Poster: A Raspberry Pi Based Data-Centric MAC for
Robust Multicast in Vehicular Networks

Mohammed Elbadry, Bing Zhou, Fan Ye, Peter Milder, YuanYuan Yang
Stony Brook University
Department of Electrical and Computer Engineering
{mohammed.salah,bing.zhou,fan.ye,peter.milder,yuanyuan.yang}@stonybrook.edu

ABSTRACT

Data-centric networks provide content instead of address
(what vs. where) based communication primitives, and have
been argued to be the proper candidate for data dissemina-
tion in high mobility vehicular networks (e.g., delivering
road side accident video clips to affected drivers in both di-
rections). However, current Medium Access Control (MAC)
layers filter incoming frames based on destination addresses,
not content. The data-centric network community has re-
sorted to MAC broadcast, with high and greatly varying
frame loss rates. We propose V-MAC, a data-centric MAC
layer that filters frames by content. It supports one to many
multicast at MAC level, and ensures a uniform and control-
lable small frame loss rate across all receivers, despite their
varying reception qualities. We have created a V-MAC pro-
totype using Raspberry Pis and WiFi dongles. Experiments
under extremely noisy environment show that it reduces
frame loss from 50% (broadcast) to less than 10%, and consis-
tently among multiple receivers.

CCS CONCEPTS

« Networks — Link-layer protocols; Mobile networks;
Cross-layer protocols; Ad hoc networks;

KEYWORDS

vehicular communication; mobile network; data-centric net-
works

ACM Reference Format:

Mohammed Elbadry, Bing Zhou, Fan Ye, Peter Milder, YuanYuan
Yang. 2018. Poster: A Raspberry Pi Based Data-Centric MAC for
Robust Multicast in Vehicular Networks. In The 24th Annual Interna-
tional Conference on Mobile Computing and Networking (MobiCom

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

MobiCom ’18, October 29-November 2, 2018, New Delhi, India

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5903-0/18/10.
https://doi.org/10.1145/3241539.3267759

’18), October 29-November 2, 2018, New Delhi, India. ACM, New York,
NY, USA, 3 pages. https://doi.org/10.1145/3241539.3267759

1 MOTIVATION

More sensors in both quantity and variety (e.g., multiple cam-
eras, radars, IMUs) are instrumented to connected/autonomous
vehicles. Disseminating such sensor data is extremely valu-
able for the safety, efficiency and comfort of driving. E.g.,
video clips of a road side accident captured by vehicles pass-
ing by can be disseminated to drivers impacted in both direc-
tions, keeping them in cognitive awareness to reduce stress,
and enabling them to make decisions of alternative routes.
Such sharing needs are data-centric: drivers want data of
certain content (e.g., accidents, speeds along a road segment)
but care little about who produced the data.!Data-centric
networks have been argued to meet such needs. Exemplified
by Named Data Networking (NDN) [1], a consumer sends an
Interest describing the attributes of desired content, and who-
ever have matching data, either produced locally or received
then cached, can return the data.

Current wireless Medium Access Control layers remain
address-centric. People have resorted to MAC broadcast [2],
which passes all incoming frames to the network layer. This
results in high and varying frame loss rates at different re-
ceivers, and greatly delayed actions (e.g., retransmission of
missing frames), making efficient and consistent data dis-
semination difficult to achieve.

2 V-MAC DESIGN

We describe the design of V-MAC’s two major components:
name encoding and DACK (Data-centric Acknowledgment).

2.1 Name Encoding

We assume a hierarchical naming convention combining dif-
ferent attributes to name data (e.g., /Accident/Nicolls-Road/34th-
st/35th-st/20180710/11am-12pm/video-clipl/ min0/framell de-
notes the 11th video frame during the first minute of a video
clip of an accident captured on Nicolls Road, between 34th

!We assume data fidelity/integrity are addressed by relevant mecha-
nisms [1].



and 35th Street, on 7/10/18, between 11AM to 12PM). Fol-
lowing a common naming convention, consumers can send
interests to describe desired data.

