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Abstract— For the past decade, botnets have dominated
network attacks in spite of significant research advances in
defending against them. The distributed attack sources, the
network size, and the diverse botnet attack techniques challenge
the effectiveness of a single-point centralized security solution.
This paper proposes a distributed security system against large-
scale disruptive botnet attacks by using SDN/NFV and machine-
learning. In our system, a set of distributed network functions
detect network attacks for each protocol and to collect real-time
traffic information, which also gets relayed to the SDN controller
for more sophisticated analyses. The SDN controller then
analyzes the real-time traffic with the only forwarded
information using machine learning and updates the flow rule or
take routing/bandwidth-control measures, which get executed on
the nodes implementing the security network functions. Our
evaluations show the proposed system to be an efficient and
effective defense method against botnet attacks. The evaluation
results demonstrated that the proposed system detects large-scale
distributed network attacks from botnets at the SDN controller
while the network functions locally detect known attacks across
different networking protocols.

Keywords—Software-defined networking, network Function
Virtualization, Botnets, machine-learning

1. INTRODUCTION

Massive compromised distributed hosts called botnets
continue to interrupt and launch various network attacks on the
Internet and other networked system applications, such as the
Internet-of-Things (IoT), Smart Grid, and health systems [2, 3,
4]. With the proliferation of botnets, attackers through botnets
illegitimately access networked devices and launch various
network attacks. For example, Mirai and its variants have
attacked the Internet infrastructure to disrupt communications
and operations [5, 6], launching more than several thousand
attacks in 2017 [6]. The complexity of diverse heterogeneous
networked devices and applications along with diverse network
protocols makes it difficult to develop a generalized and
integrated security framework against botnet-related attacks.

Software-defined networking (SDN), providing the
flexibility and the visibility of networks through programmable
forwarding decisions, has changed the direction of defense
methods against various network-based attacks [25, 28, 29,
30]. With Network Function Virtualization (NFV), replacing
hardware middleboxes with software-based network appliances
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in virtualization, SDN enables us to develop a scalable and
elastic defense against increasingly disruptive distributed
denial-of-service attacks [7, 9, 27]. Many security solutions
using SDN/NFV to defend against network attacks have been
proposed for the past decade [6, 8, 9, 10, 11, 20, 26, 27, 13, 14,
16, 29]. They have mostly focused on network security issues
related to the infrastructure of SDN/NFV itself [20, 27]. Some
previous research has addressed network intrusion detection
systems by implementing security applications on top of the
SDN controller [9, 14, 29]. These solutions assume that all the
traffic must first be transferred to the controller, which creates
a bottleneck hampering timely intrusion detection. The
overhead of having the traffic go through the controller only
gets exacerbated with botnets because of the diversity of the
routing paths that the attack traffic will take, further
challenging the practicality of the solutions in the literature. In
addition, the large scale of distributed botnet attacks and their
various malicious actions create challenges in achieving
scalability and flexibility as network size explodes, low latency
to respond to network dynamics, and easy integration with
different network types and applications.

In this paper, we propose an SDN/NFV-based security
framework to detect and mitigate botnet attacks by using
SDN/NFV with a machine-learning technique. The proposed
system implements virtualized network functions to
immediately detect network attacks in the data plane by using
NFV and the SDN controller to detect distributed stealthy
botnet attacks using machine-learning in conjunction with
NFV. In other words, the defense framework is divided in two
parts: the data plane and the control plane. NFV in the data
plane manages virtual network functions (VNF) in order to
detect network attacks and to make a service chain of the VNFs
according to traffic types. In addition, one of the VNFs keeps
monitoring traffic and collecting the feature set information to
be transferred into an SDN controller for machine-learning-
based intrusion detection. The SDN controller in the control
plane makes a routing path decision and orchestrates VNF
security services into the Internet with network
programmability. With a machine-learning-based network
traffic analysis, the controller detects and defends against
abnormal network behavior with the real-time feature sets from
the VNF.

