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Abstract: We show that nonlinear frequency pulling shifts the stability region of periodic
waveforms in strongly driven Kerr microresonators to shorter periods. Consequently, opti-

mized narrow-band combs are obtained by judiciously adjusting the period. € 2018 The Author(s)
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1. Introduction

In recent years, frequency comb sources based on Kerr microresonators have become ubiquitous. While considerable
effort has been dedicated [1] to generation of bright solitons in cavities with anomalous dispersion, several other types
of comb-producing waveforms have been generated and studied in Kerr resonators, including dark solitons [2], soliton
crystals, and periodic patterns [3,4].

In this work we present a theoretical study of periodic waveforms in Kerr cavities, also known as Turing rolls [3]
and cnoidal waves [4], from the point of view of pattern formation. These are arguably the simplest comb-forming
resonator waveforms, that arise spontaneously when external driving is increased beyond the modulational instability
threshold, and as such become a stepping stone toward the generation of other waveforms like solitons.

Moreover, even though the spectral bandwidth of periodic waveforms is typically smaller than that of solitons, they
are promising sources for applications such as the nonlinear generation of new frequencies, quantum networking, and
astrocombs. For such applications, periodic waveforms offer the distinct advantages of easy access, very good power
efficiency, and low noise levels.

In particular, for some applications it is desirable to increase the comb power by raising the external drive power, but
it has been observed [3] that for strong drive the periodic waveforms are subject to instabilities leading to chaos. How-
ever, these studies were conducted for a fixed period, typically the one corresponding to the most unstable wavenumber
of the underlying continuous wave (cw). For near-threshold powers waveforms with these periods are indeed the most
stable, but as we show here theoretically, nonlinear frequency pulling shifts the period stability window strongly to
shorter periods.

As a consequence, the period of the strongest stable comb that can be obtained for a given drive detuning is typically
significantly shorter than the central modulational instability period, and the respective maximal comb power is typi-
cally several times larger, see Fig. 1 (left). These results are derived numerically from the stationary Lugiato-Lefever
equation (LLE) [3] with free-length periodic boundary conditions.

2. Periodic waveforms

In the standard normalization the LLE takes the form
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where v is the slow electric field envelope, depending on resonator coordinate z and time #, positive and negative signs
in front of the second derivative stand for anomalous and normal dispersion (respectively), and ¢ and f > 0 are the
detuning and amplitude of the drive (respectively).

The uniform cw solutions of (1) become unstable for f > f.(o) = /2 — a(2 — &), (o < 7/4), and periodic solutions
bifurcate. The bifurcation is supercritical for a < 41/30, with central wavenumber k. = y/2(2 — ¢t). Weakly nonlinear
analysis shows that for f = f. + €, € small, the amplitude of the periodic waveform is proportional to /€.

For f far above threshold, we use standard numerical methods to seek stationary solutions of (1) subject to y,(z) =
¥, (z+z,) with the period z, as a free parameter. For a given detuning, we find that the band of allowed periods, whose
width near threshold scales as /€, continues to widen when f is increased far above f,, giving rise to arbitrarily strong
periodic solutions; when driving is very strong, however, these solutions become unstable at some point.
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3. Stability

According to the Floquet-Bloch theory, the linear stability normal modes of the LLE are quasi-periodic ¥, ,(z) =
®(n,q)(z)e*™ 4/, |q| < 1, where ®, 4 is periodic, ¢/z, is the lattice wavenumber, and 7 a discrete index. ¥ and &
are two-component vectors since for the linear stability analysis y and its complex conjugate need to be treated as
independent quantities. The corresponding eigenvalues 4, , form continuous bands as g is changed from zero to one
(reflection symmetry implies that A, _, = A, ;). The periodic waveform is stable if Re A, , < 0 for all n,q.

We solved the linear stability problem by discretizion of the linear differential operator on a uniform grid, obtaining
a g-dependent matrix whose eigenvalues are approximations to 4, ,. For a given o we find that near threshold wave-
forms with periods in the central part of the allowed window are stable, while those with period in the flanks of the
window are Eckhaus-unstable, with instability onset at g = 0, see Fig. 1 (right). This behavior persists for driving far
above threshold, yielding a band of Eckhaus-st =~ =~ T T i ’
nonlinear, instability sets in at g = 1 for suffici
delimit a finite area region of the z,-f paramete
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Fig. 1. Left: Stable periodic solutions of the LLE with anomalous dispersion, showing the imaginary
part of the field envelope Im y as a function of cavity position z, for detuning ¢ = 0, drive f = 2.7
and period z, = 0.777 (blue) and &t = 0, f = 1.8, and z,7 (red), corresponding to points a and b
in the right panel. The respective comb powers are 0.54 and 0.17, showing that comb power can
be raised significantly by adjusting the period. Right: The unshaded area is the stability region of
periodic waveforms in the space of periods z;, and drives f for & = 0. Solutions in the green-shaded
area are Eckhaus-unstable to perturbations with zero lattice wavenumber, and those in the purple
area to are unstable to z,-lattice wavenumber perturbations.

4. Generation of periodic waveforms

For a typical resonator with a large dimensionless length Z, the stable periodic solutions are defined by the intersection
of the stable region (unshaded) of Fig. 1 (right) with a sequence of vertical lines z, = Z/n. A desired solution (the one
marked on the figure by b, say) can be obtained by seeding a perturbation with the appropriate wavelength. A second
route is to choose an initial o such that the modulational instability sets in at the appropriate z,, and to adjust & and f
together adiabatically toward the desired values.
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