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Iterated weak dominance and interval-dominance
supermodular games

JOEL SOBEL
Department of Economics, University of California, San Diego

This paper extends Milgrom and Robert’s treatment of supermodular games in
two ways. It points out that their main characterization result holds under a
weaker assumption. It refines the arguments to provide bounds on the set of
strategies that survive iterated deletion of weakly dominated strategies. I derive
the bounds by iterating the best-response correspondence. I give conditions un-
der which they are independent of the order of deletion of dominated strategies.
The results have implications for equilibrium selection and dynamic stability in
games.
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1. INTRODUCTION

Milgrom and Roberts (1990) and Vives (1990) provide useful analyses of the class of su-
permodular games introduced by Topkis (1979). In a supermodular game, each player’s
strategy set is partially ordered and there are strategic complementarities that cause a
player’s best response to be increasing in opponents’ strategies. Milgrom and Roberts
and Vives describe many applications of the games in the class. Perhaps the leading
example is the linear Cournot duopoly.

Milgrom and Roberts (1990) and Vives (1990) demonstrate that supermodular games
have a largest and smallest equilibrium. These equilibria necessarily are pure-strategy
Nash equilibria. Milgrom and Roberts demonstrate that these extreme equilibria can
be obtained by iterating the best-response correspondence and characterize the set of
strategies that survive iterated deletion of strictly dominated strategies. They show that
pure-strategy Nash equilibria exist in supermodular games. In addition, they provide
useful results about comparative statics and dynamic stability. These results enable
models to make more precise and more confident predictions for games with comple-
mentarities. Predictions are more precise because of the bounds; in general, largest and
smallest Nash equilibria need not exist. Predictions are more confident because they
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may not require equilibrium assumptions. Milgrom and Roberts give examples (includ-
ing Cournot duopoly) in which the largest equilibrium is equal to the smallest equilib-
rium. This observation not only guarantees uniqueness of equilibrium, but also im-
plies that the unique equilibrium is the only outcome that survives iterated deletion of
strictly dominated strategies. Hence, the prediction does not depend on the assump-
tion of equilibrium. What is more, the argument guarantees that a best-response dy-
namic arrives at the equilibrium, again suggesting that the equilibrium prediction has a
strong behavioral foundation. When the game has multiple equilibria, the existence of
lower and upper bounds still offers useful limits on predictions. Further, tools of mono-
tone comparative statics enable me to make statements about how the set of equilibria
responds to changes in parameters.

Not all games are supermodular. The current paper shows how to modify the tech-
niques pioneered by Milgrom and Roberts and Vives to a broader class. The extension
has two parts. First, I show that Milgrom and Roberts’s main results extend without mod-
ification to a slightly broader class of games. This extension is small, both logically and
substantively. The logical extension is small because one can prove the result with little
modification to Milgrom and Roberts’s argument. The substantive extension is small be-
cause I do not have an economic applications in which the more general result provides
a novel insight. The second extension is more substantial. I establish results that paral-
lel those obtained by Milgrom and Roberts using a stronger solution concept, deleting
weakly dominated strategies rather than strongly dominated strategies. That is, I en-
large the class of supermodular games and describe the sets of strategies that survive
iterated deletion of weakly dominated strategies.! Once again, this set will be bounded
by a largest and smallest equilibrium. Analogs of existing results on dynamics and com-
parative statics also hold. This extension requires a modification of the existing proof
technique (so the paper makes a technical contribution) and allows one to apply the re-
sults to a class of games that includes a familiar model of communication that fails to be
supermodular. The second extension is substantive because there are games that satisfy
the generalized definition of supermodularity and have large sets of strategies that sur-
vive iterated strong dominance, but smaller sets that survive iterated weak dominance.

My extension is useful precisely because there are games with strategic complemen-
tarities in which strong dominance has little power to eliminate strategies, but weak
dominance is effective. It is not hard to generate games in this class. Imagine a game
obtained by adding an initial round to a supermodular game to create a two-stage game.
The initial stage might involve an investment choice, communication, or an attempt to
learn about the environment. When viewed as a strategic-form game, there will typi-
cally be weakly dominated strategies (in complete information games, these strategies
may involve choosing second-stage actions that would be eliminated by an application
of subgame perfection). Elimination of strictly dominated strategies will generally lack
the power to reduce the strategy set, but eliminating weakly dominated strategies may
be effective. I apply the methods of this paper to cheap-talk games. I show that the set

n related work, Kultti and Salonen (1997, 1998) study supermodular games in which some weakly dom-
inated strategies are removed. I discuss these papers in Section 4.
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of strategies that survives iterated deletion of weakly dominated strategies has nice fea-
tures (upper and lower bounds and attractive dynamic stability properties) and is strictly
smaller than the set of strategies that survives iterated deletion of strictly dominated
strategies.

The analysis leverages two things: discarding strategies that are weakly dominated
instead of strongly dominated has the potential to make the set of predictions stronger;
broadening the definition of supermodular games by weakening an assumption has the
potential to enlarge the class of games covered by the argument. I expand the class
of supermodular games by replacing an increasing-differences condition used by Mil-
grom and Roberts and Vives with a weaker condition, interval dominance, introduced
by Quah and Strulovici (2009). The central property used in the literature is that best-
response correspondences are increasing. Increasing differences guarantees monotonic
best replies, but interval dominance, a weaker condition, also implies the critical mono-
tonicity property.

Section 3 points out a small generalization of the basic result of Milgrom and
Roberts, characterizing the set of strategies that survive iterated deletion of strictly dom-
inated strategies. Section 4 extends the results to weak dominance. Section 5 discusses
the implications of the characterization result for comparative statics and dynamics.

Section 6 discusses cheap-talk games and games involving competition in persua-
sion. I demonstrate that analogs of the methods introduced to study supermodular
games can refine the set of predictions in these games. These games are not interval-
dominance supermodular, but they satisfy a weaker condition under which the main
characterization result applies. Specifically, Section 6.1 studies cheap-talk games and
demonstrates that when a monotonicity assumption holds, the babbling equilibrium
fails to survive iterated deletion of weakly dominated strategies whenever an informa-
tive equilibrium exists. Section 6.2 describes a game introduced by Gentzkow and Ka-
menica (2017) to study Bayesian persuasion with multiple informed parties. This game
typically has multiple equilibria that are Pareto-ranked from the perspective of the in-
formed players. I point out that only the Pareto-efficient equilibrium survives iterated
deletion of weakly dominated strategies.

I place definitions of standard concepts in Appendix A (so as to make the paper self-
contained). Appendix B contains proofs omitted from the main text, Appendix C con-
tains auxiliary results about interval-dominance conditions, and Appendix D contains
arguments that support claims made in Section 6.2.

2. PRELIMINARIES

There is a finite set of players, which is denoted by I. Each player has a strategy set X;
with typical element x;. The set of strategy profiles is X =[],.; X;. I denote by x_; the
strategies of player i’s opponents. Each strategy set is partially ordered by >;; > denotes
the product order derived from >; (so that x > x" if and only if x; >; x} for all /). Denote
player i’s utility function by u;(x;, x_;). Denote by u = (u;);c; the set of utility functions.
A game in ordered-normal form is I' = (I, X, u, >).
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Consider a set X with a partial order > that is transitive, reflexive, and antisymmet-
ric. I place standard definitions (lattice, chain, order continuity, supermodularity, strong
set order) in Appendix A.

This paper uses weaker versions of basic single-crossing properties. I review the ba-
sic ideas and then discuss the role they play in studying games in ordered-normal form.

DEerINITION 1. Given two lattices X and Y, a function f: X x Y — R has increasing
differences in its two arguments x and y if, for all x” > x’, the difference f(x”, y)— f(x', y)
is nondecreasing in y.

This paper replaces increasing differences with weaker assumptions. There are sev-
eral ways to weaken the increasing-differences property. The next definition is standard.

DErINITION 2. Given two lattices X and Y, a function f: X x Y — R satisfies the single-
crossing property in its two arguments x and y if, forall y” > y/, x” > ¥/,

" Y)2 (YY) = f(X"Y) =) f(X.Y). ey
Single crossing is also more restrictive than necessary.

DEerINITION 3. Given two lattices X and Y, a function f: X x Y — R satisfies the
interval-dominance (ID) property in its two arguments x and y if, for all y” > y/, x” > ¥/,
(1) holds whenever f(x”, y') > f(x,y’) forall x ¢ [x’, x"].

Quah and Strulovici (2009) introduce condition ID and derive basic properties. Quah
and Strulovici (2007) give additional results, including detailed discussion of the impli-
cations of ID when X is multidimensional. It is apparent that increasing differences
implies single crossing, which in turn implies interval dominance. It is straightforward
to confirm that the converse implications do not hold.

The current paper introduces and uses variations on condition ID to study an appli-
cation. I defer these discussions to when they are needed in Section 6.

DEFINITION 4. The game I' = (I, X, u, >) is an interval-dominance supermodular (ID-
supermodular) game if, for each i ¢ I, the following assumptions hold:

Al. The lattice X is a complete lattice.

A2. The function u; : X — R is order upper semicontinuous in x; for fixed x_;; u; is
order upper semicontinuous in x_; for fixed x;; and u; is bounded above.

A3. For fixed x_;, u; is supermodular in x;.

A4. On all interval sublattices of X, u; satisfies the interval-dominance property in x;
and x_;.

The distinction between supermodular and ID-supermodular games is that A4 re-
places the condition that u; has increasing differences.
A useful preliminary observation is Topkis's monotonicity theorem.



Theoretical Economics 14 (2019) Supermodular games 75

Fact 1. Let X be a lattice and let Y be a partially ordered set. Let f(x,y): X xY — R.
Suppose that f(-) is supermodular in x for fixed y. For any sublattice X' c X, let M(X') =
argmax,_y f(z,y); M(X') is a sublattice of X. If, furthermore, X' is complete and f is
order upper semicontinuous in x for fixed y, then M(X") is a complete sublattice of X.

In the context of games, Fact 1 states that the set of best replies forms a sublattice
when the payoff function is supermodular in a player’s strategy. This result is part of the
Topkis monotonicity theorem as stated in Milgrom and Roberts (1990).

One important property of supermodular games is monotonicity of the best-reply
correspondence.?

