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Abstract. Allostery is one of most important processes in molecular biology by
which proteins transmit the information from one functional site to another,
frequently distant site. The information on ligand binding or on posttranslational
modification at one site is transmitted along allosteric communication path to
another functional site allowing for regulation of protein activity. The detailed
analysis of the general character of allosteric communication paths is therefore
extremely important. It enables to better understand the mechanism of allostery
and can be used in for the design of new generations of drugs.
Considering all the PDB annotated allosteric proteins (from ASD - AlloSteric

Database) belonging to four different classes (kinases, nuclear receptors, pep-
tidases and transcription factors), this work has attempted to decipher certain
consistent patterns present in the residues constituting the allosteric communi-
cation sub-system (ACSS). The thermal fluctuations of hydrophobic residues in
ACSSs were found to be significantly higher than those present in the non-
ACSS part of the same proteins, while polar residues showed the opposite trend.
The basic residues and hydroxyl residues were found to be slightly more

predominant than the acidic residues and amide residues in ACSSs, hydrophobic
residues were found extremely frequently in kinase ACSSs. Despite having
different sequences and different lengths of ACSS, they were found to be
structurally quite similar to each other – suggesting a preferred structural tem-
plate for communication. ACSS structures recorded low RMSD and high
Akaike Information Criterion (AIC) scores among themselves. While the ACSS
networks for all the groups of allosteric proteins showed low degree centrality
and closeness centrality, the betweenness centrality magnitudes revealed
nonuniform behavior. Though cliques and communities could be identified
within the ACSS, maximal-common-subgraph considering all the ACSS could
not be generated, primarily due to the diversity in the dataset. Barring one
particular case, the entire ACSS for any class of allosteric proteins did not
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demonstrate “small world” behavior, though the sub-graphs of the ACSSs, in
certain cases, were found to form small-world networks.

Keywords: Allosteric communication sub-system �
B-factor of allosteric residues � Cliques and communities � Closeness centrality �
Betweenness centrality � Maximum-common-subgraph � Small-world network

1 Introduction

Starting from Monod−Wyman−Changeux [1] and Koshland−Némethy−Filmer [2]
models, investigations of allosteric regulation of protein function have over half-a-
century long, rich and multifaceted history. There are so many excellent reviews that
have attempted to capture the essence of various aspects of research [3–8]. To sum-
marize these efforts, one can merely observe that while a lot has been unearthed about
the physicochemical nature of allosteric signal transduction, the various modes through
which the long-distant communication is achieved, the structural details of coopera-
tivity revealed during this process, there are still significant aspects of allosteric reg-
ulation, especially in the context of generalized characterization of the process, that
need to be better understood. The present work reports a few generalized findings about
the allosteric communication.

Because the allosteric communication paths are constituted by a certain subset of
residues, we attempted in the present work, to provide a quantifiable difference between
the residues involved in allosteric communications and those which are not involved.
Because of that, our study revolved principally around identifying the statistical and
graph-theoretical differences between the two aforementioned set of residues. We tried
to decipher some consistent patterns embedded latently in structural, biophysical and
topological nature of allosteric communication sub-structures (ACSS).

We focused also on the analysis of mobilities of residues forming ACSS. We
compared protein fluctuations derived from crystallographic Debye-Waller B-factors of
experimentally solved crystal structures with those obtained from the root mean square
fluctuations (RMSF) profile from computational modeling.

We were interested to know whether the sub-structures of the allosteric commu-
nication paths have structural similarities among themselves, so that the kinase’s
allosteric communication paths will be characterized by a certain set of canonical
parameters, while the nuclear receptor’s allosteric communication paths will be dif-
ferent by certain (structural) degrees, etc.

