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Abstract. We study a model of competition among nomadic agents for time-varying and
location-specific resources arising in crowdsourced transportation services, online com-
munities, and traditional location-based economic activity. This model comprises a group
of agents and a single location endowed with a dynamic stochastic resource process.
Periodically, each agent derives a reward determined by the location’s resource level and
the number of other agents there and has to decide whether to stay at the location or move.
On moving, the agent arrives at a different location whose dynamics are independent of
and identical to the original location. Using themethodology of mean field equilibrium, we
study the equilibrium behavior of the agents as a function of the dynamics of the stochastic
resource process and the nature of the competition among colocated agents. We show that
an equilibrium exists in which each agent decides whether to switch locations based only
on the agent’s current location’s resource level and the number of other agents there. We
additionally show that when an agent’s payoff is decreasing in the number of other agents
at the agent’s location, equilibrium strategies obey a simple threshold structure. We show
how to exploit this structure to compute equilibria numerically and use these numerical
techniques to study how system structure affects the agents’ collective ability to explore
their domain to find and effectively utilize resource-rich areas.
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1. Introduction
We consider a model of nomadic agents exploring and competing for time-varying, stochastic, location-specific
resources. Such multiagent systems arise in many real-world settings as illustrated herein.

They arise in the sharing economy in crowdsourced transportation services, such as Uber and Lyft, and in
crowdsourced food delivery services, such as GrubHub and DoorDash, in which drivers choose neighborhoods and
then earn money based on the number of riders or eaters requesting service within that neighborhood (the location-
specific resource) and the number of other drivers working there. This overall resource level varies stochastically as
demand rises and falls, and the resource derived by a driver decreases as more drivers drive in the neighborhood.

They also arise in the traditional economy, for example, in mobile food vendors deciding where to locate their
trucks, in pastoralists deciding where to graze their livestock, and in fishermen deciding where to fish. In these
examples, the level of resource derived by each agent from the agent’s location (whether profit from hungry
passersby, food for livestock provided by the range land, or profit from the catch) depends on both the number of
other agents at the location and the location’s stochastically varying resource level.

They also arise in online communities, such as Reddit and Twitch, in which participants choose subcommunities
or channels and then derive enjoyment depending on both some underlying but transitory societal interest in the
subcommunity’s topic of focus (the overall resource) and the number of other participants in the subcommunity.
When the number of other participants is too small, lack of social interaction prevents enjoyment; when the number
of other participants is too large, crowding diminishes the sense of community.

They even arise among scientific researchers, who choose a research area in which to work and derive value
based on the underlying level of societal interest and funding in their chosen area and the number of other
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researchers working in it. As with online communities, the number of other researchers should be neither too large
nor too small to maximize the value derived.

In each of these examples, the overall welfare of the system is determined by how agents explore their domain to
find and exploit resource-rich locations. This willingness to explore, in turn, depends on the level of competition or
cooperation among agents at the same location and the distribution of agents and resources across locations.

In this paper, we develop a formal model to analyze such spatiotemporal competition among agents and the
equilibrium behavior of such systems. The model we study comprises a single location and a group of agents. This
location represents one in a large collection of locations between which the agents move. It has a resource level that
varies stochasticallywith time. Each agent at the location periodically obtains a payoff whose amount is determined
by the number of other agents currently at the location and the location’s current resource level. Based on these
quantities, the agent then decides whether to stay at the same location or leave. On leaving, the agent receives
a reward that represents the expected future discounted payoff that would be obtained by moving to another
randomly chosen location in the system. The agents are fully strategic and seek to maximize the total expected
payoff over their lifetime.

Using the methodology of mean field equilibrium (MFE), we study the equilibrium behavior of the agents in this
system as a function of the dynamics of the spatiotemporal resource process and the level of competition in the
agents’ sharing of a location’s resources. We prove the existence of an equilibrium for general resource-sharing
functions. For the specific case in which the resource-sharing function is nonincreasing in the number of agents at
the location, we further show that the equilibrium strategy has a simple threshold structure in which it is optimal
for an agent to leave a location when the number of other agents there exceeds a threshold that depends on the
location’s resource level. This result enables a simple description of equilibrium strategies, and allows us to ef-
ficiently compute an equilibrium.

Using numerical analysis of a setting with two resource levels and decreasing resource-sharing function, we
investigate how the equilibrium welfare depends on resource levels’ rate of change and the density of agents.
Here, the equilibrium welfare is the sum of payoffs earned across all agents in equilibrium, normalized to the
length of time over which these payoffs have accrued and either the number of agents or the number of locations.
Using this methodology, we show qualitatively different system behavior when the single-location welfare
function (the contribution to welfare from all agents at one location) increases with the number of agents at the
location as compared with when it decreases. Our ability to derive these and other insights discussed in detail in
Section 5 provide evidence that our model and equilibrium notion lend themselves to analysis through simple
numerical methods. Specifically, our methodology presents a promising approach to evaluate engineering in-
terventions, such as providing subsidies to or imposing costs on agents to promote or discourage exploration to
improve welfare.

1.1. Related Work
Our work contributes to the literature on MFE (Jovanovic and Rosenthal 1988, Huang et al. 2007, Lasry and Lions
2007, Weintraub et al. 2008, Adlakha et al. 2015) that studies complex systems under a large system limit and
obtains insights about agent behavior that are hard to obtain from analyzing finitemodels. Themain insight behind
this literature—that, in the large system limit, agents’ behavior is characterized by their private state and an
aggregate distribution of the rest of the system—has been used to study settings including industry dynamics and
oligopoly models (Hopenhayn 1992; Weintraub et al. 2008, 2011), repeated dynamics auctions (Iyer et al. 2014,
Balseiro et al. 2015), online labor markets (Arnosti et al. 2014), queueing (Xu and Hajek 2013, Manjrekar et al. 2014),
content sharing (Li et al. 2017), and pedestrian motion (Lachapelle and Wolfram 2011), among others. In these
papers, the unit of analysis is a single agent’s decision problem, assuming the behavior of all other agents together
constitutes a mean field distribution. In contrast, in our work, the unit of analysis is the game among the agents at
a single location, assuming that the behavior of agents and the resource level at all other locations constitutes
a mean field distribution.

Our work also contributes to the literature on spatial models of ride sharing and crowdsourced transportation
(Banerjee et al. 2015, 2016; Braverman et al. 2016). In this literature, the papermost closely related to ours is Bimpikis
et al. (2016), who consider a ride-sharing platform with a continuum of riders and drivers spread across a finite
network of locations and study how the platform should set origin-based prices to maximize profits. In particular,
the drivers’ decision of where, when, and whether to provide service is explicitly modeled. The paper studies the
impact of the underlying network structure of the locations on the platform’s profits and consumers’ surplus under
the assumption that the demand at each location is stationary. In contrast, in our model, the resources at each
location (analogous to demand) are stochastic and time varying. However, in our model, agents decide whether to
stay or switch from their current location and not to which location to switch.
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Our model is also related to congestion games (Rosenthal 1973, Nisan et al. 2007), in which agents choose paths
on which to travel and then incur costs that depend on the number of other agents who have chosen the same path.
One may view paths as being synonymous with locations in our model and observe that, in both cases, the utility/
cost derived from a path/location depends on the number of other agents using that path or portion thereof. The
main difference between our model and congestion games is the stochastic time-varying nature of our overall level
of resource (making our model more complex) and the lack of interaction between locations contrasting with the
interaction between paths (making our model simpler).

Another related strand of literature studies ecological models of metapopulations in static and dynamic habitats
(Levin 1970; Durrett and Levin 1994a, b; Molofsky 1994). Keymer et al. (2000) consider a set of habitats, arranged on
a lattice, each containing a subpopulation of a species, and the landscape structure of each habitat is stochastic and
dynamic. Using a mean field analysis and through numerical simulations, the authors study the dependence of
persistence and extinction rates of the species across habitats as a function of the rate of change of the landscape. In
such models, the species dynamics are exogenously specified, whereas we are interested in the equilibrium be-
havior of agents.

Our work can be seen as an extension of the Kolkata Paise restaurant problem (Chakrabarti et al. 2009),
a generalization of the El Farol bar problem (Arthur 1994, Chakrabarti 2007). In this game, each agent chooses
(simultaneously) a restaurant to visit and earns a reward that depends on both the restaurant’s fixed rank, which is
common across agents, and the number of other agents at that restaurant. This reward is inversely proportional to
the number of agents visiting the restaurant. The Kolkata Paise restaurant problem is studied in both the one-shot
and repeated settings with results on the limiting behavior of myopic (Chakrabarti et al. 2009) and other strategies
(Ghosh et al. 2010) although we are not aware of existing results on mean field equilibria in this model. The model
we consider is both more general in that we allow general reward functions and allow a location’s resource to vary
stochastically and more specific in that our locations are homogeneous. Our model also differs in that our agents’
decisions are made asynchronously.

2. Model
Our formal model is motivated by considering a system of locations occupied by strategic agents. Each location has
a resource level that varies over time according to a finite-state, continuous-time Markov chain and is occupied by
a time-varying collection of agents. Each agent has an associated sequence of independent decision epochs
separated by exponential times. At the start of an agent’s decision epoch, the agent receives a payoff that depends
on the number of other agents at the agent’s current location and the resource level there. The agent then decides
whether to stay at the location or to leave and move to another location. When moving, the agent’s destination is
chosen uniformly at random from the set of all locations other than the origin. Each agent seeks to maximize the
agent’s expected payoff over an independent, exponentially distributed lifetime. When an agent’s lifetime expires,
the agent exits the system and is replaced by a new agent who arrives to a new location chosen uniformly at
random. In Appendix A, we provide a detailed description of this system with a finite number of agents and
locations.

Because the payoff obtained by an agent at any location is determined by the number of agents at that location,
each agent’s decision to stay in the agent’s current location or to move to a new one depends on all the other agents’
behavior. Consequently, the interaction among the agents in this finite model is a dynamic game, and describing
the agents’ behavior requires an equilibrium analysis. Because the agents are not fully informed about the resource
levels at other locations, the standard equilibrium concept to analyze the induced dynamic game is a perfect Bayesian
equilibrium (PBE). A PBE consists of a strategy ξi and a belief system μi for each player i. A belief system μi for agent i
specifies a belief μi(hit) after any history hit over all aspects of the system of which the agent is uncertain and that
influence the agent’s expected payoff. A PBE then requires two conditions to hold: (1) each agent i’s strategy ξi is
a best response after any history hit given their belief system and given all other agents’ strategies, and (2) each agent
i’s beliefs μi(hit) are updated via Bayes’ rule whenever possible (see Fudenberg and Tirole 1991a, b for more details).

A PBE supposes a complex model of agent behavior. Each agent keeps track of the agent’s entire history and
maintains complex beliefs about the rest of the system. Although this behavioral model may be plausible in small
settings, in large systems an agent’s history may not contain too much information about the state of all other
locations because the agent would typically only visit a small fraction of the locations. In such settings, it is more
plausible that each agent would base the decision to stay or switch solely on the current state of the location the
agent is in—specifically on its level of resource and congestion—and on the aggregate features of the entire system.
Moreover, we expect that an agent would prefer to stay at a location with a high resource level and few other
agents.
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We seek to uncover this intuitive behavioral model as an equilibrium in large systems by letting the number of
agents and the number of locations both increase proportionally to infinity and studying the limiting infinite
system.

As the number of locations and agents grows to infinity proportionally (with the proportionality constant β> 0
defined as the agent density), it is reasonable to suppose that the dynamics at any fixed finite collection of locations is
independent asymptotically and that the rewards experienced by an agent can be described by modeling the
dynamics at a single location and then supposing that upon leaving that location the agent moves to another
locationwhose dynamics are independent and identically distributed ad infinitumuntil the agent’s lifetime expires.
Thus, to analyze a large finite system, we posit a formal model for the dynamic of a single location and treat each
agent who leaves this location as returning to an independent copy.