Fact 2. LetT be an ID-supermodular game. Let ] =Jy x --- x J; be an interval sublattice
of X. Ifx" ;> x' , then

argmaxu;(x;, x” ;) >; argmaxu;(x;, x_;).
xiel; x;ed;

Fact 2 generalizes a result of Milgrom and Shannon (1994, Theorem 4) that assumes
the single-crossing property rather than ID and a result of Quah and Strulovici (2009,
Theorem 1) that assumes that X is a subset of R. Quah and Strulovici (2007, Theorem 1)
prove Fact 2. As Milgrom and Shannon note, the lemma holds if one replaces the as-
sumption of supermodularity with the weaker assumption of quasi-supermodularity.

Another important fact is Tarski’s fixed-point theorem.

Fact 3. If T is a complete lattice and f : T — T is a nondecreasing function, then f(-)
has a fixed point. Moreover, the set of fixed points has sup{x € T : f(x) > x} as its largest
element and inf{x ¢ T : f(x) < x} as its smallest element.

One can use Facts 2 and 3 to establish the existence of pure-strategy Nash equilib-
rium. Consider mappings ®, ® : X — X defined by

D(x) = (min argmaxuy (X}, x_1),..., minarg max u,(x),, x_n))
xi Xn

and

D(x) = (max argmaxuy(x}, x_1), ..., maxargmax u,(x,, x_n)).

xi Xp
By Facts 1 and 2 these mappings are well defined and nondecreasing. Consequently,
they have fixed points. It is straightforward to show that these fixed points are pure-
strategy Nash equilibria. The (unique) fixed point of @ is the lowest Nash equilibrium
while the (unique) fixed point of @ is the largest Nash equilibrium. Theorem 1 in Sec-
tion 3 shows the existence of these equilibria using a direct argument that does not in-
voke Fact 3.

2Fact 2 states that the set arg max, ;. ui(x;, x” ;) =; argmax, ey ui(x;, x__;). Here >; represents dominance
in the strong-set order (defined in Appendix A).

3A function is quasi-supermodular if f(x) > f(x A y) implies f(x v y) = f(y) and f(x) > f(x A y) implies
fxvy) = f(y.
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3. ITERATED DELETION OF STRICTLY DOMINATED STRATEGIES

This section presents a small generalization of Milgrom and Roberts (1990, Theorem 5).
So as to formulate the result, let X ¢ X. Define a mapping Z from subsets of X to
subsets of X by

Zi(X) = {xi € X;: forall x} € X; there exists X X such that ui(x;, ¥_;) > u; (x}, x_i)}

and Z(X) = {(z1,...,21) : z; € Z;(X)). Strategies in Z;(X) are not dominated in X_;.
Let Z(X) denote the interval [inf(Z(X)), sup(Z(X ))]. The process of iteratively deleting
strictly dominated strategies starts with X° = X and lets X’ = Z(X‘~1). A strategy x; €
X; is serially undominated if x; ¢ Z;(X*) for all 1.

THEOREM 1. Let T" be an ID-supermodular game. For each player i, there exist largest
and smallest serially undominated strategies, x; and X;. Moreover, the strategy profiles
{x;:iel}and{X;:ieI}are pure Nash equilibrium profiles.

Theorem 1 is Milgrom and Roberts’s Theorem 5 under the assumption of inter-
val dominance rather than increasing differences. The theorem follows from the next
lemma. I include a proof of the lemma to identify precisely where I relax Milgrom and
Roberts’s condition.

Let B;(x) and Bi(x) denote the smallest and largest best responses for i to x ¢ X, and
let B(x) and B(x) denote the collections B;(x) and B;(x), i € I.

LEMMA 1. Let z,Z € X be profiles such that z <Z. Then sup Z([z,Z]) = B(Z) and
inf Z([2, Z]) = B(2), and Z([z,%]) = [B(2), B@)].

Proor. Thelargest and smallest best responses are well defined by Fact 1. By definition,
B(z) and B(Z) are in Z([z, Z]), and thus [B(z), B(Z)] C Z([z, Z]). Suppose z ¢ [B(z), B(Z)]
and, in particular, suppose z; #; z} = B;(z). I claim that z; ¢ Z;([z,Z]) because z; is
strongly dominated by z; v z}. For any x; € [z;, z; v z),

wi(xivzf,z ) —uilxi,z_ ) > ui(zf,z_ ;) —ui(xinzf,z_;) >0, )

ir=—i i

where the first inequality follows from supermodularity and the second inequality fol-
lows from the definition of z}.
It follows from (2) that for any x; € [z;, z; v 2}),

ui(xivzf,z_;) > ui(xi, z_;). (3)

Furthermore, if x; € [z;, z; v 2}), then x; v z} = z; v 2} and inequality (3) implies that
for x; e [zi,zi v z}),
us(zs v z;",z_,-) > ui(x;,z_;)- (4)

It follows from ID and (4) that if z; #; z}, then

ui(ziv zf, z_i) > ui(zi, z_;) forallz_;e[z_;,Z_i].
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An analogous argument applies to show that if z; £; Bi(Z), then z; is strictly dominated.
O

It is straightforward to show that (3) follows from quasi-supermodularity when x; #;
z}, so the lemma holds if the weaker assumption of quasi-supermodularity replaces A3
in the definition of ID-supermodular games.

Milgrom and Roberts (1990, Theorem 5) state and prove this result for supermod-
ular games. The proof above follows their proof. They derive inequality (2) and then
complete the proof by pointing out that increasing differences implies

ui(z; Vv zi,z_) —ui(zi, z_) > ui(z; v 25, 2_;) —ui(zi, z2_;) (5)

provided that z_; > z_;. The lemma follows from (2) and (5). I simply point out that the
ID condition is sufficient for the result.

Milgrom and Roberts use the lemma to prove the theorem. Their proof goes through
without modification.

Later in the paper I discuss economically interesting games in which the mathemat-
ical extensions I propose lead to sharper predictions. I conclude this section with an
example of a game that satisfies the assumptions of Theorem 1, but does not satisfy the

assumptions of Milgrom and Roberts’s theorem.

ExampLE 1. There is a finite number N of players and strategies are elements of
[0, M], M > 0. The payoff to player i is u;(x;, x_;) = ag(x,-)z#i xj — C(x;) for a > 0.
If g(-) is strictly increasing, then u;(-) satisfies increasing differences; if g(-) is positive,
then u;(-) satisfies single crossing, but i;(-) satisfies interval dominance without any as-
sumptions on g(-). The game still may have strategic complementarities. There are pa-
rameter values in which the game has multiple, Pareto-ranked pure-strategy equilibria.
For example, if C(x) = x* and

x ifx €10, 1],
gx)=12—x ifxe(l,3),
x—4 ifxe[3, M],

then there will be a range of values for a(N — 1) in which there is an equilibrium in
which x; = 1 for all i (this equilibrium exists: given that other players set x; = 1, player
Jj prefers to set xj = 1 than any other value) and another (nondisjoint) interval in which
xi=a(N —1)/3 > 4foralli. o

4. ITERATED DELETION OF WEAKLY DOMINATED STRATEGIES

Modifications of the proofs of Lemma 1 and Theorem 1 allow us to establish descriptions
of the set of strategies that survive iterated deletion of weakly dominated strategies.

DEeFINITION 5. Given a game I' = (I, X, u, >) and subsets X] c X;, with X’ = [];; X},
player i’s strategy x; € X| is weakly dominated relative to X" if there exists z; € X] such
that u;(x;, x_;) < u;(z;, x_;) for all x_; € X’ ;, with strict inequality for at least one x_; €
X' .

—1



78 Joel Sobel Theoretical Economics 14 (2019)

Weak dominance will typically delete more strategies than strong dominance. Hence
it has the potential to provide more restrictive predictions. I analyze the implications of
applying iterated deletion of weakly dominated strategies instead of iterated deletion of
strongly dominated strategies. This section studies iterated interval deletion of weakly
dominated strategies. The procedure iteratively removes weakly dominated strategies
beginning with a game I'’ = (I, X%, u, >) in which inf X? = x° and sup X? =%, and con-
structs games I =, X%, u, >), where inf X% = ik and sup Xk =%k is the smallest set
such that all strategies in X¥—1\ [x*, %] are weakly dominated with respect to X*-1.
I will describe the set of strategies that survive this process, that is, the set of strategies
that are in X* for all k. It is possible that different ways to delete weakly dominated
strategies will lead to different limit sets. I reference results that identify games in which
the order of deletion is essentially unimportant.

The procedure that iteratively deletes dominated strategies works by assuming that
existing strategies are in an interval and then finding a (potentially smaller) interval of
strategies that are undominated. It is possible that some strategies are weakly domi-
nated but not strictly dominated. If this happens, then the process of iterated deletion
of weakly dominated strategies will lead to a smaller set of surviving strategies. In this
section, I point out how to modify Milgrom and Robert’s arguments to apply to weak
dominance. In Section 6, I discuss how weak dominance is, in fact, more selective than
strong dominance in cheap-talk games and that it is possible to use the arguments of
supermodular games to characterize a refined set of equilibria. Before stating and prov-
ing the extension of Theorem 1 to weak dominance, I provide an example that illustrates
the value of the result.

ExampLE 2. Consider the game

L
u 3,3 0,0
M 1,2 1,1
D 0,0 ,

This game is supermodular. The arguments of Milgrom and Roberts guarantee that
there is a smallest and largest Nash equilibrium, which are (D, R) and (U, L), respec-
tively; D, however, is weakly dominated. Applying iterated deletion of weakly dominated
strategies leaves only the (U, L) equilibrium. The selection seems plausible in the exam-
ple. I would like to know whether it is possible to rule out weakly dominated strategies
and still preserve the structure identified in Theorem 1. The example suggests a possi-
bility. Milgrom and Roberts obtain a lower bound to the row’s strategies by taking the
smallest best reply. In the example, D is the smallest best reply. Because best replies are
monotonic, the smallest best reply will be a best reply to the column’s smallest strategy.
In the example, this strategy is R. Note that R has two best replies. What if, instead of
taking the smallest best reply to R (D) as a lower bound, one takes the largest best reply
(M)? Because M is larger than D, it must do at least as well as D against all of column’s
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strategies. That is, by selecting the largest best response to the smallest strategy of col-
umn, row eliminates weakly dominated strategies. This idea forms the basis of the proof
of the next result. )

THEOREM 2. LetT be a finite ID-supermodular game. For each player i, there exist largest
and smallest strategies that survive iterated interval deletion of weakly dominated strate-
gies, x; and x;. Moreover, the strategy profiles {x; : i € I} and {X; : i € I} are pure Nash
equilibrium profiles.

