
NETA: When IP Fails, Secrets Leak
Travis Meade

Department of Computer Science
University of Central Florida

Orlando, Florida
travis.meade@ucf.edu

Jason Portillo
Department of Electrical and Computer Engineering

University of Central Florida
Orlando, Florida

jasonlportillo@knights.ucf.edu

Shaojie Zhang
Department of Computer Science
University of Central Florida

Orlando, Florida
shzhang@cs.ucf.edu

Yier Jin
Department of Electrical and Computer Engineering

University of Florida
Gainesville, Florida
yier.jin@ece.ufl.edu

ABSTRACT
Assuring the quality and the trustworthiness of third party re-
sources has been a hard problem to tackle. Researchers have shown
that analyzing Integrated Circuits (IC), without the aid of golden
models, is challenging. In this paper we discuss a toolset, NETA,
designed to aid IP users in assuring the confidentiality, integrity,
and accessibility of their IC or third party IP core. The discussed
toolset gives access to a slew of gate-level analysis tools, many of
which are heuristic-based, for the purposes of extracting high-level
circuit design information. NETA majorly comprises the following
tools: RELIC, REBUS, REPCA, REFSM, and REPATH.

The first step involved in netlist analysis falls to signal classifi-
cation. RELIC uses a heuristic based fan-in structure matcher to
determine the uniqueness of each signal in the netlist. REBUS finds
word groups by leveraging the data bus in the netlist in conjunction
with RELIC’s signal comparison through heuristic verification of in-
put structures. REPCA on the other hand tries to improve upon the
standard bruteforce RELIC comparison by leveraging the data anal-
ysis technique of PCA and a sparse RELIC analysis on all signals.
Given a netlist and a set of registers, REFSM reconstructs the logic
which represents the behavior of a particular register set over the
course of the operation of a given netlist. REFSM has been shown
useful for examining register interaction at a higher level. REPATH,
similar to REFSM, finds a series of input patterns which forces a
logical FSM initialize with some reset state into a state specified
by the user. Finally, REFSM 2 is introduced to utilizes linear time
precomputation to improve the original REFSM.

ACM Reference Format:
Travis Meade, Jason Portillo, Shaojie Zhang, and Yier Jin. 2019. NETA:When
IP Fails, Secrets Leak. In ASPDAC ’19: 24th Asia and South Pacific Design
Automation Conference (ASPDAC ’19), January 21–24, 2019, Tokyo, Japan.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3287624.3288739

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPDAC ’19, January 21–24, 2019, Tokyo, Japan
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6007-4/19/01. . . $15.00
https://doi.org/10.1145/3287624.3288739

1 INTRODUCTION
Tariffs, high volume demand, low time-to-market, and first-rate
chips requirements: all these factors block and sometimes directly
oppose each other. Cracking and straining against each other, the
forces driving the unstable market of Integrated Circuits (ICs) leaves
many in a quandary, and such issues, if neglected, will further
damage relations between Intellectual Property (IP) developers and
users.

Recently an article slammed Apple in regards to hiding discov-
ered hardware manipulations that could have lead to large scale
sensitive information leaks [13]. The damning exposé almost im-
mediately came under fire from Apple and Amazon for presenting
misleading and false claims, of which the most important was that
of the existence or knowledge of malicious hardware manipulations.
Whether it was a valid recounting of terrors within the Hardware
Security domain or potentially a fake news piece in a sensational
hungry world from “anonymous” sources, the Bloomberg article
refocused the hardware security community onto a question among
many IP developers and users: “What is in my silicon?”

Among all possible answers, the technique of reverse engineering
is one of the oldest but still the most reliable solution. With the
ability to fully recover designs, consumers can verify for themselves
the integrity of their products. The problems in this answer is the
overwhelming research opposing such techniques, either by trying
to demonstrate the ability to bypass Hardware Trojan defenses, or
by trying to prevent piracy of IP.