2.1. Formal Model of a Single Location in the Limiting Infinite System
Here we state our formal model of a single location k. Let Zk

t denote the resource level at the location at time t≥ 0.
We assume the resource process {Zk

t : t≥ 0} is a finite-state, continuous-time Markov chain. We let Z denote the set
of values the resource process can take. Furthermore, we let μzy > 0 denote the transition rate of Zk

t from a state z ∈ Z

to a state y ∈ Z. We assume that the process Zk
t is irreducible and positive recurrent with a unique invariant

distribution {πres(z) : z ∈ Z}.
We let Nk

t denote the number of agents at the location k at time t. The stochastic process (Zk
t ,N

k
t ) will evolve

according to arrivals to this location and the decisions made by agents at this location. Toward that end, we
suppose that new agents arrive to this location according to a Poisson process with rate κ, and we describe the
agents’ decision process herein. The rate κmodels both arrivals of agents switching from other locations in a finite
system and new arrivals of agents to the system following the exit of other agents from the system, but here it is
taken to be an input to the formal model of a single location, and later it is required to satisfy consistency conditions
in equilibrium.

Associated with each agent i at location k is a Poisson clock with rate λ such that each time the clock rings, the
agent decides whether to stay in the location or leave. We refer to each clock ring of agent i as the agent’s decision
epoch and let τ�i denote the time of the agent’s �th decision epoch.

At each decision epoch τ�i , the agent i receives a payoff F(Zk
t ,N

k
t ) | t�τ�i that depends on the resource level Zk

t and
the number of agents Nk

t . We refer to the function F as the resource-sharing function. We assume that the resource-
sharing function is nonnegative; that is, F(z,n)≥ 0 for each z ∈ Z and n≥ 1. To avoid trivialities, we require that there
exists a (z0,n0) such that F(z0, n0)> 0. Finally, to model the competitive nature of interaction among the agents, we
assume that as the number of agents at a location increases, the payoff an agent receives approaches zero:
limn→∞ F(z,n) � 0 for each z ∈ Z.

Tomodel agents with finite lifetimes, we assume that subsequent to receiving a payoff at time τ�i with probability
1 − γ ∈ (0, 1), the agent’s lifetime expires, and the agent exits the system permanently. Thus, each agent i can exist in
the system for at most a random time interval distributed exponentially with rate λ(1 − γ). We refer to γ ∈ (0, 1) as
the survival probability.

If the agent’s lifetime does not expire, then agent i decides whether to stay at the location ormove. Agents are free
to make this choice based on their history of past observations. If the agent stays, then the dynamics and payoffs
described continue forward for another decision epoch. If the agent leaves, then the agent is awarded a one-time
payoff of Vsw > 0 and no subsequent payoffs. Here Vsw is taken simply to be a constant input to our model for
a single location, and later it is required to satisfy a condition at equilibrium. This condition corresponds to Vsw

being the conditional expected payoff experienced by an agent when moving to a new location whose current
number of agents and resource level are distributed according to the stationary distribution induced by equi-
librium agent behavior.

2.2. The Single-Location Decision Problem When Other Agents Follow Markovian Strategies
Having specified the arrival process and agents’ decision process in a single location, we are interested in char-
acterizing a symmetric equilibrium among agents. For a given arrival rate κ and the switching payoff Vsw, the
particular notion of equilibrium we consider is a Markov perfect equilibrium (Fudenberg and Tirole 1991a), in
which, in equilibrium, each agent finds it optimal to base the decision only on the current state of the location at the
agent’s decision epoch and not on the agent’s past (although the agent is not restricted from doing so). Formally, let
S � Z × N0 denote the set of possible states of the process (Zk

t ,N
k
t ). A Markovian strategy for an agent is a function

ξ : S → [0, 1], where ξ(z,n) denotes the probability withwhich the agent chooses to stay if the state of the location at
the agent’s decision epoch is (z,n) ∈ S. (Note that ξ(z, 0) is not well defined; by convention, we let ξ(z, 0) � 1 for
all z ∈ Z).
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As a step toward formulating the game among the agents, we first study the dynamics at a location when all
agents in location k adopt aMarkovian strategy ξ. Given the arrival rate κ and theMarkovian strategy ξ, the process
(Zk

t ,N
k
t ) for any location k evolves as a continuous-time Markov chain on the state space S with the following

transition-rate matrix Qξ,κ:

Qξ,κ (z,n) → (x,m)( ) � I{x �� z,m � n}μz,x + I{x � z,m � n + 1}κ
+ I{x � z,m � n − 1}λn 1 − γξ(z, n)( )
− I{x � z,m � n} ∑

y��z
μz,y + κ + λn 1 − γξ(z,n)( )( )

,

(1)

where z, x ∈ Z and n,m ∈ N0. Here the first term on the right-hand side represents the transition in the resource level
Zk
t at the location, which is an independent Markov chain with rates μz,x. The second term on the right-hand side

represents the arrival of an agent to location k at rate κ. The third term on the right-hand side represents the
departure of one of the n agents from location k. Such a departure can only occur at a decision epoch of one of these
agents. At any such decision epoch, an agent stays with probability ξ(z, n) times the survival probability γ. Thus,
with probability 1 − γξ(z,n), the agent leaves location k. Because there are n agents at the location, each of whose
decision epoch occurs at rate λ, the total rate for a departure at the location is given by λn(1 − γξ(z,n)). Finally, the
last term on the right-hand side represents the rate of no transition. We denote this continuous-time Markov chain
describing the dynamics of a single location, in which all agents adopt the Markovian strategy ξ and the rate of
arrival of agents is κ by MC(ξ, κ).

Now consider the decision problem faced by a single agent i at location k, assuming all other agents (current as
well as in future) at the location follow strategy ξ. For any fixed switching payoff Vsw > 0 and arrival rate κ, the
decision problem faced by an agent i can be described as follows. As long as the agent stays at location k, at each
decision epoch τ�i , the agent receives a payoff F(Z�

i ,N
�
i ) andmust choose whether to stay in location k or switch. Also,

irrespective of this decision, the agent’s lifetime expires with probability 1 − γ. On choosing to stay with survival
probability γ, the agent continues until the agent’s next decision epoch τ�+1i . On choosing to switch with survival
probability γ, the agent immediately receives the switching payoff Vsw. From this description, it follows that the
decision problem facing an agent i in location k is an optimal stopping problem. Denote this optimal stopping
problem by DEC(ξ, κ,Vsw). In the following, we develop the dynamic-programming formulation of this problem.

We begin by defining the value functions for the agent. Let V(z, n) denote the value function of agent i at the
agent’s decision epoch prior to the agent making a decision or receiving payoffs given resource level z ∈ Z and
number of agents n ∈ N at location k. Similarly, we let Vst(z,n) denote the continuation payoff of the agent at the
agent’s decision epoch, subsequent to the agent making the decision to stay and conditional on the agent not
leaving the system given resource level z and number of agents n at location k. We have the following Bellman’s
equation for the optimal stopping problem DEC(ξ, κ,Vsw) faced by the agent:

V(z,n) � F(z,n) + γmax{Vst(z,n),Vsw}
Vst(z,n) � Eξ[V(Zτ,Nτ) | z,n],

(2)

where Eξ[· | z,n] denotes the expectation with respect to the process defined by (1) subject to (Z0,N0) � (z,n), and τ
denotes the time of the first decision epoch of the agent i. Here the first equation follows from the fact that at the
decision epoch the agent receives an immediate payoff equal to F(z,n) and has to make the decision whether to stay
or switch. Subsequent to the decision, the agent survives in the system with probability γ. On choosing to switch
and surviving, the agent receives a continuation payoff equal toVsw. By contrast, on choosing to stay and surviving,
the agent receives a continuation payoff equal to Vst(z, n). The second equation relates Vst(z, n) to the expectation of
the agent’s value function at the next decision epoch.

For value functionsV andVst satisfying the Bellman’s equation (2) and any optimal strategy ξi, agent i chooses to stay
if the resource level z and the number of agents n in the location satisfies Vst(z, n)>Vsw, to switch if Vst(z,n)<Vsw, and
anymixed action if Vst(z, n) � Vsw. We letOPT(ξ,κ,Vsw) denote the set of all optimal strategies for the agent’s decision
specified by (2). Specifically, for any Markovian strategy ξ̂, we have ξ̂ ∈ OPT(ξ, κ,Vsw) if and only if the following
conditions hold: ξ̂(z, n) � 1 if Vst(z,n)>Vsw, ξ̂(z,n) � 0 if Vst(z, n)<Vsw, and ξ̂(z,n) ∈ (0, 1) only if Vst(z,n) � Vsw.

2.3. Mean Field Equilibrium
With the description of the model in place, we are now ready to formally define the notion of equilibrium onwhich
we focus. First, for any arrival rate κ and switching payoff Vsw, we require the agents to play a Markov perfect
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equilibrium at location k. In other words, we require the strategy ξ to satisfy the following requirement: assuming
all agents other than an agent i follow the strategy ξ, agent i maximizes the agent’s payoff (across all possible
history-dependent strategies) by following the strategy ξ. This leads us to the following condition:

ξ ∈ OPT(ξ, κ,Vsw). (3)

Now suppose, for a given κ and Vsw, a Markov perfect equilibrium ξ is being played at location k. Then the
dynamics of the location’s state are given by MC(ξ, κ). Let π(ξ, κ) denote the steady-state distribution of this
process. In particular, for z ∈ Z and n≥ 0, we let πz,n(ξ, κ) denote the probability that the location has a resource
level z and number of agents n in steady state. (We drop the explicit dependence of the steady-state distribution on
ξ and κ when the context is clear.) Thus, π(ξ, κ) is an invariant distribution under Qξ,κ and satisfies∑

z∈Z

∑
n∈N0

πz,n(ξ, κ)Qξ,κ((z, n) → (x,m)) � 0, for all x ∈ Z,m ∈ N0. (4)

Now consider an agent arriving to the location k in steady stateπ(ξ, κ). We denote the total expected payoff that this
agent receives over the agent’s lifetime on following the strategy ξ byVarr. Using the definition of the value function
Vst, we obtain

Varr �
∑

(z,n)∈S
πz,n(ξ, κ)Vst(z, n + 1).

Here the right-hand side is obtained by observing that after the agent arrives to the location in state (z, n), which
happens with probability πz,n(ξ, κ), the number of agents at that location becomes n + 1, and the agent’s con-
tinuation payoff is then Vst(z, n + 1).

Our second condition on equilibrium requires that the total expected payoff Varr to an agent arriving at location k
equals the total expected payoff an agent at the location receives on switching Vsw. Intuitively, we expect this
condition to hold in any symmetric equilibrium of a system with a large but finite number of homogeneous
locations, in which agents choose whether to stay in their current location or switch to a different location (chosen
uniformly at random). In such a model, the switching decisions of the agents will force the switching payoffs of all
populated locations to have the same value. Because our model of a single location does not endogenously capture
these considerations, we impose this explicitly. In particular, we require that the switching payoff satisfies the
following equation:

Vsw � ∑
(z,n)∈S

πz,n(ξ, κ)Vst(z,n + 1). (5)

The final condition we impose on the equilibrium is a requirement on arrival rate κ. Again, intuitively, in
a symmetric equilibrium of a large finite model with homogeneous locations, we expect the expected number of
agents at each location to be the same given by the agent density β> 0. To capture this in our model, we require that
for a given agent density β, the arrival rate κ satisfies the following condition:∑

(z,n)∈S
nπz,n(ξ, κ) � β. (6)

Given these three conditions, we are now ready to define an MFE:

Definition 1 (Mean Field Equilibrium). An MFE consists of a strategy ξ, an arrival rate κ, and a switching payoff Vsw

satisfying (3), (5), and (6).