2 Materials

The curated database ASD (Allosteric Database) [9] was used to retrieve protein
structures with information about the identified allosteric communication paths. Cases
with differences in the description of protein structures provided by the ASD and PDB
were not considered for the study. Retaining the typification scheme provided by the
ASD, the finally selected set of 30 proteins were further divided in four groups:
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kinases, nuclear receptors, peptidases and transcription factors. The PDB IDs of these
30 proteins are: 1CZA, 1DKU, 1E0T, 1PFK, 1S9I, 1SQ5, 2BTZ, 2JJX, 2OI2, 2VTT,
2XRW, 3BQC, 3EQC, 3F9M, 3MK6, 4AW0 (kinases); 1IE9, 1XNX, 2AX6 3S79
(nuclear receptors); 1SC3, 2QL9, 4AF8 (peptidases); and 1JYE, 1Q5Y, 1R1U, 1XXA,
2HH7, 2HSG, 3GZ5 (transcription factors).

3 Methodology

Resorting to a coarse-grained representation of residues, and a reduced amino acid
alphabet is more likely to lead to generalized ideas from the investigation of the ACSS
of 30 proteins. A mere two-letter hydrophobic-polar classification of the residues would
have been too broad to reveal the complexity of the problem. Thus we resorted to a
scheme [10, 11] which has been found to be extremely successful in protein structure
prediction studies [12, 13]. Here the 20 amino acids are expressed with a reduced 8-
letter alphabet scheme; that is: GLU and ASP - as acidic, ARG, LYS and HIS - as
basic, GLN and ASN - as amides, SER and THR - as hydroxyls, TRP, TYR, PHE,
MET, LEU, ILE and VAL - as hydrophobic, and GLY and ALA - as small residues.
PRO and CYS are special among the 20 amino acids because of their special status;
each one of them are placed as singleton groups. This coarse-grained description was
used to study both population characteristics of the ACSS constituents and to undertake
the network-based investigations of ACSS.

Various tests were conducted throughout the study to compare residues constituting
ACSS with non-ACSS ones, to measure the extent by which residues involved in
allosteric communication differ from all remaining residues. Atoms of the residues not
identified (viz., color-coded) by the ASD as part of allosteric communication paths,
were considered to be non-ACSS residues and atoms.

We used THESEUS 2.0 software [14] that superposes multiple protein structures
without throwing away gaps in them and without causing significant information loss.

For network-based and complex network studies, Python’s NetworkX was used as
the graphing library, while matplotlib was used for image generation. Apart from these,
Python’s igraph was used to investigate cliques and communities.

Because statistical tests are necessary to categorically establish the general traits in
the allosteric proteins and yet, because the present study considers a limited set of
allosteric proteins as belonging to different four classes two non-parametric tests
(Wilcoxon signed-rank test and Friedman’s non-parametric test) [15–17] were
employed to ascertain the traits of the obtained results.

In investigating the “small world network” characteristics, methodologies elabo-
rated in [18] were implemented by us; details about the theoretical basis of the
methodology, thus, can be found there. To gather the answer to the question of whether
or not the ACSSs are SWNs or not, at multiple resolutions, we studied the problem by
generating the Erdös-Rényi (E–R) random graph at three probabilities: 0.3, 0.5 and 0.7.

In our work, the CABS-flex method [19] was used for predicting protein fluctuations.
CABS-flex employs a coarse grained CABS model [20] - efficient and versatile tool for
modeling protein structure, dynamics and interactions [21–24]. Conformations obtained
by CABS-flex simulations further can be reconstructed to physically sound atomistic
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systems using coarse-grained to atomistic mapping methods [21, 25]. The interactions
between atoms are described by a realistic knowledge-based potential, while protein-
solvent interactions are approximated using implicit solvent model [20, 26].

4 Results

4.1 The Thermal Fluctuation of Residues in Allosteric Communication
Paths

Alongside the dynamics needed to ensure the propagation of the structural signal
through protein, the ACSS residues possess their inherent thermal fluctuational
dynamic. The construction of the residual-interaction networks depends on the value of
the cutoff distance, that may be different than the commonly used value of 6.5 Å [27].
To quantify the extent of fluctuations of the ACSS residues, versus fluctuations of non-
ACSS residues, we extracted B-factors from the coordinate files of the protein struc-
tures in protein data bank (PDB) [28] for all 30 proteins. Table 1 contains the details of
this investigation.