Theorem 2 extends Theorem 1 to weak dominance. I have added the assumption
that I is finite. I explain the importance of this assumption after the proof.

The theorem requires two preliminary results.

Let X' =X] x---x X;c X and

Ei(xz X')={zie X ui(x;,z_)) =ui(z;,z_;) forallz_; e X' ;}
be the set of strategies that give the same payoff to i against all strategies in X" ,.

LEMMA 2. Let T be an ID-supermodular game. Let z,Z € X be profiles such that z <Z.
There exist largest and smallest strategies that are not weakly dominated relative to [z, Z].
These strategies are, respectively, the largest element in E;(B;(Z); [z, Z]) and the smallest
element in E;(B;(2); [z, Z]).

The way to construct the smallest strategy that is not weakly dominated for player i
is to consider the set of strategies that are best responses to the lowest strategy in [z, Z].
If there are multiple best responses, the interval-dominance property suggests that the
largest of the best responses performs at least as well as other best responses against
higher strategies. This observation makes the largest best response to the smallest strat-
egy a candidate for smallest strategy that is not weakly dominated. In fact, there may
be other, smaller, strategies that are equivalent to the largest best response to z_; in
the sense that these strategies yield identical payoffs against all strategies in [z_;, Z_;].
The proof of Lemma 2 shows that there exists a smallest strategy that is equivalent to
the largest best response to z_; and that this strategy is the smallest strategy that is not
weakly dominated. The details are given in Appendix B.

Let z,Z € X be profiles such that z <% Let E;(x;[z < Z]) denote the sup of
Ei(x;[z <Z]) and let E;(x; [z < Z]) denote the inf of E;(x; [z <Z]). Let E(x;[z<Z]) =
(E (x;[2<ZD), ..., E;(x; [z <Z]) and E(x; [z <Z]) = (E1(x; [2 < Z), ..., Ef(x; [2 < Z]))-
Define

s; =inf{x; € [z;, Zi] : x; is not weakly dominated in [z, Z]}
and
5; =sup{x; € [z;,Zi] : x; is not weakly dominated in [z, Z]}.

Now let Z¥([z,Z]) = [s;, %] and Z"([z,Z]) = (Z([z,Z]), ..., Z/'([z,Z]). Finally let
Z" ([z,Z]) denote the interval [inf(Z¥([z, Z])), sup(Z¥([z, Z]))].
Lemma 2 implies the following result.
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LEMMA 3. Let T' be an ID-supermodular game. Let z,Z ¢ X be profiles such that
z <7Z. Then E(B(2); [z,Z]) and E(B(2); [z,Z]) exist, sup Z"([z,Z]) = E(B(Z); [z, Z]) and
inf Z"([z, Z]) = E(B(2); [z, Z]), and Z([z,Z]) = [E(B(2); [z, Z]), E(B(2); [z, ZD].

Lemma 3 parallels Lemma 1. The first difference is that if z; #; z} = E(B(2):[z,Z]),
there is no guarantee that z; v zF strictly dominates z;. It is possible that z; A z} is a
best response to z_;. Hence the second inequality in (2) could be weak. The second
difference is that one can use weak dominance rather than strict dominance to delete a
strategy. So one needs only to establish that u;(z; v 2}, z_;) > u;(z;, z_;) for some z_; €
[z, Z]. This follows from the definition of z}.

Proor oF THEOREM 2. The proof of the theorem follows the proof of Theorem 1. Let

1 be equal to the smallest element in E;(B;(z); [z, Z]) and let be equal to the largest
e]ement of E;(B;(Z); [z,Z]). Lemma 3 implies that y and y! are well defined and are,
respectively, the smallest and greatest strategies that are not weakly dominated rela-
tive to [z,Z]. It follows that z < y <y <z Contmurng inductively one can construct
sequences {y*} and {y*} such that y* < yk+1 <y*+! <3* and every strategy outside of
[y, y*+1] is weakly dominated relative to y*, 7*1. By monotonicity, limg_, o yk and
limy_, o 7* exist. Denote the limits by y and , respectively. It is straightforward to show
that these limits are Nash equilibrium profiles. In finite games (where the process of
deleting strategies terminates after a finite number of iterations), it follows by construc-
tion that y and y are not weakly dominated by any strategy in [y,y]. From Lemma 3,
it follows that anything that survives iterated deletion of weakly dominated strategies
must be inside the interval.

The process described only removes strategies outside of the interval [y*, 7*]. Con-
sequently, it is possible that there are strategies in the interval [y, 7] that are weakly dom-
inated. When the strategy set is finite, it must be the case that y_and ¥; remain undomi-
nated even if additional strategies are deleted. To see this, notice that by construction y.
is a best response to y . and the only other best responsestoy .in[y.,y,] are equwalent
toy. Consequent]y, y can only be weakly dominated if y . is rt:leleted for j # i. Hence
no procedure can delete y.. Similarly, y; cannot be deleted. This completes the proof of
Theorem 2. B O

Theorem 2 uses the assumption that strategy sets are finite. This assumption guar-
antees that the iterated deletion process terminates in a finite number of steps and, con-
sequently, that y and y are not weakly dominated. The next example demonstrates that
the bounds obtained through the process may be weakly dominated in games in which
X; are infinite.

ExampLE 3. Consider a three player game in which X; =[0, 1]and X; = [0, 2] fori =2, 3,
u1(x) = x1(x2 — 1), and u;(x) = x;x2x3 — x3/3 for i = 2, 3. In this case 7* = (1,22, 22°)
and y = (0,0,0). It follows that y = (1,1,1) and y = (0,0, 0). Both y and y are Nash
equilibria, but ¥, is weakly dominated with respect to strategies in [y, ¥l ¢
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Theorem 2 applies to a particular procedure for removal of weakly dominated strate-
gies. Unlike iterated deletion of strictly dominated strategies, the outcome of iterated
deletion of weakly dominated strategies may depend on the procedure.* Nevertheless,
for some interesting classes of games, deletion of weakly dominated strategies is essen-
tially independent of the procedure.

Marx and Swinkels (1997) show that if a game satisfies the transfer of the decision
maker indifference (TDI) property, then two “full”® procedures for deleting weakly dom-
inated strategies are the same up to the addition or removal of redundant strategies and
arenaming of strategies. The TDI property states that if (given the behavior of the other
players) player i is indifferent between two strategies, then all other players are also in-
different between player i’s choice of strategies. TDI is restrictive, but can be shown to
hold in interesting applications including (generically) the examples described in Sec-
tion 6.

Kultti and Salonen (1997 and 1998) take a different approach to the concern that
iterated deletion of weakly dominated strategies may be order dependent. Kultti and Sa-
lonen (1997) study undominated equilibria in supermodular games.® An undominated
equilibrium is a Nash equilibrium in which no player’s equilibrium strategy is weakly
dominated by another pure strategy. Bérgers (1994) and Dekel and Fudenberg (1990)
identify properties that make undominated equilibria an attractive refinement of Nash
equilibrium. Kultti and Salonen (1997) show that in supermodular games there exist a
least and greatest undominated equilibrium in pure strategies. Example 3 demonstrates
that the bounds that I have constructed may be dominated. Hence my result does not
include theirs.

Iterated deletion of weakly dominated strategies yields stronger predictions in inter-
esting applications. Kultti and Salonen (1998) study a process in which players eliminate
all weakly dominated strategies in the first step and subsequently iteratively remove all
strictly dominated strategies. They present conditions under which this process identi-
fies the lower and upper bounds of the set of equilibrium payoffs.

5. ADDITIONAL PROPERTIES
5.1 Dynamics

Milgrom and Roberts (1990) show that there is a relationship between adaptive dynam-
ics and supermodular games. To do this, they consider a time-dependent strategy pro-
file x(¢). They let P(T, t) denote the strategies played between times T and ¢, P(T, t) =
{x(s) : s € [T, )}, and say that {x(¢)} is a process consistent with adaptive dynamics if for
all T, there exists 7" > T such that for all t > T”, x(t) € Z([inf P(T, t), sup P(T, 1)]). They

define x = inf X, ¥ = sup X, B*(x) = B(B*'(x)), and B* (x) = B(B* " (x)), and show (in

4Dufwenberg and Stegeman (2002) show that iterated deletion of strictly dominated strategies may be
order dependent in infinite games if payoff functions and strategy spaces do not satisfy regularity condi-
tions.

5A full procedure stops only if it reaches a stage where there are no weakly dominated strategies.

6In fact, Kultti and Salonen (1997 and 1998) study quasi-supermodular games in which the (weaker)
assumption that u; is quasi-supermodular replaces A3 in Definition 4.
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Theorem 8) that whenever {x(¢)} is a process consistent with adaptive dynamics in a su-

permodular game, for all k there exists Ty such that for all > Ty, x(t) € [B*(x), Ek (x)].

The condition that a process is consistent with adaptive dynamics guarantees that
strategies played at time ¢ are best replies to strategies played in the not-too-distant past.
The conclusion of the theorem is that any process consistent with adaptive dynamics
must eventually stop playing strictly dominated strategies and therefore converge to the
interval of strategies with lower bound equal to the smallest Nash equilibrium and up-
per bound equal to the largest Nash equilibrium. This result is a direct consequence
of Lemma 1 and holds for ID-supermodular games. It is straightforward to modify the
result to conclude that a more restrictive class of adaptive dynamics converges to the
smaller set of strategies identified in Theorem 2.

The process {x(t)} is consistent with cautious adaptive dynamics if for all T, there
exists T’ such that for all > T’, x(¢) € Z" ([inf P(T, 1), supP(T,1)]).” Let H'(x) =
EB):[x,7), H (x) = EB); [x,7), Hf(x) = EBH () [H @), H*1@)),
and 7 (x) = EBH" ™' (@); [H* (), H' @)

THEOREM 3. If {x(1)} is a process consistent with cautious adaptive dynamics in an
ID-supermodular game, then for all k, there exists Ty such that for all t > Ty, x(t) €

(H (x), H (7).

Theorem 3 is a direct consequence of Lemma 3.

