
Why Johnny Can’t Make Money With His Contents:
Pitfalls of Designing and Implementing Content Delivery Apps

Sze Yiu Chau
Purdue University
schau@purdue.edu

Bincheng Wang
The University of Iowa

bincheng-wang@uiowa.edu

Jianxiong Wang
Purdue University

wang1822@purdue.edu

Omar Chowdhury
The University of Iowa

omar-chowdhury@uiowa.edu

Aniket Kate
Purdue University
aniket@purdue.edu

Ninghui Li
Purdue University

ninghui@purdue.edu

ABSTRACT
Mobile devices are becoming the default platform for multime-
dia content consumption. Such a thriving business ecosystem has
drawn interests from content distributors to develop apps that can
reach a large number of audience. The business-edge of content
delivery apps crucially relies on being able to e�ectively arbitrate
the purchase and delivery of contents, and govern the access of
contents with respect to usage control policies, on a plethora of
consumer devices. Content protection on mobile platforms, espe-
cially in the absence of Trusted Execution Environment (TEE), is
a challenging endeavor where developers often have to resort to
ad-hoc deterrence-based defenses. This work evaluates the e�ec-
tiveness of content protection mechanisms embraced by vendors
of content delivery apps, with respect to a hierarchy of adversaries
with varying real-world capabilities. Our analysis of 141 vulnerable
apps uncovered that, in many cases, due to developers’ unjusti�ed
trust assumptions about the underlying technologies, adversaries
can obtain unauthorized and unrestricted access to contents of
apps, sometimes without even needing to reverse engineer the
deterrence-based defenses. Some weaknesses in the apps can also
severely impact app users’ security and privacy. All our �ndings
have been responsibly disclosed to the corresponding app vendors.

CCS CONCEPTS
• Security and privacy→ Digital rights management; Cryptanal-
ysis and other attacks; Access control; Authorization; Mobile and
wireless security; Software security engineering; • Applied comput-
ing→ E-commerce infrastructure;

ACM Reference Format:
Sze Yiu Chau, Bincheng Wang, Jianxiong Wang, Omar Chowdhury, Aniket
Kate, and Ninghui Li. 2018. Why Johnny Can’t Make Money With His
Contents: Pitfalls of Designing and Implementing Content Delivery Apps
. In 2018 Annual Computer Security Applications Conference (ACSAC ’18),
December 3–7, 2018, San Juan, PR, USA. ACM, New York, NY, USA, Article 4,
16 pages. https://doi.org/10.1145/3274694.3274752

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC ’18, December 3–7, 2018, San Juan, PR, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6569-7/18/12. . . $15.00
https://doi.org/10.1145/3274694.3274752

1 INTRODUCTION
The ubiquity of mobile devices has encouraged content owners (e.g.,
publishing houses and record labels) to tap into the online business
ecosystem in an attempt to reach a larger number of audience. As
a result, they often retain the service of app-developing content dis-
tributors to adapt to this emerging trend of customer engagement.
The role of content distributors is focused on developing mobile
apps tailor-made to �t the form of the contents and the business
model of content owners, and providing continuous technical sup-
port in updating and distributing digitized contents (e.g., magazines
and music). For maintaining their business edge it is crucial for the
content distributors to ensure that the end users cannot easily have
unfettered access to the raw, high-quality reproduction of contents
in their devices, even in the cases where the digital contents can
be consumed without Internet connectivity (e.g., o�ine playback).
The overarching goal of this paper is to systematically identify (and,
in the process, educate developers about) design weaknesses in content
delivery apps that can grant users unauthorized and unrestricted
access to the underlying content.

At a �rst glance, it may seem that the design of an e�ective
content protection mechanism boils down to e�ectively enforcing
Digital Rights Management (DRM). We however argue that there is a
subtle distinction between the two. DRM enforcement is concerned
about regulating user’s access to the content after the content (and,
the corresponding usage control policy and other bootstrapping
information) has been securely delivered to the user’s device. On
the other hand, content protection mechanisms, especially in the
context of online content distribution, also have to guarantee reli-
able receipt of payments and secure delivery of contents (and the
accompanying control policies) to the user device.

In this paper, we demonstrate that, in many cases, an adversary
(the device owner in our context) can modify the enforcement pol-
icy 1 while it is being delivered to the device during bootstrapping,
to achieve unfettered access to raw contents.

The challenges of e�ective content protection enforcement is
further exacerbated by the fact that content distributors, to increase
their audience reach, often need to support a plethora of (legacy)
devices running various (legacy) versions of operating system (OS).
Even after successful bootstrap, e�ectively enforcing DRM, with-
out considering the analog loophole problem—the Achilles’ heel of

1 Readers may question the rationale of delivering the usage control policies during
app bootstrap, instead of having them hardcoded inside the apps. Delivering policies
during bootstrap allows for �exible customization of various aspects of the policies
(for instance, number of free trials allowed), to better �t the business decisions.

236

https://doi.org/10.1145/3274694.3274752
https://doi.org/10.1145/3274694.3274752

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA S. Chau et al.

any DRM systems–is a challenging ordeal and requires content
distributors to conceal secret states in a potentially hostile execu-
tion environment. In di�erent systems, secret states manifest in
various aspects of the underlying mechanisms, for example the
content encryption keys, authorization tokens, subscription status,
or even the raw content itself. The general consensus is that ef-
fective DRM enforcement is feasible on a device equipped with a
trusted execution environment (TEE). Technologies like the ARM
TrustZone have been available on the hardware architecture level
for some years now. Nevertheless, various system-on-chip (SoC)
vendors have come up with di�erent TEE implementations that do
not seem to conform to the same API standard [20]. Together with
the fact that TEE vendors often adopt a tight admission control
model, currently it is still somewhat di�cult to develop widely
deployable apps that uses TEE for DRM needs, especially on rel-
atively low-end and legacy devices that do not have the trusted
images preloaded. Due to this lack of a generic secure solution that
is applicable to all hdevice, OSi pairs, developers often resort to a
best-e�ort, deterrence-based enforcement of DRM—specialized for
each hdevice, OSi pairs—where the main objective is to raise the
bar for mounting successful bypass attacks instead of providing
absolute enforcement guarantees. Since content protection is only
as strong as the weakest links (e.g., legacy hdevice, OSi pairs) in the
ecosystem, this presents an interesting trade-o� between audience
reach and the strength of content protection.
Content Protection Enforcement Analysis. In this paper, we sys-
tematically identify the di�erent attack surfaces a content delivery
app may expose, and how those can be exploited by adversaries to
bypass protection enforcement. In our analysis, we consider two
abstract classes of adversaries, namely, the network adversary (who
can observe and manipulate network tra�c) and the local adversary
(who can access internal states and possibly tamper with the execu-
tion environment). For each of the two classes, we further consider
varying degree of adversary capabilities, ranging from a normal
tech savvy user to more sophisticated ones like rooting the device
and TLS interception capabilities. With respect to our hierarchy
of adversaries, we present concrete attacks against 141 Android
content delivery apps, including some high-pro�le ones like the
AmazonMusic, Bloomberg Businessweek+, and Forbes Magazine apps.
Our evaluation reveals a bleak state of the a�air. We observed that
all the apps are susceptible to our attacks due to unjusti�ed trust
assumption on the underlying technologies, e.g., insecure bootstrap-
ping and policy delivery, and bad practices like client-side policy
enforcement, and reuse of content encryption keys. Whenever pos-
sible, we further dissect the weaknesses that our attacks exploited
and categorize them using the Common Weakness Enumeration
(CWE) 2. We believe that, with the patterns provided by our con-
crete analysis, this paper lays a solid foundation for further research
on automated vulnerability detection and the development of more
robust apps.
Findings. In our evaluation of publication apps, a somewhat un-
charted territory for academic studies, many apps are not only
falling short in terms of content protection, but contain weaknesses
that allow remote exploits which threaten the app users’ security
and the privacy. Notable among our �ndings is the purchase bypass

2 https://cwe.mitre.org/

attacks against the Forbes Magazine and Mother Earth News apps
which allows an adversary, with su�cient �lesystem permission,
to manipulate the purchase status for gaining unauthorized access
to all issues for free. Another example of relying only on client-
side enforcement of usage control policies was exhibited by the
Bloomberg Businessweek+ app, for which a network adversary
with TLS interception capability can rewrite the policies on the �y
during app bootstrap, and obtain virtually unlimited free previews of
its subscription-only articles. We observed that the service of a con-
tent distributor often gets retained by a diverse group of publishers.
Since apps from the same distributor tend to be similar in their
designs, our attacks a�ect a large number of di�erent publications.

One popular choice for DRM enforcement is to employ a crypto-
graphic cipher to encrypt the underlying content, in which case the
robustness of the enforcement hinges on the concealment of the
secret key, as the Kerckho�s’s principle mandates. This approach
was embraced by the Amazon Music app, which was the most ro-
bust app analyzed in our evaluation. While the app seems to be
programmed with the good practice of minimizing exposure time
of cryptographic keys in memory, we were still able to devise a key
extraction attack to extract the underlying content encryption keys
by leveraging some non-complex binary instrumentation. To our
surprise, a closer inspection of the app revealed that against best
practices, the entire Amazon Music collection of 40 million songs
seems to be encrypted under one single content encryption key,
irrespective of accounts, device models, and subscription tiers. Our
successful key extraction attack hence puts their entire collection
in serious jeopardy.

Given that our �ndings could potentially a�ect the business of
various stakeholders, we have engaged in responsible disclosure
(Section 5.1), and careful ethical considerations have been taken
during and after our experiments (Appendix A.1).
Contributions. In summary, this paper makes the following con-
tributions:
1) We identify attack surfaces and practical adversaries with vary-
ing degree of sophistication that vendors of content distribution
mobile apps should consider, in order to devise e�ective content
protection mechanisms, especially in the absence of a trusted exe-
cution environment (TEE) support from the underlying platform.
2) We systematically evaluate 141 content distribution apps de-
veloped for Android with respect to our identi�ed hierarchy of
adversaries. Our evaluation uncovered that more often than not
developers of these apps make unjusti�ed trust assumptions about
the underlying platform and design decisions that enable an adver-
sary to circumvent these protection mechanisms without having
to reverse engineer the apps to extract the underlying secret state.
3) We dissect and classify the weaknesses that our attacks ex-
ploited with respect to CWEs to help future developers avoid the
same pitfalls. We have responsibly shared our analyses with the
corresponding content distributors. With the understanding of var-
ious attack strategies, we discuss possible countermeasures, their
trade-o�s and implications.

2 SCOPE
We now discuss the attack surfaces, threat model, and platform that
we consider in this paper.

237

https://cwe.mitre.org/

Why Johnny Can’t Make Money With His Contents:
Pitfalls of Designing and Implementing Content Delivery Apps ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

2.1 Attack Surfaces
Without loss of generality, in the following discussions, we consider
encryption is used to protect the underlying contents. The normal
operation of a content distribution app can be roughly broken down
into the following six phases: (1) Bootstrapping; (2) Storing autho-
rization token; (3) Content transmission and storage on the device;
(4) Playback preparation; (5) Content decryption; (6) Content play-
back. Each of the above steps presents opportunities for the attacker
to bypass content protection and thus corresponds to one of the
following attack surfaces. Depending on the actual implementation,
certain steps might be skipped or merged, and events might happen
in a slightly di�erent order. In this paper we focus on (AS1–4).
(AS1) Bootstrapping. In the bootstrapping phase, the app authen-
ticates itself and the user to the content distributor’s back-end
server, obtains a list of available contents and their prices, as well
as authorization to access them. This step may involve monetary
transactions, if this is the �rst time that a user subscribes to the
service, or purchases contents. Successful completion of the boot-
strapping process may result in the back-end server returning an
authorization token. Information inside the token can be as simple
as URLs of contents, or it could contain rich policy enforcement
details including expiration date and maximum playback times to
allow granular control. In some cases, it may also contain the con-
tent decryption key to allow future consumption of contents. One
might attack this surface in an attempt to get the content source
URLs or to trick the app with more permissive policies by rewriting
the authorization tokens.
(AS2) Authorization token storage. The token may need to be
stored on the device’s storage to accommodate content access, espe-
cially when the business model allows o�ine playback of contents
(without Internet connectivity). An adversarywith adequate storage
access privilege might be able to retrieve and modify the authoriza-
tion tokens on the device’s storage and gain unauthorized access
to contents.
(AS3) Content transmission and storage. Upon receipt of an
authorized request, the back-end distribution server sends the con-
tent over the Internet. If the content is not adequately protected in
transit, an adversary might be able to intercept the communication
and duplicate the raw content.

Once the content arrives on the user side, it may get consumed
and removed almost immediately, or it might be stored for o�ine
consumption, which most services tend to o�er for better user ex-
perience, but opens up the possibility for adversaries with su�cient
storage access privilege to conduct content extraction attack.
(AS4) Playback preparation. When a user initiates playback of
an encrypted content from the device’s storage, the app might
perform certain control checks (e.g., authorization expiration) and
then load the relevant secret keys into the device’s memory, so
that content can be decrypted for consumption. This presents an
opportunity for adversaries who can inspect the device’s memory
to perform key extraction attacks.
(AS5) Content decryption. During actual playback, (fragments
of) the content would need to be decrypted in memory. An adver-
sary who has the capability of inspecting the device’s memory can
exploit this opportunity to extract the content fragments in clear,

and attempt to chain them back into the original content. An attack
against this surface given video contents of high entropy has been
demonstrated to be feasible [53]. Attacking this surface usually
requires real-time e�ort, that is, to extract 2 hours worth of content,
the attack needs to accommodate a 2-hour long playback.
(AS6) Analog loophole. One inevitable attack surface is the analog
loophole, where analog signals of protected contents are recaptured
during playback. For contents like publications and motion pictures,
it can be quite costly to produce high quality replicas. Similar to
(AS5), such an attack is also real-time in nature.

2.2 Platform and Test Setup
In our studies, we focus on the Android platform because 1) it is the
most popular operating system to date and is increasingly the plat-
form where most multimedia contents are being consumed; and 2)
there exists a wide range of legacy devices that lack new hardware-
enforced isolation and are running old versions of Android. For the
di�erent levels of local adversary capabilities, we leverage rooted
Android phones running Android version 4.4 (Kitkat) and 5.0 (Lol-
lipop), whichever satis�es theminimum requirements of the studied
apps. To emulate network adversaries, we leverage a Linux setup
hosting a wireless AP and running MITMProxy 3. Note that since
this paper is not about the robustness of Android itself but the
content delivery apps that run atop of Android, we deliberately
choose older versions of Android devices that are representative of
the “weakest link” in the business ecosystem, as would a rational
attacker do. This allows us to demonstrate the perils of service
providers not excluding such devices from accessing their content
distribution services.

Since in all our evaluations, content distributors maintain the
back-end distribution servers and develop the Android apps that
interact with users and enforce content protection, in the rest of
the paper we use vendors, developers and content distributors in-
terchangeably. When we say attacks, we mean that an adversary
is able to obtain contents in a manner that violates the control
mechanisms in place.

2.3 Threat Model
Meaningful discussion on robustness of access control and protec-
tion mechanisms requires a well-de�ned adversary model which
bounds attackers’ capabilities. Here we discuss the two categories
of capabilities that we consider in this paper, focusing on software-
only attacks. An enumeration of successful attacks and the corre-
sponding adversary capabilities can be found in Figure 1.

2.3.1 Network Adversaries.
ANet(Sni�) (Passive Eavesdropping of Network Tra�c). Such
an adversary enjoys the capability of passively observing the net-
work tra�c between the device and the back-end servers serving
the app. We also assume the adversary is capable of extracting
payloads out of the network packets being observed and parsing
messages of standard plaintext protocols (e.g., HTTP). This repre-
sents the lowest capability among all the ANet adversaries.

3 https://mitmproxy.org/

238

https://mitmproxy.org/

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA S. Chau et al.

Figure 1: Enumeration of possible weaknesses and attacks under various adversary capabilities in attack tree form

ANet(Sni�) ANet(Mod) ANet(TLSInt)

AExS(R)AInS(R)
AInS(R+W)AMem+BinIns

Raw Content
Transfer
in Clear

EVA
(Sect. 3.1)
yes

Direct Content
Source Transfer

in Clear

PBA
(Sect. 3.2)
yes

no
Bootstrap Information
Transfer in Clear +

Local Policy Enforcement

PBA
(Sect. 3.2)
yes

no Raw Content
Transfer over TLS

EVA
(Sect. 3.3)
yes

no
Bootstrap Information
Transfer over TLS +

Local Policy Enforcement

PBA
(Sect. 3.4)
yes

no
Direct Content
Source in Logs

on External Storage

PBA
(Sect. 4.1)
yes

no

Raw
Contents on
External
Storage

CEA
(Sect. 4.2)
yes

no

Raw Encryption
Key on External

Storage

KEA
(Sect. 4.3)
yes

no
Raw Content
on Internal
Storage

CEA
(Sect. 4.4)
yes

no
Raw Encryption
Key on Internal

Storage

KEA
(Sect. 4.5)
yes

no
Direct Content

Source on
Internal Storage

PBA
(Sect. 4.6)
yes

noAuthorization Relies Only on
States on Internal Storage

PBA
(Sect. 4.7)
yes

noRaw Encryption
Key in Memory

KEA
(Sect. 4.8)
yes

no

§ KEA = Key Extraction Attacks; PBA = Purchase Bypass Attacks; CEA = Content Extraction Attacks; EVA = Eavesdropping Attacks.
In this paper, KEA and EVA both imply CEA.