Note that in comparison with a PBE, anMFE adopts a fairly natural and vastly simpler model of agent behavior. In
a PBE of a finite model, an agent’s strategy depends on the state of the agent’s current location, history, and belief
about the state of all other locations. Moreover, the agent constantly updates this belief based on the agent’s
observations of the arrival process at the agent’s current location. For example, if an agent sees a high volume of
arrivals at the agent’s current location, the agent’s updated belief would attribute lower resource levels at other
locations, thereby lowering the agent’s expected payoff for switching. Such complex considerations do not arise in
an MFE, in which the payoff from switching is assumed to be fixed and independent of the state dynamics of the
current location. In a large market, this assumption is reasonable because the fluctuations in the empirical dis-
tribution of the states of other locations are expected to cancel each other, analogous to a law of large numbers
result.1 In the next section, we show existence of an MFE.
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3. Existence of a Mean Field Equilibrium
Here we state the main result of this paper, proving the existence of anMFE for general resource-sharing functions.
Subsequently, in Section 4, we analyze the structure and properties of an MFE under specific assumptions on the
resource-sharing function. We have the following main theorem.

Theorem 1. For any λ> 0, β> 0, and {μz,y > 0 : z, y ∈ Z}, there exists an MFE (ξ, κ,Vsw), where ξ(z,n) � 0 for all z ∈ Z

and all large enough n.

The underlying argument behind the proof is to carefully construct a correspondence 5 and show that the
existence of an MFE is equivalent to the existence of a fixed point of 5. The latter is obtained by an application of
the Fan–Glicksberg fixed-point theorem (Aliprantis and Border 2006). Here we first sketch the steps involved and
highlight the technical challenges in each of those steps. Using these intermediate results, we then provide the proof
of Theorem 1. (The complete proof is provided in Appendices B–G.)

1. We first show that for anyMarkovian strategy ξ and arrival rate κ> 0, theMarkov chainMC(ξ, κ) has a unique
invariant distribution π satisfying (4). This involves showing that the chain MC(ξ, κ) is irreducible and positive
recurrent, which we accomplish by using coupling arguments to bound the chain between two M/M/∞ queues.
The proof of this result is provided in Appendix B.

Denote the (unique) invariant distribution ofMC(ξ, κ) by π(ξ, κ). In Appendix C, by applying Berge’s maximum
theorem (Berge 1963), we show that the invariant distribution π(ξ, κ) is jointly continuous in (ξ, κ).

2. Second, we establish that for any strategy ξ, there exists a unique value of κ> 0 such that the invariant
distribution π(ξ, κ) satisfies (6). This result is achieved by showing that the quantity

∑
(z,n)∈S nπ(z,n), where π �

π(ξ, κ) is strictly increasing and continuous for κ ∈ [βλ(1 − γ), βλ] for any fixed ξ and using the intermediate value
theorem. The proof of this result is provided in Appendix D.

Let κ(ξ) denote the unique value of arrival rate κ for which π(ξ, κ) satisfies (6). The first two steps together then
define an injective map from the strategy ξ to an arrival rate κ(ξ) and a steady-state distribution π(ξ, κ(ξ)) such that
π(ξ, κ(ξ)) is the (unique) invariant distribution of the Markov chain MC(ξ, κ(ξ)) and satisfies (6).

3. Third, we consider the decision problemDEC(ξ, κ(ξ),Vsw) for a given strategy ξ and switching payoffVsw. We
let 9(ξ,Vsw) denote the value function satisfying the corresponding Bellman equation (2) and let 9st(ξ,Vsw) denote
the corresponding continuation payoff function. Finally, we let 9sw(ξ,Vsw) denote the right-hand side of (5):

9sw(ξ,Vsw) �
∑

(z,n)∈S
πz,nVst(z, n + 1),

where π � π(ξ, κ(ξ)) and Vst � 9st(ξ,Vsw).
In Appendix E, we show that these functions are uniformly bounded. In particular, we show that there exists

0<V≤V such that for all Markovian strategy ξ and Vsw > 0, we have the switching payoff 9sw(ξ,Vsw) ∈ [V ,V]. The
proof of the uniform bounds makes extensive use of the strong Markov property for the chain MC(ξ, κ(ξ)).

4. Fourth, we let -(ξ,Vsw) denote the set of all optimal strategies for the agent’s decision problem DEC(ξ,
κ(ξ),Vsw). Note that -(ξ,Vsw) � OPT(ξ, κ(ξ),Vsw). In Appendix F, we identify a convex, compact set Π̂ of Mar-
kovian strategies such that if ξ ∈ Π̂ and Vsw ∈ [V,V], then -(ξ,Vsw) ⊆ Π̂. Let Υ � Π̂ × [V ,V].

Finally, we construct the correspondence 5 : Υ6Υ defined as

5(ξ,Vsw) � -(ξ,Vsw) × 9sw(ξ,Vsw){ }
� (ζ,9sw(ξ,Vsw)) : ζ ∈ -(ξ,Vsw){ }.

We depict the map pictorially in Figure 1. In Appendix G, we show that the correspondence 5 is upper hemi-
continuous. This requires showing the continuity of the value functions in (ξ,Vsw), which is achieved using the
continuity in ξ of the process MC(ξ, κ(ξ)) under the topology of weak convergence (Ethier and Kurtz 1986).

We then obtain the following proof for the existence of an MFE.

Proof of Theorem 1. The steps outlined show that 5 is an upper-hemicontinuous correspondence on a convex,
compact subset Υ of a metric space with values that are nonempty and convex. From an application of the
Fan–Glicksberg fixed-point theorem (Aliprantis and Border 2006), we obtain that5 has a fixed point; that is, there
exists (ξ,Vsw) ∈ Υ such that (ξ,Vsw) ∈ 5(ξ,Vsw).

Thus, by definition of 5, we have ξ ∈ -(ξ,Vsw). This implies that ξ satisfies (3) for the decision problem
DEC(ξ, κ(ξ),Vsw). Second, by definition of κ(ξ), we obtain that the steady-state distribution π(ξ, κ(ξ)) satisfies (6).
Finally, fromVsw � 9sw(ξ,Vsw),we obtain that (5) holds. From this,we conclude that (ξ,κ(ξ),Vsw) constitutes anMFE. □
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4. Equilibrium Analysis for Decreasing Resource-Sharing Functions
Having shown the existence of anMFE for general resource-sharing functions, we now characterize the equilibrium
strategy for the specific case in which the resource-sharing function is nonincreasing in the number of agents at the
location. Under this assumption, we show existence of anMFE in which the equilibrium strategies have a threshold
structure. We then use this structural characterization in Section 5 to compute this MFE and analyze its welfare. We
define decreasing resource-sharing functions as follows.

Definition 2. We say that a resource-sharing function F is decreasing if F(z,n + 1)≤ F(z,n) for each z ∈ Z and all n ∈ N.

Decreasing resource-sharing functions appear when agents’ interactions are competitive rather than cooperative.
In Section 5, we consider these three examples of decreasing resource-sharing functions:

• As a first example of a decreasing resource-sharing function, consider F(z,n) � f (z)/n for some function f . This
models settings inwhich all agents at a location equally share the resource there. In particular, given resource level z
at a location, the n agents at the location would collectively obtain total payoffs at rate λnF(z, n) � λ f (z), a quantity
independent of n. We refer to the quantity W(z, n) Δ�λnF(z,n) as a single-location welfare function.

• Next, consider F(z,n) � f (z)/ 		
n

√
. Here the agents collectively receive payoffs at rate λ

		
n

√
f (z), which is increasing

in n. Although agents compete with each other, the single-location welfare function increases with the number of
agents there.

• Finally, consider F(z, n) � f (z)/n3/2. This models extremely competitive settings in which the single-location
welfare function decreases with the number of agents.

Before providing our result, we define threshold strategies. Formally, for x � (xz : z ∈ Z), where xz ∈ R+ for each
z ∈ Z, define the threshold strategy ξx as follows:

ξx(z,n) �
1 if n< 	xz
;
xz − 	xz
 if n � 	xz
;
0 otherwise,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
for each z ∈ Z and n≥ 0. In particular, under strategy ξx, an agent, at the agent’s decision epoch, will stay at the
agent’s current location with resource level z ∈ Z if the number of agents n at the location is strictly below 	xz
, will
switch to a different location if n> 	xz
, and will stay with probability xz − 	xz
 and switch with remaining
probability if n � 	xz
. We say that a strategy is a threshold strategy if it is of this form.

We now state our main result of this section.

Theorem 2. If F is a decreasing resource-sharing function, there exists an MFE (ξ, κ,Vsw), where ξ is a threshold strategy.

The proof of this theorem makes essential use of the following lemma, which states that with decreasing re-
source-sharing functions, the continuation values are nonincreasing.

Figure 1. Illustration of the Correspondence 5(ξ,Vsw) � X(ξ,Vsw) × {Vsw(ξ,Vsw)}

Note. Single arrows denote functions, and double arrows denote correspondences.
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Lemma 1. Let ξ be a Markovian strategy, κ> 0, and Vsw > 0. If F is a decreasing resource-sharing function, then, for each
z ∈ Z, the continuation payoff Vst(z,n) for the decision problem DEC(ξ, κ,Vsw) is nonincreasing in n.

The proof of this lemma, provided in AppendixH, shows that the decision problemDEC(ξ, κ,Vsw) has a dynamic
program that satisfies closed convex cone properties defined in Smith and McCardle (2002). With the lemma in
place, the proof of Theorem 2 follows from minor modifications of the argument in the proof of Theorem 1 and is
omitted.

5. Computation of MFE and Numerical Equilibrium Analysis
The implications of Theorem 2 are of substantial practical importance: when the resource-sharing function is
decreasing, the equilibrium behavior of the agents can be fully described by |Z| nonnegative real numbers
{xz : z ∈ Z}. This parsimony allows simple computational methods to numerically identify an equilibrium,
especially when |Z| is small. We use this fact to analyze the equilibrium numerically for several representative
decreasing resource-sharing functions. We first describe our approach for computing an equilibrium in more
detail.

5.1. Computation of MFE
To simplify notation in this section, we use x to denote the threshold strategy ξx. Recall that an MFE is a fixed point
of the correspondence 5(x,Vsw) � -(x,Vsw) ×9sw(x,Vsw). For any (x,Vsw), we define the distance metric dist5
as follows:

dist5(x,Vsw) � Vsw −9sw(x,Vsw)| | + inf
y∈-(x,Vsw)

‖x − y‖ 2,

where ‖ · ‖2 denotes the Euclidean norm. The second term on the right-hand side denotes the distance between x
and the set -(x,Vsw), which is compact and convex. To find a fixed point of 5, we identify a value of (x,Vsw) such
that dist5(x,Vsw) � 0. We implement two relaxations to this exact problem. First, we consider an approximation
dist5

ε to the metric dist5, obtained primarily by truncating the state space to a finite set. Second, we perform an
adaptive search method to find a (approximate) minimizer of the function dist5

ε . We choose this approximate
minimizer as the value of the (approximate) MFE strategy and the corresponding switching payoff.We describe the
steps in detail:

1. We truncate the state space S of the agent’s decision problem to SL � Z × {0, 1, · · · , L − 1} for some L ∈ N. For
each x ∈ [0, L − 1]|Z|, we let MCL(x, κ) denote the Markov chain obtained by restricting the transitions of the chain
MC(x, κ) to lie in the set SL and let πL(x, κ) denote its steady-state distribution. For any x ∈ [0, L]|Z|, the distribution
πL(x, κ) can be obtained by solving a set of L · |Z| linear equations analogous to (4).

2. For any given x ∈ [0, L − 1]|Z|, we perform a binary search over the interval [βλ(1 − γ), βλ] to find a value
κ � κL(x) for which ∑

z∈Z

∑L
n�0

nπz,n − β

∣∣∣∣∣
∣∣∣∣∣≤ ε1,

where π � πL(x, κL(x)), and ε1 > 0 denotes the tolerance level within which we seek to satisfy (6).
3. For any given x ∈ [0, L − 1]|Z| andVsw ∈ [V ,V], we then consider the decision problemDEC(x, κL(x),Vsw) (with

state space restricted to SL). We perform value iteration to compute approximate value functions 9st
ε(x,Vsw) and

9sw
ε (x,Vsw), where we iterate until 9st

ε(x,Vsw) is within ε0 > 0 (in sup-norm) of the limit. Using these approximate
value functions, we identify the set of approximately optimal thresholds -ε(x,Vsw). Define dist5

ε by replacing 9sw

and - in the definition of dist5 with 9sw
ε and -ε.