In the proposed system, the SDN controller works with the
virtualization manager to monitor network behavior and to



collect data from source to destination. It performs two steps to
detect botnet attacks. The first detection action is performed by
each network function, each targeting a specific attack related
to each network protocol. The second detection action is
conducted by machine-learning analysis in the SDN controller
by extracting real-time traffic characteristics. Through this two-
level defense method, the SDN controller detects, or in the
alternative mitigates, potential botnet attacks and its variants
by dropping malicious traffic. Therefore, our system not only
detects and analyzes an attack but also prevents the
propagation of the attack impact via defensive routing.
Compared with the previous works, which forward all the
traffic to the controller for intrusion detection, the proposed
system needs to send only feature set information to the SDN
controller. The controller can easily obtain real-time traffic
information through one of the virtualized security network
functions, called feature extractor in the data plane. In addition,
well-known attacks can be immediately detected by individual
VNFs to prevent a potential protocol vulnerability in a
network.

This paper contributes to botnet security in the following
aspects. First, we proposed an integrated multi-dimensional
network intrusion detection system (NIDS) against various
botnet attacks based on the emerging network technique of
SDN and NFV. Second, we achieve a real-time machine-
learning-based NIDS in the SDN since our designed VNF
keeps extracting feature sets from real-time traffic and sends
them to the SDN controller for further detection of distributed
network attacks. Third, to the best of our knowledge, we are
the first to integrate machine-learning with both SDN and NFV
while VNFs keep extracting traffic feature sets for real-time
data analysis. Most machine-learning-based intrusion detection
systems have limitations to analyze real-time traffic. Fourth, by
using NFV and its flexibility, we implemented many security
network functions for various network protocols to detect
network attacks. Our system design provides customizable IDS
with high cost-efficiency, and high flexibility and elasticity to
deploy VNFs. Finally, we evaluate the proposed system and
compare it to historical malicious data sets and simulated
botnet traffic to demonstrate the effectiveness and the
efficiency of the proposed system.

The paper is organized as follows. Section II summarizes
related work. Section III presents our proposed system and
explains each component of the proposed system in detail.
Section IV explains our implementation and presents our
experimental results to show our system’s effectiveness.
Finally, we discuss our method and our future plans in Section
VI and present our conclusion in Section V.

II. RELATED WORK

A botnet consists of compromised hosts (i.e. bot agents), a
botmaster, and command and control (C&C) servers to carry
out malicious activities on the Internet. Most of botnets utilize
DNS to host their command and control (C&C) servers and
they keep communicating with each other via HTTP to receive
commands and to send their results to the remote servers
managed by botmasters. Intensive traffic analysis for HTTP
and DNS has been performed to detect and mitigate botnet-
related attacks [5, 6, 28, 52]. Maryman and Alireza
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summarized all possible botnet detection methods: signature-
based, anomaly-based, DNS-based, mining-based botnet
detection approaches [28]. However, most of these rely on
botnet protocols and, except for one DNS-based botnet
detection method, none of them allow us to detect botnets in
real-time [28]. In spite of extensive efforts, botnets still
proliferate to negatively impact networks. The anonymity of
botmasters and various communication protocols over a wide
range of network topologies make it difficult to defend against
botnet attacks [28]. Therefore, to effectively and efficiently
monitor and defend against such large-scale distributed
botnets, a new security framework is needed for real-time
monitoring and detection system.