To assess whether and by what extent the B-factors of different families of allosteric
proteins differ from each other, we subjected the mean values to Friedman’s non-
parametric test (alternatively referred to as ‘non-parametric randomized block analysis
of variance’) [15, 16]. We chose to employ Friedman’s test because, ANOVA requires
the assumptions of a normal distribution and equal variances (of the residuals) to hold,
none of which is found to be existing in our case (viz., that in Table 1), while Friedman
test is free from the aforementioned restrictions. The null hypothesis for the test was that
the B-factors of the four types of ACSS are the same across repeated measures. Result
obtained from the test categorically demonstrates that there indeed exists a substantial
difference in the B-factors of these four classes of ACSSs. Results obtained from B-
factors of four types of ACSS was Freidman X2 = 20.4 > 16.266 (P value at 0.001, with
3 degrees of freedom), whereby the null hypothesis was rejected comprehensively.

To ascertain the degree to which the B-factors of ACSS residues in each of the four
classes of allosteric proteins differ from the B-factors of the non-ACSS residues, each
of the classes were subjected to Wilcoxon signed rank test (36), which is a non-
parametric analogue of paired t-test for correlated samples, without assuming that the
population is normally distributed. The null hypothesis for each of the comparisons was
that the median difference between pairs of observations is zero. Result obtained from
the tests revealed that the B-factors of ACSS residues in each of the classes differed
significantly than the B-factors of the non-ACSS residues. For the kinase class of
allosteric proteins we found, Wkinase = 87 � 23 ([W(a = 0.01, 17) = 23); for the
peptidase class Wpeptidase = 8 > 2 ([W(a = 0.05, 7) = 2] (we note that W is not defined
in 0.01 at degrees of freedom 7 (though W(0.01, 8) = 0), whereby, the critical value
comparison is being reported at the weaker 0.05 level); for the Nuclear Receptors,
WNR = 15 > 5 ([W(a = 0.01, 11) = 5]); and for the transcription factors, WTF = 6 > 5
([W(a = 0.01, 11) = 5]). Thus, the null hypothesis was rejected in each of the four
cases with extremely high confidence.
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4.2 Robustness of the Results Against CABS-Flex Simulations

The computational modelling is a key to solving many fundamental problems of
molecular biology. Prediction of protein structures and interactions [29] as well as
structural transformations taking places during unfolding, folding and aggregation
processes have been studied by computer simulations at different levels of resolution
and timescales [30–38]. For more efficient simulations one uses coarse-grained
(CG) models which reduce the complexity of each amino acid by representing it by a
single node or group of pseudo atoms [20, 29, 39, 40].

In order to address the question whether B-factors extracted from PDB file are
consistent with root mean square fluctuations (RMSF) of atoms from simulations,
limited simulations have been carried out with the help of CABS-flex simulations [19].
We computed the values of RMSF for three conceptually different proteins, 1Q5Y from
transcription factors group, 1SC3 from the peptidases and 2JXX from the kinase group
of allosteric proteins. RMSF profiles are shown as red curves (on right Y-axis) on
middle plots in Figs. 1a, b and c. The values of B-factors are shown as black curves (on
left Y-axis).

Although quantitative comparison between B-factors and RMSFs is not possible due
to different temperatures and environmental factors used in simulations and experiments,
qualitatively the data agree. Themostfluctuating protein residues during near-native state
simulations result in a series of peaks in RMSF profile (red curve, right X-axis) which
correlate with experimentally measured B-factor values (black curve, left Y-axis).

