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ABSTRACT

User authentication on smartphones must satisfy both se-
curity and convenience, an inherently difficult balancing
art. Apple’s FaceID is arguably the latest of such efforts, at
the cost of additional hardware (e.g., dot projector, flood il-
luminator and infrared camera). We propose a novel user
authentication system EchoPrint, which leverages acoustics
and vision for secure and convenient user authentication,
without requiring any special hardware. EchoPrint actively
emits almost inaudible acoustic signals from the earpiece
speaker to “illuminate” the user’s face and authenticates the
user by the unique features extracted from the echoes bounc-
ing off the 3D facial contour. To combat changes in phone-
holding poses thus echoes, a Convolutional Neural Network
(CNN) is trained to extract reliable acoustic features, which
are further combined with visual facial landmark locations
to feed a binary Support Vector Machine (SVM) classifier for
final authentication. Because the echo features depend on 3D
facial geometries, EchoPrint is not easily spoofed by images
or videos like 2D visual face recognition systems. It needs
only commodity hardware, thus avoiding the extra costs of
special sensors in solutions like FaceID. Experiments with 62
volunteers and non-human objects such as images, photos,
and sculptures show that EchoPrint achieves 93.75% balanced
accuracy and 93.50% F-score, while the average precision
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is 98.05%, and no image/video based attack is observed to
succeed in spoofing.
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1 INTRODUCTION

User authentication on smartphones is pivotal to many im-
portant daily apps, such as social networks, shopping and
banking [11, 21]. Central to the user authentication is the
balancing art between security and convenience. A solution
must be secure while easy to use. A series of efforts have
been undertaken to address this problem.
The most basic and traditional method, PIN number, has

both usability (e.g., the pass code forgotten by the user)
and security (e.g., shoulder-surfing [46] attacks) issues. Face
recognition based authentication can be easily spoofed by
images or videos of the user [20]. Simple twists such as re-
quiring eye blinks are vulnerable to video attacks [4]. Iris
scan [17] is probably the most secure way, however it re-
quires special sensors unavailable on most mobile devices.



Figure 1: EchoPrint emits nearly inaudible sound sig-
nals from the earpiece speaker to “illuminate” the
user’s face. The extracted acoustic features from the
echoes are combined with visual facial landmarks
from the frontal camera to authenticate the user.

Fingerprint sensors [3, 44], while convenient for authenti-
cation, are facing the challenge posed by the trend of ever-
increasing screen size, which leaves little space for finger-
print sensors.

The latest effort, Apple’s FaceID [7], packs a dot projector,
a flood illuminator and an infrared depth sensor in a small
area to sense the 3D shape of the face, thus achieving high
security while saving space. However, the special sensors
still take precious frontal space and cost extra (∼ 5% of its bill
of materials) [2]. Thus, we ask this question: is an alternative
using existing sensors possible?

In this paper, we propose a novel user authentication sys-
tem EchoPrint, which leverages existing earpiece speaker
and frontal camera thus can be readily deployed on most
phones. It does not require costly special sensors (e.g., depth
or iris) that take more spaces. EchoPrint combines acoustic
features from a customized CNN feature extractor and facial
landmark features from vision algorithms as the joint fea-
ture description of the user. It does not require the user to
remember any passcode, thus avoiding the usability issues
as PIN numbers. The acoustic features depend on 3D facial
geometries, thus it is resilient to image/video attacks easily
spoofing 2D visual based approaches. Similar to FaceID, it
does not require direct touch from the user, thus avoiding
issues like wet fingers that pose difficulties to fingerprint
sensors.
To achieve resilient, secure and easy-to-use authentica-

tion using acoustic and vision, we must address several chal-
lenges: i) echo signals are highly sensitive to the relative posi-
tion between the user’s face and the device (i.e., pose), which
makes it extremely hard to extract reliable pose-insensitive
features for robust authentication; ii) smartphones comewith
multiple speakers and microphones - which ones are most
suitable, and what are the proper sound signals, are criti-
cal to authentication performance; iii) sophisticated signal

processing, feature extraction and machine learning tech-
niques are needed for fast user registration and real-time
authentication.
We make the following contributions in this work:

• We design acoustic emitting signal suitable for consid-
erations including hardware limitation, sensing resolu-
tion, and audibility to humans. We also create acoustic
signal processing techniques for reliable segmentation
of echoes from the face.

• We propose an end-to-end hybrid machine learning
framework, which extracts representative acoustic fea-
tures using a convolutional neural network, and fuses
vision and acoustic features to SVM for final authenti-
cation.

• We design a data augmentation scheme for generating
“synthesized” training samples, which reduces false
negatives significantly with limited training sample
size, thus saving the user efforts in new profile regis-
tration.

• We propose three authentication modes, ultra low-
power presence detection, low-power continuous au-
thentication and two-factor one-pass authentication
for different application scenarios, balancing the trade-
offs between security, user convenience and power
consumption.

• We build a prototype, conduct extensive experiments
and find that EchoPrint achieves 93.75% balanced ac-
curacy and 93.50% F-score, while the precision is up
to 98.05%. No image/video based attack is observed to
succeed in spoofing our system.

To the best of our knowledge, EchoPrint is the first to
leverage active acoustic sensing combined with vision fea-
tures for smartphone user authentication, demonstrating
robust performance without requiring any additional special
sensor.

2 BACKGROUND

2.1 Attack Scenarios

We summarize typical attack scenarios for main existing
authentication methods.
Information Leak. Critical PIN numbers or passwords

can be leaked or stolen easily. E.g., in shoulder-surfing at-
tacks [46], it is not uncommon for someone standing close
by to peek the whole PIN typing.
Replay Attacks. 2D image based face recognition sys-

tems suffer from replay attacks by images or videos of the
user face. The face recognition system on Samsung’s flagship
Galaxy S8 is reported to be spoofed by a simple picture [6].
Biometric Duplication. Fingerprint is the mainstream

biometric used for authentication solutions. However, fin-
gerprints are widely left on objects (e.g., glasses) touched by



the user, and can be duplicated with reasonable efforts and
skill [3] to fool the sensor.

2.2 Design Considerations

Wemake the following considerationswhen designing EchoPrint.
Universal. We prefer to use existing hardware widely

available on most smartphones, so that it can be deployed at
large scale rapidly with minimum hardware costs. Besides,
we want to use a biometric that is pervasive to every human
being.
Unique. The human face has been widely used as a bio-

metric because it is distinctive. However, most existing 2D
visual based systems can be spoofed by images or videos.
Thus we leverage the 3D information of the facial contour
for much higher security.
Persistent. The biometric must not change much over

time. Biometrics such as heart beat, breathing, gait are highly
affected by the user’s physical conditions (e.g., running vs.
walking), thus not optimal choices for robust authentica-
tion. In contrast, the human face geometries are not likely
to change too much over short time periods. However, daily
changes like wearing hats or glasses must be easily accom-
modated.
Difficult to Circumvent. This is essential for any au-

thentication system to ensure a high security level. Existing
authentication approaches, such as PIN numbers, 2D based
face recognition, fingerprint sensors still have quite some
risks to be circumvented. Because our two-factor authenti-
cation examines both acoustic and visual features simulta-
neously, circumventing would require duplicating both 3D
facial geometries and acoustic reflections properties close
enough to the human face, which will be much more difficult
than needed in circumventing other methods.