The widespread use of SDN in recent years has brought
with it a number of new security issues involving the three
main layers of SDN: the application layer, the control plane
(controller), and the data plane [12, 17, 25, 30]. One problem is
that network applications in the controller threaten the
controller's resilience because fallacious applications can cause
fatal instabilities, unexpected vulnerabilities, and loss of
network control [20, 26, 27]. Network intrusion detection
systems in SDN using machine-learning have been proposed to
detect network attacks [13, 14, 16, 29]. They are limited to
monitor real-time traffic and focused on data analysis without
real-time flow information and NFV. Hardware-based NFs
present significant drawbacks including high costs,
management complexity, slow time to market, and non-
scalability, to name a few [18, 19]. Different control
frameworks for virtualized NFs have recently been proposed to
address the safe scaling of virtual network functions [21, 22,
23, 24]. Fayaz et al. proposed Bohatei, a flexible and elastic
virtual DDoS defense system to effectively defend against
DDoS attacks [7]. While Bohatei focused on only DDoS
attacks by using only SDN/NFV with Bro, we developed our
own security network functions to detect various network
attacks and botnet attacks based on machine-learning with
NFV/SDN. To achieve our ultimate goal, NFV monitors and
collects real-time traffic information under the control of SDN.

III. OUR APPROACH

A. System Overview

To defend against network attacks generated by botnets,
our paper proposes a multi-dimensional intrusion detection
system by using SDN and NFV. Our proposed system is
scalable and elastic, enabling it to monitor large networks by
analyzing incoming traffic and collecting traffic information at
various entry points on the Internet. Figure 1 shows the overall
system architecture using SDN and NFV to defend against
botnet attacks, utilizing the full functionalities of SDN and
NFV to monitor malicious traffic in real time.

As in Figure 1, the SDN controller has three main
functions; (1) making routing path decisions to maximize
network utilization and fast virtual NIDS orchestration
services, as described in Section III C; (2) performing
machine-learning based network monitoring to detect
malicious traffic by using the Random Forest algorithm, which
might be missed by the VNF, and thus improve attack accuracy
as explained in Section Section III D; and (3) managing flow



rules to change network behavior, e.g., bandwidth control,
through the programmable data plane in switches, as presented
in Section III E.

The NFV in Figure 1 plays an important role in defending
against common protocol-specific attacks by using different
network functions (NF) for different protocols. First, it
provides the intrusion detection VNF management to maintain
a pool of NFs with a virtual machine manager, as described in
Section III B. Second, it dynamically spawns a chain of VNF
services according to traffic characteristics instead of
monolithic bulky virtual instances, as in Section III C. Lastly,
one of the VNFs collects various information from real-time
incoming traffic to be provided for machine-learning-based
NIDS in the SDN controller. Figure 2 presents detailed system
components to achieve our ultimate goal. In the following
subsections, we now describe each component.
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Fig. 1. An integrated multi-dimensional network intrusion detection system
based on SDN/NFV

B. Virtual Network Functions for Intrusion Detection

We first implement individual intrusion detection functions
for protocol-specific network appliances for virtual network
functions, which we refer to as the micro intrusion detection
network function (mVNF). Figure 2 shows its components: a
traffic classifier, protocol-dependent VNFs, and a feature
extractor with service-chaining by a virtual machine manager.
The virtual machine manager virtualizes a set of mNFs to
provide micro-services in NFV with unique features: cost-
efficiency in resources, customization, scalability, and
reusability since the micro-services architecture breaks down a
single large application into smaller components to
individually utilize a particular service in a scalable and
flexible way [32, 33]. Instead of using the existing bulky
monolithic IDS, we design each intrusion detection component
for each communication protocol from the application layer to
the network layer to include various protocols popularly used
in botnets [34], such as HTTP and DNS.

The set of micro-NF (each of which are denoted by mVNF
where i distinguishes the virtual network security functions) is
implemented to defend against well-known network attacks
related to each network protocol, such as HTTP, DNS, TCP,
UDP, ARP and IP. For example, if botnets are using a DNS
protocol to identify their C&C servers, our system needs to
examine traffic with the VNFs of DNS and UDP. In addition,
when bots deliver malware into the Internet, the host needs to
be compromised, for example by spoofing based on the ARP
protocol. Thus, the first defense method should detect such
ARP-related attacks to prevent bots from compromising hosts.
The proposed system implements an individual m VNF; function
for each network protocol while considering various attack

techniques. In addition, the traffic classifier is another mVNF;
function to identify traffic types according to each protocol, as
shown in Figure 3. The traffic classifier classifies incoming
traffic types to form the correct service chain of VNFs for each
protocol. Depending on the traffic type, a set of VNFs needs to
be spawned to monitor traffic according to traffic
characteristics.