V-MAC receives Interests passed down from the local net-
work layer. It filters incoming Data frames by name matching:
those carrying names matching what are specified by Inter-
ests are forwarded up to the network layer; otherwise they
are dropped. To avoid carrying long hierarchical names in
frames, we propose an encoding that compresses possibly
long, varying size names to a short, fixed size. First, the pre-
fix part that denotes data granularity at a certain number
of MAC frames is hashed. E.g., /Accident/Nicolls-Road/34th-
st/35th-st/20180710/11am-12pm/video-clipl/min0/ is hashed
to 16 bits. We denote each data unit at such granularity a
service stream. The remainder of the name at granularity of
MAC frames is assigned sequence numbers.

The network layer maintains an encoding table that fa-
cilitates the mapping and translation between hierarchical
string names and encodings, when data are passed between
network and V-MAC layers. Although the amount of possi-
ble hierarchical data names can be infinite, the number of
service streams being actively requested by drivers along
any given road segment at any time, is limited (e.g., a few
hundred to thousand). Thus the table and encoding can be
of much smaller sizes and sufficient to distinguish different
active service streams.

2.2 Tunable Frame Reception Quality

V-MAC supports tunable robustness for frame reception by
DACK, a data-centric acknowledgment. A typical MAC uses
either per frame acknowledgment for unicast, or no acknowl-
edgment for broadcast, and neither can achieve the desired
low, tunable and consistent frame reception at multiple neigh-
boring receivers.

DACK provides aggregated feedback from all neighboring
receivers over multiple frames. To this end, we introduce the
concept of a “frame burst”, which is a certain number (e.g.,
5) of consecutive frames in a service stream. When a sender
transmits a burst, neighbors do not send per-frame acknowl-
edgment. This allows transmission of frames in short contact
durations (~10s) to mobile nodes. Since multiple neighbors
may each miss similar or different subsets of frames, DACK
provides aggregated feedback through two mechanisms: pe-
riodic and triggered.

Periodic DACK. Periodic DACK addresses missing of
similar frames in the most recent burst by multiple receivers.
After a burst finishes transmission, each receiver prepares a
DACK frame containing the sequence numbers of missing
frames (for multiple consecutive missing frames, the first/last
sequence numbers only, or no sequence number if all are
received), and starts a timer, upon whose expiration the

DACK will be sent. To avoid multiple DACKs being sent, the
timer expiration is computed such that the receiver missing
the most frames will send DACK first. Upon hearing an-
other’s DACK, a receiver cancels its timer and refrains from
transmitting its DACK this round. This technique avoids
DACKs carrying redundant frame sequence numbers, and is
observed that one DACK addresses most of missing frames.

Triggered DACK. Periodic DACK provides feedback only
for the latest burst. When reception quality is low, some
receivers may still miss frames earlier than the latest burst.
This can also be caused by loss of DACK. Each receiver keeps
a sliding window the size of multiple bursts (e.g., 4 most
recent bursts). If at any point the number of missing frames
in this window exceeds a threshold, a receiver will create
a DACK and send it. This threshold number is the tuning
knob for frame loss rate: when a receiver misses more than
this threshold fraction of frames in the window, a DACK is
produced.

Retransmission Buffer. On the sender side, V-MAC keeps
a sliding window per stream of recently transmitted frames
in a retransmission buffer. Upon hearing DACK, it retrans-
mits missing frames from the buffer, without a request from
the network layer reducing latency. The buffer size is kept
at the same size of the sliding window on the receiver side
so that requested frames can be retransmitted.

3 IMPLEMENTATION

We implement V-MAC in two versions: Linux implementa-
tion using Raspberry Pis and WiFi dongles, and ns-3 simula-
tor for controlled environments and verification of design.