2.3 Design Goal

Based on the above discussions, our goal is to build a highly
secure, resilient two-factor authentication system that is
available to most existing smartphones without requiring
any special sensors. To suit different application scenarios,
we design different authentication modes that have proper
trade-offs between security, convenience and power con-
sumption. While light weight vision algorithms should be
used to minimize computation complexity, we keep the op-
tion open for future integration with state-of-the-art vision
solutions. We believe such “free” acoustic-aided authentica-
tion will play an important role in mobile authentication
developments.

3 OVERVIEW

EchoPrint uses speakers/microphones for acoustic sensing
and the frontal camera for facial landmarks detection. It

Figure 2: EchoPrint uses a pre-trained CNN to extract
acoustic features, which are combined with visual fa-
cial landmarks as joint features. An SVM classifier is
trained to authenticate a registered user.

extracts acoustic features from echo signals using a deep
learning approach and fuses such features with facial land-
marks as a joint representation for authentication. Figure 2
shows the overview of the system design, which consists of
two major phases: user registration and user authentication.
In the registration phase, EchoPrint detects facial land-

marks (e.g., eyes, mouth) using the frontal camera. Mean-
while, the earpiece speaker emits designed acoustic signals
to “illuminate” the user’s face. Echoes bouncing back are re-
ceived by the microphone. A pre-trained CNN model is used
to extract acoustic features resilient to phone pose changes,
which are combined with facial landmarks as joint feature
representation, and fed into an SVM classifier for model
training.

In the authentication phase, the user just needs to hold the
smartphone in front of the face for facial landmarks detection
and acoustic sensing. The joint features are extracted and
fed into the trained SVM classifier for final authentication.
Optionally, an existing image-based face recognition system
can be integrated in our system for pre-screening.

4 ACOUSTIC SENSING

Acoustic echoes from the human face are highly distinctive:
i) the echoes are very sensitive to the relative position be-
tween the user face and device. ii) each 3D facial contour is
a unique set of multiple reflecting surfaces [9], which create
a unique sum of individual echoes. iii) different materials
absorb, attenuate sound waves differently [28], allowing us
to distinguish objects of similar geometry but different ma-
terials (e.g., a stone sculpture).

4.1 Speaker/Microphone Selection

Figure 3 shows the speakers, microphones and camera layout
on a typical smartphone. There are two speakers, a main one
at the bottom and an earpiece speaker at the top for making
phone calls. There are also one microphone at the bottom,
and another at the top for noise cancellation.



Figure 3: Typical layout of speakers, microphones and
camera on smartphones.

We select the earpiece speaker, topmicrophone, and frontal
camera combination for robust acoustic/visual sensing. Ear-
piece speaker is chosen for sound emitting for two reasons:
i) it’s a highly standard design on almost all existing smart-
phones. Its location is suitable for “illuminating” the user’s
face; whereas the main speaker has a more diverse design, ei-
ther located at the bottom or on the back; ii) earpiece speaker
is close to frontal camera, which minimizes alignment errors
when the frontal camera is used for adjusting the phone pose.

Topmicrophone is chosen as the receiver because it is close
to earpiece speaker, and it’s less affected by the user’s hand
holding the device. As shown in Figure 3, the hand is close
to the bottom microphone. Even slight hand movements can
create noises and variations in sound signals received by the
bottom microphone.

4.2 Acoustic Signal Design

There are several considerations in the emitting signal design.
First, it should facilitate isolation of the segment of interest
(i.e., echoes from the face) from the other reflections, such
as interferences from clutters and self-interference from the
speaker. This requires the signal be short enough so that
echoes from objects at different distances have little overlap
in time domain. Second, the acoustic signal should be as
inaudible as possible to human ears to minimize annoyance.
An ideal frequency range should be over 20KHz. Lastly, the
designed signal frequency range should be apart from am-
bient noises (usually under 8KHz), to enable noise removal
(e.g., using band-pass filters) and improve robustness.

According to our survey, a comfortable distance from hu-
man eyes to the phone is 25 - 50cm, corresponding to a time
delay of ∼1.4 - 2.8ms at the speed of sound. From our ex-
periments, when the frequency goes above 20KHz, serious
power attenuation and worse signal to noise ratio occur, thus
echoes from faces are buried under noises. Considering all
these facts, we choose a pulse signal with a length of 1ms
with linear increasing frequencies from 16 - 22KHz. A Han-
ning window [24] is applied to reshape the pulse envelop to
increase its peak to side lobe ratio, thus producing higher

Figure 4: Sample recording segment of a received sig-
nal after noise removal.

SNR for echoes. For authentication modes that require con-
tinuous sound emitting, we leave a delay of 50ms for each
pulse such that echoes from two consecutive pulses do not
overlap.

4.3 Acoustic Signal Pre-processing

4.3.1 Background Noise Removal. The received raw signal
goes through a 16 - 22KHz Butterworth band-pass filter
to remove background noises, such that weak echoes from
human faces will not be buried in the noise.
A sample recording segment of a received signal after

noise removal is shown in Figure 4. The direct path segment is
the emitting signal traveling from speaker to the microphone
directly, which ideally should be a copy of the emitting signal
and has the highest amplitude. The major echo corresponds
to the mix of echoes from the major surfaces (e.g., cheek,
forehead) of the face. Other surfaces of the face (e.g., nose,
chin) at different distances to the phone also produce echoes,
arriving earlier/later than the major echo. The face region
echoes include all these echoes, capturing the full information
of the face. Accurate segmenting the face region echoes is
critical to minimize the disturbances from dynamic clutters
around the phone, and reduce the data dimension for model
training and performance.

4.3.2 Signal Segmentation. There are two steps extracting
the face region segment: locating the direct path segment
in raw recordings, then locating the major echo thus face
region segment after the direct path segment.
Locating the Direct Path.An easy but naive assumption

is that a constant gap exists between the emitting and record-
ing, thus the direct path can be located after that constant
gap. However, both emitting and recording must go through
multiple layers of hardware and software processing in the
OS, many of which have unpredictable, varying delays. Thus
locating the direct path using a constant delay is extremely
unreliable.



Figure 5: Distance measurements from acoustics, vi-
sion, and calibrated acoustics.