The most important function of VNFs is a feature extractor
(mVNF i) in the data plane for the machine-learning-based
intrusion detection in the control plane. The feature extractor
keeps monitoring incoming traffic and extracting information
for feature sets that must be used for machine-learning analysis
for intrusion detection in the controller. The number of feature
sets ranges from ten to several hundreds, depending on
different machine-learning algorithms. Because of performance
bottlenecks in the switches, a lot of data for feature sets cannot
be extracted inside switches even though the statistical
manager in the SDN controller keeps polling the traffic
statistical information for simple traffic monitoring. Therefore,
it would be critical to implement a separate VNF dedicated to
feature extraction for machine-learning for timely detection.
The feature extractor function keeps extracting real-time traffic
features, such as IP addresses, port numbers, service types,
packet sizes, which are transferred into the SDN controller for
machine-learning analysis for intrusion detection. Botnets
usually launch distributed attacks by coordinating with a group
of bots remotely. Stealthy distributed botnet attacks can be
identified by machine-learning analysis in the control plane
with real-time traffic information. Thus, our proposed system
implements a special purpose virtual network function which
mainly extracts all packet information to be used for feature
sets across the Internet. The machine-learning method for IDS
in the controller is described in detail in Section III D. For
example, if the traffic classifier identifies incoming traffic as
HTTP traffic, our system makes a chain of at least three mVNF
functions such as, HTTP, TCP, and the feature extractor.
Therefore, to monitor network attacks related to HTTP traffic,
we have a virtual intrusion detection network function
(VNIDS) with these three network functions expressed as
VNIDS: = {mVNF 1, mVNF>: mVNF3} (Note that i is the
number of mVNF;). Any set of VNIDS can be distributed
throughout the Internet.

Each micro-NF (mVNF;) examines standard protocol
specifications according to each RFC for each protocol in order
to validate packet header information compliance and also
includes a detection method to identify well-known network
attacks related to each protocol, such as HTTP attacks [48, 55],
DNS [40, 41], TCP attacks [42, 43, 44, 45], UDP attacks [34],
ARP attacks [15], and IP attacks [31]. Due to space limitations,
we have omitted a detailed explanation of each attack related to
each protocol, and explain only HTTP and DNS protocols,
which are the main protocols used by botnets. First, we verify
all HTTP and DNS header information according to RFC 7231
and RFC 1035 and related standard documents. We implement
a detection method to identify known DNS attacks such as
DNS bomb attacks, DoS attacks using recursive DNS queries,
and DNS amplification attacks. The micro-NF (mVNF; ) for
HTTP protocols can detect HTTP flooding attacks by using
GET or POST commands. To detect such attacks, we check a



specific value to detect a specific action, for example setting a
recursive bit in DNS or setting a threshold to count the number
of particular packets to detect DoS attacks. In addition, we
compare source IP addresses with destination IP addresses for
the same origin security policy to detect a man-in-the-middle
attack by using ARP. Details of implementation are explained
in Section I'V.
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Fig. 2. The procedure of each componet for the proposed distributed security
framework based on SDN/NFV.

C. Routing Path Decision and Orchestration

The SDN control plane keeps monitoring current network
topology and network bandwidth usage to determine the best
path from source to destination instead of the shortest path
routing algorithm popularly used for routing in SDN. To
measure effective bandwidth, the controller polls byte rates
(i.e. transmission rates) for each port in the switches. The
controller computes the maximum bandwidth by evaluating all
possible paths (Pj = {Pi2 P13, ...., Pj}, Note that i,j= {1, ...,
n}) between a source (i) and a destination (j). The controller
then selects the highest available bandwidth path after
considering all paths. The total bandwidth is B=X'(b;) (i.e.
ij={1, ..., n}) for all paths between two nodes after summing
each link bandwidth b; for each path Pj. Note that b; is the
link bandwidth between a node N; and its neighboring node N;
(not a destination node). Therefore, the controller chooses the
most available bandwidth (i.e. the maximum total bandwidth
(B)) from source to destination.