In this paper we seek to help circumvent many trust issues that
plague current IC development, by discussing a toolset for Netlist
Analysis Toolset (NETA) [11] that leverages Reverse Engineering
approaches to check netlists for potential malicious logic. We talk
about other approaches for evaluating ICs in section 2. We give an
overview and use of our current project in section 3, and show how
not only can the proposed toolset help in assessing netlists, but can
find rare triggering logic, by decrypting locked netlists. Section 4
presents our most recent developments in the NETA project. Finally,
section 5 concludes the paper and presents future works regarding
netlist analysis.

2 BACKGROUND
Methods that analyze circuits exist for many different phases and
design descriptions. Researchers usually try to recover the chips

https://doi.org/10.1145/3287624.3288739
https://doi.org/10.1145/3287624.3288739

ASPDAC ’19, January 21–24, 2019, Tokyo, Japan Travis Meade, Jason Portillo, Shaojie Zhang, and Yier Jin

layout information via the process of decapping and imaging. More
specifically, layout information of the design for each layer can be
generated by etching the surface of a chip, while imaging can be
completed with the aid of a Scanning Electron Microscope (SEM) or
using High Resolution X-Ray Tomography. After extracting the lay-
out the gate level information is usually recovered using computer
vision algorithms that tries to identify the cells and VIAs [19].

A plethora of methods have been proposed that analyze the gate-
level netlist. A number of methods use netlist extraction and/or
identification [1, 4, 14, 16, 18, 19]. Many of these methods work on
the graph model of the design and typically include graph structure
analysis. Analysis of netlist components has been thoroughly dis-
cussed and examined in [2, 6, 8, 16, 18]. Due to the nature of signal
propagation the design of a netlist can be closely represented using
a digraph, so many methods that can analyze graph structures can
be re-purposed for gate-level netlist analysis.

Like the process of creating the chip itself, which involves many
steps, algorithms, and tools, the process of recovery should allow
for different recovery outcomes. Intermediate steps should exist
whose results are observable and editable, in the event that the
tool user has extraneous high-level information that could better
improve the toolset’s results. For this reason our toolset has many
different functions, each of which is modularized in a way such that
different netlist descriptions/levels of interpretation can be used
without having to reduce the netlist down to simpler terms. The
process of handling higher level descriptions is especially useful.

3 NETA TOOLSET
The first goal of the tool set is to help IP users analyze netlist for
malicious code. To aid users in this endeavor the developers of the
toolset tried to reduce the problem to that of high-level function
recovery of netlists. This strategy allows us to off load part of the
burden of malicious logic detection to the netlist user.

3.1 RELIC, REFSM, and REPATH
The first step to most netlist analysis techniques should fall to ei-
ther netlist partitioning or logic identification. Knowing the logical
components of a netlist is useful since it can allow for other anal-
ysis methods. RELIC 1 [7] uses a heuristic based fan-in structure
matching to determine the uniqueness of each signal in the netlist.

Conceptually logic wires would have structure that is unique,
while data wires should have a fan-in structure similar to the fan-in
structures of the other wires in the same word. This conjecture
allows for the base of a method for finding logic wires. RELIC 1
tries to match the wires composing the fan-in of a given gate pair
such that the sum of the scores of the matched wires is maximized.
To prevent infinite recursion a depth is used to cut off the search.

A second tool produced to help find logical wires, RELIC 2 [11],
not only uses RELIC 1’s method for finding structure similarity, but
it also uses certain deeper fan-in and fan-out information to improve
our toolset’s capability at finding outlying wire structure. RELIC 2
merges the RELIC 1 information and deep wire information using
Principle Component Analysis (PCA) and clustering techniques to
flag suspicious signals.

For actual function recovery REFSM is typically relied upon [9,
10, 12]. Its goal is given a netlist and a set of registers, construct

a FSM that represents the behavior of the register set over the
course of the operation of the netlist. REFSM can be very useful for
checking how register values interact with each other at a higher
level.

A method similar to REFSM is that of REPATH. What REPATH
tries to do at a high level is to find a series of input patterns that
will force an FSM that starts at some reset state into a state that is
specified by the user. The state can be singular or a set of states. The
REPATH will always find the least number of steps needed to get to
that state. However, since a user might not omit registers from the
FSM word certain transition conditions might not be achievable at
certain clock cycles used by the REPATH method.