ANet(Mod) (Active Modi�cation of Network Tra�c). The ad-
versary can modify and selectively block both incoming and outgo-
ing network tra�c, in order to change what the target apps receive.
For plaintext protocols without strong integrity and authenticity
guarantees, such adversary is also able to modify the content of pro-
tocol messages undetected. This is easily attainable by deploying a
proxy server.
ANet(TLSInt) (Interception of TLS Tra�c). This is an upgrade
to ANet(Mod) with the added capability of intercepting encrypted
TLS tra�c, as done quite frequently by anti-virus and parental
control software [18], as well as middle-boxes in enterprise settings
[21]. On top of a proxy setup, exactly how to attain this capability
depends on the actual implementation. For target apps that trust
the system CA store, it could be as simple as importing a new CA
certi�cate into the trusted CA store as an unprivileged user. For
apps that trust only their own CA stores or use key pinning, one
might need the help of AInS(R+W) or even AMem+BinIns, both of
which are discussed below.

2.3.2 Local Adversaries.
AExS(R) (External Storage Read Any). This adversary capability
can be achieved by a device user who has the minimum technical so-
phistication necessary for accessing and transferring �les available
on external storage of an Android device, which is “world-readable”
[5] without any special modi�cations to the device. Storing large
downloaded �les on the external storage is a common practice in
order to cope with devices that have internal storage of very limited
size. On a side note, the two storage areas of Android are named
internal and external due to historical reasons, and even on a device
without actual physically removable media, the external storage
area would still exist [5].
AInS(R) (Internal Storage Read Any). Such an adversary has the
privilege to read arbitrary �les on the internal storage of the device.
A mobile OS such as Android 4 usually provides isolation so that
an app can only read its own internal storage, and a normal user is

4 Given that the user who did the installation get to choose the administrator/sudo
password, conventional desktop operating systems likeWindows and Linux don’t have
such a separation of storage space. In general, administrator/sudo privilege allows one
to perform memory inspection and binary instrumentation.

by default not given direct access to the system’s internal storage.
Consequently, this capability is usually attained by “rooting” the
device.
AInS(R+W) (Internal StorageReadWriteAny).We consider this
adversary to have the capability of reading and writing any �les
to any location of the internal storage. Though rooting the device
would typically grant permissions to both read and write access
to the internal storage, we make this �ne-grained di�erentiation
for the sake of generality, as each of these capabilities can enable
di�erent attacks.
AMem+BinIns (Memory Inspection and Binary Instrumenta-
tion). The �nal adversary we consider is the most powerful one in
the software domain without tampering hardware. This capability
not only allows the inspection of the target app’s internal execution
state in memory but also the modi�cation of the execution (control
�ow) of the app through binary instrumentation.

2.4 App Selection
Our evaluations start with manual analysis of some representative
apps. Then, with the initial �ndings, we try to automate our attacks,
and collect more apps that follow similar designs, and automatically
test whether they are also vulnerable.

We chose the Amazon Music app because it is well-known and
popular in the streaming business. At the time of writing, it has
more than one hundred million installs and was one of the top 10
“Music & Audio’’ apps on the Google Play store. After successfully
devising an attack, we then recreated it against the Audible app,
which is another highly popular app also owned by Amazon, and
the 2 apps happened to be using a very similar implementation.

We then focus on the publishing industry. We picked the Forbes
Magazine and Bloomberg Businessweek+ apps, as they are both
well-known and popular business publications, which were coin-
cidentally made by the same developer using 2 di�erent designs.
Having studied apps of US-based magazines, we then switched to
look at their counterparts from the UK. We chose Cosmopolitan and
ELLE as they are well-known magazines. We then collected many
other publication apps that follow similar designs, to show that the

239

Why Johnny Can’t Make Money With His Contents:
Pitfalls of Designing and Implementing Content Delivery Apps ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

weaknesses we found are indeed a�ecting a wide range of publish-
ers and their publications. Finally we found a few publication apps
that exhibit di�erent weakness patterns on the lower-end of the
spectrum, completing the study.

We give the full list of apps studied in this paper in Table 1
in Appendix. A vendor might use several di�erent designs for its
content distribution apps. In the rest of the paper, apps that are
using similar designs (and hence susceptible to the same attacks)
are grouped and discussed together.

3 APP WEAKNESSES & NETWORK ATTACKS
Here we present the weaknesses we found in the studied apps, as
well as concrete network attacks that exploit them. We note that
some weaknesses in this section also pose threats to the app users’
security and privacy.

As an e�ort to systematize our �ndings, for most known weak-
ness patterns, we map them to the relevant Common Weakness
Enumerations (CWEs) in our analysis. A list of CWEs discussed in
this paper can be found in Table 2 in Appendix.

3.1 Raw Content Transfer In Clear
If a content delivery app receives its contents in clear, an attacker
with ANet(Sni�) capability who can passively observe tra�c ex-
changed between the device and the content distribution back-end
server would be able to eavesdrop, extract and duplicate contents
for free. We found that the The MagPi, Business Money, Artists &
Illustrators, My MS-UK, Popshot Magazine apps (group-1 of Table 1)
fall into this category. These are apps of magazines from di�erent
publishers, all made by a vendor called Apazine.
Eavesdropping A�acks. We note that in Apazine’s design, con-
tents are distributed based on PDFs, with each issue of themagazines
and journals encapsulated in a single PDF �le. Issues of publications
can be purchased individually inside the apps, whichwould trigger a
PDF download. However, because the apps and the back-end servers
exchange data including the unencrypted content PDFs through
HTTP (instead of HTTPS) [CWE-319], it is trivial for ANet(Sni�),
the weakest remote adversary we consider, to extract and dupli-
cate the PDF �les through the observed tra�c. This is an attack
against (AS3). We have con�rmed the feasibility of this attack in
the aforementioned apps.

3.2 Bootstrap Information Transfer in Clear
It is often necessary for publication apps to communicate with the
back-end servers to get bootstrapped with information regarding
what issues and subscription tiers are available at what price. We
note that many apps we studied receive their bootstrap information
in clear through HTTP, which is another instance of [CWE-319].
This leads to 2 di�erent attacks on (AS1), given varying levels of
adversary capabilities.
Purchase Bypass A�acks with ANet(Sni�). The 5 group-1 apps
discussed in Section 3.1 can again serve as examples, as they are
all susceptible to this attack. From Apazine’s back-end server they
receive bootstrap information in JSON format, which contains de-
tails of each issue. Speci�cally the URLs for downloading the un-
encrypted content PDF �les of each issue can be found there as

Base64 encoded ASCII strings. Since given those URLs, the back-
end content distribution server does not enforce further authenti-
cation and authorization before serving the PDF �les [CWE-425],
an ANet(Sni�) adversary can observe and parse the JSON, decode
the URLs, and get unrestricted direct access to the unencrypted
content PDFs. We veri�ed the feasibility of this attack by observing
the tra�c generated by the 5 aforementioned apps.
Purchase Bypass A�acks withANet(Mod). There exist other pos-
sibilities for exploits even if the bootstrap information does not
contain direct content sources. For concrete examples, we turn to
the 70 publication apps (group-3 of Table 1, e.g., Forbes Magazine)
made by a developer called Maz Systems, which is reported to have
an annual revenue of several million US dollars [22]. The design for
these apps seems to rely on the apps to construct the content source
URLs, based on the bootstrap information received in XML format
and the unique IDs of each issue. The back-end server hosted on
Amazon S3 requires some level of API key authentication before
serving the contents. However, since the price of each issue is di-
rectly given by the bootstrapping XML received through plain HTTP
without much integrity and authenticity guarantees [CWE-354],
we found that an ANet(Mod) adversary can rewrite the price of all
the issues into zero, and the 70 apps we tested all trusted their
corresponding altered XML, and o�ered magazine issues for free.
The adversary can then use the apps to download the publications
without paying. Additionally, some publishers o�er subscriptions
to their publications in the apps (e.g., $29.99 per year for Forbes
Magazine), the price of which was also received from the same
bootstrapping XML. We have con�rmed that an ANet(Mod) adver-
sary can also rewrite the prices of subscription plans into zero, then
subscribe (for free) and get access to all the issues available within
the subscription period.

These �ndings suggest that the price of purchase is enforced by
the apps locally on client-side [CWE-603] without involving the
back-end servers after the initial bootstrap.

3.3 Raw Content Transfer over TLS
Also for those 70 group-3 apps, after a purchase has been con�rmed,
it receives the contents, in the form of a ZIP �le, from some back-end
server hosted on Amazon S3 through TLS. Despite using encrypted
connections, it does not mean one cannot attack (AS3).
Eavesdropping A�acks. Speci�cally, we found that for establish-
ing a TLS session, those apps trust the system CA store for signing
certi�cates and do not seem to be using any forms of key/certi�cate
pinning. As the result of which, it was trivial to attain ANet(TLSInt),
without the need to leverage other advanced local capabilities. To-
gether with the fact that the ZIP �les were not passphrase-protected,
an ANet(TLSInt) adversary can extract contents out of the passively
observed ZIP �les with ease.

3.4 Bootstrap Information Transfer over TLS
Even if apps receive bootstrap information over encrypted TLS
connections, without additional integrity and authenticity guaran-
tees, an ANet(TLSInt) adversary can still abuse such information for
his/her own gains. As concrete examples, we look at a) the 34 pub-
lication apps (group-4–6 of Table 1) exempli�ed by the Bloomberg
Businessweek+, Entrepreneur Magazine and Men’s Health Magazine

240

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA S. Chau et al.

apps, which were coincidentally also developed by Maz Systems,
under designs di�erent from the group-3 apps; and b) the 30 pub-
lication apps (group-7–8 of Table 1) exempli�ed by ELLE UK and
The Independent, developed by a vendor called Pugpig.
Purchase Bypass A�acks. Similar to the apps discussed in Sec-
tion 3.3, these 34 group-4–6 apps all trust the system CA store, so
attaining the ANet(TLSInt) capability was straightforward. For the
group-5–6 apps that o�er periodicals, they receive detailed informa-
tion regarding what issues are available at what price through some
bootstrapping JSON over TLS. The description of each issue comes
with a boolean indicating whether it is locked (require payment) or
not. We have found that using the ANet(TLSInt) capability, one can
rewrite all instances of �locked�: true into �locked�: false in
the bootstrapping JSON, and have all the issues unlocked for free.

On the other hand, the group-4 apps employ a di�erent, article-
centric subscription-based business model, which allows its users
to read k number of articles for free every j days as trial. Likewise,
the value of both k and j are retrieved from some bootstrapping
JSON transferred over TLS. We have con�rmed that anANet(TLSInt)
adversary can rewrite the value of k and j in the bootstrapping
JSON, as shown in Figure 2, to trick the apps into granting everyday
a number of free articles so large that it is virtually like having a
paid subscription.
Figure 2: Rewrite bootstrapping JSON with ANet(TLSInt) to
gain free articles in the Bloomberg Businessweek+ app

Original JSON Snippet
... ...,
�metering�: {

�freeViews�: 4,
�resetAfter�: 28,
�registerAfter�: 2,
�registerRequired�: false

},

Snippet After Rewrite
... ...,
�metering�: {

�freeViews�: 400,
�resetAfter�: 1,
�registerAfter�: 300,
�registerRequired�: false

},

Additionally, the 30 group-7–8 apps receive from their back-end
server a series of XML �les describing available issues and their
pages. WithANet(TLSInt), we found that one can parse the XML �les,
stitch various metadata components into the actual content source
URLs and download magazine pages directly without paying.

All these �ndings suggest that the access control enforcement
(e.g., locked contents and free trial previews) are done locally on
the client-side without involving the back-end servers [CWE-603].

3.5 Threats to User Security and Privacy
For the 75 group-1 and group-3 apps discussed in Sections 3.1
and 3.2, since their bootstrap information are sent in clear without
strong integrity guarantees [CWE-354], any Man-In-The-Middle
(MITM) can easily tamper with what is being transferred. This not
only allows one to bypass purchase and extract contents, but also
poses threats to the app users. For example, one might be able to
increase the price of each issue to induce �nancial losses on the user.
One can also remove speci�c issues in the bootstrap information
to implement censorship. Rewriting URLs can also trick the users
to visit some potentially malicious websites. Additionally, given
known vulnerabilities about the libraries that the apps uses (e.g.,
MuPDF [39], Zip [51]), one can potentially change the URLs in the
bootstrap information to point to some maliciously crafted input
�les to attack the user’s device.

Furthermore, for many of the 70 group-3 apps discussed in Sec-
tions 3.2 and 3.3, we have observed that during and after the boot-
strap, some tracking data are being sent to the back-end over HTTP
in clear. The exchanged data contains the device unique identi�er
and model name, along with some session ID and publication ID.
A passive eavesdropper might try to extrapolate who is reading
what magazines, which could be quite revealing given that some
publications are related to medical conditions, musical instruments
and speci�c industries, posing threats to the app users’ privacy.

4 APP WEAKNESSES & LOCAL ATTACKS
Here we present more weaknesses of the studied apps, with a focus
on local attacks. Similar to the previous section, wemap our �ndings
to the relevant CWEs whenever possible.

4.1 Log File Leakage
Another possible weakness is leakage of secrets through log �les,
similar to what had previously been observed in some Android
mobile banking apps [43].
Purchase Bypass A�acks. As discussed previously in Section 3.1,
those 5 group-1 apps use direct content source URLs for fetching
contents. Our inspection revealed that those same apps leave some
debugging log �les on the external storage which contain both
the direct URLs of publication PDF �les hosted on their back-end
servers and the identi�ers of each of the issues available for pur-
chase [CWE-532]. This allows an AExS(R) adversary to retrieve
those URLs, and by replacing the appropriate portion of the URLs
with the issue identi�ers, one can enumerate the di�erent published
issues and download their corresponding unencrypted PDF �les di-
rectly [CWE-425], e�ectively getting unlimited unauthorized access
without having to purchase, mounting an attack against (AS2).

4.2 Raw Content on External Storage
If the apps leave their contents on the External Storage, it would
allow for an easy attack on (AS3) that both the apps and the pub-
lishers would lose control of the contents.
Content Extraction A�acks. We have found that the 9 group-6
apps serve contents in the form of PDF and put their PDF �les on
the device’s external storage. Given the AExS(R) capability, one
can easily get those �les and make copies of them. This can be
applied to the various free trial issues o�ered in the apps, as a user
is allowed only several minutes of free preview before needing
to pay to continue reading, but one can simply workaround this
restriction by copying the full PDFs from the external storage and
open them using a di�erent reader.

4.3 Raw Encryption Key on External Storage
Even if an app employs encryption as the means for content pro-
tection, if the secret key is left in a place that is accessible by an
adversary, one can attack (AS2) and strip the encryption.
Key Extraction A�acks. As examples, we again look at the 5
group-1 magazine apps discussed in Section 3.1. After purchasing a
speci�c issue, those apps would download the content �le and put
it in the external storage of the device. With the AExS(R) capability,
we can see that the content �les retain the .pdf extension but the

241

Why Johnny Can’t Make Money With His Contents:
Pitfalls of Designing and Implementing Content Delivery Apps ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

contents are actually scrambled. Since not even the PDF metadata
are comprehensible, we deduce that this is most likely due to the
use of a whole �le encryption. Together with the �ndings from
Sections 3.1 and 3.2, this suggests that the content encryption was
done locally on the client device after download.

While navigating through the �les created by the apps on exter-
nal storage with the AExS(R) capability, we found that there exists
a serialized Java object outside the directory that contains the en-
crypted PDF �les, adjacent to the log �les discussed in Section 4.1.
A quick inspection revealed that this serialized object is of the class
javax.crypto.spec.SecretKeySpec, which turns out to contain
the secret key used to encrypt the PDF �les. That object also re-
vealed that the encryption algorithm used was AES, though the
exact block cipher mode remains unclear. This is tantamount to
leaving one’s house key under the doormat outside the house, a
known weakness pattern described by [CWE-313] and [CWE-921].

After identifying the key, decrypting the content PDF �les was
somewhat straightforward. With around 200 lines of Java code
and some trial-and-error to determine that the apps were using
the Electronic Codebook (ECB) mode of AES, we con�rm that the
contents can be decrypted using the suspected secret key. We have
veri�ed this attack with a paid purchase of a recent issue in the My
MS-UK app, and free trial issues in the Business Money, Artists &
Illustrators, The MagPi and Popshot Magazine apps.

4.4 Raw Content on Internal Storage
Given that the o�cial Android development trainingmaterial claims
�les stored on internal storage are “accessible by only your app” and
“neither the user nor other apps can access your �le” [5], it is perhaps
unsurprising that some apps are making strong assumptions about
the con�dentiality guarantees provided by the internal storage.
Such assumptions, however, can be invalidated with AInS(R).
Content Extraction A�acks. For concrete examples, we again
look at the 70 group-3 apps discussed in Sections 3.2 and 3.3. In their
designs, each page of the publication is a JPEG image of about 0.7
megapixel. After downloading the content ZIP �le of an authorized
issue, the app extracts from it the content images and have them
stored on the app’s internal storage. The app then acts like an image
viewer for displaying each page for the user to read. As the images
of each issue are left inside the internal storage without further
scrambling [CWE-313], an AInS(R) adversary can easily access and
make copies of the magazine issues, attacking (AS3).