With the maximum available bandwidth, our proposed
system maximizes network utilization based on high
transmission rates and fast traffic processing times to
efficiently provide our security services. When the controller
determines a routing path, the controller orchestrates security
services in the designated path by making a chain of security
services with the virtual machine manager in NFV on switches.
Figure 3 shows an example of service chaining for NFV
orchestration in the proposed system. The SDN controller
keeps communicating with the virtual machine manager to
provide VNF services for network intrusion detection on
designated paths from source to destination. Figure 3 shows
security services for HTTP, DNS, TCP, UDP and IP along
with the traffic classifier used to recognize specific traffic
types. The service chain of VNFs can be deployed linearly or
in parallel. When the traffic classifier recognizes traffic types,
other VNFs can examine traffic in parallel. For example, after
classifying HTTP traffic using the traffic classifier, the VNF
for HTTP, the VNF for TCP, and the VNF for the feature
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extractor can examine traffic in parallel for fast traffic
processing time.
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Fig. 3. VNF orchestration services

D. Machine-learning-based Network Monitoring

As shown in Figure 2, the SDN controller continues to
monitor real-time traffic using a machine-learning algorithm to
detect malicious traffic. First, with the public botnet dataset
(CTU-13 [53]) as described in Section IV, the proposed system
has an attack model generated by the Random Forest algorithm
[37]. Our proposed system does not focus on machine-learning
techniques themselves, so we will not detail the machine-
learning techniques used to generate an attack model by using
the Random Forest algorithm. We used eleven feature sets to
generate an attack model by using the public dataset. The
feature sets included traffic information including
source/destination addresses and port numbers, flags, type of
services, protocols, and bytes. The SDN controller collects the
feature set information of real-time traffic using the feature
extractor network function in the data plane, retains the attack
model with the public dataset using the Random Forest
algorithm in the control plane, and utilizes the attack model to
detect real-time botnet attacks.

Different from typical machine-learning-based intrusion
detection systems, which rely solely on historical data analysis
for network intrusion, the proposed system also analyzes and
collects real-time traffic information through the feature
extractor as a virtual network function in NFV. With the help
of NFV, the controller effectively uses the generated attack
models to monitor real-time traffic. In other words, the attack
model is generated with well-defined historical datasets. The
distributed feature extraction network function on the Internet
continues to monitor and collect the feature information in the
data plane to be used by the machine-learning algorithm in the
controller. Most machine-learning techniques require a huge
set of feature information, which overwhelms the switches,
slowing transfer to the statistical manager in the SDN
controller; hence, our designed feature extraction virtual
network function in NFV plays an important role in addressing
this problem and providing real-time traffic analysis to
improve machine-learning-based intrusion detection in SDN
with NFV. The controller makes a decision as to whether
incoming traffic in SDN is malicious or not within a given
confidence score by matching incoming traffic with the
generated attack models. The controller drops incoming traffic
when the match with existing attack models exceeds that
threshold.

E. Flow Rule Management

As a threat response module, the flow rule manager in the
SDN controller in Figure 2 reacts to intrusion detection by
controlling current bandwidth and installing new flow rules.
When abnormal behavior is detected, the SDN controller



pushes new flow rules to drop malicious packets, such as
DoS/DDoS and other network attacks, or to reduce bandwidth
to slow down massive traffic, such as elephant flows or
unknown traffic, which degrades network performance. There
are many network attacks that can be countered by just
modifying the network bandwidth to some extent [35, 36]. The
value of the bandwidth is determined by the controller, making
it possible for the system to scale up and scale down the
bandwidth as needed. The virtual security network functions
immediately drop malicious packets when attacks are detected
by virtual security NFs in NFV, e.g., deterministic attack
patterns. Based on these threat response methods in the SDN
controller, the proposed framework autonomously mitigates
network abnormalities while improving overall network
utilization.