3.2 Other Tools
One of the most popular tools used by researchers for finding the
high level function behavior embedded in the gates of a circuit
is that of Strongly Connected Component (SCC) finding. An SCC
is a subgraph of a directed graph such that each node within the
SCC is capable of reaching each other node. An FSM that leaves
its state graph SCC will have effectively cutoff other FSM states.
Transitioning out of an SCC implies that the control logic of the
netlist has entered into a particular mode that effectively locks the
behavior of the IC. This analysis can be used for finding “black
hole” states within an obfuscated FSM or finding functioning states
in a sequential locking FSM. The analysis also allows for a more
detailed categorization of register and their behaviors and interac-
tions, which can help identify FSM words [14].

For doing simple analysis on the register interaction the Register
Dependency (REDPEN) tool can be utilized. The purpose of the
REDPEN is to find the register dependency graph. The tool outputs
the dependency as a transition graph, which can be used with
Tarjan’s SCC algorithm [17] for extracting groups of registers that
can affect each other.

3.3 Case Study
One case study we performed took a netlist locked by several regis-
ters. We executed one of our standard analysis procedures, which
can be seen in Figure 1.

The RELIC 2 tool was used to find registers that were most
likely the logic registers of the controller for the system. RELIC 2
returns a list of estimated z-scores that represent how likely each
wire is data register (compared to logic register). The least likely
data wires within the netlist had z-scores of 23.31, 31.94, 105.45,
114.14, and 193.09, all of which are very unlikely. In the original
case study we decided to try to extract a word from the wire that
scored the 193.09, although the other wires could also be examined
for potential controller behavior. In most analysis we try to keep
the word as small as possible to enable quick word checking. When
we ran the netlist through our SCC using REDPEN, we found a
total of nine other signals that could interact with the 193.09 signal.
Since ten registers can create fairly meaningful FSMs, we moved
on to REFSM for logic extraction. One interesting result was that
there was no reset signal in the circuit. It is an indication that the
original circuit is not well prepared. If an FSM enters a black hole
state, then the users cannot recover the circuit functionality. The
resulting FSM can be seen in Figure 2.

NETA: When IP Fails, Secrets Leak ASPDAC ’19, January 21–24, 2019, Tokyo, Japan

Functioning
FSM

REFSM

RELIC REDPEN

Netlist Important
Word PairsPairs

Register
Interaction

FSM

TARJAN

Register Sets

TARJAN REPATH

Unlocking
Sequence

Q

QSET

CLR

S

R Q

QSET

CLR

S

R

Figure 1: The flow for NETA’s logic recovery from a gate-

level netlist.

Figure 2: A recovered FSM froma sequentially lockednetlist.

At this point it is useful to cover two broad types of FSM encryp-

tion that can be employed. The first is that of a statically locked

FSM. For such FSM the key to unlock the FSM is unchanging. Some

researchers have found methods for breaking this scheme by reduc-

ing it to a SAT problem, assuming they have access to an unlocked

oracle.

Since the key in a statically locked FSM is unchanging there is

a “low” number of possible keys. The likelihood of “accidentilly”

unlocking a device brings the topic to the second type of locked

FSM. The second type of FSMs are sequentially locked, and ideally

after an initial input sequence the FSM will enter a functioning FSM

state. Normally each functioning FSM state can reach each other

functioning FSM state and no functioning FSM state can reach a

non-functioning FSM state. The reachability of a functioning FSM

directly implies that the functioning FSM in an FSM should be a

“sink” connected component within the SCC graph.

Ideally, if only one sink SCC was found from the FSM, then that

SCC is most likely the functioning FSM. However, if there is more

Figure 3: A Simple XOR Tree with 8 inputs

than one sink SCC then further analysis is needed to determine

the functioning FSM. Another type of sink SCC that could appear

would be the black hole states described above. As the probability of

entering a black hole state is fairly high, the probabilities of entering

a sink SCC provides valuable information on the functionality of

that SCC.

4 REFSM 2.0

Recall that REFSM extracts the logic of a netlist into the more hu-

man friendly form of a finite state machine. REFSM had achieved

good results in practice and was capable of helping with an ar-

ray of different problems associated with netlist analysis, such as

sequential locking deobfuscation, logic detangling, and hardware

Trojan detection. This section will detail a few problems that did

not present itself in the original set of netlist benchmarks used to

test REFSM and will then introduce an updated version of REFSM.