Linux. We implement V-MAC on Raspberry Pi by mod-
ifying the existing Linux mac80211 module, used by WiFi
drivers that have the MAC implemented in software (i.e. Soft-
Mac). External USB WiFi dongles (Alfa AWUS036NHA due to
its easiness of changing the SoftMac) are used with antennas
removed to attenuate the signal (Figure 1). We leverage exist-
ing callbacks from user space, while retaining the beaconing
for synchronization among nodes.

We describe what V-MAC does for each frame type for
transmitting/receiving paths (Figure 2). In transmission, an
Interest passed from upper the layer is transmitted to solicit
matching data from other nodes; it also creates an entry in
the streams table for matching incoming Data. Data frames
are directed to tx_controller logic which builds the header
first by examining the streams table. Then, the frame is copied
into the retransmission buffer before being sent.

On the receiving path, V-MAC frames are first identified
by a bit in the header through rx_controller. An Interest is for-
warded to the network layer which will process and decide
what actions to take. Data and DACK frames require fur-
ther matching against names in the streams table. Matching



Figure 1: V-MAC testbed.

Upper Layer

INTEREST DATA

build_hdr

tx_controller

create_stream

update_param
update_param

update_stream|

Streams

INTEREST

leee80211_rx() leee80211_tx()

Figure 2: V-MAC Linux design.

Data frames are forwarded to the network layer, and trigger
parameter updates for DACK (e.g., update latest frame se-
quence number.). For DACK, a sender will retrieve missing
frames from the Buffer and retransmit; a receiver will update
its own DACK operations.

ns-3. In addition to our Raspberry Pi-based evaluations,
we have used ns-3 to perform simulations where we con-
trol noise, simulate larger networks, and nodes with high
mobility. The simulation produced similar results as of Pi
prototype. Due to space limitations, we show Linux results
only.

4 EVALUATION

We compare V-MAC with ad-hoc broadcast in a 9-node testbed
where one sender transmits 2000 frames to 8 neighboring re-
ceivers, using the base frame rate. Each receiver has different
distance/orientation to the sender, thus different reception
qualities. After one trial of 2000 frames in ad-hoc broadcast,
we immediately switch to V-MAC for another trial, without
moving anything. Thus the reception qualities and back-
ground traffic will likely remain similar in such short time.
The results for frames lost using adhoc mode broadcast
are shown in Figure 3. We can observe that the frame losses
are around 50% for trials 1-3, 7, while much lower (~10-20%)
for trials 4-6. There are also a few very low or high (7%, 99%)
cases. This shows that loss rates in broadcast are affected

Frame Loss %
100

50

Triall Trial2 Trial3 Trial4 Trial5 Trial6 Trial7
HEnl @n2 En3 @ nd4 En5 " n6 Bn7 " n8

Figure 3: Cumulative frames lost for broadcast per re-
ceiver over time.

Frame Loss %

100

50

Triall Trial2 Trial3 Trial4 Trial5 Trial6 Trial7
HEnl @On2 En3 0On4 En5 " n6 Bn7 W n8

Figure 4: Cumulative frames lost for V-MAC per re-
ceiver over time.

greatly by background traffic, and they vary greatly across
different times or receivers. However, V-MAC is consistently
low (~10%) at all times and for all receivers, regardless of the
varying wireless reception quality (Figure 4). This shows the
effectiveness of the DACK’s tunable robustness mechanisms.

5 CONCLUSION

The prototype demonstrates the effectiveness of V-MAC for
content based filtering and tunable, consistent robustness.
We plan to further study frame rate adaptation, larger scale of
networks and high mobility using simulator and Pi/dongles
on real vehicles.

6 ACKNOWLEDGEMENTS
This project is supported in part by NSF 1730291.

REFERENCES

[1] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, Patrick
Crowley, Christos Papadopoulos, Lan Wang, Beichuan Zhang, et al.
Named data networking.

[2] Uichin Lee, Joon-Sang Park, Joseph Yeh, Giovanni Pau, and Mario Gerla.
Code torrent: content distribution using network coding in vanet. In
Proceedings of the 1st international workshop on Decentralized resource
sharing in mobile computing and networking, pages 1-5. ACM, 2006.