IV. EVALUATION

A. Implementation and Setup

We implemented our proposed system by using ClickOS
[38] with Click version 2.0.1 and Xen hypervisor version 4.4.1
and Floodlight version 1.2 [39]. ClickOS is an open source
network function virtualization platform, consisting of a set of
click elements to develop various network functions [38]. We
implemented eight separate click files (HTTP, DNS, TCP,
UDP, IP, ARP, a traffic classifier, and a feature extractor) into
ClickOS by adding many new click elements to cover various
network attacks for each protocol. For example, the traffic
classifier was extended by utilizing IPFilter and IPClassifier in
ClickOS to classify various protocols including the application
protocols like HTTP and DNS. The DNS click file includes a
function to examine the DNS header information and to detect
DNS-related attacks, such as DNS bomb attacks [40], DNS
recursive query attacks [41], and DNS flooding attacks. The
TCP click file includes a detection function for TCP SYN
flooding attacks, TCP RST attacks, and attacks related to TCP
sequence numbers [42, 43, 44, 45]. The machine-learning
system in Floodlight was implemented in Python and the flow
rule management was implemented in REST APIs to push
commands to change flow tables through the SDN controller.

Figure 3 shows our testbest in CloudLab, an open cloud-
based laboratory supported by NSF [1]. We created six hosts in
different servers in CloudLab and three hosts were installed
with Open vSwitch version 2.3, one SDN controller and two
end hosts. Each host had Ubuntu 14.0 with two Intel core 2.9
GHz with 8GB RAM. For malicious traffic, we used BoNeSi
[46], the DDoS botnet simulator to generate HTTP flooding
and DNS attacks. As described in Section III D, to generate an
attack models for botnets, we used CTU-13 datasets [53] which
were botnet traffic datasets collected by CTU University in
Czech Republic. The CTU-13 datasets included various botnet
attacks like spam and DDoS attacks with IRC, P2P or HTTP
protocols.

Fig. 4. Testbed in CloudLab
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B. Experimental Results

We evaluated various aspects of our proposed system,
including processing time, CPU usage, throughput, and
network latency. In addition, we tested the performance of our
feature extractor with machine-learning analysis in the SDN
controller.
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Fig. 5. CPU Usage

CPU Usage: Figure 5 shows the CPU usage according to
the number of network functions. As the number of each VNF
increased, the CPU usage also increased. However, up to 20
VNFs, the proposed system used around 3.5% of CPU in total.
For memory usage, the entire ClickOS only required SMB with
quick booting time as presented in [38]. Regardless of the
number of VNFs, our proposed system also required somewhat
less than SMB.
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Fig. 6. Processing Time (Note that the results shows the combination of
different by mVNF:. VNF. is a traffic classifier. VNFy. is a feature extractor.
The other VNF is related to each protocol.)

Processing Time: Figure 6 presents traffic processing time
at different settings of various VNFs in a single switch. We
generated different transmission rates from source (Host 1) to
destination (Host 2) with different combinations of VNFs in
linear or in parallel. Both Case 2 and Case 3, which have linear
service chains of four or five VNFs, showed the slowest
processing times since the traffic had to be linearly and
individually examined. Except for these two cases, other test
cases demonstrated that each VNF is able to nearly double the
processing speed of analyzing all the traffic. As traffic size
increased, the processing time also increased only slightly in all
cases, even when many NFV functions were running in
parallel.
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Network Performance: Figures 7 and Figure 8 show
throughput and network latency of our proposed system with or
without attacks to demonstrate the effectiveness of our system
by showing the throughput increase/recovery as the network
controller adapts the network flow control. 1GB of benign
traffic, excluding the attack traffic, was sent from Host 1 to
Host 2. In Figure 7, to evaluate our proposed system, we
generated 10GB of attack traffic by using BoNeSi. The
experimental results demonstrated that with attack traffic, our
system using SDN/NFV can rapidly recover the original
throughput and small network latency. Figure 8 shows the
network latency at different transmission rates. We generated
the same amount of attack traffic with each transmission rate to
measure the network latency. For example, when we sent
10GB traffic, we also generated 10GB DNS attack traffic by
using BoNeSi. Under serious attacks, our system showed a
little network latency which was comparable to the original
SDN system without attacks. Therefore, these experiments
demonstrated the effectiveness of the proposed system to
detect attacks using SDN and NFV.