Echenique (2007) presents a modification of the procedure used to find upper and
lower bounds in the proofs of Theorems 1 and 2 to provide an algorithm that finds all
pure-strategy Nash equilibria in supermodular games. One can interpret the algorithm
as a dynamic process. Consequently, there exist adaptive processes that reach Nash
equilibria that do not survive iterated deletion of weakly dominated strategies. This re-
sult does not contradict Theorem 3. Instead it indicates that procedures that reach Nash
equilibria that do not survive iterated deletion of weakly dominated strategies are not
cautious. A critical issue is whether it is plausible to restrict attention to cautious dy-
namics. I believe that the correct answer is “it depends.” On one hand, Cabrales and
Ponti (2000) and Gale, Binmore, and Samuelson (1995) present examples of plausible
evolutionary dynamics that converge to outcomes that use weakly dominated strate-
gies. On the other hand, Dubey, Haimanko, and Zapechelnyuk (2006) introduce pseudo-
potential games. A pseudo-potential game is a game for which there exists function
¢ : X — Rsuch thatargmax, _y. ¢(x;, x_;) C argmax, _x. u;(x;, x_;). Dubey, Haimanko,
and Zapechelnyuk (2006) give conditions under which games with complementarities
are pseudo-potential games. Their results imply that finite, two-player (ID) supermod-
ular games are pseudo-potential games. Dubey, Haimanko, and Zapechelnyuk identify
several properties of pseudo-potential games, including the property that there are no
best-response cycles in generic, finite pseudo-potential games. This property guaran-
tees convergence of best reply dynamics. Weak dominance has interesting implications

"I use “cautious” in the sense of cautious rationalizability in Pearce (1984). The notion is that the adaptive
process is a best response to beliefs that place positive probability on all “recently” used strategies.
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only for games with nongeneric payoffs.® Cautiously adaptive dynamics provide a way
to extend these results to nongeneric games.

5.2 Comparative statics

So as to ask comparative statics questions, assume that there is a partially ordered set
of parameters P and there is a family of games {I'(p)} pcp, where I'(p) = {I, X, u(-; p), >}
where u: X x P— RL.

TuEOREM 4. If{T'(p)} pep is a family of ID-supermodular games and u; satisfies interval
dominance in x; and p for fixed x_;, then the largest and smallest strategies that sur-
vive iterated interval deletion of weakly dominated strategies, x;(p) and X;(p), are non-
decreasing functions of p.

The proof of this result is a straightforward modification of Theorem 6 in Milgrom
and Roberts (1990). The proof, which is provided in Appendix B, requires verification
that H and H are monotonic.

Milgrom and Roberts (1990, Theorem 7) give conditions under which it is possible
to compare payoffs of different equilibria.

THEOREM 5. LetI' = (I, X, u, >) be an ID-supermodular game. Let x; and X; denote the
smallest and largest elements of X;, and suppose y and z are two equilibria with y > z.
(i) If ui(x;, x_;) is increasing in x_;, then u;(y) > ui(z). (ii) If u;(x;, x_;) is decreasing
in x_;, then u;(y) < ui(z). If the condition in (i) holds for some subset of players I, and
the condition in (ii) holds for the remainder I \ I, then the largest equilibrium is the
most preferred equilibrium for the players in I, and the least preferred for the remaining
players.

This result holds in my setting, but one variation is worth noting. If condition (i)
in the theorem holds, then the largest Nash equilibrium is Pareto dominant (in the set
of Nash equilibria). It is possible that strategies used in this equilibrium do not sur-
vive iterated deletion of weakly dominated strategies. The upper bound in Theorem 2
may therefore not be the Pareto-dominant Nash equilibrium. Instead it will be (in fi-
nite games), the Pareto-dominant Nash equilibrium in strategies that survive iterated
deletion of weakly dominated strategies. Milgrom and Roberts discuss an interesting
classes of games (games with positive spillovers) in which equilibria are Pareto ranked.
The literature treats the largest Nash equilibrium as salient in these games. For typical
specifications of these games, the largest equilibrium is also an equilibrium that survives
iterated deletion of weakly dominated strategies.’

8The applications I study have nongeneric normal-form payoffs because they are derived from games
with a fixed dynamic structure.

9INevertheless, Theorem 5 suggests that in more general settings the Pareto-efficient Nash equilibrium
may fail to survive iterated deletion of weakly dominated strategies.
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5.3 Quasi-supermodularity

This paper concentrates on weakening the monotonicity condition (increasing differ-
ences) used by Milgrom and Roberts. Theorem 1 merely replaces increasing differ-
ences with interval dominance. Theorem 2 extends the result—again with the weaker
condition—to iterated weak dominance. In the same way, one can replace the super-
modularity assumption with quasi-supermodularity. The concepts compare values of
two quantities, which are both the difference between a function evaluated at a higher
and a lower point. Supermodularity and increasing differences require that the first
quantity is greater than the second. Quasi-supermodularity and single crossing (in-
terval dominance) require the weaker condition that the first quantity is nonnegative
(positive) whenever the first one is nonnegative (positive). It is the second implication
that is needed for the main results. That is, Theorems 1 and 2 hold if payoff functions
are quasi-supermodular. I chose not to state the more general results because I know of
no application in which payoffs are quasi-supermodular but not supermodular.'?

5.4 Identification

There is a literature that estimates supermodular games. For example, Uetake and
Watanabe (2013) use the bounds constructed in Milgrom and Roberts (1990, Theorem 5)
to generate moment inequalities. I believe that the same techniques would apply to es-
timate strategies that satisfy the refinement (surviving iterated deletion of weakly dom-
inated strategies). The bounds constructed in Theorem 2 would replace those in The-
orem 1.1 This kind of study would be consistent with research by Aradillas-Lopez and
Tamer (2008), which compares the identification power of rationalizability to Nash equi-
libria, and Molinari and Rosen (2008), who estimate level-£ rationality in a supermodu-
lar game.

There is an econometric literature that tries to identify and test monotone compara-
tive statics in supermodular games. There are two basic approaches. The first approach
(for example, Lazzati 2015 and Uetake and Watantabe 2013) is to impose monotonicity
and study the restrictions imposed by a solution concept (Nash equilibrium or rational-
izability) on data. One could ask this question instead by requiring the solution only
use strategies that survive iterated deletion of weakly dominated strategies. Theorem 2
suggests new bounds on strategies that would replace the restrictions the literature has
provided for rationalizability.

Another approach imposes no a priori restrictions and asks when a data set is con-
sistent with equilibrium behavior in a supermodular game. Lazzati, Quah, and Shirai
(2016) provide a necessary and sufficient condition for a data set to be consistent with
Nash equilibrium behavior in a supermodular game with a one-dimensional strategy

19Quah and Strulovici (2007, Theorem 1) recognize that it is possible to obtain comparative-statics results
with a weaker version of supermodularity. They demonstrate that an interval-dominance version of the
condition is sufficient for basic results.

1 QOne limitation of the approach is that Uetake and Watanabe focus on one-dimensional strategies
spaces. The ID-supermodular games that I identify in Section 6 in which weak dominance has selection
power involve multidimensional strategy spaces.
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space. A natural modification of the question is to ask whether the data set is consistent
with equilibrium behavior in weakly undominated strategies in an ID-supermodular
game.

6. APPLICATIONS

Extending the results about supermodular games from strong to weak dominance is
more than a curiosity only if there exist interesting games under which the assumptions
of the previous section hold and the arguments reduce the set of predictions. An ideal
application would be an ID-supermodular game that is not supermodular, in which
weak dominance arguments have more power to refine the set of equilibria than strong
dominance arguments and in which insights about the structure of equilibria available
from the results in this paper have substantive interest.

Examples 1 and 2 provide some evidence of the usefulness of the approach, but
these examples primarily illustrate technical points and are somewhat artificial. Sobel
(2017) shows how iterated weak dominance has the power to select outcomes in games
with preplay communication about intentions. These games are not ID-supermodular
games, but the selection arguments use partial ordering on strategies and monotonicity
properties that are similar to the methods in the current paper.

This section applies the ideas to cheap-talk games and games with competition in
persuasion.

6.1 Cheap talk

Cheap-talk games add a round of strategic behavior to an underlying game. This kind of
game is a natural place to expect weak dominance to play a role as weak dominance can
place restrictions on off-the-path behavior.

Cheap-talk games are not supermodular, but have some of the structure of super-
modular games. Strong dominance arguments do not restrict the predictions. The ap-
plication is imperfect because the game is not ID-supermodular. I must extend the the-
ory somewhat.

In a cheap-talk game, nature selects ¢ € T; one player, the sender (S), learns ¢ and
sends a message m ¢ M; the other player, the receiver (R), takes an action a € A in re-
sponse to m. A strategy for S is a mapping o : T — M. A strategy for R is a mapping
a: M — A. Assume that M is a finite, ordered set, and that A and T are equal to the
unit interval. Assume that there is a prior distribution on types; for convenience as-
sume that the prior is finitely supported and p(¢) is the probability that the type is ¢.
Payoffs depend only on a and . The payoff to player i when ¢ is the sender’s type and
a is the action of the receiver is U’(a, t). Assume that U’(.) is twice continuously dif-
ferentiable, with negative second derivative with respect to a and positive cross partial.
With this structure, order R strategies in the natural way:1? o >y o if o’ (m) > o/ (m)
for all m. Order S strategies “backward” so that ¢” > ¢’ if and only if ¢”(¢) < &'(¢) for
all £.!3 The payoff functions for the cheap-talk game are us(o, @) = EUS(a(o (1)), t) and

2Note that I use > to denote both the standard order on the real numbers and the order on strategies.
13This ordering guarantees that R’s best response on the equilibrium path increases when S's strategy
increases.
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ug(a, o) = EUR(a(o (1), 1)), where the expectation is taken using the prior on types. It
is straightforward to check that this game satisfies the transfer of decision maker indif-
ference condition of Marx and Swinkels (1997).

I describe several properties of this class of games and show how the general results
provide some insight into the structure of their equilibria.

LEMMA 4. Fori=_S, R, u;(-) is supermodular in x; for fixed x_; in cheap-talk games.