4.1 XOR Trees

An uncommon structure that could exist in a netlist that causes

issues when trying to reveal the potential states reachable within

the FSM is a large XOR Tree (see figure 3). The output pin’s behav-

ior in a large XOR tree is different from other logic cones in that

changing any particular value in the input will flip the output. It

means that each input signal has a large effect on the outcome of

the subnet. The high input effectiveness over the output is contrary

to many logical designs practices whereby only when residing in a

particular logical state do certain transitions occur, which is usually

implemented using an AND tree or an OR tree. We would like to

emphasize the improbability of the XOR Trees being found within

logic. The original REFSM, whose function was to analyze the logic

of a netlist, overlooked such structures. Due to the XOR Tree’s

rarity within logic REFSM can perform reasonably well when run

on actual circuit designs. Although XOR Trees only exist in spe-

cific circuit designs such as encryption circuits, we consider the

potential for a netlist to contain XOR Trees as a motivator to one

of REFSM’s most recent improvements.

The reason why REFSM performance is so stressed by the XOR

Tree is due to the method in which REFSM searches for next states.

If the output of an XOR tree is found to affect the next state, then

REFSM tries to analyze what signals going into the tree force the

value to behave in certain manners. Unfortunately the output of an

XOR Tree is only decided when all input values are selected. Due

ASPDAC ’19, January 21–24, 2019, Tokyo, Japan Travis Meade, Jason Portillo, Shaojie Zhang, and Yier Jin

to the lack of simple pruning in the XOR Tree case, REFSM will
needlessly search the entire space, even if intermediate results have
no bearing on the rest of the design. Keeping in mind that an XOR
Tree might not have a large effect on the remainder of the netlist.
A simple method for checking and removing excess gate structures
(including XOR Trees) has been proposed and implemented in
REFSM.

4.2 Dominator Trees
The first step we take for the proposed optimization is constructing
a Directed Acyclic Graph (DAG) from the original graph.We achieve
this by splitting the registers and simultaneously treating them as
input and outputs. Certain structures that would not form DAGs
include Ring Oscillators (ROs), but they will not be considered
as part of the FSM generation, as ROs can add some degree of
non-determinism to state transitions. When working with DAGs a
sizable amount of graph algorithms become available to computer
scientists, which is why this conversion is highly useful.

With the newly created DAG a concept already used with hard-
ware analysis [15] and compiler optimizations [3], the Dominator
Tree can very easily be leveraged to help reduce the structure of a
given netlist to something more manageable. The following are def-
initions for the Dominator Trees that will be used in the remainder
of our paper:

Definition 1. A Node, u, in a digraph,G , is a dominator of Node
v , u, if for all paths inG from the root, r , to v the path contains u.

Definition 2. A Node, u, in digraph, G, is an immediate domi-
nator of Node v , if u does not dominate any other dominators of
v .

Definition 3. A Node, u, in a digraph, G, is a Super Dominator
Node (SDN), if u dominates all nodes in G reachable from u.

Definition 4. A subset, S of nodes of digraphG is closed if for all
edges, e , inG , we have when e starts in S , then e ends in S . In other
words there is no node in S can reach G − S .

Other than the split register netlist more preprocessing must be
completed prior to using the Dominator Tree. Our optimization’s
intention of using SDNs is to find large fan-ins that can be simplified
to a single signal. That way the SDNs within a netlist can often,
but not always, be treated as don’t cares when finding all reachable
states from an initial state. A minor problem is that SDN dominate
the nodes they reach, while reduceable fan-ins that converge at a
single input dominate the signals that reach them.

Rather than using the original gate interaction graph when uti-
lizing the Dominator Tree we use the reverse of the graph. That is
the edges in the updated graph move from the netlists output to the
input. Lastly, since there exists a root in the dominator definitions
we create one extra node being the root of our signal graph. This
added node is directly connected to all “output” signals in the origi-
nal graph. It has been shown that extracting a tree that contains
the immediate dominator relationship can be done linearly in the
number of edges plus nodes for DAGs [5]. For our purposes we
compute the Dominator Tree prior to analyzing any states and keep
this result throughout the state exploration.