Instead, since the direct path signal usually has the highest
amplitude, using cross-correlation to locate it is more reli-
able [56]. From our experiments, occasional offsets of direct
path signal still happen after cross-correlation, due to ambi-
guities from comparable peak values in the cross-correlation
result. We propose two techniques to enhance the stability:

i) Template Signal Calibration.Due to the hardware (speaker/
microphone) imperfection, the received sound signal is usu-
ally slightly different from the designed emitting signal. To
get an accurate “template" signal for cross-correlation, we
perform emitting and recording in a quiet environment, so
that the direct path signal can be reliably detected and saved
as a calibrated template for future cross-correlation.
ii) Signal Fine-tuning. In addition to the Hanning win-

dow, we manually tune the signal slightly to make the key
peaks/valleysmore prominent, which reduces cross-correlation
ambiguity significantly. Only the central portion (15 samples)
of the template signal is used in cross-correlation, further
enhancing resilience to residual noises.
Locating the Major Echo. A straightforward way for

locating the major echo is to find cross-correlation peak lo-
cation corresponding to typical phone holding distance (e.g.,
25 - 50cm) after the direct path location. However, human
face echoes can be so weak that echoes from larger obstacles
faraway can have comparable amplitudes. This makes the
estimation unstable and leads to occasional location “jump-
ing”, thus outliers in distance measurements. The dotted line
in Figure 5 shows the distance measurements from acoustic
while the device is moving back and forth from the face.
We can observe quite some outliers due to such “jumping”
outliers. To solve this problem, we propose a vision-aided
major echo locating technique of two steps:
i) Vision Measurement Calibration. From camera image

projection principle, the closer the device to the face, the
larger the image and larger distances between facial land-
marks, and vice versa. Thus the distance from face to device
dv can be formulated as dv = τ ·

1
dp
, where dp is the distance

Figure 6: Illustration of FMCW.

between two facial landmarks and τ is an unknown scale
factor specific to the user. We choose dp as the pixel distance
between two eye landmarks as they are widely separated
and can be detected reliably. To estimate the scale factor τ ,
we calculate τi for each pair-wise d ′

v,i from acoustic distance
measurement and dp,i in pixels. To eliminate errors caused
by acoustic distance measurement outliers, we first find the
major cluster of {τi } using density-based spatial clustering
algorithm DBSCAN [13], then leverage linear regression to
find the best τ that minimizes the offset between d ′

v and
τ · 1

dp
. Figure 5 shows that outliers are removed in vision

calibrated acoustic distance measurements.
ii) Vision-aidedMajor Echo Locating.Although vision based

distance measurement is more stable than acoustics, it can
not capture the error caused by rotations of smartphone or
user’s face. Thus the vision calibrated distance measurement
is used to narrow down the major echo searching range
and reduce outliers. We still use cross-correlation to find the
exact major peak location within this range. Note that the
user face cannot rotate to extreme angles, otherwise facial
landmark detection may fail.
Face Region Echoes. Since the depth of human face is

limited, we extend 10 sample points before and after the
major echo segment to cover the whole face region (allowing
a depth range of ∼ 7cm), which are later used as inputs for
machine models for authentication.

4.4 Segmented Signal Analysis

The face region echoes are a combination of individual echoes
with different amplitudes and phases, thus isolating individ-
ual echoes in time domain can be very hard due to noises.
Instead, we measure the arrival time of each echo by a tech-
nique Frequency-Modulated Continuous Wave (FMCW) [18]
used in radars. In traditional FMCW, the speaker transmits
continuous chirp signals with linear increasing frequency,
from fmin to fmax . To estimate the distance from an object,
FMCW compares the frequency of the echo signal to that
of a reference signal using a technique called signal mixing,



to find the frequency shift Δf (shown in Figure 6), which
is proportional to the distance. Thus finding Δf gives the
distance (i.e., Δf multiplying a constant coefficient).
To capture minute surface geometries on the face, the

FMCW distance measurement resolution is critical. The reso-
lution in Δf is equal to the size of one bin in the FFT, which
depends on the bandwidth used. This is why we use a wide
frequency of 16 - 22KHz, though it may be slightly audible
to some users. In Figure 6, the FFT is taken over a duration
of the face region with length T and hence the size of one
FFT bin is 1/T. Given a minimum measurable frequency shift
Δfmin = 1/T , the minimum measurable distance resolution
can be computed using the slope of signals (see Figure 6),
which is the total swept bandwidth B divided by the sweep
time T. Thus the distance resolution:

dr = C
TOFmin

2
= C

Δfmin

2 × slope
=

C

2B
(1)

where C is the speed of sound. Assuming C = 343m/s at

20◦ Celsius, thus dr is
343m/s

2×6000s−1
= 2.88cm. Note that this is

the resolution that FMCW can separate mixed echoes. The
resolution of major echo location corresponds to one single
acoustic sample, which is C

2Fs
= 3.57mm, where Fs = 48KHz

is the recording sampling frequency. The spectrogram of the
segmented face region echoes after FMCW signal mixing is
then used as input for CNN training in Section 5.1.

5 AUTHENTICATION MODEL

We design an end-to-end hybrid machine learning frame-
work for authentication, which consists of two major com-
ponents (shown in Figure 7): a CNN based acoustic represen-
tation learning and an SVM based two-factor authentication.

5.1 Acoustic Representation Learning

Traditional acoustic features such as mel-frequency cepstral
coefficients [32], chromagram [37] and spectral contrast [25]
have been proven to be effective in human speech recogni-
tion and voice-based authentication, but not in active acous-
tic sensing as in our case. Recently, deep learning approaches
(especially CNNs) have shown great successes in a variety
of challenging tasks such as image classification due to their
powerful automatic feature extraction [23, 43]. We design a
CNN based neural network which takes the spectrogram of
the segmented signal as input, and train it on a large data set
collected from users. We find that such extracted features
outperform all traditional features (in Section 8.2).

A customized CNN architecture designed for acoustic fea-
ture learning is shown in Table 1. We use rectified linear
unit (ReLU) as activation function for convolutional layers,
a popular choice especially for deep networks to speed up
training. Two max pooling layers with a size of 2 × 2 are
used to down-sample the input representations from their

Figure 7: The authentication framework consists of
twomajor components: acoustic representation learn-
ing and two-factor authentication.

previous activation layers. This saves computational costs
by reducing the number of parameters for both training
and inference, which is critical when the model needs to
be deployed on mobile devices. Dropout layers are added
after each max pooling layer to prevent over-fitting. Batch
normalization normalizes the output of a previous layer by
subtracting the batch mean and dividing by the batch stan-
dard deviation, which increase the stability of the neural
network and speed up training (∼ 6× speedup in our case).
Categorical cross-entropy is used as the loss function. The
dense layer with softmax activation function outputs the
probability of each class. The CNN is trained on a data set
that contains acoustic samples from 50 classes (45 users and
5 non-human classes). Note that although the CNN is trained
for 50 classes, the objective of the trained model is to extract
features that can be used to distinguish far more classes be-
yond those 50. To use the trained model as a general acoustic
feature extractor, the last layer, which is used for final classi-
fication, is removed. Thus the remaining network outputs a
128 dimensional feature vector. The trainedmodel has 710539
parameters, and a size of 5.47MB, which is portable enough
for mobile devices for real-time inference.