Lemma 4 follows from a straightforward argument, which appears in Appendix B.
Without further assumptions best responses will not have any monotonicity prop-
erties in the basic cheap-talk game. For example, suppose that UR(a, t) = —(a — t)? and
the prior is uniform on {0, 1/N, ..., k/N, ..., 1} for some even number N. Assume that
M contains messages n and my with my < m;. If the sender always sends my, then it is
a best response for the receiver to respond to my with 0.5 and all other messages with 0.
Denote this strategy by o**. Let
{ml if £ € [0, 0.5], 1 ifm=my,
o(t)=

and a(m)=
my ifte(0.5,1]

0 otherwise.

The receiver prefers a A a** to @ when § always sends my, but R’s preferences reverse
when § plays o. Consequently, interval dominance does not hold for R. One can also
confirm that S’s preferences violate interval dominance and that the violations do not
depend on the choice of order over S’s strategies.

Best response correspondences do have some monotonicity properties for a re-
stricted version of the cheap-talk game. Henceforth consider a monotonic restriction of
the cheap-talk game. In the monotonic restriction, the sender and receiver are restricted
to monotonic strategies (¢ is monotonic if ¢ > ¢ implies o (") > o(t'); @ is monotonic if
m” > m’ implies that a(m”) > a(m")). See Kartik and Sobel (2015) for a justification of the
monotonic restriction. I call the monotonic restriction of a cheap-talk game a monotone
cheap-talk game.

Even with the restriction to monotonic strategies, the cheap-talk game does not sat-
isfy increasing differences.

To see that the sender’s payoff does not satisfy increasing differences, let o () =0
and o’(t) = 1 so that ug(o, @) — us(o’, a) = E[US(a(0), t) — US(a(1), 1)]. The right-hand
side is not monotonic in @(0) (or in a(1)), so the increasing difference condition does
not hold.

To see that the receiver’s payoff does not satisfy increasing differences, let o/(t) = 1.
Hence ug(a’, o) does not depend on o. Fix a message m and let

0 ifm<m,
a(m) =
1 ifm>m

so that ug(a, o) — ur(e, o) = E;n<mlUR(2,0) — UR(t, 1)]. Increasing o can increase or
decrease this quantity.
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In general, the receiver’s preferences do not satisfy ID. To see this, let my denote the
lowest message and suppose that ¢'(t) > mg for all ¢, whereas o”(t) = my. It follows
that ¢” >g ¢’. It is straightforward to construct ¢’, @, and o* such that ul(ava*, o) >
uR(a, o’) but ul(a v a*, o) < uR(a, ). For example, let o’ be a separating strategy, let
a* be a best response to ¢’, and let a(m) = argmax ), Ur(a, t) p(¢) for all m.

Consequently, the general results about ID-supermodular games do not apply to this
example. So as to use the characterization results, I must weaken the ID property.

DEerFINITION 6. Let X and Y be lattices. A function f: X x Y — R satisfies the weak
generalized interval-dominance property (WID) in its two arguments on the set X x ¥
ifforall y” >y,

f(x! v t, y!) 2 f(x!’y!)
= 3di<t, f(x'vi,y)>f(x",y) suchthat f(x'viy")>f(x,y") (6

and

f(xf A t’ yﬂ) E f(xf’yﬂ)
= 3Jix>t, f(X'ALY')<f(x,y") suchthat f(x'AZy)<f(x,y). @

The WID condition is weaker than ID. Appendix C proves this result and introduces
related concepts. One way to get an intuition for WID is to compare it to single crossing,
which requires conditions (6) and (7) to hold when 7 = ¢.14

ID and WID are both conditions that relate to how solutions to max;, u;(x, y) change
with the parameter y. Fact 2 states that in an ID-supermodular game, player i’s set of
best responses are increasing in x_;, where “increasing” is interpreted in the sense of
the strong set order. If u;(-) satisfies WID, then best responses are increasing in a weaker
sense.

The next result describes a property of WID. The proposition uses the nota-
tion x** e argmax f(x,y”), x* € argmax f(x,y’), ¥* = maxargmax f(x,y”), and x* =
minargmax f(x, y').

ProrosiTioN 1. Let X andY be lattices. If the function f : X x Y — R satisfies WID and
is supermodular in x for fixed y, then fory” >y,

x* v x*eargmaxf(x,y”) and x* AT eargmaxf(x,y’). (8)

Appendix C contains a proof of Proposition 1. The conclusion of Proposition 1 cer-
tainly holds when arg max u;(-, x_;) is increasing in the strong set order (provided that
there exist solutions to the maximization problems). It is straightforward to confirm
that the monotonicity property in the proposition is actually weaker.

I say that a game I"' = (I, X, u, >) is WID-supermodular if it satisfies conditions A1-
A3 in Definition 4 and condition A4 is replaced by the requirement that u; satisfies WID
in x; and x_; on all interval sublattices of X.

14The analog to (7) in the definition of single crossing is implied by condition 1 in Definition 2.
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The class of WID-supermodular games is interesting because monotone cheap-talk
games are WID-supermodular and because the equilibria of these games have some of
the important properties of ID-supermodular games. The remainder of this subsection
reports results that confirm these claims. I show first that monotone cheap-talk games
are WID-supermodular. I conclude the subsection (Theorem 6) with the observation
that equilibria that survive iterated deletion of weakly dominated strategies have nice
bounds in WID-supermodular games.

LEmMMA 5. The receiver’s preferences in a monotone cheap-talk game satisfy WID.
Similarly, the sender’s preferences also satisfy WID but not ID.

LEMMA 6. The sender’s preferences in a monotone cheap-talk game satisfy WID.
Lemmas 4, 5, and 6 combine to establish the following proposition.

PROPOSITION 2. Monotone cheap-talk games are WID-supermodular.

Proposition 2 is useful because it is possible to extend Theorem 2. Although I am un-
able to prove an analog to Lemma 2 for WID-supermodular games, the following result
holds for WID-supermodular games.

Let inf X = x0 and sup X =%°.

THEOREM 6. Let T be a WID-supermodular game. For each player i, there exist pure Nash
equilibrium strategies x; and X; such that all strategies that survive iterated interval dele-
tion of weakly dominated strategies are contained in [x;,X;]. Moreover, there exist an in-
creasing sequence {y"}>° | and a decreasing sequence {y"};> |, where XD =x"andy’ =7,
forn>1,y"=B(y" ') andy" =By ), and x =lim,,_, o, y* and % = lim,,_, o, ".

Theorem 6 combines elements of Theorem 1 and Theorem 2. All three results iden-
tify extreme, pure-strategy Nash equilibria. The bounds in Theorem 6 are the same
as the bounds in Theorem 1. At each stage of the deletion process, the lower (upper)
bound is the smallest (largest) best response to the smallest (largest) remaining strategy
of the opponent. Theorem 6 uses a weaker assumption on preferences (weak interval
dominance rather than interval dominance), but it is not a generalization of Theorem 1
because to obtain the bounds in Theorem 6, I must delete weakly dominated strate-
gies. Theorem 6 shares with Theorem 2 the focus on eliminating weakly dominated
strategies. Compared to Theorem 2, Theorem 6 applies to a larger class of games (ev-
ery WID-supermodular game is also ID-supermodular), but delivers a less restrictive
conclusion because the bounds derived in Theorem 2 may define a strictly smaller set
than the bounds in Theorem 6.

Replacing the interval-dominance assumption with the weak interval-dominance
assumption means that it is no longer possible to guarantee that best-response cor-
respondences are increasing in the strong set order.!®> Consequently, the argument

15Best-response correspondences are increasing in the weaker sense described in Proposition 1.
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sketched at the end of Section 2 that establishes the existence of pure-strategy Nash
equilibria using Tarski’s fixed-point theorem does not apply. The existence of pure-
strategy Nash equilibrium does follow from iterating best replies.

Appendix C provides details of the modifications of earlier arguments needed to
prove Theorem 6. The proof parallels the proof of Theorem 1. The only difference is
that when WID replaces ID, the argument in Lemma 1 that establishes that any z; not
greater than a putative lower bound is strictly dominated uses ID. If I replace ID by WID,
then the identical argument only guarantees that z; is weakly dominated.

Example 3 applies to WID-supermodular games, so that the profiles x and ¥ need
not survive iterated deletion of weakly dominated strategies. If the original game is fi-
nite, then the bounds must survive iterated deletion of weakly dominated strategies.
Provided that a parameterized family of WID-supermodular games satisfies WID in own
strategy and parameter, the monotonicity of the bounds in Theorem 6 with respect to
changes in the parameter holds for WID-supermodular games. Similarly, Theorem 3
extends to WID-supermodular games.

Theorem 6 is useful: simple cheap-talk games are an example of a game that is WID-
supermodular, but not ID-supermodular. In Example 4, the upper and lower bounds
provided in Theorem 6 are equal, providing a selection result even when multiple Nash
equilibria exist.

ExamprLE 4. Assume that there are two players S and R, two equally likely states 1 and
3, three actions 1, 2, and 3, and two messages L and H. A strategy for S is a pair mym;,
where m; € {L, H} is the message sent when the sender observes state i. A strategy for
R is a pair ajay, where a;j € {1, 2, 3} is the action taken when the receiver receives the
message j. Assume that US(a, t) = —2(a—t — b)?> and UR(a, t) = —2(a — t)?, where b > 0
is a parameter that measures the conflict of interest between S and R.

The following table describes the expected payoffs.'® I have deleted strategies that
are not monotonic.

LL LH HH
11 —4,—b%* — (2+b)? —4,—b*> — (2+b)? —4,—b* — (2+b)?
12 —4,—b%* — (2+b)? —1,—b*>— (1 +b)? —2,—(1—=b)?— (1 +b)?
13 —4,—b%* — (2+b)? 0, —2b2 —4,—b*— (2—-b)?
22 —2,—(1—-b)2—(1+b)? -2, —(1—=b)>—(1+b)? -2, —(1—=b)? — (1+b)?
23 —2,—(1—-b)2—(1+b)? —1,—(1—b)2 —b? —4, —b2 — (2—b)?
33 —4,—-b%2— (2—b)? —4,—b*— (2—b)? —4,—b*— (2—b)?

This is not an ID-supermodular game. A straightforward way to see this is to note
that the best-response correspondence is not monotonic. Specifically, the receiver’s best
responses to LL, LH, and HH are {22, 23}, {13}, and {12, 22}, respectively.