Through the in-app free previews, we found that the 16 group-
8 apps also has each page of an issue saved as a JPEG image on
the internal storage. In fact, we found that even though the free
previews should allow only a small number of pages, all the other
pages of the selected issue are already downloaded. Consequently,
with AInS(R), one can easily bypass the preview limit and access
the saved pages directly.

4.5 Raw Encryption Key on Internal Storage
Similarly, developers might put encryption keys on the internal
storage assuming con�dentiality [CWE-313], however, in the face
of theAInS(R) capability, such a design manifests into an exploitable
weakness on (AS2).

Key Extraction A�acks. We use the Counter Intelligence Plus
app (group-2) as an example, which is also made by Apazine. Inter-
estingly, despite being older than the other group-1 apps discussed
before, the Counter Intelligence Plus app appears to be doing a
slightly better job in terms of hiding the secret key used in content
encryption. In this case, instead of putting it on the “world-readable”
external storage, the key is stored on the device’s internal storage.
However, with the AInS(R) capability, we have managed a key ex-
traction attack similar to what is described in Section 4.3.

4.6 Direct Content Source on Internal Storage
Leaving direct links to contents that do not enforce authentica-
tion and authorization [CWE-452] on Internal Storage is another
exploitable weakness on (AS2).
Purchase Bypass A�acks. With the exception of the The Rebel
Media app, all the other 24 group-4–5 apps that o�er articles (e.g.,
the Bloomberg Businessweek+ app) or video clips (e.g., the Outside
TV Features app), leave direct URLs to their corresponding contents
on the apps’ Internal Storage, organized by the di�erent issues,
allowing an AInS(R) adversary to easily crawl for those and access
contents without paying.

4.7 Client-Side Authorization
The assumptions on internal storage indeed presents an interesting
attack vector. In addition to con�dentiality, one might also assume
that the internal storage provides strong integrity guarantees. Such
an assumption can be invalidated with AInS(R+W).
Purchase Bypass A�acks. Each of the 70 group-3 apps discussed
in Section 3.2 also keeps a local database of published and available
issues on the app’s internal storage. For each issue, the database
keeps a record about the name and date of the issue, a brief de-
scription, price, and some other metadata, including the purchase
status. With theAInS(R+W) capability, we have veri�ed that one can
modify the database and replace the default value of the purchase
status column with some appropriate values [CWE-642] to trick
the app into granting access to magazine issues that were not paid
for.

This shows that the authorization of those apps is localized and
done unilaterally on the client’s device, and does not involve the
back-end content distribution server [CWE-603]. Consequently,
the robustness of such authorization mechanism hinges on the
assumption that the internal storage guarantees integrity [CWE-
654], which does not hold given an AInS(R+W) adversary.

4.8 Raw Encryption Key in Memory
Even if raw secret keys are not left in the clear on permanent stor-
ages, theymight be loaded into thememory, which presents another
opportunity for attacking (AS4). As a concrete example, we look at
the Amazon Music app (version 6.5.3), which o�ers both streaming
and o�ine playback of music to its subscribers. There are two tiers
of subscription: Amazon Prime and Amazon Music Unlimited, with
the only di�erence being the size of the collection accessible (2
million versus 40 million songs). Both tiers allow subscribers to
download music available from their corresponding collections for
o�ine playback. The downloaded songs are stored on the external
storage of the Android device.

242

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA S. Chau et al.

Storage Inspection. A quick inspection of the downloaded �les
shows that regardless of the subscription tier, songs appear to be
encrypted and contain a human readable PlayReadyHeader XML
object in their metadata [37], suggesting that this entire streaming
service is using the Microsoft PlayReady DRM framework. With
the contents already available on the external storage, we choose
to focus on devising a key extraction attack.

We �rst leverage the AInS(R) capability to inspect the internal
storage and see if one can attack (AS2). As there exists quite a few
secret key candidates (e.g., Base64 strings that decode into binary
values of various lengths), we soon run into the problem of not
knowing how to verify whether a key candidate is the right one for
content decryption.
Key Veri�cation Oracle. Fortunately, the limited documentation
publicly available regarding the PlayReadyHeader [37] turns out to
be quite useful. The PlayReadyHeadermetadata object contains the
key ID, content encryption algorithm (in this case AES CTR mode)
and the key length (16-byte), so we know what we are searching for.
Better yet, it also contains a checksum used by the framework to
protect against mismatched keys. According to the documentation,
this is meant to prevent the case where decryption is done with
an incorrect key, the subsequent output of which might damage
audio equipments during playback. Since the checksum is simply
the �rst 8 bytes of encrypting the 16-byte key ID with the key in
AES ECB mode, which is easily computable, we now have an oracle
for verifying key extraction correctness, without having to rely on
decrypting the contents themselves.

A quick trial-and-error showed that none of our initial suspects
were the right content encryption key. The publicly available docu-
mentation regarding the PlayReady framework [36] suggests that
the content decryption keys are contained inside licenses. We then
turned our attention into �nding the license instead. We realized
that there exists a .hds �le, which according to some discussion
about Silverlight [1], seems to contain the licenses. Without doc-
umentations on how to parse and interpret this �le, the format
of licenses, and whether this �le is obfuscated or encrypted, key
extraction from it seems could be quite complicated.
Key Extraction A�acks. Instead, we switch our focus to attack
surface (AS4). The intuition is that, even if the local license store
on internal storage has complex protection mechanisms in place,
the content encryption key would still need to be read from the
license store and might be loaded into the memory in clear. Hence
we upgrade the adversary capability to AMem+BinIns, by using
the Frida 5 dynamic instrumentation framework. While we were
able to trace the app’s �le read operations by hooking the read()
system calls withAMem+BinIns, including those that reads from the
license store, it remains unclear how to interpret the bytes being
read. Since tracing and interpreting the preparation phase seems
to be quite messy, we take a slightly di�erent approach. With the
intuition that sensitive information (e.g., content encryption key),
if they were indeed loaded into the memory, might exhibit some
recognizable structure and would need to be released at some point
(e.g., after content playback), we try to hook deallocation functions
instead. While it might also work to hook the free() function calls,
a quick inspection of the native libraries used by the app shows

5 https://www.frida.re

that they are exporting some functions that seem to be used for
deallocating sensitive information. Intercepting the entrance to
some of those functions, tracing appropriate pointers, and then
dumping a large enough portion of memory pointed by those, we
successfully extracted the content encryption key, which veri�es
against the oracle discussed earlier.

Unlike in previous work where PlayReady protected video con-
tents were reported to be partially encrypted [53], in this case we
have observed that the entire original content is encapsulated in
a so-called envelope �le. Though we were unable to obtain docu-
mentations regarding the metadata (besides the PlayReadyHeader
object), based on some header �les publicly available on Github
[35], we were able to guess and parse the metadata correctly. In the
end it took us about 260 lines of Java code to parse the envelope
�le and decrypt with AES CTR using the extracted secret key to
get the raw audio tracks out.

One might also wonder why AMem alone is not strong enough.
We note that the key extraction problem has a two-dimensional
search space, spanning memory layout and time. While ultimately
it is the memory inspection that gets us the key, without binary
instrumentation, however, it is di�cult to pinpoint the exact timing,
especially if the implementation tries to minimize key exposure by
actively releasing and overwriting memory regions containing the
secret key, a practice also recommended by previous work [27]. Not
knowing when to dump the memory would make it hard forAMem
to extract the key. Interestingly, in this app, we have observed a
behavior that sensitive information deallocation happens as early
as the actual music playback starts. Our speculation is that, since
the CTR mode generates keystream blocks by encrypting the next
counter values, after a long enough keystream has been generated
to allow decryption of the entire content, the app removes the
key from memory as soon as possible to minimize exposure time.
This is exactly why AMem+BinIns has an advantage in reducing
uncertainties along the time dimension.

We further found that the Audible app (version 2.25.0) is also
susceptible to this attack. Speci�cally, members are o�ered premium
podcasts that can be downloaded for o�ine playback, in which case
they are encrypted in the same manner as songs in Amazon Music.
It appears that the PlayReady implementations in the 2 apps are
quite similar, as our key extraction attack also worked. Since the
downloaded Audible podcast tracks are partially encrypted isma
�les, instead of using our decryption code for Amazon Music, we
used the Bento4 tookit 6 for successful decryption.
Key Scanning Heuristics. Curious readers might wonder how
we recognized the 16-byte key from memory dumps. As explained
in previous work, besides loading the raw secret key into mem-
ory, many cryptographic implementations speed up computation
by precomputing the key schedules made of the di�erent round
keys [27]. This is because typical block ciphers, including AES, go
through multiple rounds of operations to encrypt/decrypt a block,
and each round involves a round key derived from the raw secret
key. Having to repeatedly expand the raw key into the same key
schedules for each block could be quite ine�cient. It turns out
that the key schedule observation also applies to this particular
PlayReady implementation. Using the keyfind program [27], we

6 https://www.bento4.com/

243

https://www.frida.re
https://www.bento4.com/

Why Johnny Can’t Make Money With His Contents:
Pitfalls of Designing and Implementing Content Delivery Apps ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

were able to con�rm the mathematical relation between the sus-
pected raw key and the derived round keys, strongly suggesting
that those bytes found in the memory dump indeed constitute a
key schedule.
One key to rule them all. Based on the handful of songs that
we sampled in our proof-of-concept experiments, Amazon Music
appears to be reusing content encryption keys across songs and
di�erent accounts, despite the fact that the PlayReady framework
allows a much more granular key binding (e.g., per individual item),
as noted in a previous work [53]. We speculate that this is to lower
the load andmanagement overhead on the back-end servers, though
we are not sure whether the entire ecosystem uses only one single
key, or are keys di�erent across data centers in various locations.
Consequently, songs made available for o�ine playback from many
di�erent albums across artists, regardless of which tier of subscrip-
tion and user accounts they came from, might all be decrypted with
the same key. This puts the whole collection of 40 million songs
available on Amazon Music in excessive risk.

While the attack we presented is agnostic to key granularity and
can be performed over and over again to exhaust all the possible
keys, however, a more �ne-grained key binding (e.g. per album or
even per song) would have at least required more e�ort from an
attacker, and hinder automatic mass decryption of a large number
of songs. Sharing keys across many accounts does not seem to be
a good practice, as it is easy to have a single key leaked (e.g., by
an insider) and cause large damage to the ecosystem. Interestingly,
unlike Amazon Music, Audible seems to be much more granular
with its content encryption keys. It appears that for each podcast
track, a new key is used for encryption.

5 DISCUSSIONS
5.1 Responsible Disclosure and Aftermath
We have noti�ed the content distributors of our �ndings and pro-
vided them with su�cient details to understand and reproduce the
attacks. In all cases, we have given the vendors more than 90 days
before this paper is made public.

In response to our initial report sent in Feb 2018 regarding bypass
attacks with AInS(R+W) (Section 4.7), developers at Maz Systems
implemented the use of encrypted database on newer versions of
some of the group-3 apps. This is a solution that we do not endorse,
as it does not change the client-only nature of the authorization
mechanism, so the pattern of [CWE-603] still holds. We followed up
with reports on group-4–6 apps in Jun 2018. They have expressed
gratitude to our e�orts, and are working on app improvements.

We sent several reports to Apazine in Feb, Apr and Sep 2018
regarding weaknesses in their group-1–2 apps. They have replied
in Sep 2018 suggesting that the magazines are in public domain and
do not contain any sensitive or valuable information, so our implied
expectation of robustness is not relevant. We point out that if the
contents indeed have no market values then not using encryption
can improve user experience, and that some publications in print
(e.g., Business Money and My MS-UK) do not seem to be available
for free.

Developers at Pugpig have been noti�ed in Jul 2018. They have
since acknowledged and con�rmed our �ndings, and replied that
they are aware of the weaknesses, and that the apps are designed

that way by choice to accommodate anonymous sharing of maga-
zine pages, a feature requested by their clients (publishers).

Amazon has been noti�ed about the key extraction attack against
the Amazon Music app in Jan 2018. They responded to our report
with several new versions of their music app, implementing new
obfuscation strategies and o�ine playback restrictions on rooted
devices. However, despite our recommendation of considering the
secret key compromised and switching over to a new key, as of Jun
2018, we have noticed that recent new releases are still encrypted
using the same old key. The KEA against Audible was reported
to Amazon in Jun 2018, and new versions implementing various
obfuscation strategies have since been released.

5.2 Possible Countermeasures and Challenges
Bilateral Policy Enforcement. While a stateless sever allows for a
more simplistic deployment, as [CWE-603] has noted, a client-only
authorization is weak and can potentially be bypassed, especially on
an environment where execution/code can be reverse-engineered
and tampered with. Since local adversaries are not able to directly
tamper with the execution state of a remote server, considering
the threats of AInS(R+W) and AMem+BinIns, policy enforcement
can be done more robustly involving the back-end servers. For
example, to avoid the attacks discussed in Sections 3.2, 3.4 and 4.7.
the authorization logic should be shifted to the back-end server.
Then client-side modi�cation of prices and purchase status would
result in detectable discrepancies with records on the server, and
the latter can refuse to serve contents in such cases.
Direct Content Sources. To hinder the attacks discussed in Sec-
tions 3.2, 4.1 and 4.6, content source URLs should not be left in a log
�le [CWE-532] and also not on a storage that an adversary has un-
limited access to [CWE-921]. Instead of explicitly saving the URLs,
it would perhaps be better to have them constructed dynamically
during runtime, and the servers should request extra authentication
and authorization. An AMem+BinIns adversary might still be able
to �gure out the URLs and the accompanying parameters, but it
would be an improvement comparing to the current deployments.
Certi�cate Pinning. To hinder theANet(TLSInt) attacks discussed
in Sections 3.3 and 3.4, instead of trusting the system CA store,
the apps could adopt some forms of key/certi�cate pinning 7. Even
though AInS(R+W) and AMem+BinIns might still be used in tandem
to defeat pinning, it would at least makeANet(TLSInt) more di�cult
to achieve than in the current implementations.
Denying services to rooted devices. One might propose for the
apps to stop providing services on rooted devices, as on unrooted
ones the adversary capabilities are greatly limited. This approach
however has its own challenges. First, while a concrete global num-
ber of rooted devices is not available, it has been suggested that the
number could be quite high in certain communities [6, 17]. Various
rooting tools have reported millions of downloads [14, 33], and
the superuser access management app has hundreds of millions of
installs [3]. A content distributor denying service on rooted devices
risks losing these customers. Second, determining whether a device
is “rooted” is an on-going arms race. Depending on the heuristics

7 https://www.owasp.org/index.php/Certi�cate_and_Public_Key_Pinning

244

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA S. Chau et al.

used and how the checks were implemented, binary instrumenta-
tion might be able to bypass those as well [44]. We have observed
that, as of version 7.5.4, the new Amazon Music restriction of no
o�ine playback on rooted devices can be bypassed with RootCloak
[34], a popular system modi�cation module.

Google has since introduced the SafetyNet service for developers
to detect if a device has been tampered with. Android Pay, Net�ix,
and Pokemon Go are some examples that would deny service if
SafetyNet �nds the devices is rooted. However, the cat-and-mouse
game between SafetyNet and the Magisk systemless rooting tech-
nique in 2017 has been well documented [45, 46], and there are
reports suggesting that on legacy Android versions various bypass
and attacks against SafetyNet are possible [15].
Anti-Debugging and Anti-Instrumentation. Another possibil-
ity is to implement anti-debugging and anti-instrumentation tech-
niques in the apps to hinder analysis, potentially on even rooted
systems. Depending on what heuristics are being used, some might
still be bypassable [41]. With the advancements of artifact detec-
tion [38], anti-instrumentation [23, 32], and transparent debugging
[19, 42], this line of defense appears to be an on-going cat-and-
mouse-game, similar to root detection.
Obfuscating keys in memory. While relying solely on obscurity
for security lacks robustness [CWE-656], however, in the casewhere
content encryption keys must be inevitably loaded into the memory,
one possibility is to make it harder for key scanning heuristics to
identify secret keys in memory dumps.

Heuristics used in identifying memory regions of interests (e.g.,
those that contain content fragments and cryptographic keys) typi-
cally assume their targets to occupy a contiguous region of memory
[27, 53]. Additionally, they might also leverage the mathematical
relation between the raw secret key and its derived key schedules
to pinpoint the targets [27]. It remains to be seen whether obfus-
cations can be used to defeat these assumptions and make it more
di�cult for an attacker to recover secret keys from the memory.
Watermarking. An orthogonal line of protection is to use water-
marking tomake the origin of piracy traceable. Over the years, there
are techniques developed to watermark multimedia like audios [11]
and motion pictures [10], as well as textual contents [26, 52]. In
some cases, however, attackers can remove trivially detectable wa-
termarks. Resilience against detection and removal remains the
main objectives of watermarking research.

Another weakness of relying on watermarking for piracy track-
ing is that detection often relies on the content being leaked and
shared on the Internet, and it remains di�cult to detect o�ine
sharing and contents that are stolen but not shared at all.
Trusted Execution Environments. A potential game changer is
the use of Trusted Execution Environments (TEEs), Since the tradi-
tional execution environment could potentially be under adversarial
control, TEE vendors typically leverage separation mechanisms en-
forced by the hardware platform to create an isolated execution
environment, the internal execution state of which not even the OS
can inspect, though depending on implementations, cryptographic
code running inside an isolated environment like Intel SGX might
still be susceptible to cache timing attacks [13, 25].