4. We seek to minimize dist5
ε (x,Vsw) over all values of x ∈ [0,L − 1]|Z| and Vsw ∈ [V,V]. We use the Nelder–Mead

neighborhood search method (Nelder and Mead 1965) to find the minimizer of the distance function. To locate the
global minimum, we run the method in parallel with multiple initial values of x and Vsw, chosen among a dis-
cretized set of threshold strategies Πk

L � {0, (L − 1)/k, 2(L − 1)/k, · · · , (k − 1)(L − 1)/k,L − 1}|Z| for some k ∈ N and
a discretized subset of [V ,V] constructed in a similar way.

5. After obtaining (x∗,Vsw
∗ ) that attains the minimum of dist5

ε over all runs, we do a validation check by
comparing dist5

ε (x∗,Vsw
∗ ) with a threshold ε2 to see if this distance is close enough to zero for (x∗,Vsw

∗ ) to be an
equilibrium. We accept (x∗,Vsw

∗ ) as an approximate MFE strategy and the corresponding switching payoff if
dist5

ε (x∗,Vsw
∗ )≤ ε2. If the validation check fails, a larger k is chosen to providemore fine-grained initial starting points

until a maximum number of iterations is reached. Although our method does not guarantee finding an ap-
proximate equilibrium on terminating, in all our computations in Section 5.2, we obtain an approximate equi-
librium with corresponding dist5

ε smaller than 10−10.
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We also note that there may be multiple equilibria in our model for general model parameters and resource-
sharing functions; we have not shown uniqueness. Such instances of nonuniqueness may arise, for example, when
the resource-sharing function is multimodal because, in those settings, coordination concerns dominate, and an
agentmay prefer to stay at a location if other agents do so and prefer to switch if others switch. In such instances, the
preceding numerical procedure selects for a particular (approximate) equilibrium, and our comparative statics
results in the following section correspond to the equilibrium2 selected by this algorithm.

5.2. Comparative Statics
In this section, we present the results of our numerical investigations of the agents’ behavior in an MFE using the
computational approach described in the preceding section.We study the setting inwhichZ � {0, 1}with transition
rates μ0,1 � μ1,0 � μ. Because our model is invariant to proportional scaling of the transition rate μ and the agents’
interepoch rate λ, we fix λ � 1.We set the survival probability to γ � 0.95.We consider decreasing resource-sharing
functions of the form F(z, n) � zn−α, where α ∈ {0.5, 1, 1.5}. In this setting, some locations have resource (those with
z � 1), and others do not (z � 0), and the single-locationwelfare function is increasing for α � 0.5, constant for α � 1,
and decreasing for α � 1.5 in the number of agents there. Finally, our approximation scheme uses parameters
L � 200, k � 20, ε0 � 10−4, ε1 � 10−6, and ε2 � 10−8.

In our computational study, we study how the model’s parameters influence both agent behavior as quantified
by the equilibrium thresholds and system efficiency as quantified by thewelfare per location. Thewelfare per location
is defined as the rate of total expected payoff obtained in equilibrium by all the agents at a location in steady state. At
a location with resource level z ∈ Z and n agents, the total payoff rate to those n agents is given byW(z,n) � λnF(z,n).
Because, in steady state, the state (z,n) is distributed according to the mean field distribution π, the agents’ welfare
per location equals

WL � Eπ[W(Z,N)] � ∑
z,n

λnF(z,n)πz,n.

We also analyze the welfare per agent, defined as the rate at which a randomly chosen agent receives payoff in
equilibrium. Because the agent density is equal to β, the welfare per agent WA is given by WA � WL/β. When β is
held fixed, the two welfare measures are proportional, and thus we study WA in addition to WL only when we
vary β.

Figure 2 shows how the equilibrium thresholds and the welfare per location vary as the resource process changes
more frequently, that is, as μ increases, for a fixed value of β � 20. For each resource-sharing function, for small
values of μ, the difference between the thresholds x1 and x0 is substantial. Because the resource level changes
slowly, an agent in a location with resources is willing to suffer significant competition (in the form of other agents)

Figure 2. Equilibrium Thresholds and Welfare Under Different Resource Transition Rates μ with Agent Density Fixed at
β � 20
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before choosing to switch locations. Note that as α increases, the level of competition at which agents switch
decreases, consistent with our observation that as α increases, competition becomes more severe. By contrast, as μ
increases, the difference in the two thresholds diminishes. This is because increasing μ diminishes the benefit of
staying in a location. As the resource levels change more frequently, the resource process mixes more readily, and
thus, future resource levels are less correlated with current levels.

Figure 2 also shows that the welfare per location depends crucially on the resource-sharing function. When the
single-location welfare function increases with the number of agents at that location (α � 1/2), the welfare per
location decreases as resource levels change more frequently, that is, as μ increases. By contrast, when the single-
location welfare function decreases with the number of agents there (α � 3/2), the welfare per location increases as
μ increases. To understand this, observe that when μ is small, the thresholds x1 and x0 are well separated, implying
that the agents will be concentrated in locations with positive resource levels. By contrast, when μ is large, the two
thresholds are similar, and agents are more equitably distributed between locations with and without resource.
When α< 1, the former distribution of the agents obtains more welfare per location because single-location welfare
function is increasing with the number of agents at a location with resource, and having more agents at these
locations increases welfare. By contrast, when α> 1, the former distribution incurs lower welfare per location
because of severe competition among the agents at the location with resource. (When α � 1, the distribution of the
agents between locations with or without resource does not substantially affect the welfare per location. In
particular, as long as a location with resource has at least one agent present, the total payoff at that location is
the same.)

Figure 3 shows equilibrium properties as a function of agent density β when resource levels change slowly
(μ � 0.25). The difference between the thresholds x1 and x0 widens as β increases for each resource-sharing function.
This is because increasing β for any fixed state (z,n) at the current location diminishes an agent’s expected payoff
from switching because there are more agents to compete against. Thus, when the current location has resources,
the agents become more likely to stay as β gets larger.

We further observe that as β increases, the welfare per location increases when α � 0.5, decreases when α � 1.5,
and is essentially constant when α � 1. As in Figure 2, this relation is explained by the equilibrium distribution of
agents between locations with and without resource, arising from the dependence of the equilibrium thresholds on
β: as the difference between the two thresholds increases, the welfare per location increases when α � 0.5 and
decreases when α � 1.5. However, because the degree of competition increases as β increases, we observe that,
irrespective of the resource-sharing function, the welfare per agent decreases.

The preceding comparative statics reveals an important feature of our dynamic model and its equilibrium that is
lacking in a static analysis: our analysis captures the joint distribution of the agents and the resource levels across
locations. Figure 2 demonstrates this by showing that agents’ strategies change as the resource transition rate μ

Figure 3. Equilibrium Thresholds and Welfare Under Different Agent Densities β

Notes. WA is multiplied by 15 for all values. Note that the resource transition rate is given by μ � 0.25.
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changes. By contrast, because all values of μ result in the same steady-state proportion (50%) of locations in each
resource state, a static analysis that only tracks the stationary resource state distribution would generate the same
market outcomes for all values of μ. Furthermore, the welfare also changes with μ for resource-sharing functions
other than z/n, where the total payoff rate in a location λnF(z, n) depends nontrivially on n. Such an effect would not
materialize in a static model, which ignores the dynamics of the resource process and tracks only the steady state.

5.3. Case Study: Setting Platform Commission
In this section, we provide a case study to illustrate how our model can be used to evaluate engineering in-
terventions. Specifically, we apply our model to the ride-hailing market in Manhattan. Ride-hailing platforms
charge a commission when they transfer rider payments to their driver partners, and consequently, the drivers’
behavior in the market is influenced by this commission rate. In this case study, we investigate how different
commission rates affect the aggregate revenue of the drivers and the platform (and how it is split between the two);
the outcome of this analysis provides a reference for platforms when an adjustment of commission rate is under
consideration.

We view taxi drivers as agents, different neighborhoods of Manhattan as locations, and taxi trip demand as the
resource in our model. We assume the drivers, at the end of each day, decide for the next day whether to stay in the
same neighborhood or switch to another one. We also assume that a driver makes this decision based on the trip
demand in the driver’s current neighborhood as well as the driver’s estimate of the number of competing drivers in
the same neighborhood.

We describe how the model parameters are estimated and further describe the assumptions. We use the yellow
cab trip records from the New York City Taxi and Limousine Commission (2017) data set to estimate these
parameters. The data limitations prevent us from performing a full-blown analysis; in such instances, we use our
judgment to assign parameter values. We set the parameter values as follows:

• Agent density β: We divide Manhattan into 12 regions, with the diameter of each region approximately equal
to the average taxi trip length in Manhattan. The agent density is then estimated as β � 400 drivers per location,
following an estimate of 4,800 active taxi drivers obtained by averaging across different times of day.

• Resource process {μz,y}: We assume a resource model with binary states, with zero denoting the typical
resource state and one denoting a high-resource state. Such a high resource may describe local conditions (such as
local events, weather patterns, etc.) that temporarily lead to high demand for rides. To estimate the transition rates
between the two states, we use weather as a proxy and estimate the transition between rainy and nonrainy days
using historical weather data from Manhattan (Weather Underground 2017). This yields a transition rate of μ0,1 �
1/3.86 and μ1,0 � 1/1.93 with units day−1. These values are a reasonable proxy for state transitions, indicating
a high-resource state approximately every four days for a duration of about two consecutive days.

• Payment function F: Most ride-hailing platforms use dynamic pricing mechanisms to improve market ef-
ficiency, and suchmechanisms can be designed to increase the aggregate revenuewith the number of drivers (Chen
2016, Castillo et al. 2017) because increased driver availability allows more trips to happen. However, at the same
time, higher competition among the drivers decreases the revenue received by an individual driver. Tomodel these
aspects, we let the aggregate revenue rate from riders at a location with resource state z and n drivers equal n1−αf (z)
for some parameter α ∈ (0, 1), where f (z) captures the dependence on the resource state. This entails the revenue
rate per driver to equal f (z)/nα, and hence, the rate of payment to an individual driver in the location takes the
following form:

F(z,n) � (1 − c(z)) f (z)
nα

, z ∈ {0, 1},n ∈ N,

where c(z) denotes the (resource-dependent) commission rate charged by the platform. For our analysis, we
choose α � 0.5.

To estimate f (0), we use the average daily rider payment on nonrainy days inManhattan from theNewYork City
Taxi and Limousine Commission (2017), which yields an estimate of 1.2 × 104 dollars per hour per location. We do
not, however, estimate f (1) using rider payments on rainy days because our data come from yellow cab data with
fixed prices, whereas modern ride-hailing platforms typically increase price as demand increases. We therefore
assume the average total rider payment when the resource is high (z � 1) to be 20% higher and set f (1) � 1.2 f (0).

• Decision rate: We choose λ � 1day−1.
• Survival probability: We choose γ � 0.995, indicating a planning horizon of 1/λ(1 − γ) � 200 days.
Assuming a baseline commission rate of 15% in both resource states, we investigate how the revenue of drivers

and the platform would vary under a number of commission-rate scenarios. For each such combination of c(0) and
c(1) (and under the parameter values described), we numerically compute the resulting MFE in our model and the
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driver and platform revenues in the computed equilibrium. We share these results in Table 1. These results can be
used to access the magnitude of the impact and to decide whether commission should be raised in aggregate or if it
would be better to selectively raise it based on demand (resource states). A table such as this could be shared with
decision makers as part of a larger decision process.

