.10) shows that (Alexander-)filtered chain homotopy type
of C(K) depends only on the pointed knot diagram for K, and the orientation
type of the global minimum, i.e. LR or RL of Lemma 11.4. (Keep here in mind
that homotopy equivalences of DA bimodules induce homotopy equivalences under
tensor product.) Choose for definiteness the orientation type LR.

Next, we appeal to Proposition 11.2 to see that we have a knot invariant.

Invariance under Reidemeister (1) moves follows from the easily checked relation
PR ~ QF. (Here QF and Qf are bimodules associated to maxima, with opposite
orientations on the new strand.) Invariance under Reidemeister (2) and (3) moves
now follows from the braid relations, Theorem 6.1.

Arguing in the same manner for RL, we obtain another conceivably different knot
invariant. A straightforward computation shows that

t0p(2,1,12}) = t0p(2,1,{1}) ¥ 8(2’1’{1})P113(2,1,{2})~
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It follows that both RL and LR give the same knot invariant.

The Alexander filtration, takes values in the H' of the knot modulo a neighborhood
of the global minimum, can be turned into a rational number by evaluating against
the orientation class of the knot. This evaluation is computed by the local formula
from Figure 2 according to Proposition 5.16. Since it is the exponent of ¢ in the
contribution of the corresponding Kauffman state to the Alexander polynomial
(compare [6]), it follows that the Alexander filtration takes values in Z. O

Corollary 11.11. The homology of 6(@) is a bigraded invariant of the underlying
oriented knot, whose Euler characteristic agrees with the Alexander polynomial.

Proof. Invariance follows from Theorem 11.5, since the homology of the associ-
ated graded object is invariant under filtered homotopy equivalences. The Euler
characteristic computation follows from the correspondence between the generators
and Kauffman states, and the observation that that (—1)M®)¢A) (see Figure 2) is
the monomial associated to a Kauffman state in the computation of the Alexander
polynomial from [6]. d

It is a straightforward matter to go from the filtered homotopy type to the invari-
ant over a polynomial algebra described in the introduction; see [16, Chapter 14].
Explicitly, replace the filtered module tU with an Alexander graded module t0~
over a polynomial algebra F[v]. For B(2,1{2}), replace Equation (9.7) with

X Li=v'Y Y R=v-X X -Co=Y -Cy=0

(and making the analogous construction for B(2,1,{1})). In this construction the
base algebra now is F[v], and v is given gradings A(v) = 1/2 and M(v) = 0.
Replacing tU with {0~ and forming the same tensor product as before, we arrive
at a bigraded complex C~ over F[v]. Since the Alexander grading of generators
is integral, we can restrict this to a complex over F[U] with U = v?. Accord-
ing to Theorem 11.5, the homology of the associated graded object, thought of
as a bigraded module H’(K) over F[U], is an oriented knot invariant. Letting
H;(I?, s) = H&_2S(I?, —s), we arrive at the bigraded invariant from the introduc-

tion. Setting v =0 (and so U = 0) clearly recaptures C. Since U drops Alexander
grading by one and Maslov grading by 2 on H~(K), Equation (1.1) follows from

the fact that the graded Euler characteristic of C is the Alexander polynomial.

Remark 11.12. We have described tUO as having two generators. In fact, to de-
fine our knot invariants, it suffices to work with the submodule tG - I;1y, since
the outputs of our D modules are all contained in the subalgebras of B(m,k,S)

(Eth o 1x> -B(m,k,S) - (zx|07m€x 1x> :

12. FIRST PROPERTIES

We will discuss efficient computations of these invariants in [19]; but there are
some easy computations that can be done readily by hand. As a trivial example,
the unknot has one-dimensional H , supported in bigrading (0,0), since it has a
diagram with a single Kauffman state in it. More generally:
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Proposition 12.1. If K is an alternating knot, then ﬁ(K) is determined by the
signature 0 = o(K) of K and the symmetrized Alexander polynomial Ak (t) =
Soiai-tt by He(K,s) = Flesl if d = s+ Z, and 0 otherwise.

Proof. As in [22], this result is simply a consequence of the local contributions
to the Alexander and Maslov gradings (pictured in Figure 2). Those formulas

show that for an alternating diagram M — A = Z. The rest now follows from the

interpretation of the Alexander polynomial in terms of Kauffman states [6]. O

We list a few of the properties that follow immediately from the constructions from
this paper. The methods of this paper are best suited for H ; analogous results for
H~ will be established in a follow-up paper [19].

Proposition 12.2. If K and K' are mirror knots, then ﬁ[d(K, s) & ﬁ_d(K’, —s).

Proof. According to Lemma 10.2, the complex of a(K') is computed by tensoring
together the opposites of the various bimodules used to compute C(K). It follows

that a(K) and a(K’) are dual complexes. Since we are working over the field I,
the proposition now follows from the universal coefficient theorem. O

Proposition 12.3. Let K1 and K5 be two knots. Then, ﬁ(Kl#Kg) is the bi-
graded tensor product of H(K7) and H(Ks).