The first round of deletion of weakly dominated strategies yields

16Rows represent R’s strategies; columns represent S’s strategies; cells contain row’s payoffs and column’s
payoffs.
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LL LH HH
12 —4,—b*> — (2+ b)? —1,—b* — (1 +b)? —2,—(1=b)*— (1 +b)?
13 —4,—b*> — (2+ b)? 0, —2b* —4, —b*> — (2 — b)?
2 2,—(1-b*—(1+b?*  2,—(1—-b?—(1+b?  -2,—(1—by*—(1+b)?
23 2, —(1—-b)*—(1+b)? —1, —(1 —b)? — b? —4,—b*> — (2—b)?

The second round of deletion of weakly dominated strategies yields

LH HH
12 —1,—-b*— (1+b)? -2, —(1—b)*—(1+b)?
13 0, —2b* —4,—b*—(2-b)?
22 —2,—(1—=b)>— (1 +b)? -2, —(1—b)*—(1+b)?
23 —1,—(1—b)> —b? —4,—b*> — (2—b)?

The third round of deletion yields

LH HH
12 —1,—b*— (1+b)? -2, —(1—=b)? — (1 +b)?
13 0, —2b% —4,—b*> — (2—b)?

The rest of the analysis depends on the value of b. If b < [0, 1/2], then removing
weakly dominated strategies yields the single outcome (13, LH); if b > 1, then removing
weakly dominated strategies yields the single outcome (12, HH); if b € (1/2, 1), then no
more strategies can be deleted. The game has two Nash equilibria: the pure-strategy
equilibrium (12, HH) and a completely mixed equilibrium.

Several things are worth noting. The profile (12, HH) corresponds to the babbling
(no-communication) equilibrium. It is a Nash equilibrium of the original game (with-
out deleting strategies), but when b is small, it is removed. Hence the procedure reduces
the set of predicted payoffs. Another strategy profile, (22, LL), also supports the babbling
outcome. Iterated deletion of weakly dominated strategies removes this profile. Conse-
quently, the procedure not only selects payoffs, it selects the relationship between types
and messages that support the equilibrium. When b > 0, the sender has an upward bias.
The procedure predicts that S will “exaggerate” and avoid her lowest message.

Theorem 6 specifies a particular order in which one deletes strategies. This order
preserves the lattice structure. (I did not remove all weakly dominated strategies in the
first stage.)

Finally, payoffs satisfy increasing differences in own strategy and the parameter b.
Hence Theorem 4 applies: when b is smaller, the “largest” equilibrium increases. Kartik
and Sobel (2015) study the implications of applying iterated deletion of weakly domi-
nated strategies to monotonic cheap-talk games in more detail. ¢
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6.2 Competition in persuasion

Gentzkow and Kamenica (2017) study a model of persuasion in which informed agents
simultaneously announce “information structures” to a decision maker. The decision
maker then obtains a signal induced by the join of the information structures and makes
adecision. (For example, if each agent selects a partition, then the decision maker learns
that the state of the world is in the intersection of the partition elements.) Gentzkow and
Kamenica use the model to investigate how competition between agents influences the
amount of information available to the decision maker. There always exists a full disclo-
sure equilibrium in which two or more agents announce the finest feasible disclosure
policy. Any other equilibrium is preferred by all agents to the full-disclosure equilib-
rium. One can model this situation in reduced form as a game between the agents in
which their strategies are information structures and payoffs are the expected value as-
suming that the decision maker makes optimal decision given available information.

Formally, letT" = (I, X, u, >) be such that u;(x) = U;(x1 v x5 v --- v xp). The function
u; does not satisfy the interval-dominance property in x; and x_;. To see this, let I =2,
let X; C R, and assume that x) > x{ > x| > x},. It follows that u; (x, x7) = u1 (x], x), but
it could be that u;(x{, x}) > uy(x1, x5) for all x; € (x{, x{). Nevertheless, u;(-) does sat-
isfy WID. To see this, let 7 = ¢ A x’ (for the first part of the definition) and let 7 = v x’ (for
the second part of the definition). Hence, this game will be a WID-supermodular game
provided that each U;(-) satisfies the necessary supermodularity and continuity proper-
ties. (These will certainly hold if X; is a bounded subset of R and Uj;(-) is continuous for
all i.) It follows that Theorem 6 applies to this game.

These games typically have multiple, Pareto-ranked equilibria, but iterated weak
dominance makes a selection. To see this clearly, consider the case in which U;(.) is
one-to-one. The most preferred equilibrium is defined by a disclosure level #* defined
by

m* = min{#: Uj(m) > Ui(x;) forall x; > o and all i}.

ProposiTION 3. Suppose that X; is a finite subset of R independent of i and that U;(x) #
U;(x") ifx # x'. If x is a strategy profile that survives iterated deletion of weakly dominated
strategies, max{xy, ..., xy} = "

I provide a proof of Proposition 3 and additional results in Appendix D.!”

This game fails to satisfy the Marx and Swinkels (1997) TDI property. If U;(x) = U;(x)
for x # x’, then it is possible for the set of strategies that survive Iterated Deletion of
Weakly Dominated Strategies to depend on the order. It is possible to establish a version
of Proposition 3.

APPENDIX A: DEFINITIONS

Following Milgrom and Roberts, I define several basic concepts.

17This result is part of work in progress with Keri Peicong Hu.
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DEFINITION 7. Given T C X, b € X is called an upper bound for T ifb> xforall x e T; it
is the supremum of T (denoted sup(T)) if it is an upper bound and for all upper bounds b
of T, b > b. Lower bounds and infimums are defined analogously. A point x is a maximal
element of X if there is no y ¢ X such that y > x (that is, no y such that y > x but not
x > y); itis the largest element of X if x > y for all y € X. Minimal and smallest elements
are defined similarly.

DerInITION 8. The set X is a lattice if for each two point set {x, y} c X, there is a
supremum for {x, y} (denoted x v y and called the join of x and y) and an infimum
(denoted x A y and called the meet of x and y) in X. The lattice is complete if for all
nonempty subsets T C X, inf(T) € X and sup(T) € X. An interval is a set of the form
[x,yl={z:y=z>x}.

DErFINITION 9. A sublattice T of a lattice X is a subset of X that is closed under A and v.
An interval sublattice T of a lattice X is a sublattice of X of the form [x, ¥] for some x, ¥ ¢
X, x <X. A complete sublattice T is a sublattice such that the infimum and supremum
of every subsetof Tisin T.

DEerINITION 10. A chain C C X is a totally ordered subset of X, that is, for any x € C and
yeC,x>yory=>ux.

DEerINITION 11. Given a complete lattice X, a function f: X — R is order continuous
if it converges along every chain C (in both the increasing and decreasing directions),
that is, if limyec xintc f(x) = f(inf(C)) and limycc xpsupc f(¥) = f(sup(C)). It is order
upper semicontinuous if limsup, . ; jinfc f(x) < f(inf(C)) and limsup, ¢ rysupc F(X) <
f(sup(C)).

DEerINITION 12. A function f: X — R is supermodular if forall x, y € X,
fO+fM=fxAy)+[flxvy).

DEerINITION 13. The set S” dominates §’ in the strong set order (written §” > §’) if x* € §’
and x** ¢ §” imply that x* A x** € §' and x* v x** ¢ §"".

APPENDIX B: PROOFS

This appendix contains proofs that did not appear in the main text.
Let w; = Bi(z) be the largest best response of player i to the smallest strategy profile.

ProoF OF LEMMA 2. It follows from ID that any x; <; w; is either weakly dominated by

w; or equivalent to w; in the sense that u;(x;, x_;) = u;(w;, x_;) forallx_; e [z_;,Z_;].
Note that w; is not weakly dominated. To see this, suppose that w; is a best response

to z_;. On one hand, because w; is the largest best response to z_;, w; <; w;. Conse-

quently w; is equivalent to w; or is weakly dominated by w;. Consequently, no strategy
that best responds to z_; can weakly dominate w;. On the other hand, any strategy that
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weakly dominates w; must be a best response to z_;. It follows that w; is not weakly
dominated.

Hence any strategy in E;(w;; [z;, Z;]) (a strategy equivalent to w;) is not weakly dom-
inated. I claim that E;(w;; [z;,Z;]) is a lattice. If x;, x} € E;(w;: [z, Z:]), then x; v x} and
x; A x; are best responses to z_;. Hence x; v x; < w; by the definition of w;. Conse-
quently, by ID, x; v x € E;(w;; [2;, Z;]). Furthermore, u;(x; A X}, z_;) < u;(x; v x;, z_;) for
allz_; e[z ;,Z_;]1 by ID. It follows that

2ui(x; v X}, z2q) > ui(xi v x, 2_) + wi(xi A X}, z_5)
> ui(x;, z_;) + ui(x}, z_;)

=2u;(x; v X, 2_;), (9)

where the second inequality follows from supermodularity and the equation follows be-
cause x;, x;, x; V X; € Ej(w;; [z;, Zi]). Consequently, the first inequality in (9) must be an
equation and x; A x; € E;(w;; [2;, Zi]) by supermodularity.

Because E;(w;; [z;,Z;]) is a lattice and u is order upper semicontinuous, it is a com-
plete lattice and has a smallest element, w;. I claim that w} is the smallest strategy that
is not weakly dominated. We know that w? is not weakly dominated. Take any z; #; w}.
Note that for all x; € [w], z; v w}],

wi(xivwt,z_)) —ui(x;,z_) > wi(wh, z_) —ui(x; Awf,z ;) >0, (10)

where the first inequality follows by supermodularity and the second follows because w;
is a best response to z_;. Furthermore, ID and (10) imply that

r
wi(zi vy, z_g) — uilzi, 2 > wi(wf, z_) — ui(zi Awf, z_) > 0 (1n

forall z_; e [z_;,Z_;]. Inequality (11) cannot always hold as an equation, because that
would imply z; A w} € E;(w;; [2;,Zi]), which cannot be true because w} >; z; A w} is the
smallest element in E;(w;; [z;, Z;]). Consequently, (11) implies that z; v w} weakly dom-
inates z;. It follows that w} is the smallest of [z;, Z;] that is not weakly dominated.