As discussed earlier, our dynamic model allows us to capture the joint distribution of the drivers and the
aggregate revenue across locations. The distribution of the drivers across locations is important because it in-
fluences a driver’s payoff on switching, which influences the driver’s switching decisions. Our model enables us to
include this endogenous effect of the driver distribution on the drivers’ switching decisions in evaluating different
commission rates. Without the dynamics (and the tractable equilibrium concept of an MFE), such effects would be
hard to incorporate in a static analysis, rendering it incomplete.

6. Conclusion
Our results establish that, in equilibrium, the agents in ourmodel base their decision to explore solely on the state of
the location they currently reside in and on its steady-state distribution. In particular, our results justify analyzing
spatiotemporal models under simple yet optimal models of agent behavior.

Our model and analysis raise many topics for future research. First, we have used the notion of an MFE to
analyze a single location in isolation, assuming that the other locations are described by the mean field distribution.
A natural question is whether the resulting strategy constitutes an approximate equilibrium in the system with
a large but finite number of agents and locations. Such approximation results for MFE have been obtained in other
contexts (see, e.g., Iyer et al. 2014, Adlakha et al. 2015, Balseiro et al. 2015). In the finite system, a single agent visits
multiple locations over the agent’s lifetime, inducing correlations among the states of those locations. The
analytical challenge in obtaining an approximation result involves showing that as the system size increases, such
correlations vanish, and in the limit, the dynamics of a location in the finite system approaches the dynamics of the
single location in our model.

On the modeling front, we have assumed that each location is homogeneous. In particular, we assume that the
resource process is distributed independently and identically across different locations. One consequence of this
homogeneity is that agents do not choose their destination when they switch. It is straightforward to extend our
model and the analysis to incorporate location heterogeneity and to let agents choose their destination when
switching. Such a model would better represent the settings we study. For example, in ride-hailing settings,
residential neighborhoods have different demand characteristics than business districts, and drivers choose the
neighborhood to operate in based on these characteristics. A formalfinitemodel of this extension hasmultiple types of
locations, and each location has type-dependent resource dynamics, resource-sharing function, and agent density.
Agents choose not onlywhether to stay or switch but alsowhich location type to switch to,whereupon the destination
is chosen uniformly among locations of that type. Using similar arguments for the homogeneous setting, we can
obtain the corresponding limiting infinite systemmeant to capture the limiting behavior as the number of agents and
locations increaseswith the type distribution and the agent densityfixed. Our proof of the existence of anMFE applies
in this setting with minor modifications; we omit the details because of space considerations. By contrast, we have
assumed that the resource process at a location is exogenously specified, whereas an extension could allow for the
resource transitions at a location to depend on the number of agents therein.

Finally, ourwork also sets the stage for analyzing engineering interventions and their economic impact. One such
intervention involves altering the resource-sharing function at each location through subsidies or penalties to
induce the agents to stay in or switch from a location, thereby affecting their welfare. A further question is whether
sharing information about locations’ states would benefit or harm the agents and how such an information-sharing
mechanism should be designed. Answers to these questions would help platforms, such as Uber or Airbnb, to
increase their efficiency.

Table 1. Revenue of the Ride-Sharing Platform Under Different Commission Rates

c(0) c(1) DriRev ΔDriRev PlatRev ΔPlatRev AggRev ΔAggRev

0.15 0.15 26.121 — 4.610 — 30.731 —
0.175 0.175 25.353 −2.94% 5.378 16.66% 30.731 0.00%
0.15 0.20 25.504 −2.36% 5.219 13.20% 30.723 −0.02%
0.20 0.15 25.210 −3.49% 5.507 19.46% 30.718 −0.04%
0.2 0.2 24.584 −5.88% 6.146 33.32% 30.730 0.00%

Notes. Here c(z) is the commission rate at resource state z ∈ {0, 1}.DriRev,PlatRev, andAggRevdenote the revenue (in units 105 dollars per hour)
for drivers, for the platform, and in aggregate, respectively. ΔDriRev denotes the change in drivers’ revenue compared with the base case
(c(0) � c(1) � 0.15) with ΔPlatRev and ΔAggRev defined similarly.
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Appendix A. Description of the Finite System
In this appendix, we provide a formal description of the system with a finite number of locations and agents (the finite system),
which motivates our mean field model. The finite system has a set of locations_, where each location k ∈ _ contains a stochastic
time-varying resource. We use Zk

t to denote the resource level at location k at time t≥ 0. We assume that the resource process
{Zk

t : t≥ 0} is a finite-state, continuous-time Markov chain and further assume that the resource processes across different
locations in the system are distributed identically and independently. We let Z denote the set of values the resource process can
take and let μzy > 0 denote the transition rate of Zk

t from a state z ∈ Z to a state y ∈ Z. Furthermore, we make the assumption that
each process Zk

t is irreducible and positive recurrent with a unique invariant distribution given by {πres(z) : z ∈ Z}.
Spread across this set of locations are N agents. Each agent may switch between locations in search of resources and less

competition as we detail. Each agent i is associated with a Poisson clock with rate λ such that each time the clock rings, the agent
decides whether to stay in the location or switch to another one. We refer to each clock ring of agent i as the agent’s decision epoch
and let τ�i and k�i denote the time and location of the agent’s �th decision epoch, respectively.

We let Nk
t denote the number of agents at location k at time t. At each decision epoch t � τ�i , agent i at location k � k�i receives

a payoff F(Zk
t ,N

k
t ) that depends on the resource level Zk

t and the number of agents Nk
t at that location. We make the same

assumptions on F as in Section 2.1.
Subsequent to receiving the payoff, agent i makes the decision whether to continue at the location or move to a different

location. On choosing to move to a different location, agent i instantaneously arrives at a new location k�+1i . We make the
assumption that the new location k�+1i is drawn independently and uniformly from the set of all locations other than the agent’s
current location. Note that this assumption precludes us frommodeling an agent’s strategic choice of to which location to move.
Nevertheless, we make this assumption because, even under this restrictive assumption, the analysis of the agent’s decision
problem turns out to be challenging. In Section 6, we discussed a few extensions and modifications that align closer to practical
settings.

Similar to the mean field model, we assume that agents in the finite system are short lived: after each decision epoch τ�i ,
subsequent to making the decision regarding whether to stay in the agent’s current location or move to a different location,
agent i departs the system independently with probability 1 − γ, never to return, and we denote as τi the time the agent leaves
the system. We also assume that for each agent that departs, a new agent arrives to the system at a location chosen uniformly at
random to maintain constant system size, same as in the mean field model.

Finally, we describe the utility and the information structure of each agent in the model. We assume that each agent i at each
time t at the agent’s current location k observes the resource level Zk

t and the number of agentsNk
t . By contrast, the agent cannot

observe the resource level and the number of agents at any other location. We assume that the agents have perfect recall, and
hence, at any decision epoch τ�i , agent i bases the decision to stay or move on the entire history (namely, the resource levels and
the number of agents at each location the agent has visited) the agent has observed until that time.

Given this informational assumption, each agent i is risk neutral and wants to maximize the total expected payoff accrued
over the agent’s lifetime. Formally, each agent i seeks to maximize

E
∑∞
��1

F(Z�
i ,N

�
i )I{τ�i ≤ τi}

[ ]
,

where the expectation is over the randomness in the resource levels, the arrival and departure process of the agents, and their
(and their competitors’) strategies. Because the departure of an agent is independent of the rest of the system, it is straight-
forward to show that the agent’s expected payoff can be equivalently written as

E
∑∞
��1

γ�−1F(Z�
i ,N

�
i )

[ ]
.

Thus, each agent i’s decision problem is equivalent to the decision problem faced by a persistent agent (who never departs the
system) seeking to maximizer the agent’s total expected discounted payoff.

Appendix B. Existence and Uniqueness of Invariant Distribution of MC(ξ, κ)
In this appendix, we show that for any Markovian strategy ξ and arrival rate κ> 0, the Markov chain MC(ξ, κ) has a unique
steady-state distribution.

Lemma B.1. For any Markovian strategy ξ and arrival rate κ≥ 0, there exists a unique steady-state distribution for MC(ξ, κ)
satisfying (4).

Proof of Lemma B.1. Fix a Markovian strategy ξ and an arrival rate κ> 0. We prove the lemma by showing that the Markov
chainMC(ξ, κ) is irreducible and positive recurrent. The fact thatMC(ξ, κ) is irreducible follows straightforwardly from (1) and
the fact that the resource process is independent and ergodic. Thus, it only remains to show that the chain is positive recurrent.

Let S0 Δ�{(z, 0) : z ∈ Z}, and define Tz(S0) as the first return time of the chain to S0 given that it starts at (z, 0):
Tz(S0) Δ� inf t> 0 : (Zt,Nt) ∈ S0, (Zs,Ns) /∈S0 for some 0< s< t,{

given (Z0,N0) � (z, 0)}.
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In the following, we show that Tz(S0) has a finite expectation for each z ∈ Z. From this, using the ergodicity of the resource
process, it follows that the return time to a particular state (z0, 0) ∈ S0 also has a finite expectation, and hence the chain is ergodic.

To show that Tz(S0) has finite expectation, we use a coupling argument. Given a Markov chain (Zt,Nt) ∼ MC(ξ, κ) with
(Z0,N0) � (z, 0), we construct a coupled process N(1)

t ∼ M/M/∞((1 − γ)λ, κ) with N(1)
t � 0 as in the proof of Lemma I.2. Define

T̃z(0) to be the first return time to zero of the chainN(1)
t . From the construction of the coupling, it follows thatNt ≤N(1)

t for all t≥ 0,
and hence, Tz(S0)≤ T̃z(0). Thus, we have E[Tz(S0)]≤E[T̃z(0)]. The result then follows immediately from the fact that an
M/M/∞((1 − γ)λ, κ) queue is ergodic, and hence, E[T̃z(0)]<∞ for all z ∈ Z. □

Appendix C. Joint Continuity of the Invariant Distribution of MC(ξ, κ)
In the following, we show that the steady-state distribution π(ξ, κ) of the Markov chain MC(ξ, κ) is jointly (and uniformly)
continuous in its parameters. This continuity result plays an important role in subsequent results that constitute our proof of
existence of an MFE.

To prove the continuity ofπ(ξ, κ), we adopt an approach similar to Le Van and Stachurski (2007), in whichwe characterize the
invariant distribution of MC(ξ, κ) as a maximizer of a continuous function and apply Berge’s maximum theorem. Before we
present the formal argument, we specify the topologies (and themetric) we impose on the set ofMarkovian strategies and the set
of invariant probability distributions and specify the continuous function Λ that we consider. First, we endow the state space
S � Z × N0 with the discrete topology. Let#b(S) denote the set of bounded function h : S → R. (Note that because we impose the
discrete topology on S, any such h is also continuous.) We endow #b(S) with the sup-norm:

‖h1 − h2‖∞ Δ� sup
(z,n)∈S

h1(z, n) − h2(z, n)| |, for h1, h2 ∈ #b(S). (C.1)

Let Π ⊆ #b(S) denote the set of Markovian strategies with the topology induced from #b(S).
We let}(S) denote the set of finite signed measures on S, and we endow}(S)with the weak topology, which is equivalent to

the topology induced by the �1-norm because S is countable:

‖μ − ν‖1 �
∑

(z,n)∈S
|μ(z, n) − ν(z,n)|, for μ, ν ∈ }(S). (C.2)

Let Γ � {π(ξ, κ) : ξ ∈ Π, κ ∈ [βλ(1 − γ), βλ]} ⊆ }(S) denote the set of invariant distributions (with the induced topology) for all
Markovian strategies and arrival rates. Let Γ denote the closure of Γ.

For ξ ∈ Π, κ ∈ [βλ(1 − γ), βλ], and ν ∈ Γ, define Λ(ξ, κ, ν) as follows:

Λ(ξ, κ, ν) Δ� − ∑
(z,n)∈S

1
n + 1

(νQ)(z, n)| |, (C.3)

where Q � Qξ,κ denotes the transition kernel of MC(ξ, κ), and νQ is defined as

(νQ)(z, n) � ∑
(y,m)∈S

ν(y,m)Q((y,m) → (z, n)).

With the preliminaries in place, we are now ready to state the main lemma of this section.