Fig. 1. Comparison of RMSF values with B factors for 3 different proteins: 1Q5Y (a), 1SC3
(b) and 2JXX (c). (Color figure online)
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Upper and bottom snapshots in Fig. 1 correspond to protein representation colored by
crystallographic B-factor values from PDB and by RMSF values from CABS-flex sim-
ulation, respectively. The overall trend is that the mobility of atoms obtained from sim-
ulations are in reasonable agreement with the crystallographic B-factors.

4.3 Composition of the ACSS Population

Allosteric signalling achieved at the structural level show certain differences for various
proteins [41–43]. Thus, we expect to observe differences in composition of ACSS
residues for four different classes of proteins. We found that basic residues are more
frequent in ACSS than the acidic ones. To demonstrate this prevalence let us take a
closer look at the composition of ACSSs for kinases: the acidic residues were found in
12/133 cases, while the basic residues occurred in 32/133 cases. For the class of
transcription factors the basic residues in ACSSs occurred in 13/35 cases, whereas the
acidic residues occurred in 5/35 cases. The hydrophobic residues were found to occur
in ACSSs of kinases with significant frequency (59/133 cases), but were be notably
small in ACSS of transcription factors (2/35) and in peptidases (1/11).

Hydroxyl residues were found to be more common in ACSSs than the amide
residues, for kinase ACSS: amide residues 6/133, and hydroxyl residues 14/133 cases.
PRO and CYS populations although are extremely small in ACSS, show that CYS
occurs slightly more frequently than PRO. The small amino acids (GLY and ALA)
were found in very small frequency in ACSSs, while TRP was not found as part of any
of the ACSSs.

4.4 Structural Superimposition of Multiple Allosteric Communication
Paths

Results obtained from the structural superimposition of multiple ACSSs demonstrated
clearly that the allosteric communication paths, for any type of allosteric protein, match
closely each other in their structures. We superimposed the PDB-coordinates of ACSSs
of all proteins for each of the four classes using ‘Theseus’ software. Here we report the
two most prominent results, a: RMSD for the superposition, and b: the Akaike
Information Criterion (AIC). AIC proposed by Akaike [44] has become commonly
used tool for statistical comparison of multiple theoretical models characterized by
different numbers of parameters. Because the RMSD of two superposed structures
indicates their divergence from one another a small value is interpreted as a good
superposition. In contrast, the higher magnitude of AIC indicates better superposition.
We found that the ACSS paths, despite belonging to different proteins and corre-
sponding to sequences of varying lengths, consistently demonstrated lower RMSD
values and significantly higher AIC values in comparison to non-ACSSs parts of the
structures.
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4.5 Network Analyses of Allosteric Communication Paths

4.5.1 Centrality of ACSS
The process of allosteric signal communication is directional, but the richness of the
constructs available to study networks becomes apparent by using non-directional
graph-theoretical framework. Thus, instead of asking ‘what is the route of allosteric
signal propagation for a specific protein?’, which is already provided by ADB, we
asked questions like: ‘how robust the ACSSs are, compared to non-ACSS parts of the
proteins?’, or, ‘how does the fluctuation of one arbitrarily-chosen residue influence the
spread of allosteric signal through ACSS?’, or, ‘how probable is it that allosteric
communication occurs through a randomly chosen shortest path between two residues
belonging to ACSS?’, etc.

To answer these and similar questions of general nature, we started our investi-
gation by studying the centrality aspects of the ACSS network. The centrality metrics
quantify the relative importance of a protein residue (viz. the vertex) or a residue-to-
residue communication path (viz., an edge) in the network description of ACSS. There
are many centrality measures, we chose to concentrate upon three fundamental mea-
sures outlined in Freeman’s classic works [45, 46], namely: degree centrality,
betweenness centrality and closeness centrality.