Various TEE implementations have beenmade available in recent
years, especially on mobile platforms, where it has been reported

that there are multiple vendors o�ering various TEE solutions that
do not seem to conform to the same API standard [20], which might
have made it hard for developers to implement a one-size-�ts-all
solution that is universally deployable across brands of devices,
potentially hindering adoption.

In the TEE trust model, the vendors would typically serve as the
root of trust, and they often employ a tight admission control model
which might require potentially costly licensing and non-disclosure
agreements prior to app development and deployment. This could
potentially create a market where only big companies can a�ord to
compete in, shutting out small businesses and individual developers.
For some, this also presents a concern for consumer rights. Since
the trust on TEE vendors who enforce admission control on what
can be executed in the isolated environment is transitive (users
trust the vendor, which in turn trust the TEE licensees to provide
opaque but non-malicious software), the lack of transparencymakes
it di�cult to detect subtle attacks (e.g., spying and tracking) and
hold the vendors accountable. While for cloud service providers,
the ability to create and attest isolated execution environments
might add appeals to their customers, it remains unclear how, if
given the choice, consumers would be willing to pay for a hardware
technology that they cannot control and cannot opt-out, instead of
choosing the low cost devices without these hassles that are more
customizable and con�gurable.

6 RELATEDWORK
App Weakness Analysis. Reaves et al. [43] have carried out an
analysis, that shares the same spirit as ours, for 7 branchless mo-
bile banking applications, and have uncovered weak design and
implementation practices including inadequate authentication and
authorization checks, weak (or, non-standard) cryptographic primi-
tive usage, predictable key usage, and sensitive information leakage.
Memory Dumping A�acks. From the perspective of attempting
to bypass DRM content protection, the closest work comparing to
ours is perhaps the Steal This Movie paper [53]. While their attack
on (AS5) is focused on identifying data paths of cryptographic op-
erations and the dumping and reconstruction of decrypted content
streams, we are more concerned about the overall app life cycles
(AS1–4), especially on commodity mobile devices that are lacking
in hardware protection capabilities.
Cryptographic A�acks. Biryukov et al. [8] present a cryptanaly-
sis of theweak cipher (PC1) employed by Kindle for DRMprotection.
The authors have shown that due to the lack of avalanche e�ect
in PC1, one can extract the key using known plaintext and cipher-
text attacks. Crosby et al. [16] present a cryptanalysis for High
Bandwidth Digital Content Protection (HDCP) scheme, an identity-
based cryptosystem used for communication in the Digital Visual
Interface (DVI) bus, in which they identify that if an adversary has
access to 40 public/private key pairs they can essentially break all
the security guarantees promised by the scheme.
SideChannelA�acks. Depending on their implementations, cryp-
tographic code might leak secrets through various side channels,
which can sometimes be exploited. Several implementations of AES
are known to be vulnerable to side channel attacks [7, 12] Side
channels might still exist even if one uses a TEE like SGX [13, 25].

245

Why Johnny Can’t Make Money With His Contents:
Pitfalls of Designing and Implementing Content Delivery Apps ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Implementation Challenges. From a purely technical perspec-
tive, a cryptographic enforcement of DRM has similarity with an of-
�ine password managers and a cryptographic ransomware, though
the three face di�erent challenges. Although o�ine password man-
agers try to prevent illegal access to user-passwords [4, 24, 50]—
analogous to contents under DRM protection—there is a major
di�erence in the adversarial assumptions: the underlying user is
completely trusted in the context of the password managers but
is not the case for DRM. Such an assumption allows a neat key
concealment approach in which the secret key is not required to
be stored on the device, and can be derived at runtime from the
user’s master password using a key derivation function, making
password-manager somewhat easier to implement. On the other
hand, cryptographic ransomware shares the same view of adver-
sary as in DRM [28–31, 47, 48]—resisting recovery of contents—but
because of the relaxation on the decryption correctness guaran-
tees, ransomware can simply delete the secret key, while DRM
systems, particular those that allow o�ine playback for better user
experience, cannot.

Some have suggested that the large �le size of high-de�nition
multimedia contents can be considered as a natural DRM [9], for
which we disagree with.While large �le size slightly hinder Internet
sharing, DRM has a variety of other objections like copy control,
license expiration check and authorization that are beyond the
scope of Internet sharing, especially in the era that the subscription-
based stream business is dominant.
App Security Standard. OWASP recently released version 1 of
its Mobile Application Security Veri�cation Standard [40], which
attempts to standardize security requirements and veri�cation lev-
els that �t di�erent application and threat scenario. Interestingly,
for Intellectual Property protection, it recommends veri�cation
level L1+R. While R requires resiliency against reverse engineering,
L1 does not require key/certi�cate pinning, which as discussed in
Sections 3.3 and 3.4, allows for relatively easy TLS interception and
potential content protection bypass.

7 CONCLUSION
In this paper, we shed light on the current practices and weaknesses
of content delivery apps on mobile platforms, with concrete attacks
on 141 apps. Due to some unjusti�ed trust assumptions and weak
design patterns, given the right adversary capability, it is often
possible to bypass the content protection mechanism in place to
achieve unrestricted access to raw contents. Feasibility of such at-
tacks might have contributed to the conventional printed media’s
struggle for revenue. Content owners should evaluate the robust-
ness of the app design before retaining the service of a developer.

Our �ndings present an interesting dilemma for content dis-
tributors to consider: either risk losing controls over contents by
allowing untrustworthy devices to access their services, or risk los-
ing customer reach. We hope that our work would bring awareness
to the situation, and spark further research on identifying more app
weaknesses. In particular, with more sophisticated frameworks like
[49] and recent advancements in transparent debugging against
anti-debugging and anti-instrumentation techniques [19, 42] we
expect more apps can be reverse engineered and analyzed.

A Call to Arms. Another goal of this work is to summarize weak-
ness patterns so that future developments of similar apps can ben-
e�t from the insights provided by this paper, take various attack
strategies into consideration, and avoid similar pitfalls.

Penetration testing becomes especially important in the case
when content distributors are unwilling to completely shut o� their
services to customers who own only low-end devices without TEE
capabilities, making obfuscation the only feasible partial solution. In
the absence of a generic framework for quantifying the complexity
of obfuscation, penetration testing becomes perhaps the only way
to empirically evaluate how di�cult it would be to extract secret
states. Companies who already have an in-house red team could
perhaps leverage it for this purpose.

ACKNOWLEDGMENT
We would like to thank the app vendors for responding to our vul-
nerability reports, and in many cases collaborated with us regarding
new releases. We thank the anonymous reviewers for their helpful
comments. Special thanks to Mr. Horace Tse for drawing our atten-
tion to apps of medical journals, which ignited our interests on this
topic. We are also very grateful to Prof. Gene Spa�ord for his advice
on responsible disclosure and DMCA. This work was supported in
part by NSF CRII 1657124 and ARO W911NF-16-1-0127.

REFERENCES
[1] 2010 (accessed Feb 07, 2018). DRMLicense cacheable. https://social.msdn.microsoft.

com/Forums/silverlight/en-US/b0220e8a-0660-49aa-8353-18d12ae285dd/
drm-license-cacheable.

[2] 2016 (accessed Feb 07, 2018). DMCA security research exemption for con-
sumer devices. https://www.ftc.gov/news-events/blogs/techftc/2016/10/
dmca-security-research-exemption-consumer-devices.

[3] 2017 (accessed Feb 07, 2018). SuperSU - Android Apps on Google Play. https:
//play.google.com/store/apps/details?id=eu.chain�re.supersu.

[4] Andrey Belenko and Dmitry Sklyarov. 2012. “Secure Password Managers” and
“Military-Grade Encryption” on Smartphones: Oh, Really? https://www.elcomsoft.
com/WP/BH-EU-2012-WP.pdf.

[5] Android Developers. (accessed Feb 02, 2018). Saving Files - Choose Internal or
External Storage. https://developer.android.com/training/data-storage/�les.html#
InternalVsExternalStorage.

[6] Andy Boxall. 2015 (accessed Feb 06, 2018). 80% of Android phone own-
ers in China have rooted their device. http://www.businessofapps.com/
80-android-phone-owners-china-rooted-device/.

[7] Daniel J Bernstein. 2005 (accessed Sep 19, 2018). Cache-timing attacks on AES.
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[8] Alex Biryukov, Gaëtan Leurent, and Arnab Roy. 2012. Cryptanalysis of the
“kindle” cipher. In International Conference on Selected Areas in Cryptography.
Springer, 86–103.

[9] A. Blaich and A. Striegel. 2009. Is High De�nition a natural DRM?. In Proceedings
of 18th International Conference on Computer Communications and Networks. 1–4.

[10] Je�rey A Bloom and Christos Polyzois. 2004. Watermarking to track motion
picture theft. In Signals, Systems and Computers, 2004. Conference Record of the
Thirty-Eighth Asilomar Conference on, Vol. 1. IEEE, 363–367.

[11] Laurence Boney, Ahmed H Tew�k, and Khaled N Hamdy. 1996. Digital water-
marks for audio signals. InMultimedia Computing and Systems, 1996., Proceedings
of the Third IEEE International Conference on. IEEE, 473–480.

[12] Joseph Bonneau and Ilya Mironov. 2006. Cache-collision timing attacks against
AES. In InternationalWorkshop on Cryptographic Hardware and Embedded Systems.
Springer, 201–215.

[13] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache
Attacks Are Practical. In 11th USENIX Workshop on O�ensive Technologies.

[14] Chain�re. 2012 (accessed Feb 07, 2018). [CENTRAL] CF-Auto-Root. https://forum.
xda-developers.com/showthread.php?t=1980683.

[15] Collin Mulliner and John Kozyrakis. 2017 (accessed Feb 06, 2018). Inside An-
droid’s SafetyNet Attestation. https://www.blackhat.com/docs/eu-17/materials/
eu-17-Mulliner-Inside-Androids-SafetyNet-Attestation.pdf.

[16] Scott Crosby, Ian Goldberg, Robert Johnson, Dawn Song, and David Wagner.
2001. A cryptanalysis of the high-bandwidth digital content protection system.

246

https://social.msdn.microsoft.com/Forums/silverlight/en-US/b0220e8a-0660-49aa-8353-18d12ae285dd/drm-license-cacheable
https://social.msdn.microsoft.com/Forums/silverlight/en-US/b0220e8a-0660-49aa-8353-18d12ae285dd/drm-license-cacheable
https://social.msdn.microsoft.com/Forums/silverlight/en-US/b0220e8a-0660-49aa-8353-18d12ae285dd/drm-license-cacheable
https://www.ftc.gov/news-events/blogs/techftc/2016/10/dmca-security-research-exemption-consumer-devices
https://www.ftc.gov/news-events/blogs/techftc/2016/10/dmca-security-research-exemption-consumer-devices
https://play.google.com/store/apps/details?id=eu.chainfire.supersu
https://play.google.com/store/apps/details?id=eu.chainfire.supersu
https://www.elcomsoft.com/WP/BH-EU-2012-WP.pdf
https://www.elcomsoft.com/WP/BH-EU-2012-WP.pdf
https://developer.android.com/training/data-storage/files.html#InternalVsExternalStorage
https://developer.android.com/training/data-storage/files.html#InternalVsExternalStorage
http://www.businessofapps.com/80-android-phone-owners-china-rooted-device/
http://www.businessofapps.com/80-android-phone-owners-china-rooted-device/
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://forum.xda-developers.com/showthread.php?t=1980683
https://forum.xda-developers.com/showthread.php?t=1980683
https://www.blackhat.com/docs/eu-17/materials/eu-17-Mulliner-Inside-Androids-SafetyNet-Attestation.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Mulliner-Inside-Androids-SafetyNet-Attestation.pdf

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA S. Chau et al.

In ACM Workshop on Digital Rights Management. Springer, 192–200.
[17] David Ruddock. 2014 (accessed Feb 06, 2018). [Weekend Poll] Is Your Pri-

mary Android Device Rooted? http://www.androidpolice.com/2014/11/23/
weekend-poll-is-your-primary-android-device-rooted-2/.

[18] X de Carné de Carnavalet and Mohammad Mannan. 2016. Killed by proxy:
Analyzing client-end TLS interception software. In Proc. Network and Distributed
System Security Symposium (NDSS).

[19] Zhui Deng, Xiangyu Zhang, and Dongyan Xu. 2013. Spider: Stealthy binary pro-
gram instrumentation and debugging via hardware virtualization. In Proceedings
of the 29th Annual Computer Security Applications Conference. ACM, 289–298.

[20] doridori. 2017 (accessed Feb 06, 2018). Android-Security-Reference/TEE.md.
https://github.com/doridori/Android-Security-Reference/blob/master/
hardware/TEE.md.

[21] Zakir Durumeric, Zane Ma, Drew Springall, Richard Barnes, Nick Sullivan, Elie
Bursztein, Michael Bailey, J Alex Halderman, and Vern Paxson. 2017. The security
impact of HTTPS interception. In Proc. Network and Distributed System Security
Symposium (NDSS).

[22] Editors of Inc. 2017. MAZ Systems - New York, NY. (2017). https://www.inc.
com/pro�le/maz-systems

[23] F Falcon and N Riva. 2012. Dynamic binary instrumentation frameworks: I know
you’re there spying on me. In Reverse Engineering Conference.

[24] Paolo Gasti and Kasper B. Rasmussen. 2012. On the Security of PasswordManager
Database Formats. In Computer Security – ESORICS 2012. Springer, 770–787.

[25] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017.
Cache attacks on Intel SGX. In Proceedings of the 10th European Workshop on
Systems Security. ACM.

[26] Christian Grotho�, Krista Grotho�, Ryan Stutsman, Ludmila Alkhutova, and
Mikhail Atallah. 2009. Translation-based steganography. Journal of Computer
Security 17, 3 (2009), 269–303.

[27] J Alex Halderman, Seth D Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A Calandrino, Ariel J Feldman, Jacob Appelbaum, and Edward W
Felten. 2008. Lest we remember: cold boot attacks on encryption keys. In 17th
USENIX Security Symposium. 45–60.

[28] Jian Huang, Jun Xu, Xinyu Xing, Peng Liu, and Moinuddin K. Qureshi. 2017.
FlashGuard: Leveraging Intrinsic Flash Properties to Defend Against Encryption
Ransomware. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’17). 2231–2244.

[29] Amin Kharaz, Sajjad Arshad, CollinMulliner,William Robertson, and Engin Kirda.
2016. UNVEIL: A Large-Scale, Automated Approach to Detecting Ransomware.
In 25th USENIX Security Symposium. 757–772.

[30] AminKharraz,WilliamRobertson, Davide Balzarotti, Leyla Bilge, and Engin Kirda.
2015. Cutting the gordian knot: A look under the hood of ransomware attacks.
In 12th Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA 2015). Springer, 3–24.

[31] Eugene Kolodenker, William Koch, Gianluca Stringhini, and Manuel Egele. 2017.
PayBreak: Defense Against Cryptographic Ransomware. In Proceedings of the
2017 Asia Conference on Computer and Communications Security (ASIA CCS ’17).
599–611.

[32] Xiaoning Li and Kang Li. 2014. Defeating the transparency features of dynamic
binary instrumentation. BlackHat US. (2014).

[33] Magisk Manager. 2018 (accessed Feb 06, 2018). Download Magisk Manager Latest
Version 5.5.5 For Android 2018. https://magiskmanager.com/#Magisk_Root_
Universal_Systemless_Interface.

[34] Jingran Wang Matt Joseph and contributors. 2016. RootCloak. (2016). https:
//github.com/devadvance/rootcloak

[35] mediaarcadmin. 2010 (accessed Jan 29, 2018).
ios_stack/Sources/Classes/DRM/drmenvelope.h. https://github.com/
mediaarcadmin/ios_stack/blob/master/Sources/Classes/DRM/drmenvelope.h.

[36] Microsoft Corporation. 2015 (accessed Feb 07, 2018). Microsoft PlayReady Content
Protection Technology. https://www.microsoft.com/playready/documents/.

[37] Microsoft Corporation. 2017 (accessed Feb 07, 2018). PlayReady Header Speci�ca-
tion. https://www.microsoft.com/playready/documents/.

[38] Najmeh Miramirkhani, Mahathi Priya Appini, Nick Nikiforakis, and Michalis
Polychronakis. 2017. Spotless sandboxes: Evading malware analysis systems
using wear-and-tear artifacts. In IEEE Symposium on Security and Privacy.

[39] MITRE Corporation. 2018 (accessed Feb 05, 2018). CVE-2018-5686. https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-5686.

[40] Bernhard Mueller and Sven Schleier. 2018. OWASP Mobile App Security
Requirements and Veri�cation v 1.0. (2018). https://github.com/OWASP/
owasp-masvs/releases/download/1.0/OWASP_Mobile_AppSec_Veri�cation_
Standard_v1.0.pdf

[41] Nahuel Cayetano Riva. 2015 (accessed Feb 06, 2018). Anti-instrumentation tech-
niques: I know you’re there, Frida! https://crackinglandia.wordpress.com/2015/11/
10/anti-instrumentation-techniques-i-know-youre-there-frida/.

[42] Zhenyu Ning and Fengwei Zhang. 2017. Ninja: Towards Transparent Tracing
and Debugging on ARM. In 26th USENIX Security Symposium. 33–49.