Lemma C.1. The map (ξ, κ) �→π(ξ, κ) is jointly (and uniformly) continuous in (ξ, κ) for ξ ∈ Π and κ ∈ [βλ(1 − γ), βλ].

Proof of Lemma C.1. In Lemma C.2, we show that the set of distributions Γ is uniformly tight. Then, from Prohorov’s theorem
(Billingsley 2013), we obtain that Γ is compact. Observe that

argmax
ν∈Γ

Λ(ξ, κ, ν) � {π(ξ, κ)}. (C.4)

This follows from the fact that π(ξ, κ) is the unique probability distribution over S for which (4) holds.

In Lemma C.3, we show that Λ(ξ, κ, ν) is jointly (and uniformly) continuous in its parameters for ξ ∈ Π, ν ∈ Γ, and
κ ∈ [βλ(1 − γ), βλ]. The result then follows from a direct application of Berge’s maximum theorem (Berge 1963) to (C.4).

The following two auxiliary lemmas are used in the proof of Lemma C.1. □

Lemma C.2. The set Γ of invariant distributions is tight.

Proof of Lemma C.2. We prove this lemma using a coupling argument. For any ξ ∈ Π and κ ∈ [βλ(1 − γ), βλ], let (Zt,Nt) ∼
MC(ξ, κ) with (Z0,N0) � (z,n) for some (z, n) ∈ S. Let π denote the invariant distribution of MC(ξ, κ). Independently, let N̂t ∼
M/M/∞(λ(1 − γ), βλ)with N̂0 � n. Let π̂ denote the invariant distribution ofM/M/∞(λ(1 − γ), βλ); it is straightforward to show
that π̂ is Poisson with mean β/(1 − γ).
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Using Lemmas I.1 and I.2, we obtain thatNt is (first-order) stochastically dominated by N̂t for all t≥ 0. From this, we obtain (by
taking limits and using ergodicity) that for all k> 0, we have∑

z∈Z

∑
n> k

π(z, n)≤ ∑
n> k

π̂(n).

For any ε> 0, choose a kε > 0 such that
∑

n>kε π̂(n)< ε. (Such a kε exists given that π̂ is Poisson with finite mean.) This implies that∑
z∈Z

∑
n> kε

π(z, n)< ε, for all ε> 0.

Because kε is independent of the choice of (ξ, κ), we obtain that Γ is tight.
The following lemma proves the joint continuity of Λ. □

Lemma C.3. The function Λ as defined in (C.3) is jointly (and uniformly) continuous.

Proof of Lemma C.3. Consider ξi ∈ Π, κi ∈ [βλ(1 − γ), βλ], and νi ∈ Γ for i � 1, 2. We let Qi denote the transition kernel of
MC(ξi, κi). We have

|Λ(ξ1, κ1, ν1) −Λ(ξ2, κ2, ν2)|
≤ |Λ(ξ1, κ1, ν1) −Λ(ξ2, κ2, ν1)| + |Λ(ξ2, κ2, ν1) − Λ(ξ2, κ2, ν2)|. (C.5)

Now note that

|Λ(ξ1, κ1, ν1) − Λ(ξ2, κ2, ν1)|
≤ ∑

(z,n)∈S

1
n + 1

(ν1Q1)(z, n) − (ν1Q2)(z, n)| |

≤ ∑
(z,n)∈S

∑
(y,m)∈S

1
n + 1

ν1(y,m)Q1((y,m) → (z, n)) −Q2((y,m) → (z, n))∣∣ ∣∣
≤ ∑

(y,m)∈S
ν1(y,m) ∑

(z,n)∈S

1
n + 1

Q1((y,m) → (z, n)) −Q2((y,m) → (z, n))∣∣ ∣∣
≤ sup

(y,m)∈S

∑
(z,n)∈S

1
n + 1

Q1((y,m) → (z, n)) −Q2((y,m) → (z, n))∣∣ ∣∣. (C.6)

Now, using (1), we obtain that

Q1((y,m) → (z, n)) −Q2((y,m) → (z, n))
� I{z � y, n � m + 1}(κ1 − κ2) + I{z � y, n � m − 1}λγm(ξ1(y,m) − ξ2(y,m))

− I{z � y, n � m} κ1 − κ2 + λmγ(ξ1(y,m) − ξ2(y,m))( )
,

and hence ∑
(z,n)∈S

1
n + 1

Q1((y,m) → (z, n)) −Q2((y,m) → (z, n))∣∣ ∣∣
≤ 1

m + 2
+ 1
m + 1

( )
|κ1 − κ2| + λγ

(
1 + m

m + 1

)
|ξ1(y,m) − ξ2(y,m)|

≤ 2 |κ1 − κ2| + λγ|ξ1(y,m) − ξ2(y,m)|( )
.

Thus, from (C.6), we obtain

|Λ(ξ1, κ1, ν1) −Λ(ξ2, κ2, ν1)|≤ 2|κ1 − κ2| + 2λγ‖ξ1 − ξ2‖∞. (C.7)

Next, observe that

|Λ(ξ2, κ2, ν1) −Λ(ξ2, κ2, ν2)|
≤ ∑

(z,n)∈S

1
n + 1

|(ν1Q2)(z, n) − (ν2Q2)(z, n)|

≤ ∑
(z,n)∈S

1
n + 1

∑
(y,m)∈S

|Q2((y,m) → (z, n))||ν1(y,m) − ν2(y,m)|

≤ ∑
(y,m)∈S

|ν1(y,m) − ν2(y,m)| ∑
(z,n)∈S

1
n + 1

|Q2((y,m) → (z, n))|. (C.8)
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Now, again from (1) and after some straightforward algebra, we obtain that∑
(z,n)∈S

1
n + 1

Q2((y,m) → (z, n))∣∣ ∣∣
≤ 2

m + 1

∑
z��y

μy,z + κ2
1

m + 2
+ 1
m + 1

( )
+ λ(1 − γξ2(y,m))

(
1 + m

m + 1

)
≤ ∑

z ��y
μy,z + 2κ2 + 2λ

≤ max
y∈Z

∑
z ��y

μy,z + 2(β + 1)λ,

where we have used the fact that κ2 ≤ βλ in the last inequality. Thus, from (C.8), we obtain

|Λ(ξ2, κ2, ν1) −Λ(ξ2, κ2, ν2)|≤ max
y∈Z

∑
z��y

μy,z + 2(β + 1)λ
( )

‖ν1 − ν2‖1. (C.9)

Therefore, combining (C.5), (C.7), and (C.9), we obtain

|Λ(ξ1, κ1, ν1) −Λ(ξ2, κ2, ν2)|

≤ 2|κ1 − κ2| + 2λγ‖ξ1 − ξ2‖∞ + max
y∈Z

∑
z��y

μy,z + 2(β + 1)λ
( )

‖ν1 − ν2‖1.

Thus, Λ is Lipschitz and, hence, jointly and (uniformly) continuous in its parameters. □

Appendix D. Existence of κ Satisfying Equilibrium Conditions
In this appendix, we show for any Markovian strategy ξ that there exists a unique arrival rate κ ∈ [βλ(1 − γ), βλ] for which the
steady-state distribution π of the Markov chain MC(ξ, κ) satisfies (6).

Toward that goal, for any Markovian strategy ξ and arrival rate κ> 0, define

ϕ(ξ, κ) Δ�
∑

(z,n)∈S
nπξ,κ(z, n),

where πξ,κ is the unique steady-state distribution of MC(ξ, κ). We seek to show that there exists a κ ∈ [βλ(1 − γ), βλ] such that
ϕ(ξ, κ) � β. We prove this result using the intermediate value theorem. First, we show that ϕ(ξ, κ) is a strictly increasing function
of κ for any given ξ ∈ Π. Second, we show that ϕ(ξ, βλ(1 − β))≤ β and ϕ(ξ, βλ)≥ β, which imply that any κ such that ϕ(ξ, κ) � β
must lie in [βλ(1 − γ), βλ]. The result then follows once we show that ϕ(ξ, κ) is a continuous function of κ.

In the rest of this appendix, we assume that the strategy ξ is fixed and drop the explicit dependence on ξ from notation
wherever convenient. We now proceed with the first step.

D.1. Strict Monotonicity of ϕ(·)
Lemma D.1. Given any Markovian strategy ξ, ϕ(κ) is a strictly increasing function of κ on [βλ(1 − γ), βλ].

Proof of LemmaD.1. For any κ1, κ2 ∈ [βλ(1 − γ), βλ]with κ1 <κ2, consider two coupled chains
(
Z(i)
t ,N(i)

t
) ∼ MC(ξ, κi) for i � 1, 2

as in the proof of Lemma I.2, in which Z(1)
t � Z(2)

t and N(1)
t ≤N(2)

t for all t≥ 0.

For i � 1, 2, we have

1
t

∫ t

0
N(i)

s ds → ∑
z,n

nπi(z, n) � ϕ(κi)

almost surely as t → ∞, where we write πi for πκi . Because N(1)
t ≤N(2)

t for all t, we have ϕ(κ1)≤ϕ(κ2).
Next, suppose for the sake of contradiction that ϕ(κ1) � ϕ(κ2). Because Z(1)

t � Z(2)
t and N(1)

t ≤N(2)
t for all t≥ 0, we have

I{Z(1)
t � z,N(1)

t ≥ n}≤ I{Z(2)
t � z,N(2)

t ≥ n}, (D.1)

for all (z, n) ∈ S, t≥ 0.
For any (z, n) ∈ S, we have

1
t

∫ t

0
I{Z(i)

s � z,N(i)
s ≥ n}ds → ∑

n′ ≥ n
πi(z, n′) (D.2)
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almost surely as t → ∞ for i � 1, 2. By (D.1) and (D.2), we have∑
n′ ≥n

π1(z, n′)≤
∑
n′ ≥n

π2(z, n′),

for any (z, n), and

ϕ(κ1) �
∑
n≥ 0

n
∑
z∈Z

π1(z, n)
( )

� ∑
n≥ 0

∑
z∈Z,n′>n

π1(z, n′)≤
∑
n≥ 0

∑
z∈Z,n′>n

π2(z, n′) � ϕ(κ2).

Because, by our assumption ϕ(κ1) � ϕ(κ2), the inequality in the preceding equation is actually an equality. This implies∑
n′≥n

π1(z, n′) �
∑
n′≥n

π2(z, n′),

for all (z, n), which further implies that π1 and π2 are the same distribution.
For i � 1, 2, Equation (4) implies

πi(z, n) κi +
∑
y��z

μz,y + λn(1 − γξ(z, n))
( )

�πi(z, n − 1)κi +
∑
y ��z

μy,zπi(y, n) + πi(z,n + 1)λ(n + 1)(1 − γξ(z, n + 1)),

which leads to

κi(πi(z, n) − πi(z, n − 1))
� ∑

y��z
μy,zπi(y,n) + πi(z, n + 1)λ(n + 1)(1 − γξ(z, n + 1))

− πi(z, n)
∑
y��z

μz,y + λn(1 − γξ(z, n))
( )

. (D.3)

Because π1 � π2, the right-hand side of (D.3) is the same for i � 1, 2; hence, we have

κ1(π1(z, n) − π1(z, n − 1)) � κ2(π2(z, n) − π2(z, n − 1)).
But κ1 <κ2 and π1 � π2 imply that, for i � 1, 2, πi(z, n) � πi(z, n − 1) for all (z, n); hence, πi cannot be a probability distribution
over S, and this contradiction completes the proof. □

D.2. Bounds for ϕ(·)
In this section, we provide bounds on the function ϕ(κ) for any κ> 0. These bounds immediately imply that, for κ � βλ,ϕ(κ)≥ β,
and for κ � βλ(1 − γ), ϕ(κ)≤ β. Together with Lemma D.1, this implies that any κ for which ϕ(κ) � β must lie in the interval
[βλ(1 − γ), βλ].
Lemma D.2. For any Markovian strategy ξ and arriving rate κ≥ 0, ϕ(κ) satisfies

κ

λ
≤ϕ(κ)≤ κ

λ(1 − γ) .