A similar argument demonstrates that there is a largest element of [z;,Z;] that is not
weakly dominated. O

Proor oF THEOREM 4. Let H(x, p) be the smallest strategy that is equivalent to the
largest best response to x; H(x, p) = w* exists because E;(w;;[z;,Zi]) is a complete
lattice. I claim that H(x, p) is nondecreasing in p. To do this, I will show that if
z; # w, then z; is weakly dominated relative to [z;,Z;] (in the p’ game). Note that for
all x; e [w}, z; v w],

wi(xivwy,z_;, p) —ui(xi,z_;, p) > ui(wf, z_;, p) —ui(xinwf,z_;, p) =0,  (12)

where the first inequality follows by supermodularity and the second follows because w}
is a best response to z_;. Furthermore, ID and (12) imply that for x; € [w}, z; v w}],

wi(xi v wi, z_i, p) — ui(xi, z_i, p) = wi(wf, z_i, p) — ui(xi Awf, z_;, p) >0 (13)
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forall z_; e [z_;,Z_;]. ID implies that
wi(xi v w}, z_i, p) — ui(xi,z_i, p) > 0 (14)

for all z_; e [z_;,Z_;]. Because x; A w} < w}, it follows from the definition of w} that
x; Aw} is not equivalent to w}. Consequently, the second inequality in (13) holds strictly
for some z_;. Expression (13) therefore implies that z; v w? weakly dominates z; for pref-
erences u;(-, p). Consequently, (13), (14), and ID imply that z; v w} weakly dominates
z; for preferences u;(-, p') for p’ > p. This establishes that H;(x, p) (and hence H(x, p))
is nondecreasing, because if z; ? H;(x, p) is weakly dominated, every Nash equilibrium
that survives iterated deletion of weakly dominated strategies satisfies H(x, p) < x. By
Tarksi’s fixed-point theorem, x(p) = inf{x : H(x, p) < x} is a fixed point of H(-, p), so
it is the smallest Nash equilibrium. A similar argument applies to the largest equilib-
rium. O

ProoF oF LEMMA 4. We have

us(ocva,a)+us(ocrd,a)
= E[U*(e(min{o(2), o’ (1)}), £) + U (a(max{o (1), o' ()}), 1)]
= E[U%(a(0(0)), 1) + U (a0’ (1)), 1)]
=ugs(o, @) +ugs(o’, a),
ur(ava,o)+ug(and, o)
= E[U" (max{a(o (1), & (o(1)}. £) + U (min{a(o (1)), o (o())}. 1)]
= E[UR(a(0(0), 1) + UR (@ (0(0), 1)]

=ugr(a, 0')—|—uR(a'", 0'). O

(
)

PROOF OF LEMMA 5. Assume ug(ea Vv a*, ¢’) > ug(a, ¢’). Let @* = minarg max, ug(a, o)
be the smallest best response to ¢’. From Proposition 5 (Appendix C), it sufficient to
show that if ¢” >g ¢/, then ug(a v &*, ") > ug(e, ). Let p(- | m) be the posterior
distribution over ¢ given o(t) = m. The posterior is well defined if there exists ¢ such that
o(t) = m. It suffices to prove that, for all m in the image of o”(-),

> UR(max{a(m), & (m)}, t)ug (1| m) > Y~ UR(alm), t)ugn (£ | m). (15)
t t

I divide the argument into four cases depending on whether ¢’(t) < mforall ¢, o/(t) =m
for some ¢, o/(t) > m for all ¢, or o’(t) # m for all ¢, and there exist ' and #” such that
oty <m< o' (1").

If &/(t) < mforall ¢, then ¢”(t) < m for all ¢ (recall that ¢” >g ¢’ implies ¢’ () < o’/(1)
for all 1), so m is not in the image of ¢”(-).

If there exists t such that ¢’(t) = m, then because m is in the image of ¢”(-) and
" >g o/, pg(- | m) (weakly) stochastically dominates p4(- | m). Because a*(m) solves
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maxg ), UR(a, t)po (t | m), it follows from the supermodularity of ug(-) that the solu-
tion tomaxg ), UR(a, - (t | m)is greater than a*(m) and by concavity of Ug(-, t) that
inequality (15) holds.

If ¢/(t) > m for all ¢, then &*(m) = 0 by definition and inequality (15) holds.

It remains to consider the case in which there does not exist 7 such that o/'(z) =m,
but ¢/'(t') < m < o(¢") for some ' and ¢”. In this case, define m to be

max{m’ <m : there exists  such that ¢’ (1) =m'}.

It follows that &*(m) solves max, ", UR(a, t)uo (¢ | m). Let 7= max(t: o’(t) < m}. Be-
cause o’(t) = m for some ¢, 7 is well defined. Furthermore, &*(m) < argmax U%(a, 7).
Because o” >g5 o/, uor(t | m) =0if t < 7. Hence

a*(m) <argmaxUR(a,7) < arg maxz UR(a, e (t | m)

and so (15) holds.
A symmetric argument establishes that if ¢” >g ¢/, ug(a A a**, ¢”) > ug(a, ¢”), then
ur(a Ana*™, o’) > ug(a, o’) (when a** is the largest best response to o”). O

Proor oF LEMMA 6. Assume that ug(a’, o* v ) > us(a’, o). Let * = minargmax ug(a’,
o) be the smallest best response to «’. From Proposition 5, it suffices to show that
if &’ > o/, then ug(a”, o v ¢*) > us(a”, o). It suffices to show that, for all ¢, o(t) <
&*(t) implies that US(a”(*(1)), t) = US(a" (o (1)), t). If a(t) < &*(t), then by defini-
tion of &*, US(d/(6*(t)), 1) > US(a/(o(1)),1). The inequality must be strict because
o* is the smallest best response (so type ¢ sends the highest message that leads to
the maximum available payoff) and *(¢) > o(¢). It follows from concavity of US(-, t)
that US(a"(6*(1)), t) > US(a” (o (1)), t). This inequality may be weak (if a”(5*(t)) =
(o (1))) so that ID does not hold.

A symmetric argument establishes that if «” >g o/, us(a”’, o** A o) > us(a”, o) im-
plies that ug(a”, ** A o) > ug(a”, o), where ¢** = maxarg maxug(a”, o). O

PROOF OF THEOREM 6. Let x° be the smallest strategy profile and let ¥° be the largest
strategy profile. I claim that the set of strategies that are not weakly dominated is con-
tained in [y°,y"]. Suppose z ¢ [y, "] and, in particular, suppose z; #; y°. I claim that z;
is weakly dominated by z; v y°.

Observe that B

u,-(z;vz?,ﬁ)—u, Ziy X ‘;-u(_? ) — ui z,f\y x0)>0, (16)

where the first inequality follows from supermodularity and the second inequality fol-
lows from the definition of &',3.
It follows from (16) that

u,-(z;vz?,ﬁi) > u;(z;,ﬁi). (17)
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Because z? is the smallest best response to gcl‘., it follows from WID and (17) that if
Zi Z,‘ X?, then

ui(zi VX?’ z_i) > ui(zi,z_;) forallz_;e [ﬁi,ﬂ‘-]. (18)

Because inequality (18) holds strictly when z_; = x° ; by inequality (16), it follows that z;
is weakly dominated by z; v z?. An analogous argument applies to show that if z; £; X7,
then z; is weakly dominated.

It is straightforward to continue the argument by induction to obtain a nested se-
quence of intervals [y*, 7] and to conclude that the limiting interval has the desired
properties. - O

APPENDIX C

This appendix clarifies the connection between the WID and ID conditions. I begin
by introducing a new concept and then I show its relationship to ID. I then introduce
another concept and show that it is equivalent to WID. The new definitions are trans-
parently nested, making it clear that ID implies WID. Finally, I prove that WID implies
that best responses are monotonic in a way that is implied by ID. Throughout I will as-
sume that X and Y are lattices, f(-) is a function f: X x Y — R, and argmax,_; f(x, y)
is nonempty for all intervalsJ c X and yc Y.

DEFINITION 14. Assume x* € argmax,_y f(x, y'), and x** € argmax,_y f(x, y"). A func-
tion f: X x Y — R satisfies the revised interval-dominance property (RID) in its two
arguments on the set X x Y ifforall y” > y/,

f(x.r v x*’yf) 2 f(xf’yw) S f(x! v x*’y.r.r) 2 f(x’, y.r.f)
and
f(xi' A xw’yn) > f(x’, yﬂ) = f(x’ A x”"",y’) > f(xi"yf).

RID is an awkward condition because it relies on conditions defined in terms of x*.
It is a useful formulation for some of the arguments in Appendix B. Letting x” = x’ v x*,
it follows that x” > x” and therefore the conditions in Definition 14 are implied by single
crossing. Definition 14 imposes the condition less often than single crossing. The next
result demonstrates that RID is a reformulation of ID.18

ProrosiTiON 4. Let X and Y be lattices. A supermodular function f : X x Y — R satis-
fies ID if and only if it satisfies RID on all intervals [x', x"] C X.

ProoFr oF ProprosiTioN 4. First I show that RID implies ID. If f(x”,y") > f(x,y’) for
all x e [x’,x"], then x" e argmaxy .y v f(x,y"). It follows that f(x"” v x,y) > f(x,y)
and so RID implies that f(x”, y") > f(x,y") for x € [x’, x"]. It remains to show that

181 owe this argument to an anonymous referee.
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if f(x",y) > f(x,y), then f(x",y") > f(x',y"). But if f(x',y") > f(x”",y"), then
x" € argmax, v . f(x,y") so RID implies that f(x',y") > f(x”,)"). Consequently, if
f(x",y) > f(x',y"), then f(x",y") > f(x', y"). It follows that if RID holds on all intervals,
then ID holds.

Next I show that ID implies RID. Fix an interval [x’,x"] c X. Let x* ¢
argmaXye(y xv) f(x,y") and x** € arg MaXy e[y xr] fx,y").

Let f(x v x*,y') > f(x,y’) for some x € [x/, x"].

It follows from supermodularity of f(-) that for any x € X,

fxvx*,y)+ fxax*y) > f(x,y) + f(x*, y). (19)

Because x, x* ¢ [x/, x”] implies that x A x* € [x/, x"], it follows from the definition of x*
that f(x*, y') > f(x A x*,y") for all x € [x’, x”]. Inequality (19) implies that

flxvx*,y)>f(x,y) (20)
forall x € [x', x”"]. Because x € [x/, x"], (20) implies
fxvx*,y)>f(x,y) (21)

for all x € [x, x v x*]. Because x e [x, x v x*] implies that x v x* = x v x*, it follows that
f(xvx* y)= f(xvx* y). Consequently, (21) implies that f(¥ v x*,y") > f(x, y’) for all
x € [%, ¥ v x*] and, therefore, by ID, f(x v x*,y") > f(x,y").