5.2 Facial Landmark Detection

We also extract lightweight visual features of the face to
complement acoustic ones. The vision techniques serve two
purposes: i) we detect facial landmarks which are later used
as basic visual features. ii) we track the user’s face on the
smartphone screen so that the user can hold the devicewithin



Table 1: CNN layers and parameter amounts.

Layer Layer Type Output Shape # Param

1 Conv2D + ReLU (33,61,32) 320

2 Conv2D + ReLU (31,59,32) 9248

3 Max Pooling (15,29,32)

4 Dropout (15,29,32)

5 Batch Normalization (15,29,32) 128

6 Conv2D + ReLU (15,29,64) 18496

7 Conv2D + ReLU (13,27,64) 36928

8 Max Pooling (6,13,64)

9 Dropout (6,13,64)

10 Batch Normalization (6,13,64) 256

11 Flatten (4992)

12 Dense + ReLU (128) 639104

13 Batch Normalization (128) 512

14 Dense + Softmax (50) 5547

(a) Landmark de-

tection.

(b) Landmark transformation.

Figure 8: Facial landmarks and face tracking, and land-
mark transformation between two camera positions.

some “valid” zone (thus distance and orientation) for data
collection.

We detect the 2D coordinates of facial landmarks (e.g., cor-
ners/tips of eyes, nose and mouth) on the image as features,
using the mobile vision API from Google [22] on Android
platform (shown in Figure 8(a)). The face is tracked by a
bounding rectangle. We observe that these landmarks de-
scribe critical geometry features on the face, and their loca-
tions are associated with the relative position from the device
to the face. Detailed description of the implementation is
presented in Section 7.

5.3 Two-factor Authentication

The joint acoustic and visual features are used for two-factor
authentication.
Features Summary. The 2D coordinates of facial land-

marks on the image are concatenated with the corresponding
128-dimensional CNN features as the joint features for final
authentication. Both acoustic and vision data are collected
simultaneously so that they are well synchronized, which

ensures the correspondence between facial landmarks distri-
bution on the screen and relative device position, thus echo
signals.
Classifier. One-class SVM is an unsupervised algorithm

that learns a decision function for novelty detection: classi-
fying new data as similar or different to the training set. It
detects the soft boundary of the training set so as to classify
new samples as belonging to that set or not. We use one-class
SVM with radial basis function (RBF) kernel function for fi-
nal classification. It allows us to train an SVM classifying
model for a new user (or the same user wearing new hats
or glasses) on mobile devices easily, without requiring large
amounts of training data as in CNN.
Ideally, a user should move the device at various relative

positions to the face so as to collect sufficient training data
during user registration. In practice, this imposes more ef-
forts on the user, and it is hard to tell when sufficient data has
been collected. Insufficient training data will cause higher
false negatives (i.e., denial of the legitimate user). Thus we
propose a data augmentation technique, which populates the
training data by generating “synthesized” training samples
based on facial landmark transformation and acoustic signal
prediction. During this process, we transform measured fa-
cial landmarks and acoustic signals into synthesized ones,
by assuming different poses of the phone.

5.4 Data Augmentation

In projective geometry, the projection matrix P of a 3D point
(xw ,yw , zw ) in the world coordinate system onto the image
plane in camera is modeled as Equation 2:
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where λ is the scale factor for homogeneous coordinates,

(u,v) denotes its pixel coordinate on image,K =

⎡
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⎢
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is the intrinsic matrix of the camera, e.g., the focal length
fx and fy , skew s , and image center (cx , cy ) in pixels. [R |T ]
represents the extrinsic matrix of the camera, i.e., camera’s
pose in the world coordinate system, where R is a 3 × 3 ma-
trix for its 3D orientation, andT is a 3 × 1 matrix for its 3D
translation.

As shown in Figure 8(b), assume two cameras take images
of the same object at different distances/angles, and x =



[u,v, 1]T and x ′ = [u ′,v ′, 1]T represent the object’s pixel
coordinates on two images. Without loss of generality, we
define the first camera as theworld origin, thus the projection
matrix of two cameras are:

P = K[I |0],P ′ = K ′[R |T ] (3)

where I is a 3 × 3 identity matrix.
Based on the above background of projective geometry,

we can transform the landmark pixel coordinates in one
camera to those of any new camera pose, thus augmenting
our training set.
Step 1: Compute the landmark’s world coordinates.

Given the projection matrix P and landmark pixel coordi-
nates x of the first camera, we can compute the landmark’s
world coordinates as (xw ,yw , zw )

T = zwK
−1x , where zw is

the distance of landmark from camera center, which can be
measured via our acoustic sensing.
Step 2: Transform the landmark onto new images.

From the projection matrix of the new camera pose, we can
compute the corresponding pixel coordinates of the land-
mark as:

x ′ = K ′RK−1x +K ′T /zw (4)

This transform equation consists of two parts: the first
term depends on the image position alone, i.e., x , but not
the landmark’s depth zw ; the second term depends on the
depth and takes account of the camera translation. In the
case of pure translation (R = I , K ′ = K ), Equation 4 reduces
to x ′ = x +KT /zw .

Step 3: Data augmentation. We augment our training
set based on Equation 4. i) Before data collection, we calibrate
the camera with a benchmark paper printing of a chessboard
with known size, thus obtain its intrinsic matrix K . ii) Given
a new camera pose of θ = (T ,ϕ), where T for its 3D coor-
dinates and ϕ = (α , β,γ ) for its rotation angles along three
axes of the smartphone, we transform ϕ to the 3× 3 rotation
matrix R based on Rodrigues’s Formula [50], then compute
x ′ via Equation 4.

Accordingly, following the sound propagation inverse-
square law, the face region signal segment is shifted by the
same distances, with the amplitude adjusted by the scale
equal to the inverse of the square of distance. Due to the
omni-directional property of smartphone speaker and mi-
crophone, a slight device rotation at a fixed position causes
negligible changes in the signal, thus only device position
change accounts for acoustic signal transform.

6 AUTHENTICATION MODES

We propose three authentication modes: two-factor one-pass
authentication, low-power continuous authentication and
ultra low-power presence detection, suitable for scenarios

requiring progressively less security level but more user
convenience and power efficiency.
Two-factorOne-passAuthentication. In thismode, the

user must hold the phone properly to align his face within
the valid area rectangle as shown on the screen (see Fig-
ure 9). Both visual facial landmarks from camera images and
acoustic features extracted by the trained CNN are fed to
the SVM for recognition. This incurs the most computation,
energy costs, providing the highest security level suitable
for scenarios such as phone unlock, account log in.
Low-power Continuous Authentication (LP mode).