Proof of Lemma D.2. Let (Zt,Nt) ∼ MC(ξ, κ), and (Z0,N0) � (z, n). Denote as M/M/∞(λ, κ) an (independent) M/M/∞ queue

with arrival rate κ and service rate λ, and letN(i)
t ∼ M/M/∞(λi, κ) for i � 1, 2 be two independent processes withN(1)

0 � N(2)
0 � n,

where λ1 � λ and λ2 � (1 − γ)λ.
Let πκ be the steady-state distribution ofMC(ξ, κ) and πi be the steady-state distribution ofM/M/∞(λi, κ) for i � 1, 2.We have

1
t

∫ t

0
Nsds →

∑
z,n

nπκ(z,n),
and

1
t

∫ t

0
N(i)

s ds → ∑
n

nπi(n), i � 1, 2

almost surely as t → ∞. From Lemma I.2, we have N(1)
t 7sd Nt7sd N

(2)
t for all t≥ 0; therefore, we have∑

n
nπ1(n)≤

∑
z,n

nπκ(z, n)≤∑
n

nπ2(n).

The result then follows from the fact that, for i � 1, 2, πi is a Poisson distribution with mean κ/λi. □
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D.3. Continuity of ϕ(·)
Observe that the existence of a κ ∈ [βλ(1 − γ), βλ] such that ϕ(κ) � βwould follow immediately once we prove the continuity of
ϕ(·) in κ for any fixed Markovian strategy ξ. In this section, we prove a stronger statement, namely that ϕ(ξ, κ) is jointly
continuous in (ξ, κ).
Lemma D.3. The map ϕ(ξ, κ) is jointly and uniformly continuous in (ξ, κ) for Markovian ξ and for κ ∈ [βλ(1 − γ), βλ].

Proof of Lemma D.3. GivenMarkovian strategies ξ1 and ξ2 and arriving rates κ1, κ2 ∈ [βλ(1 − γ), βλ], let πi be the steady-state
distribution of MC(ξi, κi) for i � 1, 2. We have, for any arbitrary k≥ 0,

ϕ(ξ1, κ1) − ϕ(ξ2, κ2)
∣∣ ∣∣

� ∑
z,n

n(π1(z, n) − π2(z, n))
∣∣∣∣∣

∣∣∣∣∣
≤ ∑

z∈Z

∑
n≤k

n(π1(z, n) − π2(z, n))
∣∣∣∣∣

∣∣∣∣∣ + ∑
z∈Z

∑
n> k

n(π1(z, n) − π2(z, n))
∣∣∣∣∣

∣∣∣∣∣
≤ ∑

z∈Z

∑
n≤k

n(π1(z, n) − π2(z, n))
∣∣∣∣∣

∣∣∣∣∣ +∑
z∈Z

∑
n>k

nπ1(z, n) +
∑

z∈Z,n>k
nπ2(z, n).

(D.4)

Now, bounding the first term, we obtain

∑
z∈Z

∑
n≤k

n(π1(z, n) − π2(z, n))
∣∣∣∣∣

∣∣∣∣∣
≤k∑

z∈Z

∑
n≤k

π1(z,n) − π2(z, n)| |≤ k‖π1 − π2‖1.
(D.5)

To bound the other terms, we use a coupling argument. Let (Z(i)
t ,N(i)

t ) ∼ MC(ξi, κi) with (Z(i)
0 ,N(i)

0 ) � (z, n) for i � 1, 2. Let
N̂t ∼ M/M/∞(λ(1 − γ), βλ), with N̂0 � n denoting the number of agents in an (independent)M/M/∞ queue at time with arrival
rate βλ and service rate λ(1 − γ). Let π̂ denote the steady-state distribution of N̂t. By Lemmas I.1 and I.2, we have N(i)

t 7sd N̂t for
all t≥ 0 and for each i � 1, 2. From this stochastic dominance, it is straightforward to obtain that∑

z∈Z,n>k
nπi(z, n)≤

∑
n>k

nπ̂(n), i � 1, 2. (D.6)

Thus, from (D.4) and (D.5), we have

|ϕ(ξ1, κ1) − ϕ(ξ2, κ2)|≤ k‖π1 − π2‖1 + 2
∑
n>k

nπ̂(n).

Now, for any ε> 0, choose k such that
∑

n> k nπ̂(n)< ε/4. (Note that this choice of k is independent of (ξi, κi) and depends only on
the steady state π̂ of M/M/∞(λ(1 − γ), βλ), which is Poisson with mean β/(1 − γ).) Second, from Lemma C.1, we obtain that for
any ε> 0, there exists a δ> 0 such that for all (ξ1, κ1) and (ξ2, κ2) such that ‖ξ1 − ξ2‖∞ < δ and |κ1 − κ2|< δ, we have
‖π1 − π2‖1 < ε/2k. Taken together, we obtain that for any ε> 0, there exists a δ> 0 such that for all (ξ1, κ1) and (ξ2, κ2) such that
‖ξ1 − ξ2‖< δ and |κ1 − κ2|< δ, we have |ϕ(ξ1, κ1) − ϕ(ξ2, κ2)|< ε. Thus, we obtain that ϕ(·) is jointly and uniformly continuous. □

D.4. Continuity
For any ξ ∈ Π, let κ(ξ) denote the unique value of κ for whichπ(ξ, κ) satisfies (6).We show that κ(ξ) is a continuous function of ξ.

Lemma D.4. The map ξ �→κ(ξ) is continuous.

Proof of Lemma D.4. Define W(ξ, κ) � −|β − ϕ(ξ, κ)|. Note that from Lemma D.1, we obtain

argmax
κ∈[βλ(1−γ),βλ]

W(ξ, κ) � {κ(ξ)}.

From Lemma D.3, we obtain that ϕ(ξ, κ) is jointly continuous in (ξ, κ), and hence, so is W(ξ, κ). The result then follows from
Berge’s maximum theorem (Berge 1963). □

Appendix E. Uniform Bounds on Value Functions
For a given ξ ∈ Π and Vsw > 0, we seek to study the decision problem DEC(ξ, κ(ξ),Vsw). Before we proceed, we need some
definitions. Let (Zt,Nt) ∼ MC(ξ, κ(ξ)), and let Eξ(·|z, n) denote the expectation operator with respect to {(Zt,Nt) : t≥ 0} con-
ditioned on (Z0,N0) � (z, n). Fix an agent, say agent 1, among all the agents at time 0, and let τ be the agent’s first decision epoch.
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Let T : Π × R+ × #b(S) → #b(S) denote the Bellman operator for the agent’s decision problem DEC(ξ, κ(ξ),Vsw), where, for
any ξ ∈ Π, Vsw > 0, and U ∈ #b(S), the function W � T(ξ,Vsw,U) is defined as follows:

W(z, n) � F(z, n) + γmax Eξ U(Zτ,Nτ)|z,n[ ],Vsw
{ }

, for all (z, n) ∈ S. (E.1)

The following lemma states that the map T(ξ,Vsw, ·) is a contraction. The proof follows from standard arguments and is omitted.

Lemma E.1. For any ξ ∈ Π and Vsw > 0, we have T(ξ,Vsw,U) ∈ #b(S) for all U ∈ #b(S). Furthermore, the map T(ξ,Vsw, ·) : #b(S) →
#b(S) is a contraction (with contraction parameter γ) for any ξ ∈ Π and Vsw > 0.

Let 9(ξ,Vsw) ∈ #b(S) be the unique fixed point of T(ξ,Vsw, ·). Define 9st(ξ,Vsw) ∈ #b(S) and 9sw(ξ,Vsw) ∈ R+ as follows:

9st(z, n; ξ,Vsw) � Eξ 9(Zτ,Nτ; ξ,Vsw)|z, n[ ]
9sw(ξ,Vsw) �

∑
(z,n)∈S

π(z, n)9st(z, n + 1; ξ,Vsw), (E.2)

where π � π(ξ, κ(ξ)). Here 9(z, n; ξ,Vsw) (and 9st(z, n; ξ,Vsw)) denotes the value taken by 9(ξ,Vsw) (respectively, 9st(ξ,Vsw)) at
(z, n) ∈ S.

We begin this section by providing bounds on 9sw, 9st, and 9. Define

V � 1
1 − γ

‖F‖∞,

V � exp − β

1 − γ

( ) ∑
(z,n)∈S

βn(1 − γ)n
(1 + β +Ψ)n+1(n + 1)!πres(z)F(z, n + 1)> 0,

where Ψ � 1
λmaxz∈Z

∑
y��z μzy ∈ (0,∞), and πres is the steady-state distribution of the resource process.

The following lemma, providing a uniform upper bound on the value functions, follows immediately from the definition.

Lemma E.2. For any ξ ∈ Π and Vsw > 0, the value functions satisfy |9sw(ξ,Vsw)|≤ ‖9st(ξ,Vsw)‖∞ ≤ ‖9(ξ,Vsw)‖∞ ≤V � ‖F‖∞/(1 − γ).

Proof of Lemma E.2. Observe that from (E.2), we have |9sw(ξ, sw)|≤ ‖9st(ξ, sw)‖∞ ≤ ‖9(ξ, sw)‖∞. Also, from the fact that
9(ξ,Vsw) is the fixed point of T(ξ,Vsw, ·), we obtain

‖9(ξ,Vsw)‖∞ ≤ ‖F‖∞ + γmax{‖9(ξ,Vsw)‖∞, |9sw(ξ, sw)|} � ‖F‖∞ + γ‖9(ξ,Vsw)‖∞.
Rearranging, we obtain that ‖9(ξ,Vsw)‖∞ ≤ ‖F‖∞/(1 − γ) � V.

The next lemma provides a uniform lower bound on the value functions. The proof makes extensive use of the strong
Markovian property for the chain MC(ξ, κ(ξ)). □

Lemma E.3. For any ξ ∈ Π and Vsw > 0, we have 9sw(ξ,Vsw)≥V.

Proof of Lemma E.3. Observe that

9(z, n;ξ,Vsw) � F(z, n) + γmax{9st(z, n; ξ,Vsw),Vsw}≥ F(z, n).
Recalling the definition of 9st(ξ,Vsw) and using the (strong) Markov property, we obtain

9st(z, n; ξ,Vsw) � λ

nλ + κ(ξ) +∑
y��z μzy

9(z, n; ξ,Vsw)

+ κ(ξ)
nλ + κ(ξ) +∑

y ��z μzy
9st(z, n + 1; ξ,Vsw)

+∑
w��z

μwz

nλ + κ(ξ) +∑
y��z μzy

9st(w, n; ξ,Vsw)

+ (n − 1)λ(1 − γξ(z, n))
nλ + κ(ξ) +∑

y��z μzy
9st(z, n − 1; ξ,Vsw)

+ (n − 1)λγξ(z, n)
nλ + κ(ξ) +∑

y ��z μzy
9st(z, n; ξ,Vsw)

≥ λ

nλ + κ(ξ) +∑
y��z μzy

9(z, n; ξ,Vsw)

≥ λ

λ(n + β) +∑
y��z μzy

F(z, n),
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where the last line follows from the fact that κ(ξ)≤ βλ. Using the definition of Ψ, we obtain

9st(z,n; ξ,Vsw)≥ 1
n + β +Ψ

F(z, n)≥ 1
n(1 + β +Ψ)F(z, n). (E.3)

Next, observe that π � π(ξ, κ(ξ)) satisfies the steady-state (4):∑
(y,m)∈S

π(y,m)Qξ((y,m) → (z, n)) � 0,

where Qξ denotes the transition kernel of the Markov chain MC(ξ, κ(ξ)). Using expression (1) for Qξ, we obtain

π(z, n)(κ(ξ) +∑
y��z

μzy + λn(1 − γξ(z, n)))

� π(z, n − 1)κ(ξ) +∑
w��z

π(w, n)μwz + π(z, n + 1)λ(n + 1)(1 − γξ(z, n + 1)).