Performance of machine-learning analysis: We tested the
botnet attack datasets from CTU-13 datasets [53] to generate
an attack model in the SDN controller. The dataset had a total
of 10,48,576 network flows with a total data size of around
24MB. The dataset included 500 botnet flows and 500 normal
flows, as described in [52], we used the ten features, such as
duration, source and destination addresses, source and
destination port numbers, service types, total packets and bytes,
protocol, flags. 70% of the datasets used were for training sets,
and the rest of the datasets were used for testing sets by
randomly selecting data. When the confidence socre is 0.5, our
results showed 100% accuracy along with a 92% true positive
rate and a 10% false positive rate.

To test real-time botnet attack detection with the generated
attack models of the CTU-13 datasets by using SDN/NFV, we
evaluated synthetic traffic generated by the BoNeSi simulator,
and real Mirai traffic generated by the public Mirai code [49].

To capture the Mirai traffic, we ran the Mirai code in
Raspberry Pi and captured traffic using WireShark. In addition,
we generated BoNeSi traffic to evaluate our proposed system.
The feature extractor in ClickOS collected feature information
for the captured synthetic and real botnet traffic (i.e. Mirai) for
machine-learning analysis in the controller. Table I shows the
results of our machine-learning analysis with real-time traffic.
For BoNeSi, we collected 34,915 flows in total with 14MB.
We obtained 6,930 Mirai flows in total with 831KB. Our
results for Mirai traces showed 100% accuracy along with a
98% true positive rate and an 11% false positive rate. BoNeSi
traces resulted in 98% accuracy with a 92% true positive rate
and a 12% false positive rate. As expected, with the historical
archived known attack data sets, the machine-learning
algorithm gave good results to detect botnet attacks. As future
work, we will reduce false positive rates for real-time
malicious traffic with the trained attack model through a
sophisticated feature engineering technique [50, 51].

TABLE L THE RESULTS OF THE RANDOM FOREST ALGORITHM
CTU-13 Dataset | BoNeSi | Mirai
True Positive 0.92 0.92 0.98
False Positive 0.10 0.12 0.11
Accuracy 1.00 0.98 1.00

V. DISCUSSION AND CONCLUSION

This paper proposes a distributed security system using
virtual security functions in NFV with an SDN controller to
defend against botnet attacks. The security network functions
detect well-known protocol-specific attacks while continuing
to extract traffic feature set information in the data plane for
further machine-learning analysis in the controller. By
combining SDN with NFV, the proposed system can monitor
incoming traffic on the switches and detect malicious behavior
in a network in real time, while matching real-time traffic
information with an attack model generated by machine-
learning. This work produced an initial integrated security
system based on SDN/NFV by utilizing the main
functionalities of those new technologies combined with
machine-learning. To improve our proposed system, we first
need to cover more protocols and attacks to defend against
general attacks and botnet attacks. Second, attackers can
generate false datasets to defeat machine-learning analysis. To
improve our machine-learning analysis, we need to distinguish
fake datasets and authentic datasets through more sophisticated
virtual security network functions against adversarial machine-
learning problems. Last, we can embed more threat response
methods instead of controlling only flow rules.
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