In this mode, acoustic features extracted from the CNN are
used in one-class SVM classification. It avoids power hungry
cameras and real-time video processing, providing reduced
security level suitable for scenarios such as continuous ac-
cess/browse of private data in banking transactions after
login is completed. The user needs to hold the phone in
position ranges similar to training data collection.
Ultra Low-powerPresenceDetection (ULPmode). This

mode uses acoustic signal only and an SVM model to detect
the presence of the user face. To minimize computation and
energy costs, the spectrum of a set of samples (e.g., the first
80 after the direct path signal) instead of CNN extracted fea-
tures is fed to SVM. Data collected to train the SVM include
positive samples while holding the device before the user’s
face, negative samples when putting the device on tables, in
pockets, or holding it away from the user. This mode con-
sumes the least power and is suitable for scenarios like auto
screen lockup when the user face is not present.

7 IMPLEMENTATION

We implement EchoPrint on multiple Android smartphones,
including SamSung S7 Edge, SamSung S8, and HuaWei P9.
Figure 9 shows the UI. The prototype consists of three major
modules: facial landmark detection, acoustic sensing, andma-
chine learning pipeline for authentication. The “predict/train”
switch is used for authentication/registration selection 1.

Facial Landmark Detection.We use Google mobile vi-
sion API [22] for real-time facial landmark detection and face
tracking. The frame rate is set at 30 fps with a resolution of
1024 × 768. The middle red rectangle (Figure 9) denotes the
detected face area, and two green rectangles are the inner
and outer bounds of face valid areas, which are fixed. The
user face must be aligned within the two green rectangles
during data collection; otherwise the acoustic data are dis-
carded. Yellow dots are detected facial landmarks, saved in
pixel coordinates.
Acoustic Sensing. The acoustic signal is pre-processed

and displayed on the screen in real-time, and the segmented

1“P9/S8” switch is used for selecting microphones (top vs. bottom). P9 and

S8 are just opposite, thus requiring manual selection.



Figure 9: EchoPrint prototype application UI.

signal from the face is highlighted in blue. For better visu-
alization, we amplify the signal by 3× after the direct path
signal.
Machine LearningPipeline.Themachine learning pipeline

requires one CNN acoustic feature extractor and one SVM
classifier. We train the CNN model off-line on a PC with
Intel i7-8700K CPU, 64GB memory and GTX 1080 Ti GPU.
Keras [16] with Tensorflow [8] backend is used for CNN con-
struction and training. The trained model is frozen and de-
ployed on mobile devices. Using acoustic features extracted
from CNN, an SVM classifier using LibSVM [14] is trained
on mobile devices. Both CNN and SVM inferences are per-
formed on mobile devices in real-time.

8 EVALUATION

8.1 Data Collection

We obtain the required human subjects training certificate
from our institution before data collection. 45 participants of
different ages, genders, and skin colors are recruited in exper-
iments. The diversity in physical appearances of participant
faces help us capture sufficient data to create a strong fea-
ture extraction model. We also include 5 non-human classes:
printed/displayed human faces on different materials such
as paper, desktop monitor, photo on paper box, wall and a
marble sculpture. During data collection, each participant
is asked to hold the smartphone in front of his/her face to
ensure face alignment. To accommodate slight phone move-
ments, participants are encouraged tomove the phone slowly
to cover different poses. Data captured while the face is out
of the valid area are discarded automatically. About 120 sec-
onds’ data is captured from each user, at around 7 - 8MB and
containing ∼ 2000 samples. To ensure diversity, the data is
collected in multiple uncontrolled environments (e.g., quiet

(a) Different classifiers. (b) Different features.

Figure 10: Different classifiers performance on ex-
tracted features from CNN, and SVM performance us-
ing different features.

laboratories, noisy classrooms, and outdoor environments)
under different background noises and lighting conditions.
A portion of the participants who are more accessible to
us collected data in multiple sessions at different times and
locations. Facial landmarks are also detected and recorded
simultaneously, but no facial images are recorded to protect
the participants’ privacy. In total, the data set contains 91708
valid samples from 50 classes. We divide it in three parts,
70% for model training, 15% each for model validation and
testing. Additionally, 12 more volunteers join as new users
for model evaluation.

8.2 CNN Feature Extractor Performance

We compare the performance of different classifiers and fea-
ture extraction methods using the test data set.
Different Classifiers. The last fully connected layer of

our trained CNN is removed so that the remaining network
is used as a general feature extractor. Such extracted features
are then fed to different classifiers for final classification.
We compare Linear Regression (LR), Linear Discriminant
Analysis (LDA), K-Nearest Neighbor (KNN), Decision Tree
(DT), Naive Bayesian (NB), Support Vector Machine (SVM)
and a standalone Neural Network (NN). The box plot in
Figure 10(a) shows the lower and upper quartiles, and the
median. The whiskers extend from the box show the range
of accuracy, and outliers beyond the whiskers are marked as
circles. We find SVM outperforms all other classifiers, and it
takes short time (15.06s compared to 65.38s of NN which has
second best performance) for training. Thus we use SVM as
the final classifier for authentication.
Different Features. We compare different commonly

used acoustic features: spectrogram (SPEC), mel-frequency
cepstral coefficients (MFCC) [32], chromagram (CHRO) [37],
spectral contrast (CONT) [25] and our CNN features. Fig-
ure 10(b) shows their accuracies using SVM classifier. Our
CNN extractor outperforms all other features and achieves
the highest accuracy of ∼ 95%, which show the effectiveness
and necessity of the CNN feature extractor. Spectrogram



has less accuracy at ∼ 85%, and chromagram 67%. MFCC
and CONT have much lower accuracy ∼ 30%, which is what
we expected because they are mostly used for human voice
recognition, not active acoustic sensing used in EchoPrint.
Besides, the 15.06s using CNN features to train the SVM
model is a fraction of the 134s needed when training with
spectrogram. This is a significant improvement when train-
ing a model on resource-constraint mobile devices, which is
critical for the speed of user registration.

8.3 Authentication Accuracy

In a binary classification problem, there are four results: true
positive (TP), positive samples correctly classified as positive
class; true negative (TN), negative samples correctly classi-
fied as negative class; false positive (FP), negative samples
wrongly classified as positive class; false negative (FN), posi-
tive sample wrongly classified as negative class. Specifically,
in authentication scenarios, a high TP means the authorized
user can get access easily, a high TN means the system can
block most attacks. The worst case is high FP, which means
unauthorized users gain access. A high FN means the autho-
rized user may be denied access, which is annoying and not
user-friendly. In this evaluation, we train a one-class SVM
for each subject and attack the model using the data from the
rest users. Note that the model is trained on positive samples
only, it does not have negative samples from attackers during
training.