Before turning to the proof, we start with some more general properties.

Let D be a knot diagram with a single global minimum, oriented up and to the
left. Let B = B(2,1{1}) and let 5C(D) denote the type D structure associated to
the diagram with minimum removed.

Lemma 12.4. Let B = B(2,1,{1}) and B' = Iy, - B-I1y. The output alge-
bra for BC(D) is contained in B'; i.e. if Plilz denotes the bimodule associated

to the inclusion i: B’ — B, then we have a type D structure B/C(D) so that
Blils ® ¥e(D) =Be(D).

Proof. For m,k with 0 < k < m+1 and § C {1,...,m}, let B/(m,k,S) C

B(m,k,S), be the subalgebra (Zx|0,m€x Ix> -B(m, k,S) - <Zx}07m€x Ix) . We

claim that all of the DA bimodules Q°¢, U¢, P?, N have the property that their
restriction to B’ C B (with appropriate decorations) have their output algebras
in the corresponding B’ C B. Moreover, the global maximum has output algebra
contained in B’ (c.f. Subsection 8.1). O

Recall that B’ = Ijqy - B(2,1,{1}) - Ijyy is F[Cy1, Uy, Us]/CF = 0, with dCy = Uy,
with gradings

(w1 (Ur), w2 (Ur)) = (1,0), (w1(C1),w2(C1)) = (1,0), (w1(U2),w2(U2)) = (0,1).
It has a subalgebra B” C B’ isomorphic to F[E;,Us]/E} = 0 (with vanishing
differential), and (’LUl(El),’LUQ(El)) = (1,1) and (wl(Ug),wg(Ug)) = (071) The
subalgebra is specified by F; = C1Us.
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Lemma 12.5. With B = B(2,1,{1}), the type D module BC(D) is homotopy
equivalent to a type D module over B C B.

Proof. Use Lemma 12.4 to restrict to B’. This result then follows from homological
perturbation theory, since the inclusion B” C B’ is a homotopy equivalence. (]

Proof of Proposition 12.3. Consider a connected sum diagram for K; and K,
where the connected sum region is taken to be the global minimum and the next
minimum above it, as pictured in Figure 48.

iué “s&jy' ‘1@4«"
FIGURE 48. Connected sums.

The invariant associated to the disjoint union of K; and K, (missing the two
minima) is a type D structure C(K; U K3) over B(4,2,{1,3}). Arguing as in
Lemma 12.4, the output algebra of this D module is contained in Iy 3y-B(4,2, {1, 3})-
I;13). Note that there is a natural identification

(Tgy - B(2.1,{1}) - Ipy) @ (Lgay - B(2,1,{1}) - Ipyy) = gy - B(4,2,{1,3}) - Li1 3y
and under this identification, C(K; U K3) = C(K;) @ C(K2).

Consider the type A structure N over B(4,2,{1,3}) with one generator X satis-
fying X -Iy; 33 = X, and trivial action by all other pure algebra elements. Clearly,

(12.1) N (C(K; UK,)) 2 C(K;) @ C(K,)

Consider next the type A structure P over B(4,2,{1,3}) obtained by tensoring

together a minimum with a global minimum to obtain the type A structure pictured

on the right in Figure 48. We restrict to the idempotent type P - Iy 3y.

It is easy to see that P has actions ma(X, I 31) = X. Also, if me1(X, a1,...,a0) #
¢ ¢

0, then Y, wi(a;)) =0=>,_; wi(a;) and

)4 £
(12.2) ng(ai) = ng(a,)

Let B = If1 3 - B(4,2,{1,3}) - Iy 3y, and B” be the subalgebra isomorphic to
F[El,Eg,UQ,U4]/E12 = E% = O, were E1 = OlUQ and E2 = 03U4. Lemma 12.5
gives type D structures B”(2’1’{1})Q1 and B”(z’l’{l})Qg so that

8(2’17{1})C(K1) ~ Ql and 8(271’{1})C(K2) ~ QQ;
and so B//(Ql & QQ) o~ B/C(Kl @] Kg).

Since wy (F71) > 0, we see that the action by E; on P is trivial. Next, we claim that
any output algebra element in Q; of the form U} with ¢ > 0 must pair with some
action on P with wy > 0; but such an action must also involve an output from
Q2 with ws > 0 (by Equation (12.2)), and so it must come from some multiple of
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But any sequence containing a non-trivial factor of F3 in it acts trivially on

P, since wy(E3) > 0. Similarly, outputs from Q2 containing a non-trivial multiple
of F3 or Uy act trivially since wy of both of those algebra elements are trivial.

We have shown that the outputs from @ ® Q2 giving non-zero differentials when
paired with P consist only of the trivial output (1), showing that

NE(Q ®Qy) = PR(Q ® Q) = C(K1#K>).

Combining this with Equation (12.1), we get an isomorphism of chain complexes
C(K 1#K3) =2 C(K;) ® C(K2); and the proposition follows readily. O
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