[43] Bradley Reaves, Nolen Scaife, Adam M Bates, Patrick Traynor, and Kevin RB
Butler. 2015. Mo (bile) Money, Mo (bile) Problems: Analysis of Branchless Banking

Applications in the Developing World.. In USENIX Security Symposium. 17–32.
[44] Rohit Salecha. 2017 (accessed Feb 06, 2018). Pentesting Android Apps Using Frida.

https://www.notsosecure.com/pentesting-android-apps-using-frida/.
[45] Ryne Hager. 2017 (accessed Feb 06, 2018). Google may have updated SafetyNet

detection, breaking some root hiding. http://www.androidpolice.com/2017/06/14/
google-may-updated-safetynet-detection-breaking-root-hiding-methods/.

[46] Ryne Hager. 2017 (accessed Feb 06, 2018). SafetyNet can detect Magisk
again, but a �x is in the works. http://www.androidpolice.com/2017/07/16/
safetynet-can-detect-magisk-�x-works/.

[47] N. Scaife, H. Carter, P. Traynor, and K. R. B. Butler. 2016. CryptoLock (and Drop
It): Stopping Ransomware Attacks on User Data. In 2016 IEEE 36th International
Conference on Distributed Computing Systems (ICDCS). 303–312.

[48] Daniele Sgandurra, Luis Muñoz-González, Rabih Mohsen, and Emil C Lupu. 2016.
Automated dynamic analysis of ransomware: Bene�ts, limitations and use for
detection. arXiv preprint arXiv:1609.03020 (2016).

[49] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK: (State of) The Art of War: O�ensive Techniques
in Binary Analysis. In IEEE Symposium on Security and Privacy.

[50] David Silver, Suman Jana, Dan Boneh, Eric Chen, and Collin Jackson. 2014.
Password Managers: Attacks and Defenses. In 23rd USENIX Security Symposium.
449–464.

[51] Synk Security Team. 2018. Zip Slip Vulnerability. (2018). https://github.com/
snyk/zip-slip-vulnerability

[52] Mercan Topkara, Umut Topkara, and Mikhail J Atallah. 2007. Information hiding
through errors: a confusing approach. In Security, Steganography, and Water-
marking of Multimedia Contents IX, Vol. 6505. International Society for Optics
and Photonics.

[53] Ruoyu Wang, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2013. Steal This Movie: Automatically Bypassing DRM Protection in Streaming
Media Services. In USENIX Security Symposium. 687–702.

A APPENDIX
A.1 Legal and Ethical Matters
First and foremost, this research is de�nitely not aimed at assisting
piracy. We have not and will not distribute any code and other
artifacts used in conducting the experiments.

As this research was done inside the United States, it is our
understanding that the DMCA security research exemption [2]
should be applicable. We believe what we did in this paper meets
the four main requirements for the said exemption: 1) the apps and
the device of which the apps were running on were all lawfully
acquired; 2) the experiments were done solely for the purpose of
good-faith security research; 3) the research was conducted in a
controlled setting designed to avoid harm to individuals or the public;
4) the research did not begin before October 28, 2016.

For ethical reasons, after an attack has been demonstrated to
be working, we stop our experiments and did not perform mass
content extraction for our personal gains. For example, in the case of
Amazon Music, we tried content decryption on only four songs, in
order to gain con�dence that decryption with the same key would
work on songs that are: 1) from di�erent tiers of subscription;
2) stored on the same device but di�erent albums; 3) stored on
di�erent devices. Similarly, for each of the group-7–8 apps, we
only downloaded 2 random pages from 2 magazine issues. The
extracted raw contents (e.g., audio tracks and magazine pages) have
been subsequently deleted. We have also engaged in responsible
disclosure with the app vendors, demonstrating good-faith.

A.2 Table of Apps and CWEs
The complete list of publication apps that we studied can be found
at the end of this paper in Table 1. The list of CWEs discussed in
this paper can be found in Table 2.

247

http://www.androidpolice.com/2014/11/23/weekend-poll-is-your-primary-android-device-rooted-2/
http://www.androidpolice.com/2014/11/23/weekend-poll-is-your-primary-android-device-rooted-2/
https://github.com/doridori/Android-Security-Reference/blob/master/hardware/TEE.md
https://github.com/doridori/Android-Security-Reference/blob/master/hardware/TEE.md
https://www.inc.com/profile/maz-systems
https://www.inc.com/profile/maz-systems
https://magiskmanager.com/#Magisk_Root_Universal_Systemless_Interface
https://magiskmanager.com/#Magisk_Root_Universal_Systemless_Interface
https://github.com/devadvance/rootcloak
https://github.com/devadvance/rootcloak
https://github.com/mediaarcadmin/ios_stack/blob/master/Sources/Classes/DRM/drmenvelope.h
https://github.com/mediaarcadmin/ios_stack/blob/master/Sources/Classes/DRM/drmenvelope.h
https://www.microsoft.com/playready/documents/
https://www.microsoft.com/playready/documents/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-5686
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-5686
https://github.com/OWASP/owasp-masvs/releases/download/1.0/OWASP_Mobile_AppSec_Verification_Standard_v1.0.pdf
https://github.com/OWASP/owasp-masvs/releases/download/1.0/OWASP_Mobile_AppSec_Verification_Standard_v1.0.pdf
https://github.com/OWASP/owasp-masvs/releases/download/1.0/OWASP_Mobile_AppSec_Verification_Standard_v1.0.pdf
https://crackinglandia.wordpress.com/2015/11/10/anti-instrumentation-techniques-i-know-youre-there-frida/
https://crackinglandia.wordpress.com/2015/11/10/anti-instrumentation-techniques-i-know-youre-there-frida/
https://www.notsosecure.com/pentesting-android-apps-using-frida/
http://www.androidpolice.com/2017/07/16/safetynet-can-detect-magisk-fix-works/
http://www.androidpolice.com/2017/07/16/safetynet-can-detect-magisk-fix-works/
https://github.com/snyk/zip-slip-vulnerability
https://github.com/snyk/zip-slip-vulnerability

Why Johnny Can’t Make Money With His Contents:
Pitfalls of Designing and Implementing Content Delivery Apps ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Table 1: List of content distribution apps studied in this paper

App Name Version Publisher † Latest In-App
Issue Cover Date

Latest In-App
Issue Price ($) ‡ Category ‡ Installs Attacks and Adversaries

Discussed v

Group-1 Apps (Vendor: Apazine)

The MagPi 5.0.3 The Raspberry Pi
Foundation Apr, 2018 3.99 News & Magazines 50000+

EVA (Sect. 3.1, ANet(Sni�))
PBA (Sect. 3.2, ANet(Sni�))
PBA (Sect. 4.1, AExS(R))
KEA (Sect. 4.3, AExS(R))

Business Money 5.0 Business Money
Promotions Mar, 2018 14.99 News & Magazines 1000+

Artists & Illustrators 5.1 The Chelsea Magazine
Company Jun, 2018 5.99 Lifestyle 1000+

My MS-UK 5.0.3 MS-UK Jan/Feb 2018 3.99 News & Magazines 100+

Popshot Magazine 5.2 The Chelsea Magazine
Company Spring, 2018 7.49 Lifestyle 50+

Group-2 Apps (Vendor: Apazine)
Counter Intelligence

Plus 4.0.0 Communications
International Group Jan 05, 2017 Free Medical 1,000+ KEA (Sect. 4.5, AInS(R))

Group-3 Apps (Vendor: Maz Systems)
Forbes Magazine � 6.1.0 Forbes Media May 31, 2018 5.99 Business 100,000+

PBA (Sect. 3.2, ANet(Sni�))
EVA (Sect. 3.3, ANet(TLSInt))
Privacy Threats (Sect. 3.5)
CEA (Sect. 4.4, AInS(R))

PBA (Sect. 4.7, AInS(R+W))

Harvard Business
Review

4.6.15
4.6.56 #

Harvard Business
Publishing May 01, 2018 18.99 Business 10,000+

Designs in Machine
Embroidery 6.1.0 Designs in Machine

Embroidery May 01, 2018 4.99 Lifestyle 10,000+

Diabetes
Self-Management 6.1.0 Madavor Media Jun 01, 2018 5.99 Health & Fitness 10,000+

ForbesLife 6.1.0 Forbes Media Nov 23, 2015 6.99 Lifestyle 10,000+

Mother Earth News 6.1.0,
6.1.56 #

Ogden Publications,
Inc. Feb 01, 2018 5.99 Lifestyle 10,000+

Boys’ Life 6.1.4,
6.1.56 # Boy Scouts of America Jun 01, 2018 4.99 News & Magazines,

Education 5,000+

Craft Beer & Brewing
Magazine 6.1.50 Un�ltered Media

Group May 09, 2018 9.99 Lifestyle 5,000+

GRIT Magazine 6.1.0 Ogden Publications,
Inc. May 01, 2018 4.99 Lifestyle 5,000+

Guitar World 6.1.15 NewBay Media Jul 01, 2018 7.99 Music & Audio 5,000+

Inside Lacrosse 6.1.0 American City
Business Journals May 01, 2018 4.99 Sports 5,000+

Mother Earth Living 6.1.0 Ogden Publications,
Inc. May 01, 2018 5.99 Lifestyle 5,000+

USA Today Sports
Weekly

6.1.0,
6.1.59 # Gannett Company May 29, 2018 2.99 Sports 5,000+

ABA Journal
Magazine 6.1.0 American Bar

Association May 01, 2018 6.99 Business 1,000+

American
Cheerleader
Magazine

6.1.0 Varsity Spirit Mar 21, 2018 3.99 Sports 1,000+

BirdWatching 6.1.0 Madavor Media May 01, 2018 5.99 Lifestyle 1,000+

BUST Magazine 6.1.0 Debbie Stoller and
Laurie Henzel Apr 01, 2018 4.99 Entertainment 1,000+

Cake Central
Magazine 6.1.0 Cake Central Media

Corp. Apr 01, 2017 5.99 Lifestyle 1,000+

Scouting magazine 6.1.0 Boy Scouts of America May 01, 2018 3.99 Lifestyle 1,000+
Faerie Magazine 6.1.0 Faerie Magazine Mar 15, 2018 4.99 Lifestyle 1,000+

Grassroots
Motorsports Mag 6.1.15 Tim Suddard Jun 01, 2018 5.99 Lifestyle 1,000+

Guitar Player
Magazine++ 6.1.15 NewBay Media Jun 01, 2018 6.99 Music & Audio 1,000+

JazzTimes 6.1.0 Madavor Media Jun 01, 2018 3.99 Music & Audio 1,000+
Joy of Kosher
Magazine 6.1.0 Kosher Network

International Nov 24, 2017 3.99 Lifestyle 1,000+

Kayak Angler 6.1.15 Rapid Media Apr 01, 2018 3.99 Sports 1,000+
Leatherneck
Magazine 6.1.0 Marine Corps

Association Jun 01, 2018 4.99 News & Magazines 1,000+

Marine Corps Gazette 6.1.0 Marine Corps
Association Jun 01, 2018 4.99 News & Magazines 1,000+

Motorcycle Classics
Magazine 6.1.0 Ogden Publications,

Inc. May 01, 2018 6.99 Entertainment 1,000+

248

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA S. Chau et al.

National Wildlife
magazine 6.1.0 National Wildlife

Federation Apr 01, 2018 3.99 Education 1,000+

PBA (Sect. 3.2, ANet(Sni�))
EVA (Sect. 3.3, ANet(TLSInt))
Privacy Threats (Sect. 3.5)
CEA (Sect. 4.4, AInS(R))

PBA (Sect. 4.7, AInS(R+W))

New York Observer 6.1.0 Observer Media Nov 14, 2016 1.99 News & Magazines 1,000+
Paddling Mag 6.1.15 Rapid Media Apr 01, 2018 2.99 Sports 1,000+
Paleo Magazine 6.1.12 Paleo Magazine Jul 05, 2018 2.99 Health & Fitness 1,000+
The Writer 6.1.0 Madavor Media Jul 01, 2018 5.99 Education 1,000+
V Magazine 6.1.0 Visionaire May 03, 2018 3.99 Entertainment 1,000+

Volleyball Magazine 6.1.0 Volleyball World Wide Apr 29, 2016 3.99 Sports 1,000+
Adventure Kayak+

Magazine 6.1.15 Rapid Media Jun 01, 2017 3.99 Sports 500+

Art Photo Feature 6.1.0 APF Magazine Feb 01, 2016 3.99 Photography 500+

City Journal 6.1.0 Manhattan Institute
for Policy Research Apr 15, 2018 3.99 Business 500+

Farm Collector 6.1.0 Ogden Publications,
Inc. Jun 01, 2018 4.99 Lifestyle 500+

Gluten-Free Living 6.1.0 Madavor Media May 01, 2018 6.99 Health & Fitness 500+
Keyboard Magazine 6.1.0 NewBay Media Jun 01, 2018 5.99 Music & Audio 500+
Man of the World

Magazine 6.1.0 Man of the World Oct 17, 2016 9.99 Lifestyle 500+

The Real Deal
Magazine 6.1.0 Korangy Publishing May 01, 2018 2.99 Business 500+

Revolver Magazine 6.1.15 NewBay Media Apr 01, 2018 6.99 Music & Audio 500+
Art Business News 6.1.0 Redwood Media Group Apr 01, 2016 0.99 Business 100+
Animania Magazine 6.1.15 RSPCA NSW Mar 01, 2018 3.99 Lifestyle 100+
Pain-Free Living 6.1.0 Madavor Media Jun 01, 2018 4.99 Health & Fitness 100+
Bass Player+ 6.1.15 NewBay Media Jun 01, 2018 5.99 Music & Audio 100+
Digital Video 6.1.15 NewBay Media Jan 01, 2018 4.99 Productivity 100+

Electronic Musician+ 6.1.0 NewBay Media Jun 01, 2018 5.99 Music & Audio 100+
Guitar A�cionado 6.1.15 NewBay Media Jan 01, 2018 7.99 Lifestyle 100+

Hail Varsity
Magazine 6.1.0 Hail Varsity Feb 13, 2018 2.99 Sports 100+

Inside Pitch 6.1.0 The American Baseball
Coaches Association May 01, 2018 1.99 Sports 100+

Inside Weddings 6.1.0 Inside Weddings Mar 13, 2018 5.99 Lifestyle 100+
Multichannel

News++ 6.1.15 NewBay Media May 14, 2018 6.99 Music & Audio 100+

Mix Magazine+ 6.1.0 NewBay Media May 01, 2018 6.99 Music & Audio 100+
MUSE Magazine 6.1.0 MUSE Magazine Feb 19, 2018 3.99 Lifestyle 100+
National A�airs 6.1.15 National A�airs, Inc. Mar 21, 2018 3.99 Education 100+

TWICE+ 6.1.0,
6.1.56 # NewBay Media May 21, 2018 9.99 Music & Audio 100+

AV Technology 6.1.12 NewBay Media May 01, 2018 5.99 Business 50+
Broadcasting &

Cable++ 6.1.8 NewBay Media May 21, 2018 6.99 Music & Audio 50+

Deli Business 6.1.0 Phoenix Media
Network Dec 01, 2017 14.99 Business 50+

HeirlmGardnrMag 6.1.15 Ogden Publications,
Inc. Mar 01, 2018 9.99 Lifestyle 50+

Sound Video
Contractor 6.1.15 NewBay Media May 01, 2018 6.99 Business 50+

Digital Signage 6.1.15 NewBay Media Apr 27, 2018 5.99 Business 10+
Resident Sys 6.1.15 NewBay Media Jun 01, 2018 4.99 Business 10+

System Contractor
News 6.1.15 NewBay Media Jun 01, 2018 5.99 Business 10+

Tech&Learning 6.1.15 NewBay Media May 01, 2018 6.99 Education 10+

Pro Sound News § 6.1.15 NewBay Media May 01, 2018 5.99
Business

(Amazon App
Store)

Ranked
1250 in
Business

Revista La Fuente § 6.1.0 Revista La Fuente Jun 01, 2018 2.99
Lifestyle

(Amazon App
Store)

Ranked
7367 in
Lifestyle

Group-4 Apps (Vendor: Maz Systems)
Bloomberg

Businessweek+ 2.4.6 Bloomberg L.P. Subscription-
based 59.99 yearly News & Magazines 10,000,000+

PBA (Sect. 3.4, ANet(TLSInt))
PBA (Sect. 4.6, AInS(R))Salon.com 2 Salon Media Group Subscription-

based 49.99 yearly News & Magazines 1000+

249

Why Johnny Can’t Make Money With His Contents:
Pitfalls of Designing and Implementing Content Delivery Apps ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Group-5 Apps (Vendor: Maz Systems)
Entrepreneur
Magazine 10020 Entrepreneur Media Jun, 2018 4.99 Business 100,000+

PBA (Sect. 3.4, ANet(TLSInt))
PBA (Sect. 4.6, AInS(R))

Forbes Magazine � 10020 Forbes Media Jun, 2018 5.99 Business 100,000+
Diesel World 10010 Engaged Media Aug, 2018 5.99 News & Magazines 10000+

Knives Illustrated 10020 Engaged Media Jul, 2018 4.99 News & Magazines 5000+
Gun World 10020 Engaged Media Jul, 2018 3.99 News & Magazines 5000+

American Survival
Guide 10020 Engaged Media Jul, 2018 6.99 News & Magazines 5000+