In the example DAG, Figure 4, we have 8 nodes. In the above
example the root node is a. For this reason a is the a dominator

d

a

b

f

c

hg

e

Figure 4: An example of a DAG where the Super Dominant
Nodes are the Gray Nodes, and the nodes that dominate
some node are bold.

of every other node. The node f has only h in its fan-in, which is
definitely dominated by f . Thus f is an SDN. On the other hand the
nodes reachable from b are {d, e, f ,д,h}, but f is not dominated by
b, because there exists a path to the root a without passing through
b. It should be mentioned that b is a dominator of d , e , and д, but b
is not an SDN. The other non-SDNs within the example graph is c ,
d , and e .

Some analysis can be done on the resulting dominator and dom-
inated relationship. By definition all “input” signals which become
terminal nodes in the updated DAG are always SDNs. The root is
always an SDN, because it dominates everything aside from itself
either directly or indirectly. The relationships between nodes and
their immediate dominators form a tree, where the inserted root of
the DAG is the root of the tree (see Figure 5). The reason for the
tree like structure is

(1) The root dominates all nodes. This implies that all nodes
have at least one immediate dominator, except the root. Ad-
ditionally, no node should have more than one immediate
domintor, since the graph is acyclic. The immediate domina-
tor can represent a node’s parent.

(2) These parents will not form a cycle (even without the DAG
restriction the immediate dominators would be acyclic).

This means that each node has an immediate dominator and fol-
lowing a chain of immediate dominators will eventually reach the
root. According to the definition, in order to determine if a node u
is an SDN, we would need to check if all nodes reachable from u
are directly or indirectly dominated. It can be shown that a node
u is an SDN if the set of reachable nodes from u is equal to the
set of nodes in u’s subtree in the Dominator Tree. We propose to
use the information about the in and out degree in a subtree of the
Dominator Tree to solve the SDN.

4.3 Sub-Dom Trees
First, we need to determine whether the nodes from a subtree in
the Dominator Tree is closed in the original DAG. When a subgraph
is closed the sum of the in degrees and the sum of the out degrees
within the subgraph will be equal. A non-closed dominator subtree
implies there exists an edge that starts in the subtree of the original
DAG and ends outside the DAG. This extra edge will cause the
sum of the in degree and out degree sums of the nodes within the
subgraph to be different. Note that edges entering the subgraph
do not prevent a subgraph from being closed. One “possibility” is

NETA: When IP Fails, Secrets Leak ASPDAC ’19, January 21–24, 2019, Tokyo, Japan

d

a

b

f

c

hg

e

Figure 5: The resulting Dominator Tree extracted from the
original example DAG.

Algorithm 1 Use the in (in) and out (out) degree of each node and
the Dominator Tree (DT) to find the SDNs
1: function SupderDomNodeFinder(in, out , DT)
2: SDN ← ∅
3: n ← NumNodes(DT)
4: InSum ← [0] × n
5: OutSum ← [0] × n
6: Order ← TopoOrder(DT)
7: for node ∈ Reverse Order do
8: InSum [node] ← InSum [node] + in [node]
9: OutSum [node] ← OutSum [node] + out [node]
10:
11: if InSum [node] − in [node] = OutSum [node] then
12: SDN ← SDN ∪ {node }
13: end if
14:
15: parent ← DT ′s parent of node
16: InSum [parent] ← InSum [parent] + InSum [node]
17: OutSum [parent] ← OutSum [parent] +OutSum [node]
18: end for
19: return SDN
20: end function

that an edge could increase the in degree of a subgraph, but not the
out degree, which would make a node appear to be an SDN, when
in reality the subgraph is not closed. This “extra” edge is actually
impossible except when incident to the subroot of the sub-tree, in
which case it can easily, and in constant time be removed.

Thus the original problem can be reduced to checking if the in
degree sum of a subtree is equal to its out degree sum, where the
only node whose in degree will not be contributed to the sum is
the subroot. To quickly compute this value we will utilize dynamic
programming. We will not double count degrees, because we have
a tree structure, and there is only one path from a subroot to any
reachable node. Algorithm 1 presents a high level implementation.