A similar argument establishes the symmetric implication. O

The next definition parallels RID.

DEFINITION 15. Assume y” > y/, x* € argmax,_y f(x, y"), and x** € argmax,_y f(x, y").
Afunction f: X x Y — R satisfies the revised weak interval-dominance property (RWID)
in its two arguments on the set X x Y if

f(x’ v xﬂz,y!) > f(x’, yr)

= 3x*eargmaxf(x,)'), ¥* <x*, suchthat f(x'vx*y")>f(x,y")
xeX

and

f(x.f Ax**,yﬂ) E f(xf,yﬂ)
= 3x*™ cargmaxf(x,y"), ¥ > x™, suchthat f(x'Ax*,y)<f(x,y).
xeX

It is clear that RID implies RWID. The next result shows that WID and RWID are
equivalent. Propositions 4 and 5 imply that ID implies WID.

ProposiTiON 5. Let X and Y be lattices. Assume y” > y'. A supermodular function
f: X x Y — R satisfies the revised weak interval-dominance property (RWID) in its two
arguments on the set X x Y if and only if it satisfies WID in its two arguments on the set
XxY.
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Proor of ProrosiTion 5. If WID holds, then RWID clearly holds. I want to show
that if f(x v z,y) > f(x,y), then f(x v z,y") > f(x,y") for 2 < z. Let z* =
minarg maX,ex ;- f(w, y'). It follows that x A z* € [x A z, z] s0 f(2*,y') > f(x A 2%, y). It
follows from supermodularity that f(x v z*,y) > f(x, y"). Hence RWID implies that
f(x v z*y") > f(x,y"). Because z* < z and f(z*,y) > f(z,y'), it follows that WID
holds. O

Proposition 1 (stated in the text) shows that WID implies that solutions to param-
eterized optimizations are increasing in a sense that is weaker than the strong set
order. The proposition uses the notation x** ¢ argmax f(x, y”), x* € argmax f(x, y),
X** = maxarg max f(x, y"), and x* = minargmax f(x, y').

Proofr oF ProprosiTiON 1. By definition, f(x*,y’) > f(x* A x**,y’) and, hence, by su-
permodularity, f(x* v x**,y") > f(x**, y). It follows from RWID that f(x* v x**,y") >
f(x**,y") and hence that x* v x** € argmax f(x, y”). Asimilar argument shows that when
RWID holds, ¥** A x* € argmax f(x, y'). O

Proposition 1 is a variation on Fact 2. Both results demonstrate how assumptions
on f(-) make it possible to evaluate how the set of solutions to the parameterized opti-
mization problem max,; f(x, y) change with the parameter y. Fact 2 demonstrates that
supermodularity and ID combine to guarantee that maximizers are increasing with re-
spect to the strong set order. Proposition 1 demonstrates that supermodularity and WID
combine to guarantee that maximizers are increasing in the weaker sense captured by
(8].19

LiCalzi and Veinott (1992) present several variations on single-crossing conditions.
Corollary 11 contains results that demonstrate different ways in which these conditions
can lead to monotone comparative statics with respect to different ways to order sets.
These results are in the spirit of Proposition 1 but are distinct.

APPENDIX D

This appendix provides a proof of Proposition 3.

There is a finite set of players; I denotes the player set. The strategy set for player i is
X;, afinite subset of the real line. Assume X; is independent of i. Fory = (y1, ..., y1), yi €
R, let M(y) = max{y, ..., y;}. Payoffs are given by u;(x) = U;(M(x)), where U;(-) : X = R
are arbitrary.°

DEFINITION 16. The smallest strict Pareto disclosure is
7 =min{#: Uj(m) > U(x;) forall x; > = and all i}.

19The relationship induced by the conditions in (8) need not be transitive. That is, it is possible for
argmax f(x, y;) to be distinct from arg max f(x, y») and for (8) to hold both when (yy, y2) = (', ¥”) and when
(,V],}Q} = (}’", }"}-

201f X; + Xj, then we can replace both sets by X; U X; and extend preferences by assigning a low value
to Uj(x;) for x; ¢ X;. This formulation applies to situations where the outcome x is unattractive to player i
if x ¢ X i
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DEeFINITION 17. The smallest weak Pareto disclosure is
#* = min{w: Uj(m) > U;(x;) for all x; > o and all i}.

Because the game is finite, it is clear that #* and #* are well defined and that =* > #*.
Equality will hold if U;(-) is one-to-one for each player.

Any strategy profile x that satisfies x; < = for all i and x; = = for at least two j is a
Nash equilibrium for = = #* and #*.

Full disclosure is always a Nash equilibrium in this game, but there are typically
other Nash equilibria. It is straightforward to show that pure-strategy Nash equilibria
are Pareto ranked. If x* and x** are both Nash equilibria and M (x*) < M (x**), then
wi(x*) > u;(x**) forall i.

Player i's strategy x; € X; is weakly dominated relative to X" if there exists z; € X;
such that u;(x;, x_;) < ui(z;, x_;) for all x_; € X" ;, with strict inequality for at least one
x_ieX .

Denote the set of strategies that survive IDWDS by S.

LEmMA 7. Forall x € S and every i, there exists x; € S; that is a best response to x relative
to X;.

Proor. The result is clear if the best response to x has not yet been deleted. If the best
response to x has been deleted, then it was deleted by a strategy that weakly dominates
it. This strategy must be a best reply to x. O

LemMA 8. There exists a strategy profile x € S such that max{xy, ..., x5} < @*.

Proor. Suppose that after k iterations, there exists a strategy profile x satisfying the
condition in the lemma. In the next iteration, every agent must have a strategy thatis a
best response to x by Lemma 7. The best response must do at least as well as disclosing
7*. By definition of #*, no strategy x; > #=* can do at least as well as #* against x. Hence
a strategy less than or equal to #* must remain. O

LEMMA 9. There exists no strategy profile x ¢ S such that M (x) < @*.

Proor. Let ¥ be a strategy profile that minimizes M (x’) subject to x’ surviving IDWDS.
This strategy profile exists and, by Lemma 8, M (x) < #*. Let # = M (x). [ wish to show
that 7= > #*. To reach a contradiction, assume that 7+ < #*. By the definition of #*, it
must be the case that for some i,

there exists x; with 77 < x; < #* such that Uj;(x;) > U;(7), (22)

because otherwise 7* would not be the smallest weak Pareto disclosure. Lemma 7 guar-
antees that player i has a best response to x relative to the original strategy set that sur-
vives IDWDS. Denote such a strategy by y;. I claim that y; > #. It follows from (22) that
yi # 7. Ify; < 7r, then max;;{X;} = 7, because otherwise (%1, ..., yi, ..., ¥7) would be a
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strategy profile that survives IDWDS such that M (x4, ..., i, ..., X1) < 7, a contradiction
to the definition of 7. Consequently, if y; < 7, then max;;{X;} = #. But this is impossible
by the definition of y; and (22). Hence, y; > 7 as claimed.

I next claim that y; weakly dominates ¥;. For any x_; such that M(x_;) > y;, ¥; <
M(x) < M(x_;) and so

ui(yi, x—i) = Ui(M(x_;)) = ui(%i, x_;).
For any x_; such that M(x_;) < y;,
Ui(yi) = ui(yi, x—i) = Ui(M (%3, x_)) = wi(%i, Xx_;)
from the definition of y;. It follows that y; is weakly better than %;. Furthermore,
ui(yi, i) = Ui(yi) > Ui(7) = ui(X) = ui(%i, i), (23)

where the strict inequality follows from (22) and the definition of y;. Inequality (23) guar-
antees that y; is strictly better than ¥; when x_; = ¥_;. Hence, y; weakly dominates x; as
claimed. By definition, ¥ survived IDWDS. Hence we have a contradiction. O

LemMmaA 10. No strategy z; > = survives IDWDS.

ProoF. Let Sf‘ be the set of strategies remaining for player i after k rounds of deleting
strategies. For each i, let Pf‘ = {s;k € Sf : sf > «*}. If there exists k such that U‘-Pf‘ =g,
then the proof is complete. Otherwise, let zf = min{sf : sf‘ € Pf for some i}, where
o
uj(zf,x_j) =uj(7*, x_j). For any x such that M(x_;) < zf. M (x_j) < «* by the defini-

€ P;‘ . We claim that sz is weakly dominated by #*. For any x such that M (x_;) > z;.‘ ,

tion of z¥. Hence, player j’s utility using z;,‘ is U}-(z}.k ), while player j’s utility from using
a* is Uj(=*). It follows from the definition of #* that player j does strictly better us-
ing #* than zf whenever M (x_;) < z;,‘. Because there always exists a strategy in which

M(x_j) < sz by Lemma 8, #* must be strictly better than sz against one strategy profile

that survives IDWDS. Consequently, 7* weakly dominates zf. It is possible that 7* ¢ S;.‘ ,

but in this case there must remain a strategy x? e Sf such that u}-(x}‘, x_j) > uj(m*, x_j)

for all x_; Sk i Therefore, x}‘ weakly dominates zf and so sz must eventually be

deleted. Hence there must exist a k* such that Pf' = @ for all i, which establishes the
result. O

PROPOSITION 6. If x is a strategy profile that survives IDWDS, then M (x) € [7*, =*]. Ifx
is a Nash equilibrium strategy profile that survives IDWDS, then u;(x) > U;(w*) for all i.

Proor. Lemma 9 guarantees that there are no strategy profiles with maximum less than
7*. Lemma 10 guarantees that no strategy that discloses more than #* survives. This
establishes the first part of the proposition. Given any surviving strategy x, it follows
from Lemma 7 that each player has a surviving strategy that is a best response to x_;
relative to the full strategy set. Since x; = #* leads to payoff U;(=*) for player i against
any surviving strategy by Lemma 10, the second part of the proposition follows. O
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CoRroLLARY 1. If#* = 7*, then for all x that survive IDWDS, M (x) = =*.

Corollary 1 follows directly from Proposition 6. It follows from the definition of #*
and #* that #* = #* will hold provided that U;(-) is one-to-one (no ties) for all i.
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