Ultimate Diesel
Builders Guide 10020 Engaged Media Jun, 2018 5.99 News & Magazines 5000+

Outside TV Features 10021 Outside Television Subscription-
based 4.99 monthly Sports 1,000+

Inc. Must Reads and
Magazine 10020 Mansueto Ventures Jun, 2018 4.99 Business 1,000+

The Nation Magazine 10020 The Nation Company May 28, 2018 1.99 News & Magazines 1,000+
Conceal & Carry 10020 Engaged Media Summer, 2018 7.99 News & Magazines 1000+

Cottages & Bungalow 10020 Engaged Media Jun, 2018 8.99 News & Magazines 1000+

The Rebel Media 10020 The Rebel News
Network

Subscription-
based 84.99 yearly News & Magazines 1,000+

Lion’s Roar
Magazine 10020 Lion’s Roar

Foundation
Subscription-

based 23.99 yearly Lifestyle 500+

Buddhadharma 10020 Lion’s Roar
Foundation

Subscription-
based 23.99 yearly News & Magazines 500+

Texas Monthly 10020 Texas Monthly Jun, 2018 4.99 News & Magazines 500+
All About Beer 10020 All About Beer Mar, 2018 4.99 Food & Drink 100+
Atomic Ranch 10020 Engaged Media Summer, 2018 5.99 News & Magazines 100+
FNF Coaches 10020 A.E. Engine Apr, 2018 varies Sports 100+

Tread Magazine 10020 Engaged Media May, 2018 7.99 Lifestyle 100+
Vogue Knitting 1 Soho Publishing Spring, 2018 5.99 News & Magazines 100+

American
Farmhouse Style 10020 Engaged Media Summer, 2018 7.99 Lifestyle 10+

Berko 10020 Pat Callinan Media May 10, 2018 5.99 Lifestyle 10+

Group-6 Apps (Vendor: Maz Systems)
Men’s Health
Magazine 10020 Hearst

Communications Jun, 2018 4.99 Health & Fitness 10,000+

PBA (Sect. 3.4, ANet(TLSInt))
CEA (Sect. 4.2, AExS(R))

Runner’s World 10020 Hearst
Communications Jul, 2018 4.99 Health & Fitness 1,000+

Women’s Health Mag 10020 Hearst
Communications Jun, 2018 4.99 Health & Fitness 1,000+

Prevention 10020 Hearst
Communications Jun, 2018 4.99 Health & Fitness 500+

Quilting 1 F+W Media Jun, 2018 6.99 Education 500+

Bicycling 10020 Hearst
Communications Jul, 2018 4.99 Health & Fitness 100+

FNF | Friday Night
Football 10020 A.E. Engine 2017 0.99 Sports 100+

IW Knits 1 F+W Media Summer, 2018 7.99 Education 50+
ArtistsMag 1 F+W Media Jul, 2018 6.99 Education 50+

Group-7 Apps (Vendor: Pugpig)
The Independent
Daily Edition 4.5.1313.370 Independent Digital

News & Media Limited
Wednesday 27 Jun,

2018 168.74 yearly News & Magazines 50,000+

PBA (Sect. 3.4, ANet(TLSInt))

Primal 9 1.1.3804.716 Hearst Magazines UK 2018 49.99 Health & Fitness 10,000+
Cosmopolitan UK 6.5.1655.377 Hearst Magazines UK Aug, 2018 9.99 yearly Lifestyle 5,000+
Glamour Magazine

(UK) 1.7.2137.893 The Condé Nast
Publications Limited

Spring/Summer,
2018 0.99 News & Magazines 5,000+

Wired UK 33.3.187.893 The Condé Nast
Publications Limited May/Jun, 2018 17.99 yearly News & Magazines 5,000+

Condé Nast Traveler
Magazine 1.2.1189.893 The Condé Nast

Publications Limited Jun, 2018 29.99 yearly Lifestyle 1,000+

GQ Style UK 1.2.3455.893 The Condé Nast
Publications Limited

Spring/Summer,
2018 9.99 yearly Lifestyle 1,000+

Tatler 1.2.1189.893 The Condé Nast
Publications Limited Jul, 2018 29.99 yearly Lifestyle 1,000+

WH Transform 1.0.2982.490 Hearst Magazines UK 2018 54.99 Health & Fitness 1,000+

Brides 1.2.1189.893 The Condé Nast
Publications Limited May/Jun, 2018 23.99 yearly Lifestyle 500+

250

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA S. Chau et al.

House & Garden 1.2.1189.893 The Condé Nast
Publications Limited Jul, 2018 30.99 yearly Lifestyle 500+

PBA (Sect. 3.4, ANet(TLSInt))Reveal UK 6.5.31.50.377 Hearst Magazines UK Week 26, 2018 26.99 yearly Entertainment 100+
The World of
Interiors 1.1.326.893 The Condé Nast

Publications Limited Jul, 2018 35.99 yearly Lifestyle 100+

QP Magazine 1.0.3390.1350 Hearst Magazines UK Jun, 2018 12.99 yearly News & Magazines 10+

Group-8 Apps (Vendor: Pugpig)
ELLE Magazine UK 6.5.1655.377 Hearst Magazines UK Jun, 2018 29.99 yearly Lifestyle 5,000+

PBA (Sect. 3.4, ANet(TLSInt))
CEA (Sect. 4.4, AInS(R))

Men’s Health UK 1.1.3804.716 Hearst Magazines UK Jul, 2018 29.99 yearly Lifestyle 5,000+
ELLE Decoration UK 6.5.1655.377 Hearst Magazines UK Jul, 2018 34.99 yearly Lifestyle 1,000+

Esquire UK 6.5.1665.377 Hearst Magazines UK Jul/Aug, 2018 19.99 yearly Lifestyle 1,000+
Good Housekeeping

UK 6.5.1655.377 Hearst Magazines UK Jun, 2018 29.99 yearly Lifestyle 1,000+

Harper’s Bazaar UK 6.5.1655.377 Hearst Magazines UK Jul, 2018 35.99 yearly Lifestyle 1,000+
Inside Soap UK 6.5.1655.377 Hearst Magazines UK Week 26, 2018 59.99 yearly Entertainment 1,000+

Runner’s World UK 6.5.1655.377 Hearst Magazines UK Aug, 2018 35.99 yearly Health & Fitness 1,000+
Women’s Health UK 1.5.3696.377 Hearst Magazines UK Jul, 2018 29.99 yearly Lifestyle 1,000+
House Beautiful UK 6.5.1655.377 Hearst Magazines UK Aug, 2018 30.99 yearly Lifestyle 500+
Country Living UK 6.5.1655.377 Hearst Magazines UK Jun, 2018 29.99 yearly Lifestyle 100+

Prima UK 6.5.1655.377 Hearst Magazines UK Jul, 2018 28.99 yearly Lifestyle 100+
Real People UK 6.5.1655.377 Hearst Magazines UK Week 27, 2018 26.99 yearly Entertainment 100+
Red Magazine UK 6.5.1655.377 Hearst Magazines UK Jul, 2018 23.99 yearly Lifestyle 100+
Town & Country 6.5.1655.377 Hearst Magazines UK Summer, 2018 18.99 yearly Lifestyle 100+

Best UK 6.5.1655.377 Hearst Magazines UK Week 26, 2018 30.99 yearly Entertainment 50+

Group-9 Apps (Vendor: Amazon)
Amazon Music 6.5.3 various 2-tier subscriptions Music & Audio 100,000,000+ KEA (Sect. 4.8, AMem+BinIns)Audible 2.25.0 various various subscription plans exist Books & Reference 100,000,000+

§ These 2 Apps were only available on Amazon App Store but not on Google Play Store. ‡ Information in these columns retrieved from Google Play Store in Jun, 2018.
For these apps, the newer version uses an encrypted database. They are however still susceptible to PBAs through attack surface (AS1) as discussed in Section 3.2.
� The new version was released during the course of our study to replace the old one. The varied designs are susceptible to di�erent attacks, though the pricing stays the same.
† Some cover dates are in the future due to 1) some have long intervals between issues; 2) some o�er digital access earlier than in print. ($) All prices are in US dollars.
v KEA = Key Extraction Attacks; PBA = Purchase Bypass Attacks; CEA = Content Extraction Attacks; EVA = Eavesdropping Attacks. In this paper, KEA and EVA both imply CEA.

Table 2: List of CWEs discussed in this paper

CWE ID Name Description

CWE-313 Cleartext Storage in a File or on Disk The application stores sensitive information in cleartext in a �le, or on disk.

CWE-319 Cleartext Transmission of Sensitive
Information

The software transmits sensitive or security-critical data in cleartext in a communication channel that can be sni�ed
by unauthorized actors.

CWE-354 Improper Validation of Integrity Check Value The software does not validate or incorrectly validates the integrity check values or "checksums" of a message. This
may prevent it from detecting if the data has been modi�ed or corrupted in transmission.

CWE-425 Direct Request (’Forced Browsing’) The web application does not adequately enforce appropriate authorization on all restricted URLs, scripts, or �les.

CWE-454 External Initialization of Trusted Variables or
Data Stores

The software initializes critical internal variables or data stores using inputs that can be modi�ed by untrusted
actors.

CWE-532 Information Exposure Through Log Files Information written to log �les can be of a sensitive nature and give valuable guidance to an attacker or expose
sensitive user information.

CWE-603 Use of Client-Side Authentication A client/server product performs authentication within client code but not in server code, allowing server-side
authentication to be bypassed via a modi�ed client that omits the authentication check.

CWE-642 External Control of Critical State Data The software stores security-critical state information about its users, or the software itself, in a location that is
accessible to unauthorized actors.

CWE-654 Reliance on a Single Factor in a Security
Decision

A protection mechanism relies exclusively, or to a large extent, on the evaluation of a single condition or the
integrity of a single object or entity in order to make a decision about granting access to restricted resources or

functionality.

CWE-656 Reliance on Security Through Obscurity The software uses a protection mechanism whose strength depends heavily on its obscurity, such that knowledge of
its algorithms or key data is su�cient to defeat the mechanism.

CWE-921 Storage of Sensitive Data in a Mechanism
without Access Control The software stores sensitive information in a �le system or device that does not have built-in access control.

251

	i01-1-mishra
	i01-2-kouwe
	Abstract
	1 Introduction
	2 Background
	2.1 Use-after-free
	2.2 Uninitialized reads
	2.3 Type safety

	3 Threat Model
	4 Overview
	5 Heap
	5.1 Typed memory allocations
	5.2 Wrapper detection and inlining

	6 Stack
	6.1 Guaranteed initialization on the safe stack
	6.2 Typed unsafe stacks

	7 Implementation
	8 Evaluation
	8.1 Security
	8.2 Type detection
	8.3 Wrapper detection and inlining
	8.4 Memory overhead
	8.5 Run-time overhead
	8.6 Firefox case study

	9 Limitations
	10 Related Work
	11 Conclusion
	References

	i01-3-farkhani
	Abstract
	1 Introduction
	2 Background and Problem Definition
	2.1 Control Flow Integrity (CFI)
	2.2 Runtime Type Checking
	2.3 Arity Checking
	2.4 Reuse Attack Protector (RAP)
	2.5 Type Collisions
	2.6 Research Questions

	3 Attack Overview
	3.1 Threat Model
	3.2 Attack Preliminaries
	3.3 Finding Gadgets
	3.4 Constraint Solving

	4 Proof-of-Concept Exploits
	4.1 Nginx Exploit
	4.2 Exim Exploit
	4.3 Summary

	5 Evaluation
	5.1 Type Collisions
	5.2 Gadget Distribution
	5.3 Libc
	5.4 Type Checking vs. Points-to Analysis

	6 Discussion
	6.1 Type Diversification
	6.2 Separate Compilation
	6.3 Mismatch types
	6.4 Support for Assembly Code

	7 Related work
	8 Conclusion
	References

	i01-4-ahmadvand
	Abstract
	1 Introduction
	2 Background & Related work
	2.1 Software integrity protection
	2.2 Nondeterministic code detection

	3 Design
	3.1 Segregation of input data/control-flow dependent instructions
	3.2 Short Range Oblivious Hashing (SROH)
	3.3 Data-Dependent Instructions (DDIs)
	3.4 Intertwined protection

	4 Implementation
	4.1 Protection process
	4.2 Input dependency detection
	4.3 Oblivious hashing (OH)
	4.4 Short Range Oblivious Hashing (SROH)
	4.5 Self-checksumming (SC)
	4.6 Response mechanism

	5 Evaluation
	5.1 Dataset
	5.2 Preparation
	5.3 Coverage
	5.4 Performance analysis
	5.5 Security analysis

	6 Discussion
	6.1 Coverage
	6.2 Implicit protection with OH/SROH
	6.3 Performance

	7 Conclusions
	References
	A A full example of OH+SROH utilization

	i02-1-liu
	Abstract
	1 Introduction
	2 Assumptions and Goals
	3 Related Work
	3.1 Traditional 2FA
	3.2 2FA with Less User-Phone Interactions

	4 Typing-Proof
	4.1 Enrollment and Login
	4.2 Similarity Score
	4.3 Usability Analysis
	4.4 Cost Analysis

	5 Evaluation
	5.1 Data Collection
	5.2 Parameters Configuration
	5.3 False Rejection Rate
	5.4 False Acceptance Rate

	6 Security Analysis
	7 User Study
	7.1 Procedure
	7.2 Usability

	8 Discussion
	9 Conclusion
	References
	A Quantitative Usability Analysis Framework
	B Prototype Implementation
	C System Usability Scale
	D Post-test Questionnaire
	E Comparison Results

	i02-2-mccully
	Abstract
	1 Introduction
	2 Related Work
	2.1 Keystroke dynamics
	2.2 Collaborative editing
	2.3 Identification vs. Authentication

	3 Study: User Identification in Collaboration Services
	3.1 The UB Data Set
	3.2 Log replay data set (LRDS)
	3.3 Feature engineering
	3.4 Random forest classification
	3.5 Model improvements
	3.6 Results

	4 Indirect Typing Biometric Attack
	4.1 Authentication service
	4.2 Forgery attack scenario
	4.3 Creating a forgery
	4.4 TypingDNA Forgery Attack

	5 Discussion
	5.1 Generalizability
	5.2 Practical implications
	5.3 Broader implications

	6 Conclusions
	References

	i02-4-lu
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Online Password Guessing Attacks
	2.2 Defenses against Online Password Attacks
	2.3 Offline Password Attacks

	3 Methodology
	3.1 Modeling Lockout Threshold and Counting Mechanism
	3.2 Black-box Tests

	4 A Measurement Study of Rate Limiting Implementations
	4.1 Experiment Setup
	4.2 Data Collection

	5 Evaluation and Analysis
	5.1 Data Analysis
	5.2 Security Analysis
	5.3 Interesting Observations
	5.4 Recommendations

	6 Limitations and Discussion
	7 Conclusion
	Acknowledgments
	References

	i03-1-copty
	Abstract
	1 Introduction
	2 An extremely abstract OS
	2.1 Implementation details
	2.2 Multiple paths

	3 Malware classification
	3.1 Features
	3.2 Experimental setup
	3.3 Experimental Results

	4 Related work
	4.1 Extreme abstraction
	4.2 Lightweight symbols
	4.3 Malware classification

	5 Future work
	6 Conclusion
	Acknowledgments
	References

	i03-2-machiry
	Abstract
	1 Introduction
	2 Threat Model
	3 Approach Overview
	3.1 Why Loops?
	3.2 Loop Characterization
	3.3 Application Classification

	4 Resilience to Feature-unaware Perturbations
	4.1 Application Transformations
	4.2 CFG Obfuscation
	4.3 Reflection
	4.4 Loop Perturbations

	5 Classification Evaluation
	5.1 Datasets
	5.2 Iterative Pruning Performance
	5.3 Malware Classification Results
	5.4 Importance of Loops and Semantic Labels
	5.5 Resilience to Feature-unaware Perturbations

	6 Discussion
	7 Limitations
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

	i03-3-oprea
	Abstract
	1 Introduction
	2 Background and Overview
	2.1 Enterprise Perimeter Defenses
	2.2 Problem definition and adversarial model
	2.3 System Overview
	2.4 Comparison with previous work
	2.5 Ethical considerations

	3 MADE Training
	3.1 Data Filtering and Labeling
	3.2 Feature Extraction
	3.3 Feature Selection
	3.4 Model Selection

	4 Testing and Evaluation
	4.1 MADE Testing
	4.2 Evaluation, Analysis, and Feedback
	4.3 Discussion and Limitations

	5 Related Work
	6 Conclusion
	References

	i03-4-echeverria
	Abstract
	1 Introduction
	2 Related Work
	3 Datasets
	3.1 Bot Datasets
	3.2 Aggregated Bot Dataset
	3.3 User Dataset
	3.4 Botometer Scores

	4 Methodology - The LOBO test
	5 Features for Classification
	5.1 User Features
	5.2 Tweet Features

	6 Experiments
	6.1 Subsampling
	6.2 General Classifiers
	6.3 LOBO Test I - C30K
	6.4 LOBO Test II - C500

	7 Beyond the LOBO test
	7.1 Relatively Stable Results
	7.2 Learning Rate
	7.3 TSNE plot

	8 Discussion
	8.1 Accuracy and Generalization
	8.2 Improvements with small data additions
	8.3 Scalability

	9 Conclusion
	References

	i04-1-tuveri
	Abstract
	1 Introduction
	2 Background
	2.1 SM2: Chinese Cryptography Standards
	2.2 Remote Timing Attacks
	2.3 Cache Timing Attacks
	2.4 EM Analysis
	2.5 SM2 Implementation Attacks: Previous Work