4.5.2 Degree Centrality
Degree centrality for any protein residue in an ACSS network is calculated in a
straightforward way, by counting the number of residue-residue communication links
connecting that residue (implementing the classical definition [45] to the context of
ACSS). Degree centrality of any ACSS residue provides an idea about the local
structure around that residue, by measuring the number of other residues connected to
it. We note that degree centrality is a local measure that does not provide any infor-
mation about the network’s global structure. We have found that the average degree
centrality of ACSS residues, irrespective of the type of allosteric proteins, is lower than
the average degree centrality of the non-ACSS residues. This result, alongside that
obtained from the other centrality measures are presented in Table 2.

Table 2. The centrality indices for ACSS and non-ACSS for four groups of allosteric proteins.

Kinase
ACSS
residues

Kinase
non-
ACSS
residues

Peptidase
ACSS
residues

Peptidase
non-
ACSS
residues

Nuclear
receptor
ACSS
residues

Nuclear
receptor
non-ACSS
residues

Transcription
factor ACSS
residues

Transcription
factor non-
ACSS
residues

Average
degree
centrality

0.411 0.518 0.722 0.814 0.613 0.690 0.426 0.659

Average
closeness
centrality

0.488 0.596 0.809 0.843 0.707 0.754 0.474 0.719

Average
betweenness
centrality

0.075 0.122 0.194 0.038 0.137 0.141 0.062 0.119

The three types of major centrality measures calculated on the ACSS and non-ACSS graphs of the same size.
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We note that the average degree centrality of ACSS fragments consistently show
lower values than similar non-ACSS fragments. We note also that the typical differ-
ences between average degree centrality of ACSS and non-ACSS fragments are:
*0.10 for kinases, *0.8 for nuclear receptors, *0.9 for peptidases, and *0.13 for
transcription factors. Thus, the consistently lower values of average degree centrality
observed in ACSS fragments suggests that nature attempts to shield them from per-
turbations which may destabilize allosteric communication.

4.5.3 The Global Centrality Measures
While the degree centrality provides a measure to assess the possibility of immediate
involvement of a residue in influencing the signal communication in residue interaction
network of a protein, the concepts of closeness centrality and betweenness centrality
provide ideas of how the global topology of the network influences the signal propa-
gation. Closeness centrality of any connected graph measures how “close” a vertex is to
other vertices in a network; this is computed by summing up the lengths of the shortest
paths between that vertex and other vertices in the network. Closeness of a vertex, thus,
can be interpreted as a predictor of how long it may take for that vertex to communicate
with all other vertices. In the framework of protein residue connectivity network, the
residues with low closeness score can be identified as ones that are separated by short
distances from other residues. It can be expected that they receive the structural signal
(i.e. instantaneous fluctuation or perturbation) faster, being well-positioned to receive
this information early. We indeed found that the average closeness centrality of the
ACSS network is lower in comparison to the non-ACSS fragments, for all the types of
allosteric proteins. However, the difference between the extent of average closeness
centrality between ACSS and non-ACSS fragments was found to vary over a larger
scale than what was observed for average degree centrality (see Table 2).

The betweenness centrality provides more idea about the global network structure;
for every vertex of the network the betweenness centrality specifies the fraction of the
shortest paths (geodesics) that pass through that vertex. In this sense, such measure
assesses the influence that a given vertex (residue) has over the transmission of a
structural signal. A residue with large betweenness centrality score can be expected to
have a large influence on the allosteric signal propagating through the ACSS network.
Results obtained by us shown in Table 2.

4.6 Cliques and Communities in ACSS

Cliques are the complete subgraphs, where every vertex is connected to every other
vertex. A clique is considered maximal only if it is not found to be a subgraph of some
other clique. Communities are identified through partitioning the set of vertices,
whereby each vertex is made a member of one and only one community. Because of
their higher order connectivity, the cliques detected in protein structures are considered
to indicate regions of higher cohesion (in some cases, rigid modules). Do the ACSSs
embody certain common characteristics in their connectivities which can be revealed
through the cliques and communities? To answer this question, we subjected the
ACSSs of each of the four classes of proteins to investigation, which implemented [47]
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and [48] algorithms through the Python-igraph package. We found that indeed the
ACSS modules can be partitioned into cliques and communities.

