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Low lying oscillations of deformed nuclei
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Abstract. Low-lying oscillations of the intrinsic deformed shape of a
nucleus remain an open challenge in nuclear structure. The question or
challenge revolves around the viability of single or multiple quanta of
vibrational excitations superimposed on the equilibrium, deformed shape
of a nucleus. The K=2 or “y” vibrations are fairly widespread and
nominally conform to expectations whereas the existence of the K=0 or
“B> vibrational excitation is yet to be distinguished from other possible
origins including the coexistence of other potential minima.

1 Introduction

The 1975 Nobel prize in Physics was awarded to Bohr, Mottelson, and Rainwater with the
citation that read “for the discovery of the connection between collective motion and
particle motion in atomic nuclei and the development of the theory of the structure of the
atomic nucleus based on this connection”. They were recognized for a geometric
description of the nucleus from spherical, to deformed, and triaxial shapes with
superimposed oscillations or vibrations of those shapes. There have been many advances
since in describing nuclei in terms of sophisticated approaches and algebraic models but the
question remains about the nature of the low lying oscillations in deformed nuclei. The
lowest shape affecting oscillations are expected to be quadrupole in nature resulting in two
types of vibrations, a “f” and a “y” type of vibrations where one type of vibration is along
the symmetry axis and the other is against it with a projection of K=2* on the symmetry
axis [1]. The “y” type of vibration seems to be well characterized as the first excited K=2*
bands in deformed nuclei with typical B(E2) values of several Weisskopf units (W.u.)
connecting states to the ground state (g.s.) band. Today, however, some forty years later,
the nature of the “p” or the K=0"* excitation is still unsettled. The topic has been discussed,
questioned, challenged and redefined in numerous publications. A part of the challenge lies
in the paucity of data and also to a significant extent on the interpretation or
characterization of what a “f” vibration is expected to be. Fig. 1 [2] shows the experimental
situation in the rare-earth region of the chart of nuclides. The situation is accepted and

fairly predictable for the first excited K=2* bands but not so for the first excited K*=0" band.
Perhaps the most resounding criticism of labeling the first excited K=0" excitations as a “f3”
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vibration built on the intrinsic ground state deformation, come from the coexistence
approaches claiming that the first excited K=0* band is in fact the minimum for a
competing shape and therefore coexisting minimum in the potential. Other approaches
include calculations using a five dimensional collective Hamiltonian for the quadrupole
vibrational and rotational degrees of freedom where instead of solving a potential in  and
Y, potential energy surfaces are calculated using Relativistic Mean Field theory [3-6]. In this

approach, the first excited K*=0* excitation often ends up being a mixture of many
coexisting shapes. There is also the constrained-Hartree-Fock-Bogoliubov (CHFB) theory
together with a mapping to the five dimensional collective Hamiltonian, using the Cogny
DIS interaction in the nuclear Hamiltonian [7,8]. The aim ofthis approach is the
development of a theory of nuclear structure that is universal and includes spectroscopic
calculations for nearly two thousand nuclei. They find that many of the properties are
strongly dependent on the intrinsic deformation. On average, the predicted energies of the
yband or excited K=2* band are 12% higher than experiment whereas the predicted
energies for the first excited 0" state are systematically 50% higher [7]. The character of the
first excited 0%, is interpreted either as a p-vibrational excitation or as shape coexistence
depending on the relative quadrupole transition strengths. The result is a prediction of 0*
bands with f vibrational character for many well-deformed nuclei with 4%/2* ratios
approaching that of the axial rotor at 10/3 although they find coexistence to be more

prevalent.
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Figure 1: Systematics of the first excited K"=2* “¢”” and K-=0" bands in several rare earth
nuclear isotopes as a function of the neutron number N along with their corresponding B(E2)
values connecting the shown excited bands to members of the ground state band [2].

Our goal in this work is to discern the nature of the low-lying excited 0* states in deformed
nuclei. The Gd nuclei lie in the well-deformed rare earth region of the chart of nuclides
with 4%/2* energy ratios that vary between 3.0 and 3.33. In an earlier study [9], we had
uncovered the existence of thirteen 0* states in '**Gd with experiments at the Munich Q3D
spectrometer. Here, we report on lifetime measurements of states in the 156Gd nucleus. The
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4*/2* energy ratio is 3.27 and there are three low-lying O* bands. We report on
measurements of lifetimes and the extracted quadrupole transition strengths for 8§ members
of the three excited K=0* bands using the Gamma-Ray-Induced Doppler (GRID)
broadening technique [10] following neutron capture at the Institut Laue Langevin in
Grenoble, France. The results point to an excited K=0*, collective excitation built on the
g.s. band in comparison to a nearby and much weaker K=0*; excitation. An additional
surprise of a third excited K=0*, band emerged as a collective excitation built on the K=2*
band. We evaluate the various excitation bands in terms of quadrupole transition
probabilities as well as dynamic moments of inertia.