	3 SM2 in OpenSSL
	4 SM2DSA: Remote Timings
	5 SM2DSA: Cache Timings
	5.1 Scalar Multiplication
	5.2 Modular Inversion

	6 SM2PKE: EM Analysis
	7 SCA Mitigations
	7.1 Scalar Multiplication: SCA Mitigations
	7.2 Modular Inversion: SCA Mitigations
	7.3 SCA Mitigations: Evaluation

	8 Conclusion
	Acknowledgments
	References
	A Remote Timings SCA Evaluation: ECDSA

	i04-2-wichelmann
	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Analysis Setup and Targeted Software

	2 Background
	2.1 Dynamic Binary Instrumentation
	2.2 Microarchitectural Leakage
	2.3 Mutual Information Analysis
	2.4 Signing Algorithms

	3 MicroWalk Analysis Technique
	3.1 Leakage Analysis Model
	3.2 Capturing Internal States
	3.3 Preparing State Variables
	3.4 Leakage Analysis
	3.5 Interpretation of MI Score

	4 MicroWalk Framework
	4.1 Investigated Binary
	4.2 Input Generation
	4.3 Trace Generation
	4.4 Trace Preprocessing
	4.5 Leakage Analysis
	4.6 Manual Inspection and Visualization

	5 Case Study I: Intel IPP
	5.1 Applying MicroWalk MI Analysis to IPP
	5.2 Discovered leakages in Intel IPP

	6 Case Study II: Microsoft CNG
	6.1 Applying MicroWalk MI Analysis to CNG
	6.2 Discovered leakages in Microsoft CNG

	7 Related Work
	8 Conclusion
	8.1 Future Work

	References

	i04-3-zhang
	Abstract
	1 Introduction
	2 Background
	2.1 Cache Side-channel Attacks
	2.2 Cache Side-channel Defenses
	2.3 Deep Neural Networks

	3 Methodology Overview
	4 Dataset Construction
	4.1 An Abstract Model
	4.2 Modeling Specific Attacks
	4.3 Modeling Defense Solutions

	5 DNN Training and Inference
	5.1 Dataset Processing
	5.2 Training
	5.3 Inference

	6 Evaluation
	6.1 Attack Strategies
	6.2 Defense Strategies

	7 Methodology Validation
	8 Related Work
	9 Conclusion
	References

	i04-4-liang
	Abstract
	1 Introduction
	2 Problem
	2.1 Side-Channel Attack over Memory Accesses
	2.2 Burdensome Obfuscation of Access Pattern
	2.3 Toward Practically Efficient Obfuscation

	3 Overview
	3.1 Motivation
	3.2 Challenge
	3.3 Methodology

	4 Design
	4.1 Architecture
	4.2 Position Map Compression
	4.3 Position Map Update

	5 Implementation
	6 Evaluation
	6.1 Memory Access Randomness
	6.2 Execution Time
	6.3 Memory Usage

	7 Discussion
	8 Conclusion
	References

	i05-1-junaid
	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivating Example
	2.3 Challenges

	3 StateDroid Overview
	3.1 Architecture
	3.2 Advance Over State-of-the-Art Work

	4 API Call Detector
	4.1 Reengineering Lifecycle Models
	4.2 Deriving Event & Callback Sequences
	4.3 Detecting API Call Sequences

	5 Action Detector
	5.1 Object State Machines
	5.2 API & Action Formalization
	5.3 Generating API Call Sequences
	5.4 Constructing Object State Machines

	6 Attack Detector
	6.1 Action-Effect & Attack Formalization
	6.2 Frame Axioms

	7 Evaluation
	7.1 RQ1: Accuracy of Action Detector
	7.2 RQ2: Accuracy of Attack Detector
	7.3 RQ3: Comparison with Existing Tools
	7.4 RQ4: StateDroid's Performance

	8 Related Work
	9 Discussion
	10 Conclusion
	11 Acknowledgments
	References

	i05-2-allen
	Abstract
	1 Introduction
	2 Rethinking Contextual Awareness
	2.1 Less Effective Contextual Information
	2.2 Case Study: Identifying Informative Context Factors
	2.3 Calling for Lightweight Context Dependencies

	3 PikaDroid
	3.1 Overview
	3.2 Static Analysis Module
	3.3 Learning Module

	4 Implementation
	5 Dataset
	6 Evaluation
	6.1 Effectiveness
	6.2 Comparison with Prior Work
	6.3 Robustness
	6.4 Classification Models
	6.5 Performance

	7 Related work
	8 Conclusion
	9 Acknowledgments
	References

	i05-3-wermke
	Abstract
	1 Introduction
	2 Android Obfuscation Techniques
	3 Detecting ProGuard Obfuscation
	4 Large Scale Obfuscation Analysis
	4.1 Obfuscation Trends

	5 Developer Survey
	5.1 Results and Takeaways

	6 Obfuscation Experiment
	6.1 Results and Takeaways

	7 Discussion
	8 Threats to Validity
	9 Related Work
	10 Conclusion
	References
	A Ethical Considerations
	B Online Survey
	B.1 ProGuard Study - Exit Survey

	i05-4-chau
	Abstract
	1 Introduction
	2 Scope
	2.1 Attack Surfaces
	2.2 Platform and Test Setup
	2.3 Threat Model
	2.4 App Selection

	3 App Weaknesses & Network Attacks
	3.1 Raw Content Transfer In Clear
	3.2 Bootstrap Information Transfer in Clear
	3.3 Raw Content Transfer over TLS
	3.4 Bootstrap Information Transfer over TLS
	3.5 Threats to User Security and Privacy

	4 App Weaknesses & Local Attacks
	4.1 Log File Leakage
	4.2 Raw Content on External Storage
	4.3 Raw Encryption Key on External Storage
	4.4 Raw Content on Internal Storage
	4.5 Raw Encryption Key on Internal Storage
	4.6 Direct Content Source on Internal Storage
	4.7 Client-Side Authorization
	4.8 Raw Encryption Key in Memory

	5 Discussions
	5.1 Responsible Disclosure and Aftermath
	5.2 Possible Countermeasures and Challenges

	6 Related Work
	7 Conclusion
	References
	A APPENDIX
	A.1 Legal and Ethical Matters
	A.2 Table of Apps and CWEs

	i06-1-mani
	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Methodology & Experimental Setup
	5 Proxy Availability & Performance
	5.1 Performance
	5.2 Expected vs. Unexpected Content
	5.3 Anonymity

	6 HTML Manipulation
	7 File Manipulation
	7.1 Detailed Findings
	7.2 Network Diversity and Consistency of Malicious Proxies

	8 SSL/TLS Analysis
	9 Comparison With Tor
	10 Ethical considerations
	11 Conclusion
	Acknowledgments
	References
	A Examples of HTTP Proxy Protocols
	B Client locations
	C File Manipulation Infections

	i06-2-ramanathan
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Volumetric Attacks
	2.2 Related Work
	2.3 SENSS vs First-ISP vs Clouds

	3 SENSS
	3.1 Challenges
	3.2 SENSS Architecture
	3.3 ISP Implementation
	3.4 Client Programs
	3.5 Security and Robustness

	4 Evaluation
	4.1 Evaluation Methodology
	4.2 2016 attack on Dyn
	4.3 Effectiveness in Sparse Deployment
	4.4 Comparison of SENSS and Cloud Defenses
	4.5 Delay, Traffic and Message Cost
	4.6 Scalability within an ISP

	5 Conclusion
	6 Acknowledgement
	References

	i06-3-baek
	Abstract
	1 Introduction
	2 Wi-Fi Calling
	2.1 Wi-Fi Calling Architecture
	2.2 Wi-Fi Calling Handshakes

	3 Security in Wi-Fi Calling
	3.1 Privacy of Users
	3.2 Availability of Services
	3.3 Attacks Originating From Victim's UE and Attacker's AP

	4 IMSI Privacy Attack
	4.1 Attack Scenario
	4.2 Attack Setup
	4.3 Results of Attacks
	4.4 Impact and Applicability

	5 DoS Attacks
	5.1 Attack Scenarios
	5.2 Attack Setup
	5.3 Results of Attacks
	5.4 Impact and Applicability

	6 Countermeasures
	6.1 IMSI Privacy Attack Countermeasures
	6.2 DoS Countermeasures

	7 Discussion
	7.1 Trade-off Between Security and Usability
	7.2 Trade-off Between Security and Deployment

	8 Related work
	9 Conclusion
	References

	i06-4-sy
	Abstract
	1 Introduction
	2 Background
	2.1 Session ID Resumption
	2.2 Session Ticket Resumption
	2.3 Session Resumption via Pre-Shared Keys
	2.4 Comparison of Session Resumption Mechanisms

	3 Privacy Problems with TLS Session Resumption
	3.1 Lifetime of Session Resumption Mechanisms
	3.2 Third-Party Tracking via Session Resumption

	4 Data Collection
	4.1 Alexa Top Million Data Set
	4.2 Browser Measurements
	4.3 DNS Data Set

	5 Evaluation
	5.1 Evaluation of Server Configurations
	5.2 Evaluation of Browser Configurations
	5.3 Evaluation of Real-World User Traffic

	6 Countermeasures
	7 Related Work
	8 Conclusion
	References

	i07-1-garmany
	Abstract
	1 Introduction
	2 Model and Assumptions
	2.1 Modern Vulnerability Exploitation

	3 Design
	3.1 Knowledge Base
	3.2 Propagating Control
	3.3 Finding Sinks
	3.4 Program Paths
	3.5 Triggering Input

	4 Implementation Details
	5 Evaluation
	5.1 Exploitation Primitive Trigger (EPT)
	5.2 Fine Tuning

	6 Discussion and Limitations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	Appendices
	A JavaScript Code Corresponding to Running Example
	B SSA-map

	i07-2-rodriguez
	Abstract
	1 Motivation
	2 Problem Statement
	3 Methodology
	3.1 Data Collection
	3.2 Labeling
	3.3 Feature Selection
	3.4 Learning

	4 Evaluation
	4.1 Detection
	4.2 Impact on the Page Loading Time

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References
	A Theoretical Upper Bound for False Positives and Negatives
	B Additional Plots and Tables

	i07-3-xu
	Abstract
	1 Introduction
	2 Problem Statement and Related Work
	2.1 Multi-tab Threat Model
	2.2 Related work

	3 Overview of Multi-tab Attacks
	4 Dynamic Page Split
	4.1 Challenges in Identifying True Split Points
	4.2 BalanceCascade-XGBoost Algorithm

	5 Chunk-Based Page Classification
	5.1 Feature Selection
	5.2 Classifier Design

	6 Experimental Results
	6.1 Experiment Setup
	6.2 Evaluation of Multi-tab] Attacks
	6.3 Evaluation of Page Split
	6.4 Evaluation of Chunk-Based Classification
	6.5 Evaluation with More Than Two Tabs

	7 Conclusion and Future Work
	References
	A The Rest Features in Feature Set
	B Feature Selection

	i07-4-acker
	Abstract
	1 Introduction
	2 Background
	3 Mechanism design
	3.1 Overview
	3.2 Configuration structure
	3.3 Client-side application
	3.4 Misconfiguration

	4 Policy comparison and combination
	4.1 for policy comparison
	4.2 and for policy combination

	5 Prototype implementations
	5.1 Client-side enforcement
	5.2 Server-side manifest handling
	5.3 Automated manifest generation from observed traffic
	5.4 Limitations and considerations

	6 Evaluation
	6.1 Functional evaluation
	6.2 Longitudinal study
	6.3 Performance measurement

	7 Discussion
	8 Related Work
	9 Conclusion
	References
	A Statistical data

	i08-1-ziegeldorf
	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Scenario and Requirements
	2.2 Analysis of Related Work

	3 Cryptographic Building Blocks
	4 SHIELD Framework
	4.1 Overview of Supervised Classification
	4.2 Secure Building Blocks
	4.3 Implementation and Evaluation Setup

	5 Hyperplane Classifiers
	5.1 Evaluation

	6 Artificial Neural Networks
	6.1 Evaluation

	7 Naive Bayes
	7.1 Evaluation

	8 Hidden Markov Models
	8.1 Evaluation

	9 Outsourcing
	9.1 Evaluation of Outsourcing

	10 Conclusion
	References
	A Detailed Protocols for Secure Building Blocks
	A.1 Max and Argmax
	A.2 Scalar Products
	A.3 Polynomial Approximation of Arbitrary Functions
	A.4 OT-based Evaluation of Discrete Functions
	A.5 Evaluating Gaussians
	A.6 Backtracking

	B Security Discussion
	B.1 Security of the Building Blocks
	B.2 Security of the Classifier Designs

	C Evaluation of Outsourcing for the service provider

	i08-2-kesarwani
	Abstract
	1 Introduction
	2 related work
	3 Problem Framework
	4 Model Extraction Warning
	4.1 Strategy 1: Providing model extraction warnings using information gain metric
	4.2 Strategy 2: Providing model extraction warnings using coverage metric

	5 Experiments
	5.1 Model extraction status for source DT Models
	5.2 Model extraction status for source NN Models

	6 Conclusion and Future Work
	References

	i08-3-fang
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Collaborative Filtering
	2.2 Attacks to Recommender Systems

	3 Problem Formulation
	3.1 Threat Model
	3.2 Attacks as an Optimization Problem

	4 Our Poisoning Attacks
	4.1 Overview
	4.2 Approximating the Optimization Problem
	4.3 Solving the Optimization Problem
	4.4 Generating Rating Scores

	5 Experiments
	5.1 Experimental Setup
	5.2 Attacking Graph-based Systems
	5.3 Transferring to Other Systems

	6 Detecting Fake Users
	7 Conclusion and Future Work
	References

	i08-4-wei
	Abstract
	1 Introduction
	2 Background
	3 Threat Model
	4 Overview
	5 Power Extraction
	5.1 Interference Sources
	5.2 Extraction Methods

	6 Background Detection
	6.1 Intuition
	6.2 Attack Method
	6.3 Evaluation

	7 Image Reconstruction via Power Template
	7.1 Intuition
	7.2 Attack Method
	7.3 Evaluation

	8 Related Work
	9 Conclusion
	A Preliminaries
	A.1 Convolutional Neural Network
	A.2 CNN Accelerator Design
	A.3 Basics on Power Side Channel

	B Discussion and Future Work
	C Attack results on the MNIST dataset
	References

	i09-1-proskurin
	Abstract
	1 Introduction
	2 Background
	2.1 ARM Exception Levels
	2.2 Guest Physical Memory Architecture
	2.3 Debug Exceptions
	2.4 Translation Lookaside Buffer
	2.5 Threat Model

	3 Guest Kernel Monitoring Primitives
	3.1 Implementing Kernel Tap Points
	3.2 Novel Single-Stepping Mechanism
	3.3 Xen altp2m on ARM
	3.4 Splitting the TLBs

	4 Evaluation
	4.1 System Setup
	4.2 DRAKVUF on ARM
	4.3 Performance
	4.4 Effectiveness

	5 Discussion
	5.1 Alternative Tracing Methods
	5.2 Limitations

	6 Related Work
	7 Conclusion
	References

	i09-2-lin
	Abstract
	1 Introduction
	2 Background
	2.1 Linux Container
	2.2 Linux Kernel Security Mechanisms
	2.3 CPU Protection Mechanisms

	3 Attack Dataset Description
	3.1 Exploit Collection
	3.2 Attack Taxonomy
	3.3 Exploit Dataset

	4 Security Evaluation of Container
	4.1 Experiment Setup
	4.2 Result Overview
	4.3 Analysis of Privilege Escalation Attacks
	4.4 A Brief Summary

	5 Defeating Kernel Privilege Escalation Attacks
	5.1 Kernel Privilege Escalation Attack Model
	5.2 Countermeasures
	5.3 Effectiveness and Performance

	6 Discussion on Limitation
	7 Related work
	7.1 Container Security
	7.2 Attack Taxonomy

	8 Conclusion
	Acknowledgments
	References

	i09-3-futagami
	Abstract
	1 Introduction
	2 Out-of-band Remote Management
	3 VSBypass
	3.1 Assumptions and Threat Model
	3.2 Architecture

	4 Implementation
	4.1 Proxy VM
	4.2 I/O Interception
	4.3 Redirection of Virtual Interrupts
	4.4 Sharing VRAM
	4.5 VM Migration

	5 Experiments
	5.1 Eavesdropping on I/O data
	5.2 Performance of a Virtual Serial Console
	5.3 Performance of GUI Remote Access

	6 Related Work
	7 Conclusion
	References

	i09-4-cho
	Abstract
	1 Introduction
	2 Background
	2.1 ARM Architecture and TrustZone
	2.2 Legitimate Channels between the Normal and Secure Worlds
	2.3 ARM Cache Architecture
	2.4 Previous Cache Attacks

	3 Assumptions and Attack Model
	4 Cross-world Covert Channels
	4.1 Prime+Count Overview
	4.2 Prime the Cache
	4.3 Count Using Cache Refill Events
	4.4 A Simple Message Encoding Method
	4.5 Cross-Core Covert Channels