8.3.1 Precision, Recall, F-score and BAC. We introduce
precision, recall, F-score and balanced accuracy (BAC) as
metrics. Precision is the fraction of true positives among
all samples classified as positive, defined as P = T P

T P+F P
;

recall is the fraction of true positives among all positive
samples, defined as R = T P

T P+FN
. A high precision means

the authorized user can pass easily, a high recall means the
authorized user is seldom denied.When the class distribution
is imbalanced, precision and recall alone can be misleading.
We also introduce F-score and balanced accuracy (BAC),
both insensitive to class distribution. F-core is the harmonic
mean of precision and recall with a best value of 1 and worst
value of 0, defined as F -score = 2 P ·R

P+R
. BAC is the average

of true positive rate (TPR = T P
T P+FN

) and true negative rate

(TNR = T N
TN+F P

), defined as BAC = 1
2 · (TPR +TNR). A BAC

of 1 means no false positive (i.e., successful attack) or false
negative (i.e., denied access of legitimate users).
Table 2 shows the mean and median accuracies using vi-

sion, acoustic, and joint features. Vision (2D coordinates of a
few facial landmarks like the corners/tips of eyes, nose and
mouth) is the worst with a low average precision of ∼ 72%.
Acoustic achieves 86%, and joint features further increase
it to 88% while also decreasing recall by ∼ 6%. That is be-
cause simple 2D coordinates of facial features do not capture

Table 2: Mean/median accuracy with vision, acoustic
and joint features.

Vision Acoustic Joint

Precision (%) 72.53 / 80.32 86.06 / 99.41 88.19 / 99.75

Recall (%) 64.05 / 64.04 89.82 / 89.84 84.08 / 90.10

F-score (%) 65.17 / 69.19 85.39 / 94.31 83.74 / 93.23

BAC (%) 81.78 / 81.83 94.79 / 94.88 91.92 / 95.04

(a) Acoustic features only. (b) Joint features.

Figure 11: The precision, recall, F-score and BAC of
one-class SVM model using acoustic and joint fea-
tures.

the full characteristics of the face, thus alone they do not
perform well when many test subjects exist. They can help
“block” unauthorized users which happen to have similar
acoustic features, thus increasing precision. But they also
make it harder for the authorized user to pass, thus decreas-
ing recall. Both acoustic and joint features have an average
F-score ∼ 85% and BAC above 90%. The vision features used
are not sophisticated and detailed visual features (e.g., the
contour of face) of facial appearances as used in state-of-the-
art vision-based face recognition systems. These basic face
landmarks are mainly used for face alignment, which is crit-
ical for robust acoustic sensing. While such facial landmarks
are not intended to greatly improve recognition accuracy,
EchoPrint as an acoustic based approach is free to incorporate
more sophisticated facial features, e.g., features from a deep
neural network trained on a huge face image dataset [10].
Those would have a much higher impact on performance
improvements.
Note that the median precision (∼ 99%) and F-score (∼

94%) for both acoustic and joint features are much higher
than the respective average (83 ∼ 88%). This is caused by
outliers. Figure 11 shows the box plot of all four metrics of
acoustic and joint features. A few outlier classes with very
low precision cause low average but do not affect the median.
Such outliers are mainly non-human noise classes or human
classes with very limited valid samples. When such outliers
are excluded, the averages will increase significantly to above
∼ 95%.



8.3.2 Performance on New Users. To evaluate how well
the pre-trained CNN can extract features for new users, we
invite 12 additional volunteers whose data are not used in
CNN training. Each volunteer follows the same data collec-
tion process for ∼ 2 minutes’ data, half of which are used
for SVM training and the other half for testing. We train a
one-class SVM model for each volunteer, and test the model
with positive samples from the user and negative samples
from all other users, including the data from 50 classes used
in CNN training. Table 3 shows that the average precision is
over 98%, about 10% increase compared to results in Table 2
due to the absence of outlier classes. Similarly the average
recall, F-score and BAC are all improved compared to those
in Table 2.

Table 3: Authentication accuracy of new users.

Mean Median Standard Deviation

Precision (%) 98.05 99.21 2.78

Recall (%) 89.36 89.91 1.62

F-score (%) 93.50 94.33 1.68

BAC (%) 93.75 94.52 0.85

8.3.3 Data Augmentation Evaluation. We evaluate how
effective data augmentation can improve the performance
by generating “synthesized” training samples when training
data is limited. We split 20% samples from the 2min data as
testing set, and vary the size of training set from 20% to 80%.
The data set is shuffled before the splitting to make it more
balanced. Figure 12 shows the precision, recall, F-score and
BAC under different amounts of training samples from 50 to
600, which are tested against another 1054 positive testing
samples and all the 91708 negative samples from existing
50 classes. It is obvious that data augmentation improves
recall significantly, thus F-score and BAC, especially when
the training samples are very limited (e.g., <100). As the size
grows, the recall with data augmentation is always higher.
However the precision decreases to ∼ 95%, which is because
“synthesized” training samples have more noises, making
it easier to have false positives. The performance becomes
stable with more than 400 training samples, which can be
collected within one minute when registering a new user.

8.3.4 Continuous Modes Evaluation. We evaluate the two
continuous modes of presence detection and continuous
authentication that uses only acoustics.
Presence Detection.We put the smartphone at different

locations as well as holding it in front of the user’s face.
The detection result is shown on the screen in real-time
so that we know the correctness. From our experiments,
it can differentiate putting on a table and holding in front
of the user with nearly 100% accuracy with unnoticeable

(a) Without DA. (b) With DA.

Figure 12: Classification performance comparison of
data augmentation (DA) under different training data
amounts.

Figure 13: Continuous authentication performance
with different number of trials.

delay. Holding in the air sometimes may be detected as user
presence when the device is close to some major objects,
which may affect timely screen lockup.

Continuous Authentication. To ensure friendly user
experience during continuous authentication, a low false
negative rate is very important. One volunteer participates
in this experiment with a trained model using data when the
face is aligned. In the authentication phase, the volunteer
keeps using the device as normal and tries to keep it within
positions where the face is aligned, with the camera disabled.
We evaluate the precision, recall, F-score and BAC when
multiple authentication trials are conducted for each cycle.
Authentication trial happens every 100ms thus one verdict
from multiple trials is fast enough, causing no noticeable
delay to the user. At least one trial must pass in a cycle to
declare authentication success. Figure 13 shows that more tri-
als increase the recall rapidly while decreasing the precision.
This is because more trials give the user more chances to
pass, thus reducing denials while increasing false positives.
We choose 3 trials for each authentication circle to balance
all the metrics.