4.7 Maximum Common Subgraphs to Describe the ACSS

A maximal common subgraph of a set of graphs is the common subgraph having the
maximum number of edges. Many attempts have been made for the last two decades to
apply this methodology in protein science [49–51]. Finding the maximal common
subgraph is a NP-complete problem [52]. To solve this difficult problem a backtrack
search algorithm proposed by McGregor [53] and a clique detection algorithm of Koch
[52], are traditionally used. However, for our ACSSs, some of which are quite large in
size, neither McGregor’s nor Koch’s algorithm was found to be applicable; primarily
because of the huge computational costs incurred by the exponential growth of inter-
mediary graphs of varying sizes. Thus, upon generating the subgraphs for each of
ACSSs (using Python’s NetworkX), we had to resort to the brute-force method to
identify the maximum common subgraph for each of the ACSS classes. In some cases,
the number of cliques was found to be large; e.g. for 2BTZ while in some other cases
only one clique was found (e.g. for 2VTT or for 2XRW).

4.8 How Frequently Do the Allosteric Communication Paths Form Small
World Network?

Investigatingwhether in general the ACSS residues belonging to the four different classes
of allosteric proteins constitute ‘small world’ networks (SWN) or not is important;
because SWNs are more robust to perturbations, and may reflect an evolutionary
advantage of such an architecture [54, 55]. The SWN [56], constitute a compromise
between the regular and the randomnetworks, because on one hand they are characterized
by large extent of local clustering of nodes, like in regular networks, and on the other hand
they embody smaller path lengths between nodes, something that is distinctive for ran-
dom networks. Because of the ability to combine these two disparate properties, not
surprisingly, it has been shown that networks demonstrating the ‘small-world’ charac-
teristics tend to describe systems that are characterized by dynamic properties different
from those demonstrated by equivalent random or regular networks [56–61]. We have
found that whether ACSSs exhibit SWN nature or not - is a complex problem; while the
complete ACSS of a protein may not always demonstrate SWN characteristics, many
sub-graphs of non-trivial lengths of the same ACSS reveal SWN character.

5 Conclusions

The aim of the present work was to decipher some general patterns of residues forming
the ACSS of 30 allosteric proteins, and compare them with non-ACSS residues in the
same proteins. Our aim was to report the general quantifiable differences between these
two (aforementioned) sets of residues and not to study the general mechanism of
allosteric communication. By performing the CABS-based simulations of proteins
around their native conformations we demonstrated that protein fluctuations depicted
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by RMSF profiles can be mapped to B-factors and show satisfactory degree of
agreement with experimental data.

Our results may benefit the protein engineering community and those studying the
general mechanism of allosteric communication or in general, long-distance communi-
cation in proteins. The knowledge of the topological invariants of communication paths
and the biophysical, biochemical and structural patterns may help in a better under-
standing of allostery. As many recent papers [62–66] have pointed out, the long-distance
communication features within proteins involve several types of non-linear characteris-
tics that may often be dependent on transient fluctuations, making it difficult to arrive at a
generalized dynamic picture. However a generalized static picture of the long-distance
communication route can be obtained, which may help to better understand such com-
munication schemes, especially those related to allostery. The present work attempted to
report such generalized findings. While certain yet-unknown (to the best of our knowl-
edge) patterns regarding the thermal fluctuation profile of ACSS atoms, the structural and
topological nature of theACSS have come to light, incongruities of ourfindings regarding
the extent of betweenness centrality in ACSS network and their small-world nature
indicates the need for more focused studies directed at these issues, which in turn, may
shed new light on allosteric signal communication. For example, proteins, in general, are
fractal objects with known characteristics of trapping energy [67–70]. Do the findings on
betweenness and on small-world network nature reported in this work indicate the pos-
sibility of energy traps in ACSSs? - We plan to probe into many such questions in future.
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