For the original sample graph you can see the in degree and out
degree for each node in Figure 6. The computed sum of the subtree’s
in degree and out degree for the sample graph is in Figure 7. The
actual in degree and out degree sum, with the root’s in degree
removed, for the sample graph can be seen in Figure 8. Note that
the nodes where the sums are equal were the SDNs in the original
graph. This adjusted sum comparison can be seen in line 11 of
Algorithm 1

4.4 Experimental Results
To test the capabilities of REFSM 2 when compared to the original
REFSM we used a few realistic designs, but again due to the rarity

1|1

0|3

1|3

3|1

1|1

1|02|0

1|1

Figure 6: The in degree and out degree for individual node.

1|1

10|10

5|5

4|1

1|1

1|02|0

1|1

Figure 7: The in degree and out degree sum for the subtree
(including the in degree for the subroots).

0|1

10|10

4|5

1|1

0|1

0|00|0

0|1

Figure 8: The in degree and out degree sum for the actual
subtrees.

of an XOR tree affecting the logic of a netlist, no significant changes
were detected on the few practical designs as seen in Table 1. The
second attempt to distinguish REFSM vs REFSM 2 involved making
some proof of concept netlists that contained XOR trees ranging
in sizes from 2 to 64 inputs. In theory REFSM would not be able
to work on XOR trees quickly with more than about 30 inputs.
The results in Figure 9 show that the original REFSM had even
more trouble than what had been estimated. It should be noted
that any run that took more than an hour was stopped. The worse
than expected performance of REFSM is probably a result of its
significant constant factor in its runtime. The results were collected
on a machine with 132 GB of memory and an Intel(R) Core(TM)
i7-4770 processor.

ASPDAC ’19, January 21–24, 2019, Tokyo, Japan Travis Meade, Jason Portillo, Shaojie Zhang, and Yier Jin

Testing Circuits Total Gates Total States Total Transitions REFSM Time (s) REFSM 2 Time (s)

Locked AES 16766 386 752 14.804 14.436

S1196 331 525 127025 32.362 31.778

UART 168 390 195 0.242 0.244

MC8051 6590 5 13 114.09 113.92

MSP430 UART FSM 4481 6 22 9.59 10.09

MSP430 Mem FSM 4481 4 8 0.20 0.23

Table 1: The results of REFSM and REFSM 2 on a few designs from various sources.

Figure 9: The results of the REFSM vs REFSM 2 when run on XOR tree based FSMs of varying input sizes.

5 CONCLUSIONS AND FUTUREWORK

In this paper, we introduced our NETA toolset and its ability to ex-

tract rare occurring states through netlist decryption. Additionally,

we discussed linear time precomputations that have the potential to

improve our previous methods. Experimental results were collected

to demonstrate the potential changes in runtime. In our future work,

we plan to further extend REFSM as well as all other tools in the

NETA suite by finding and implementing more optimizations. Con-

sidering the fact that IP consumers are vulnerable to attacks from

within ICs, we will also focus on providing more netlist reverse

engineering tools for assessing their technology.

ACKNOWLEDGEMENT

The work is partially supported by the National Science Foundation

(NSF-1812071).

REFERENCES
[1] Jacob Couch, Elizabeth Reilly, Morgan Schuyler, and Bradley Barrett. 2016. Func-

tional block identification in circuit design recovery. In Hardware Oriented Secu-
rity and Trust (HOST), 2016 IEEE International Symposium on. IEEE, 75–78.

[2] Yu-Yun Dai and Robert K Braytont. 2017. Circuit recognition with deep learn-
ing. In Hardware Oriented Security and Trust (HOST), 2017 IEEE International
Symposium on. IEEE, 162–162.

[3] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. 1987. The program de-
pendence graph and its use in optimization. ACM Transactions on Programming
Languages and Systems (TOPLAS) 9, 3 (1987), 319–349.

[4] Matthew Hicks, Murph Finnicum, Samuel T King, Milo MK Martin, and
Jonathan M Smith. 2010. Overcoming an untrusted computing base: Detect-
ing and removing malicious hardware automatically. In Security and Privacy (SP),
2010 IEEE Symposium on. IEEE, 159–172.