8.3.5 Miscellaneous. We evaluate the following factors
that have direct impacts on practical use.



Figure 14: Performance under difference noises.

Figure 15: Average recall of 5 users before/after model
updating with new training data.

Robustness Against Background Noise. We evaluate
the robustness again background noise under different con-
ditions: quiet room, with ambient noise (playing pop music
nearby), and with ambient plus self noise (playing music
through earpiece speaker on the same device during data col-
lection, an extreme condition). Figure 14 shows the results.
Except for a slightly lower recall, there is no major differ-
ence between quiet and ambient noise conditions, which
demonstrates EchoPrint is very robust to ambient noise. The
ambient plus self noise brings down to recall to ∼ 70%, but
still the precision remains above 95%.
Image Spoofing Attacks.We print color photos of 5 vol-

unteers in 10 different sizes on paper, and also display the
photos on desktop monitors while zooming in/out gradually,
both at various distances between 20 - 50cm to the smart-
phone. The printed and displayed photos can easily pass the
system if only vision features are used, but none of them can
pass the acoustic or two-factor authentication.
User Appearance Changes. Appearance changes such

as wearing glasses/hats cause changes in the reflected acous-
tic signals, thus more false negatives and low recall. To com-
bat such problems, we retrain the SVM model with data
samples of new appearances in addition to the existing train-
ing data. Figure 15 shows the average recall of 5 users with
different appearance changes before/after model update us-
ing additional ∼ 1 minute’s data. Without retraining, the
recall drops to single digits. After the retraining, it increases
back to normal levels, so correct users can pass easily. This
shows retraining is effective combating such changes.

Table 4: Mean/max resource consumption.

Device Memory (MB) CPU (ms) Delay (ms)
S7 22.0 / 50.0 6.42 / 31.59 44.87 / 91

S8 20.0 / 45.0 5.14 / 29.04 15.33 / 35

P9 24.0 / 53.0 7.18 / 23.87 32.68 / 86

User Experience Study. We conduct a survey with 20
users (mostly graduate and undergraduate students) to col-
lect their feedback, mainly on two aspects that directly im-
pact user experience, the sensitivity to the emitted sound
signal and the effort for new user registration. Out of 20
users, only 4 reported able to hear the high frequency sound
from the earpiece when holding the smartphone at a normal
distance. Out of 20 users, 9 rated EchoPrint equally easy to
register as other authentication systems such as image-based
face recognition and fingerprint sensor, 6 rated it harder and
5 rated it easier.

8.4 Resource Consumption

We evaluate memory, CPU usage using the Android Studio
IDE Profiler tool, and power consumption using Qualcomm’s
Trepn Profiler tool [5] on Samsung S7 edge, Samsung S8, and
Huawei P9.
Memory & CPU Consumption. Table 4 shows the re-

source consumption on three smartphones. The memory
consumption has an average ∼ 22MB and max ∼ 50MB,
which appears when CNN feature extraction using tensor-
flow inference is running. The average amount of time for
the CPU to complete all the machine learning inferences is
low on all phones (5 ∼ 7ms). The max CPU time is around
∼ 30ms , still very low. Such low memory and CPU usage
makes it possible to deploy EchoPrint on most existing de-
vices.

Response Delay. Response delay is the time needed for
the system to produce an authentication result after the raw
input signal is ready (Table 4). Samsung S8 has the least delay
with an average of ∼ 15ms , and the other two 32 - 45ms . The
delay approaches maximum when the user keeps moving
the phone trying to align the face in the valid area, which
incurs a lot of camera preview refreshing and rendering. It is
also affected by other computation heavy background apps.
For real-time continuous authentication, the delay between
consecutive sound signal emitting is 50ms . We choose to do
authentication every other emitting, leaving sufficient time
for processing.
Power Consumption.We test the three modes and pure

vision based authentication using 2D coordinates of facial
landmarks, each for 30 minutes to measure power consump-
tion on Samsung S7 Edge, S8 and Huawei P9. We use Qual-
comm’s Trepn Profiler tool [5], which provides power con-
sumption inmW for a chosen application. We subtract the



Table 5: Power consumption of different modes.

Device ULP (mW ) LP (mW ) Two-factor (mW ) Vision (mW )

S7 305 1560 2485 1815

S8 215 1500 2255 1655

P9 265 1510 2375 1725

background power consumption while the screen is on, the
increased power consumption caused by different modes are
shown in Table 5. The results show that presence detection
consumes minimum power, while low power continuous
authentication takes less than that of pure light weight vi-
sion based authentication. Two-factor authentication has
the highest battery consumption; but it is also designed for
occasional one-pass authentication finishing in just a few sec-
onds, not long time continuous operation. The slight power
increase of vision based mode over LP is due to the sim-
ple form of facial landmarks used, which are much lighter
weight compared to more sophisticated ones such as those
in OpenFace [10].

9 RELATEDWORK

SmartphoneAuthentication. Personal IdentificationNum-
ber (PIN) or a text/graphical password are the earliest and
still most widely used smartphone user authentication meth-
ods. Despite the simplicity, the PIN or password can be easily
peeked by someone close by [46]. Speech recognition is easy
to spoof when the voice is recorded, or closely imitated by ad-
vanced learning algorithms [41]. BreathPrint [15] senses the
user’s breath sound, which may change significantly when
the user has intense exercises. Vision based face recognition
is vulnerable to camouflaged images. Although eye blinks
can enhance its security [4], a recorded video can still spoof
the system. Fingerprint sensors have achieved great security
and convenience. However the sensor takes a lot of precious
space, and forging one from fingerprints left by the user is
proven practical [3]. More advanced fingerprint sensors use
ultrasonics [42] to penetrate the skin and construct 3D imag-
ing, but such sensors are unavailable on most smartphones.
Apple’s FaceID [7] uses special TrueDepth sensors, bring-
ing extra hardware costs and requiring significant design
changes. Intel’s RealSense [27] is a similar technology, but it
is costly and power-computation heavy, unsuitable for mo-
bile devices. Unlike all the above solutions, EchoPrint is the
first to leverage active acoustic sensing combined with visual
features for user authentication. It achieves high balanced
accuracy (∼ 95%) using existing hardware.
Acoustic-based Face Recognition. Acoustics has been

used for face recognition in some prior work [19, 26, 35, 36].
I. E. Dror et al. [19] recognize a limited number of five human
faces with an accuracy over 96% and the gender of 16 faces