2 Experiments

The experiment to measure lifetimes was performed at the High Flux Reactor at the
Institute Laue-Langevin in Grenoble, France. GRID allows the measurement of the
broadening of a given transition affected by the recoil of a previously emitted y-ray. The
technique uses nearly perfect crystals of Si and Ge to measure line shapes of the transitions
of interest. The recoil velocities are very small (10* to 10° ¢) and the measured
broadenings are in the order of a few keV. Typically, there are very few known lifetimes of
the 0" band heads in nuclei and in this case, we were able to measure all three. Additionally
we re-measured some previously known lifetimes in the K=2* band.

3 Results

The resulting transition probabilities for the "°Gd from the lifetime measurements are
shown in Fig. 2 along with the systematics of the neighboring isotopes of '**!5%190Gd.
There are numerous O* states identified in '>*Gd but lifetimes are not yet available. We
report on the results for °Gd here. Lifetimes of levels in **'Gd were measured using
(n,n’y) method at the University of Kentucky.
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Figure 2: Partial level schemes are shown for the isotopes of ** 56 155 19Gd_ The B(E2) values
from the lowest K=2* bands are included as well as the K=0* bands where lifetimes are
available. The widths of the arrows are proportional to the B(E2) strengths and given in W.u.
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Below the isotope label are the energy ratios of the first 4*/2* values. The horizontal lines
represent the two proton and two neutron pairing gaps.

4 Discussion

The B(E2) values for transitions depopulating the first excited K=0* band in '*°Gd are of the
same order as those depopulating the first excited K=2* band. Indicating that the first
excited K=0", band may in fact be a “f” vibrational excitation built on the ground state in
this nucleus. We have further evidence that the second K=0%; band is much more weakly
connected to the ground state levels while the third excited K=0*, band is strongly
connected to the K=2* band. This latter band behaves as the two-phonon excitation built on

€, 0

the single phonon “y” vibrational excitation. In '°Gd, there had been an earlier
measurement of the lifetime of the K'=4* band head by coulomb excitation. B(E2) values

depopulating this state to the K* =2* band are strong however decay of the K* 4" band to the
g.s. band is K forbidden having no other open channels for decay. Also, the energy ratio of

the K* =4*/K=2"* bands is strongly anharmonic with a ratio of 1.31 instead of the expected

harmonic value of 2. The K* =0*, band starting at 1715.181 however is strongly connected
to the K=2+ band as well and shows an energy ratio of approximately 1.5. This is also
strongly anharmonic but all evidence points to the band at 1715.181 keV to be the two-

phonon vyy vibrational excitation built on the K'=2* band. Earlier works [11, 12] had pointed
to the existence of identical dynamic moments of inertia for bands of similar character

including the case for the '*Gd, K*=2* and K* =4* bands. Here we include the new K* =0%,
band shown to be the two-phonon “yy” vibrational excitation built on the “y” band by the

collective B(E2) values, in addition to the K* =4* band in Fig. 3. The dynamic moments of
inertia for single K* =2* and two phonon vibrational bands (K" =0*, K* =4"). The somewhat
puzzling point is that the K* =0 band does not have the same dynamic moment of inertia as

the K* =4* band in spite of the collective B(E2) values connecting them both to the K* =2*
band. The 5SDCH calculations within RMF approach show identical moments of inertia for
the g.s. band and the gamma band but no information regarding the two-phonon excitation

bands.
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Figure 3: A plot of the initial spins against the level energy differences for the individual levels
within a given band. Only AJ=2 transitions are considered here. The dynamic moment of

inertia for each band in '**Gd is the slope of the band. This figures shows that the K* =2* and K~
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=4* bands have identical slopes but the K* =0* band at 1715 keV has a slightly different slope if

the uncertain (6%) state is also included in spite of showing strong B(E2) transitions connecting
the band to the K=2* band.

Following on the dynamic moments of inertia for the three K=0+ bands, Fig. 4 below shows the
relation of the three excited K=0" bands. The K=0" band at 1049.5 keV connecting with collective
transitions to the ground state band has the same slope as the K=0" band starting at 1715 keV which is
connecting to the K=2" band with collective transitions. Furthermore, the g.s. band dynamic moment
of inertia is almost exactly identical to the K=0"* at band starting at 1168 keV however the quadrupole
transitions connecting them is considerably weaker.
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Figure 4: A plot of the initial spins (J) plotted against the AJ=2 of the energy levels within a
given band for the three excited K =0* bands in '**Gd. All indications here are that the K* =0*

at 1168 keV is a band of a very different nature than the other two K* =0* bands at 1049.5 and
1715 keV.

5 Conclusions

We have reported on the lifetime measurements of three K* =0* bands in the well-deformed
"Gd nucleus. B(E2) transitions indicate that the first excited K* =0* band is more strongly
connected to the g.s. band than the nearby but higher K* =0* band starting at 1168 keV. The

K" =0* band starting at 1715 keV shows strong B(E2) transitions to the first excited K =2*
band. The dynamic moments of inertia for the bands in consideration show somewhat
puzzling results.
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