[5] Thomas Lengauer and Robert Endre Tarjan. 1979. A Fast Algorithm for Finding
Dominators in a Flowgraph. ACM Trans. Program. Lang. Syst. 1, 1 (Jan. 1979),
121–141.

[6] Wenchao Li, ZachWasson, and Sanjit A Seshia. 2012. Reverse engineering circuits
using behavioral pattern mining. In Hardware-Oriented Security and Trust (HOST),

2012 IEEE International Symposium on. IEEE, 83–88.
[7] Travis Meade, Yier Jin, Mark Tehranipoor, and Shaojie Zhang. 2016. Gate-Level

Netlist Reverse Engineering for Trojan Detection and Hardware Security. In The
IEEE International Symposium on Circuits and Systems (ISCAS). 1334–1337.

[8] Travis Meade, Kaveh Shamsi, Thao Le, Jia Di, Shaojie Zhang, and Yier Jin. 2018.
The Old Frontier of Reverse Engineering: Netlist Partitioning. Journal of Hardware
and Systems Security 2, 3 (2018), 201–213.

[9] Travis Meade, Shaojie Zhang, and Yier Jin. 2016. Netlist reverse engineering
for high-level functionality reconstruction. In Design Automation Conference
(ASP-DAC), 2016 21st Asia and South Pacific. IEEE, 655–660.

[10] Travis Meade, Shaojie Zhang, and Yier Jin. 2017. IP protection through gate-level
netlist security enhancement. Integration, the VLSI Journal 58 (2017), 563–570.

[11] Travis Meade, Shaojie Zhang, and Yier Jin. 2018. NETA: Netlist Analysis Toolset.
(2018). https://github.com/jinyier/NetA.

[12] Travis Meade, Zheng Zhao, Shaojie Zhang, David Pan, and Yier Jin. 2017. Re-
visit sequential logic obfuscation: Attacks and defenses. In Circuits and Systems
(ISCAS), 2017 IEEE International Symposium on. IEEE, 1–4.

[13] Jordan Robertson and Michael Riley. 2018. The big hack: how china used a tiny
chip to infiltrate U.S. companies. Bloomberg Businessweek (4 Oct 2018).

[14] Yiqiong Shi, Chan Wai Ting, Bah-Hwee Gwee, and Ye Ren. 2010. A highly
efficient method for extracting FSMs from flattened gate-level netlist. In Circuits
and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on. IEEE,
2610–2613.

[15] Alex Shye, Matthew Iyer, Vijay Janapa Reddi, and Daniel A Connors. 2005. Code
coverage testing using hardware performance monitoring support. In Proceedings
of the sixth international symposium on Automated analysis-driven debugging.
ACM, 159–163.

[16] Pramod Subramanyan, Nestan Tsiskaridze, Wenchao Li, Adria Gascón, Wei Yang
Tan, Ashish Tiwari, Natarajan Shankar, Sanjit A Seshia, and Sharad Malik. 2014.
Reverse Engineering Digital Circuits Using Structural and Functional Analyses.
IEEE Trans. Emerging Topics Comput. 2, 1 (2014), 63–80.

[17] Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM journal
on computing 1, 2 (1972), 146–160.

[18] Edward Tashjian and Azadeh Davoodi. 2015. On using control signals for word-
level identification in a gate-level netlist. In Proceedings of the 52nd Annual Design
Automation Conference. ACM, 78.

[19] Michael Werner, Bernhard Lippmann, Johanna Baehr, and Helmut Gräb. 2018.
Reverse engineering of cryptographic cores by structural interpretation through
graph analysis. In 2018 IEEE 3rd International Verification and Security Workshop
(IVSW). IEEE, 13–18.

	Abstract
	1 Introduction
	2 Background
	3 NETA Toolset
	3.1 RELIC, REFSM, and REPATH
	3.2 Other Tools
	3.3 Case Study

	4 REFSM 2.0
	4.1 XOR Trees
	4.2 Dominator Trees
	4.3 Sub-Dom Trees
	4.4 Experimental Results

	5 Conclusions and Future Work
	References