with an accuracy of 88% using bat-like sonar input from spe-
cial ultrasonic sensors. K. Kalgaonkar et al. [26] propose a
sensing mechanism based on the Doppler effect to capture
the patterns of motion of talking faces using ultrasound. K.K.
Yoong et al. [35, 36] classify up to 10 still faces with an accu-
racy of 99.73% using hand-crafted features from ultrasound
echo signals. Compared to all the above work using special
ultrasonic sensors which are not available in consumer elec-
tronics, EchoPrint uses commodity smartphone speakers and
microphones not intended for ultrasonic frequencies. This
puts a lot of challenges on the signal design and processing,
and much more experiments and tests to find out the best
acoustic signal design providing required sensing resolution
within hardware limitations, while minimizing the audibil-
ity to users. Besides, such prior work uses pure ultrasonic
sensing without the aid from vision, thus creating major lim-
itations (e.g., requiring the user to move the head at a fixed
location and angle). While EchoPrint leverages the vision
to align faces using face tracking algorithms for practical
two-factor vision-acoustic authentication. EchoPrint is the
first mobile device based approach. New users can register
using a pre-trained CNN model to extract features and train
a standalone SVM model on-device. While prior work uses
hand-crafted features or needs re-training the whole neural
network, inefficient and infeasible on mobile devices.
Acoustic Sensing on Smartphones.Acoustic sensing is

widely used for distance measurement, thus applications in
localization, tracking, stress and encounter detection. Beep-
Beep [40] and SwordFight [55] measure the distance be-
tween two smartphones directly; Liu et al. [30] leverage
cross-correlation to compute the arrival time difference for
keystroke snooping; Yang et al. [51] detect driver phone
usage in a vehicle; EchoTag [52] recognizes different loca-
tions and BatMapper [56, 58] builds indoor floor plans us-
ing echo signals. Besides, acoustic ranging can significantly
improve smartphone localization accuracy, e.g., adding con-
straints among peer phones [29], deploying an anchor net-
work that transmits spatial beacon signals [31], or enabling
high-precision infrastructure-freemobile device tracking [57].
UbiK [47], AAMouse [53], FingerIO [39], and LLAP [48]
leverage phase shift in received signals for near field fin-
ger gesture tracking, achieving ∼ 1cm or higher accuracy.
StressSense [33] detects personal stress using smartphones in
unconstrained acoustic environments. ApenaApp [38] moni-
tors the minute chest and abdomen breathing movements
using FMCW [45], and SonarBeat [49] monitors breathing
beat using signal phase shifts. CAT [34] leverages FMCW
with external speakers for smartphone movement tracking
and achieves mm-level accuracy. DopEnc [54] extracts acous-
tic features to identify encountered persons. Compared to
them, EchoPrint leverages acoustic features from deep neural
networks for a different purpose of user authentication.



10 DISCUSSION

Leveraging Sophisticated Vision Features. EchoPrint is
open for integration with the state-of-the-art image-based
face recognition algorithms for more practical use, such as
OpenFace [12], a state-of-the-art open source face recog-
nition system based on neural networks. We implement a
preliminary prototype leveraging OpenFace, where a 128-
dimensional feature vector is generated as the image repre-
sentation. We test it with 5 volunteers and attack the system
with user images printed on paper or images/videos dis-
played on desktop monitor. Despite of 100% accuracy recog-
nizing each face, we find OpenFace has almost no capability
of identifying images against real human faces. In contrast,
the two-factor approach blocks all images attacks due to the
significant differences in acoustic features, while retaining
high recognition accuracy. We realize that the results are
preliminary due to limited time and resources. Nevertheless,
they are promising, showing great potential of combining
advanced visual features. We leave more mature design and
systematic evaluation as future work.
Comparison with FaceID. FaceID is a mature commer-

cial product, the outcome of a large team of highly skilled
engineers from a technology giant. In terms of engineering
maturity, which matters greatly in final performance, there
is no way EchoPrint can approach that of FaceID. Thus, our
position is never to beat or replace FaceID. Rather, our goal
is to present an alternative low-cost acoustic-based approach
that is promising to have similar performance while much
lower costs, and possibly some advantages over FaceID (e.g.,
FaceID may fail in direct sunlight [1]; while EchoPrint uses
acoustics and is not affected by strong sunlight.). There is
great space of further improvements in EchoPrint, such as
obtaining data from large populations to train a more ro-
bust model, incorporating acoustic data from many different
angles, all of which will further improve its performance.
Limitations. EchoPrint is only a research prototype and

far from a well engineered product. It has several main limi-
tations: i) requirement of face alignment. To ensure both high
true positive and low false negative, face alignment is re-
quired for authentication. It may be inconvenient to users
to hold the phone in such positions. In contrast, FaceID has
much more flexibility in device holding positions. ii) limita-

tions from vision. EchoPrint leverages vision algorithms for
facial landmark detection, thus inheriting their limitations.
We notice that face tracking is not stable under poor lighting,
which makes it hard for face alignment, thus more false neg-
atives. iii) user appearance changes. The current CNN feature
extractor is trained on limited data, far from exhaustive to
be robust against various appearance changes such as hats,
glasses or hair styles. Retraining the SVM model with new
data is promising for combating such changes. Similar to

FaceID, an online model updating mechanism is needed to
address such changes dynamically. iv) continuous authenti-
cation usability. Although we demonstrate EchoPrint has the
potential for pure acoustic-based continuous authentication,
it requires the smartphone aligned and in front of the user’s
face, which impacts the usability. To mitigate such problem,
we can either decrease the frequency of acoustic sampling
and authentication at a cost of decreased security, or regis-
ter users with data from different angles thus enlarging the
range of effective authentication. We believe that continuous
authentication, although an additional feature with some
robustness issues in it current form, is indeed valuable for
many application scenarios, e.g., doing banking transactions
in public places.
FutureWork. i) enhancing CNN acoustic feature extractor.

We will collect more training data from more users (e.g., by
crowdsourcing) with larger variety. This will further improve
performance together with more sophisticated neural net-
work design. ii) integration with existing solutions. Due to the
rapid progress of deep learning, image based face recognition
has achieved unprecedented accuracy. EchoPrint can be inte-
grated with existing pure image based solutions to enhance
their anti-spoofing capability. iii) feasibility of replay attacks.

In theory the echoes can be recorded and replayed. However
a successful attack is far from trivial: weak, high frequency
echoes are difficult to record at sufficient fidelity, and they
must be replayed at proper timing after signal emitting. The
amount of hardware resources and human efforts needed
for successful attacks could be huge, and we plan to find it
out. iv) large scale experiment. We only have ∼ 50 users in
the current experiments, while large scale experiment (e.g.,
thousands or more) is needed for a mature solution. We will
seek ways to do experiments at such scale.

11 CONCLUSION

In this paper, we propose EchoPrint, which leverages acous-
tics and vision on commodity smartphones for two-factor
authentication. To combat phone pose changes and extract
reliable acoustic features that best distinguish different users,
a convolutional neural network is trained on a large acoustic
data set. The CNN is then used as general acoustic feature
extractor to feed an SVM based classifier for authentication.
Experiments show that EchoPrint achieves 93.75% balanced
accuracy and 93.50% F-score, while the average precision is
98.05%.
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