	5 Implementation
	6 Evaluation
	6.1 Effectiveness of Prime+Count
	6.2 Choosing Bucket Ranges
	6.3 Capacity Measurement
	6.4 Image Transfer

	7 Discussion
	7.1 Limitations of Prime+Count
	7.2 Cross-world Covert Channels without Normal World Kernel Privileges
	7.3 Limitations of Our Experiments

	8 Related Work
	9 Conclusion
	References

	i10-1-aviv
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Study Design and Materials
	3.2 Live Simulation Setup and Coordination
	3.3 Procedure
	3.4 Recruitment

	4 Realism and Limitations
	5 Results
	5.1 Comparing Attack Rates Across Video and Live Studies
	5.2 Post-Hoc Participant Feedback

	6 Implications
	7 Conclusions
	References
	A Survey Material
	A.1 Ante Hoc Demographic Questionnaire
	A.2 Post Hoc Participant Strategies Questionnaire Questions
	A.3 Observation Forms
	A.4 Guide/Script for Administering Study

	B Visualization of Authentication
	B.1 Patterns
	B.2 PINs

	i10-2-neupane
	i10-3-wiese
	Abstract
	1 Introduction
	2 Ethical considerations
	3 Threats and Opportunities
	4 Form Factor Survey
	4.1 Materials and Methods
	4.2 Results
	4.3 Discussion
	4.4 Limitations

	5 Field Study
	5.1 Methods
	5.2 Materials

	6 Field Study Results & Discussion
	6.1 Participants and Confidants
	6.2 Recovery Rate
	6.3 Task Durations
	6.4 Security and Trust
	6.5 Sentiments and Token Handling

	7 Limitations
	8 Related Work
	9 Conclusions
	Acknowledgments
	References
	A Form Factor Study Materials
	B Results of form factor survey
	C Questionnaire 1
	D Questionnaire 2
	E Questionnaire for Confidants

	i10-4-farhang
	Abstract
	1 Introduction
	2 Related Work
	2.1 Software Upgrades
	2.2 Software Updates
	2.3 Purchasing New Devices

	3 Methodology
	3.1 Online Survey
	3.2 Measures
	3.3 Study Procedures
	3.4 Participants

	4 Results
	4.1 To Upgrade, or Not to Upgrade?
	4.2 Perceived Usefulness and Satisfaction
	4.3 Measuring Upgrade Cost
	4.4 Security Concerns
	4.5 Free Upgrade and Notification Approach
	4.6 Purchasing New Device

	5 End of Life (EOL) and Security after EOL
	5.1 Security after EOL

	6 Discussion
	6.1 Better Communication to Address Privacy Concerns
	6.2 Better Upgrade Messaging
	6.3 Security and the Need for a Roadmap after EOL
	6.4 Reduce Perceived Cost

	7 Limitations
	8 Conclusion
	References
	A Survey Instrument
	B Code-book
	B.1 Code-book: Not Upgrade
	B.2 Code-book: Upgrade

	i11-1-jain
	Abstract
	1 Introduction
	2 Motivation
	2.1 Evolutionary Fuzzing
	2.2 Motivating Example
	2.3 Lessons learned

	3 Overview
	3.1 Input Execution and Fitness Function
	3.2 DTA and Input Type Inference
	3.3 Type Based Mutation

	4 Input Type Inference
	4.1 In-memory Data Structure Identification for Input Offsets
	4.2 Basic Data Type Identification
	4.3 Array Detection
	4.4 Precise Data Type Identification

	5 Type Inference-assisted Mutation
	5.1 Coverage-oriented Mutation
	5.2 Bug-oriented Mutation

	6 Implementation
	7 Evaluation
	7.1 LAVA-M Dataset
	7.2 MA Dataset
	7.3 Crash Analysis

	8 Related Work
	8.1 Directed Fuzzing Approaches
	8.2 Input Grammar-Based Fuzzing Approaches
	8.3 Evolutionary Fuzzing Approaches

	9 Conclusions
	References
	9.1 Mutation Cycle Algorithm
	9.2 Howard Implementation Details
	9.3 Crash Analysis Details
	9.4 Results on MA dataset for 24hr Run

	i11-2-pang
	Abstract
	1 Introduction
	2 Background
	2.1 C++ Inheritance and Cast Operations
	2.2 Type Confusion
	2.3 Defenses against Type Confusion

	3 Threat Model
	4 Bitype Design and Implementation
	4.1 Overview
	4.2 Safe Encoding Scheme
	4.3 Object Tracing
	4.4 Typecasting Verification
	4.5 Optimization
	4.6 Implementation

	5 Evaluation
	5.1 Coverage
	5.2 Performance Overhead
	5.3 Memory Overhead
	5.4 Compilation Time Overhead

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	i11-3-liu
	Abstract
	1 Introduction
	2 Related Work
	2.1 Static Analysis to Detect Concurrency Problems
	2.2 Concurrency Error Detection
	2.3 Logic-Based Methods
	2.4 Fuzz Testing

	3 Case Study of Concurrency Vulnerabilities
	3.1 Real-World Concurrency Vulnerabilities
	3.2 Characteristics of Concurrency Vulnerabilities

	4 Static Analysis
	4.1 Shared Memory Discovery
	4.2 Sensitive Operation Marking
	4.3 Data-flow Merging
	4.4 Vulnerability Categorization
	4.5 Semantic Checking

	5 Thread-Aware Fuzzing
	5.1 Interleaving Exploring Priority
	5.2 Targeted Priority
	5.3 Load Balance

	6 Implementation
	6.1 Implementation of Static Analysis
	6.2 Implementation of Thread-Aware Fuzzing

	7 Evaluation
	7.1 Benchmark Suite
	7.2 Experimental Results
	7.3 Validation of Detected Concurrency Vulnerabilities
	7.4 Analysis of Static Analysis Results
	7.5 Abnormal Time Cost of Static Analysis

	8 Limitations and Future Work
	8.1 Scalability of Static Analysis
	8.2 Capacity of AFL in Exploring Paths
	8.3 Restrictions of Manual Validation
	8.4 Additional Limitations

	9 Conclusion
	References

	i11-4-ye
	Abstract
	1 Introduction
	2 System Architecture
	3 Proposed Method
	3.1 Feature Extraction
	3.2 HIN Constructor
	3.3 snippet2vec: HIN Representation Learning
	3.4 Multi-view Fusion Classifier

	4 Experimental Results and Analysis
	4.1 Experimental Setup
	4.2 snippet2vec based on Different Sets of Meta-path Schemes
	4.3 Comparisons with Different Network Representation Learning Models
	4.4 Comparisons with Traditional Machine Learning Methods
	4.5 Evaluation of Parameter Sensitivity, Scalability, and Stability
	4.6 Case Studies

	5 Related Work
	6 Conclusion
	References

	i12-1-etigowni
	Abstract
	1 Introduction
	2 Background
	2.1 Drone Flight Dynamics
	2.2 Offline Controller Code Verification
	2.3 Limitation of Existing Solutions

	3 Overview
	3.1 Threat Model
	3.2 Crystal Architecture
	3.3 Safety Requirement Definition
	3.4 Predictive Flight Modeling
	3.5 Just-Ahead-of-Time Verification

	4 Drone Physics Modeling
	4.1 Normal Operation Mode Physical Modeling
	4.2 Failure Mode Data-Driven Modeling
	4.3 Full Flight Operation mode

	5 Cyber-Physical Security Modeling
	6 JAT Verification and Recovery
	7 Evaluations
	7.1 Evaluation on 3DR Solo Quadcopter

	8 Related Work
	9 Conclusion
	A Global safety conditions
	B normal Operation Mode Physical Modeling
	Acknowledgments
	References

	i12-2-mujeeb
	i12-3-castellanos
	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Attack points and cyber-to-physical interfaces
	3.2 Attacker profile
	3.3 Modelling a CPS as a Data Flow Graph
	3.4 White-box analysis of controller's source code
	3.5 Extracting graphs from a controller's code
	3.6 Reachability analysis
	3.7 Shortest path analysis and attack diagrams

	4 Implementation
	4.1 The testbed
	4.2 PLC code parser

	5 Evaluation
	5.1 Interactions between attack points and Cy2Phy interfaces
	5.2 Choosing suitable attack points
	5.3 Testing attack points in a real scenario

	6 Discussion
	7 Related work
	8 Conclusions and future work
	References
	A List of components in SWaT
	B Shortest path distance between attack points and Cy2Phy interfaces

	i12-4-schilling
	Abstract
	1 Introduction
	2 State of the Art and Background
	2.1 Threat Model and Attack Vector
	2.2 Error Detection Codes
	2.3 ARM Pointer Authentication

	3 Pointer Protection with Residue Codes
	3.1 Overview
	3.2 Pointer Layout and Residue-Code Selection
	3.3 Pointer Operations

	4 Evolved Memory Access Protection
	4.1 Overview
	4.2 The Linking Approach
	4.3 Memory-Mapped I/O

	5 Architecture
	5.1 New Instructions
	5.2 Hardware
	5.3 Software

	6 Evaluation
	6.1 Future Work

	7 Conclusion
	8 Acknowledgment
	References

	i13-1-wang
	Abstract
	1 Introduction
	2 Motivating Example
	3 System Overview
	4 Design and Implementation
	4.1 Library Call Tracing
	4.2 Lprov Kernel Module
	4.3 Lprov Daemon Process and Log Analysis

	5 Evaluation
	5.1 Performance Overhead
	5.2 Case Study

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Kernel Event Tracing
	A.2 Log Analysis Algorithm
	A.3 Additional Performance Evaluation

	i13-2-deGoer
	Abstract
	1 Introduction
	2 Problem
	2.1 Statement
	2.2 Notations and definitions
	2.3 Scope

	3 Approach
	3.1 Overview
	3.2 Heuristics

	4 Implementation
	4.1 Ground-truth - oracle
	4.2 Naive implementations of call detection
	4.3 Implementation details of iCi

	5 Experiments
	5.1 Methodology
	5.2 Platform
	5.3 General results
	5.4 SPEC CPU2006
	5.5 Influence of the compiler
	5.6 Discussion

	6 Applications
	7 Conclusion
	References

	i13-3-im
	Abstract
	1 Introduction
	2 Background
	2.1 Android security architecture
	2.2 Example: Location services
	2.3 SEAndroid policy rules
	2.4 The complexity of SEAndroid policy

	3 Methodologies
	3.1 The ``box'' metric
	3.2 Git repository analysis
	3.3 Our measurement tool

	4 Measurement Results
	4.1 Boxes vs. rules
	4.2 Number of boxes in a rule
	4.3 Number of rules per box
	4.4 Ratio of rule vs. box changes
	4.5 Summary

	5 An Historical Analysis
	5.1 The ``age'' of rules
	5.2 The increasing policy complexity
	5.3 The effect of multiple branches
	5.4 Case study: Stagefright
	5.5 Contributor comparison

	6 Discussion
	6.1 SEAndroid vs. Smack
	6.2 Android Treble
	6.3 Android for Work

	7 Related work
	8 Conclusion
	9 Acknowledgment
	References

	i13-4-rahman
	Abstract
	1 Introduction
	2 Background
	3 Intent-driven Access Control
	3.1 Threat Model and Assumptions
	3.2 IAC via BCI

	4 Experiment Design
	4.1 Single App Experiment
	4.2 Multiple Apps Experiment
	4.3 Experimental Procedures

	5 Data Process and Analysis
	6 Feasibility Test
	6.1 Single App Analysis
	6.2 Cross-app Portability Analysis
	6.3 Results Analysis
	6.4 Authorization Accuracy

	7 Discussion
	8 Related Work
	9 Conclusion
	10 Acknowledgment
	References

	i14-1-nikolic
	Abstract
	1 Introduction
	2 Problem
	2.1 Ethereum Smart Contracts
	2.2 Contracts with Trace Vulnerabilities
	2.3 Our Approach

	3 Trace Vulnerabilities
	3.1 EVM Semantics and Traces
	3.2 Safety Violations
	3.3 Liveness Violations

	4 The Algorithm and the Tool
	4.1 Symbolic Analysis
	4.2 Concrete Validation

	5 Evaluation
	5.1 Results
	5.2 Case Studies: True Positives
	5.3 Case Studies: False Positives
	5.4 Summary and Observations

	6 Related Work
	7 Conclusion
	References

	i14-2-torres
	Abstract
	1 Introduction
	2 Background
	2.1 The Ethereum Virtual Machine
	2.2 The Solidity Programming Language
	2.3 Integer Bugs in Ethereum Smart Contracts

	3 Methodology
	3.1 Type Inference
	3.2 Finding Integer Bugs
	3.3 Taint Analysis
	3.4 Identifying Benign Integer Bugs

	4 Osiris
	4.1 Design Overview
	4.2 Implementation

	5 Evaluation
	5.1 Empirical Analysis
	5.2 Detection of Real-World Vulnerabilities

	6 Discussion
	6.1 Causes for Integer Bugs
	6.2 Ways Towards Safe Integer Handling

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References
	A Control Flow Graph Example
	B The DAO Hack

	i14-3-greubel
	Abstract
	1 Introduction
	2 Background
	2.1 Tor Bandwidth Measurements
	2.2 Trusted Execution Environments
	2.3 Blockchain and Smart Contracts

	3 System and Adversary Model
	4 Design
	4.1 Entity Communication
	4.2 Relay Registration
	4.3 Bandwidth Measurer Registration
	4.4 Join Measurement Process
	4.5 Bandwidth Measurements
	4.6 Reporting and Aggregating Results
	4.7 Malfunction Detection

	5 Security Analysis
	5.1 Group Compromise
	5.2 Attacks from a malicious Host
	5.3 Attacks from compromised TEEs
	5.4 Attacks on the SC

	6 Implementation
	6.1 Smart Contract
	6.2 Bandwidth Measurement Script
	6.3 Bandwidth Measurement Host

	7 Evaluation
	7.1 Measurement script
	7.2 Smart Contract

	8 Related Work
	9 Conclusion and Future Work
	References
	A Intel SGX Details
	B Tor Speedracer Measurements
	C Smart Contract Implementation
	D Measurement Data

	i14-4-tran
	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Preliminaries
	2.2 Threat Model
	2.3 Scope, Assumptions, and Limitations

	3 Obscuro
	3.1 Solution Overview
	3.2 Obscuro Protocol
	3.3 Indirect Participation Mechanism
	3.4 Detection of Malicious Blockchain Forks
	3.5 Collecting Deposits

	4 Security Analysis
	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Evaluation

	6 Discussion
	6.1 Recipient of the Mixing Fees
	6.2 Multiple Obscuro Instances

	7 Related Work
	7.1 Existing Bitcoin Mixer Solutions
	7.2 Privacy Improvements in other Cryptocurrencies
	7.3 TEE for Cryptocurrency Applications

	8 Conclusion
	9 Acknowledgments
	References
	A Structure of the Deposit Transaction

	i15-1-continella
	Abstract
	1 Introduction
	2 Background
	2.1 Amazon S3
	2.2 Threats

	3 Methodology
	3.1 Enumeration & Data Collection
	3.2 Security Analysis

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Enumeration & Data Collection
	4.3 Scanning Results
	4.4 Vulnerable Websites

	5 Mitigation
	6 Discussion
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

	i15-2-demoulin
	Abstract
	1 Introduction
	2 Motivating Example
	2.1 Strawman solutions
	2.2 DeDoS solution

	3 DeDoS Design
	3.1 Minimum splittable units
	3.2 Inter-MSU communication
	3.3 Routing tables
	3.4 DeDoS runtime API
	3.5 Support for existing applications

	4 Resource Allocation
	4.1 Machine-local scheduling
	4.2 Initial MSU assignment
	4.3 Cloning and merging

	5 Implementation
	5.1 Overview
	5.2 DeDoS local runtime

	6 Case Studies
	7 Evaluation
	7.1 Overheads
	7.2 Attack mitigation

	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References

	i16-1-blanchard
	Abstract
	1 Introduction
	2 Method
	2.1 Word choice
	2.2 Protocol
	2.3 Design choices

	3 Demographic information
	3.1 Participant selection
	3.2 Recruitment of volunteers
	3.3 Statistics

	4 Results
	4.1 Word selection
	4.2 Memorization
	4.3 Guessing

	5 Statistical modelling
	5.1 Strategies and entropy
	5.2 Semantic aspects

	6 Limitations
	6.1 Ecological validity
	6.2 Short-term and long-term memory
	6.3 Free choice of words

	7 Discussion
	8 Conclusion
	References

	i16-2-mayer
	Abstract
	1 Introduction
	2 Related Work
	3 Development of the Awareness-Raising Material
	3.1 First Iteration - Based on Literature
	3.2 Second Iteration - Incorporation of Structured Expert Feedback
	3.3 Third Iteration - Visual Elements and Lay-User Feedback

	4 User Study Methodology
	4.1 Hypotheses
	4.2 Procedure
	4.3 Questionnaires
	4.4 Analysis

	5 Results – Pre-Treatment and Post-Treatment Questionnaires
	5.1 Assessment of Scenarios
	5.2 Password Security Ratings
	5.3 Qualitative Results

	6 Results – Retention Questionnaires
	6.1 Assessment of Scenarios
	6.2 Password Security Ratings

	7 Discussion
	7.1 Improvements Derived from the User Study
	7.2 Limitations

	8 Conclusion
	References
	A.1 Introductory Sections
	A.2 Attacks
	A.3 Technologies to Protect User Credentials

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