This implies that

π(z, n)≥π(z, n − 1) κ(ξ)
κ(ξ) +∑

y��z μzy + λn(1 − γξ(z, n))
≥π(z, n − 1) βλ(1 − γ)

βλ(1 − γ) +∑
y��z μzy + λn

≥π(z, n − 1) β(1 − γ)
β(1 − γ) +Ψ + n

≥π(z, n − 1) β(1 − γ)
(1 + β +Ψ)n .

Thus, we obtain

π(z, n)≥π(z, 0) βn(1 − γ)n
(1 + β +Ψ)nn! .

Now, from Lemma I.2, we obtain that the process (Zt,Nt) ∼ MC(ξ, κ(ξ)) with (Z0,N0) � (z, n) is stochastically dominated by
(Zt,N

(1)
t ), whereN(1)

t is an (independent)M/M/∞(λ(1 − γ), βλ) process withN(1)
0 � n. Hence, we haveπ(z, 0)≥πres(z)P(N(1)∞ � 0),

where the steady-state N(1)∞ is given by a Poisson distribution with parameter β/(1 − γ), implying that P(N(1)∞ � 0) �
exp(−β/(1 − γ)). Thus, we obtain

π(z, n)≥πres(z) exp − β

1 − γ

( )
βn(1 − γ)n

(1 + β +Ψ)nn! . (E.4)

Finally, from (E.2), we have

9sw(ξ,Vsw) �
∑

(z,n)∈S
π(z, n)9st(z, n + 1; ξ,Vsw)

≥ ∑
(z,n)∈S

π(z, n) F(z, n + 1)
(1 + β +Ψ)(n + 1)

≥ exp − β

1 − γ

( ) ∑
(z,n)∈S

βn(1 − γ)n
(1 + β +Ψ)n+1(n + 1)!πres(z)F(z, n + 1)

� V ,

where we use (E.3) in the first inequality and (E.4) in the second. □

Appendix F. A Compact Set of Markovian Strategies
For ξ ∈ Π and Vsw ∈ [V ,V], denote the set of all optimal Markovian strategies for the decision problem DEC(ξ, κ(ξ),Vsw) by
-(ξ,Vsw) ⊆ Π. In particular, -(ξ,Vsw) is the set of all ζ ∈ Π such that

ζ(z, n) �
{
1 if 9st(z,n; ξ,Vsw)>Vsw;
0 if 9st(z,n; ξ,Vsw)<Vsw.

It is straightforward to show that the set -(ξ,Vsw) is nonempty and convex.
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In this appendix, we provide characterization of a compact set Π̂ ⊆ Π of strategies such that if ξ ∈ Π̂ and Vsw ∈ [V ,V], then
-(ξ,Vsw) ⊆ Π̂. This characterization is later used to define a correspondence over a compact set to which we apply the Kakutani
fixed-point theorem to show the existence of an MFE. (Note that the set Π is not compact under the sup-norm.)

We begin by defining the set Π̂. Recall that F(z, n) → 0 as n → ∞ for all z ∈ Z. Let K0 be defined as

K0 � inf m : F(z, n)< (1 − γ)2
2

V for all z ∈ Z and n≥m
{ }

,

and let K1 be defined as

K1 � inf n : exp − 1
8

							
n − 1

√( )
+ 2														

log(n − 1)√ + γ	
									
log(n−1)

√

(1 − γ)< (1 − γ)2V

4‖F‖∞

{ }

Let Kmax � max{4K2
0 + 1,K1}. Define the set Π̂ ∈ Π as follows:

Π̂ � {ξ ∈ Π : ξ(z,n) � 0 for all z ∈ Z and n≥Kmax}.
In other words, under any strategy ξ ∈ Π̂, each agent chooses to switch locations if the number of agents at the agent’s location
is greater than Kmax irrespective of the resource level. It is straightforward to show that Π̂ is compact by noting that it is
isomorphic to [0, 1]Kmax under the Euclidean topology.

The following lemma states that if ξ ∈ Π̂ and Vsw ≥V , then the optimal action for an agent at the state (z,n) is to switch if
n≥Kmax.

Lemma F.1. For ξ ∈ Π̂ and Vsw ≥V , we have 9st(z, n; ξ,Vsw)<Vsw for all z ∈ Z and for all n≥Kmax.

Proof of Lemma F.1. Consider an agent i in location k facing the decision problem DEC(ξ, κ(ξ),Vsw) for a given ξ ∈ Π̂ and
Vsw ≥V. Let τ� > 0 denote the time of the �th-decision epoch of the agent for � � 1, 2, · · ·. Let (Zt,Nt) denote the state of the location
at time t, and for brevity, we let (Z�,N�) denote (Zτ� ,Nτ� ) for each � � 1, 2, · · ·.

Suppose that (Z0,N0) � (z,n) for z ∈ Z and n≥Kmax. Fix a strategyϕ ∈ Π for the agent, and let τϕ denote the first time at which
the agent chooses to switch under ϕ. Let Vst

ϕ(z, n) denote agent i’s continuation payoffs under the strategy ϕ subsequent to the
agent making the decision to stay and not leave the system given the state of the location (z, n). We have the following expression
for Vϕ

st (z, n):

Vϕ
st (z, n) � E

∑∞
��1

γ�−1F(Z�,N�)I{τ� ≤ τϕ} + γ�I{τ� � τϕ}Vsw

[ ]
. (F.1)

The first term inside the expectation denotes the total expected payoff until the agent chooses to switch; the second term denotes
the payoff on switching. Here the expectation E is conditioned on (Z0,N0) � (z, n) and on the fact that agent i follows strategy ϕ
and all other agents follow strategy ξ. (We drop this explicit dependence from the notation for E for brevity.) From this, we
obtain

Vϕ
st (z, n) �

∑∞
��1

γ�−1E F(Z�,N�)I{τ� ≤ τϕ}[ ] +∑∞
��1

γ�VswP(τ� � τϕ)

≤ ∑∞
��1

γ�−1E F(Z�,N�)I{τ� ≤ τϕ}[ ] + γVsw.

(F.2)

Let n̂ � 	 							
n − 1

√
/2 + 1
. For each � � 1, 2, · · ·, we have

E F(Z�,N�)I{τ� ≤ τϕ}[ ] � E F(Z�,N�)I{τ� ≤ τϕ}[ ∣∣N� ≥ n̂
]
P(N� ≥ n̂)

+ E F(Z�,N�)I{τ� ≤ τϕ}[ ∣∣N� < n̂
]
P(N� < n̂)

≤ 1
2
(1 − γ)2V + ‖F‖∞P(N� < n̂).

(F.3)

Here, in the inequality, the first term follows from the fact that because n>Kmax, we have n̂>K0, and hence, F(Z�,N�)<
(1 − γ)2V/2, if N� ≥ n̂. In the second term, we have used the fact that F(Z�,N�)≤ ‖F‖∞.

To bound P(N� < n̂), consider an auxiliary systemwith n agents at t � 0, where each agent other than agent i stays in the system
for a time that is independently and identically distributed as an exponential distributionwith rateλ. (We assume that agent i never
leaves the auxiliary system.) Furthermore, there are no arrivals to this auxiliary system. Let Ñt denote the number of agents in this
auxiliary system. It is straightforward to show that Ñt is first-order stochastically dominated by Nt via a coupling argument, and
we omit the details here. This implies that P(N� ≤ n̂)≤P(Ñ� ≤ n̂), where we write Ñ� to denote Ñτ� . Thus, we obtain

E F(Z�,N�)I{τ� ≤ τϕ}[ ]≤ 1
2
(1 − γ)2V + ‖F‖∞P(Ñ� < n̂).
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Let �̂ � 	 														
log(n − 1)√ 
 and t̂ � log(n − 1)/2λ. For each �≤ �̂ , we have Ñ� ≥ Ñ�̂, and hence,

P(Ñ� < n̂)≤P(Ñ�̂ < n̂)
� P(Ñ�̂ < n̂|τ�̂ < t̂)P(τ�̂ < t̂) + P(Ñ�̂ < n̂|τ�̂ ≥ t̂)P(τ�̂ ≥ t̂)
≤P(Ñ�̂ < n̂|τ�̂ < t̂)P(τ�̂ < t̂) + P(τ�̂ ≥ t̂)
≤P(Ñ t̂ < n̂|τ�̂ < t̂)P(τ�̂ < t̂) + P(τ�̂ ≥ t̂)
≤P(Ñ t̂ < n̂) + P(τ�̂ ≥ t̂),

(F.4)

where the third inequality follows from the fact that on τ�̂ < t̂ we have Ñ t̂ ≤ Ñ�̂ , and the fourth inequality follows from the
independence of τ�̂ and Ñt.

Now observe that because each agent j �� i stays in the auxiliary system for a time distributed independently and expo-
nentially with rate λ, the probability that the agent j �� i is still in the auxiliary system by time t̂ is equal to exp(−λ̂t) � 1/

							
n − 1

√
.

Thus, the number of agents Ñ t̂ in the auxiliary system at time t̂ is distributed as 1 + Bin(n − 1, 1/
							
n − 1

√ ), where Bin(·, ·) denotes
the binomial distribution. (Recall that, in the auxiliary system, agent i never leaves.) Now note that E[Bin(n − 1, 1/

							
n − 1

√ )] �							
n − 1

√
> n̂ − 1. From this, we obtain

P(Ñ t̂ < n̂) � P Bin n − 1,
1							
n − 1

√
( )

< n̂ − 1
( )

≤P Bin n − 1,
1							
n − 1

√
( )

<
1
2

							
n − 1

√( )
≤ exp − 1

8

							
n − 1

√( )
,

(F.5)

where we have used the Chernoff bound (Mitzenmacher and Upfal 2005) for the lower tail of the binomial distribution in
the last inequality.

Next, note that τ� ∼ Gamma(�, λ) because τ� is the sum of � independently and exponentially distributed time intervals.
Hence, from Markov’s inequality, we obtain

P
(
τ�̂ > t̂

)≤ E[τ�̂]
t̂

� �̂

λ̂t
≤ 2														

log(n − 1)√ . (F.6)

Thus, combining (F.3)–(F.6), we obtain, for all �≤ �̂ ,

E F(Z�,N�)I{τ� ≤ τϕ}[ ]≤ 1
2
(1 − γ)2V + ‖F‖∞ exp(− 1

8

							
n − 1

√ ) + 2														
log(n − 1)√( )

.

Thus, using (F.2), we have

Vst
ϕ(z, n) �∑̂�

��1
γ�−1E F(Z�,N�)I{τ� ≤ τϕ}[ ] + ∑∞

���̂+1
γ�−1E F(Z�,N�)I{τ� ≤ τϕ}[ ]

+ γVsw

≤ 1
1 − γ

1
2
(1 − γ)2V + ‖F‖∞ exp(− 1

8

							
n − 1

√ ) + 2														
log(n − 1)√( )( )

+ γ�̂‖F‖∞ + γVsw,

where, in the inequality, we use the fact that F(Z�,N�)≤ ‖F‖∞ for all �> �̂ . Thus, we obtain

Vϕ
st (z, n)≤

1
1 − γ

1
2
(1 − γ)2V + ‖F‖∞ exp(− 1

8

							
n − 1

√ ) + 2														
log(n − 1)√ + γ�̂(1 − γ)

( )( )
+ γVsw.

Now note that because n≥Kmax ≥K1, we have

‖F‖∞ exp(− 1
8

							
n − 1

√ ) + 2														
log(n − 1)√ + γ�̂(1 − γ)

( )
<
(1 − γ)2V

4
.

Thus, we obtain

Vst
ϕ(z, n)≤ 1

1 − γ

(1 − γ)2V
2

+ (1 − γ)2V
4

( )
+ γVsw � 3(1 − γ)

4
V + γVsw.
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Because this inequality holds for all strategies ϕ ∈ Π, and because Vsw ≥V , we obtain 9st(z, n; ξ,Vsw)<Vsw for all z ∈ Z and all
n≥Kmax.

Let Υ � Π̂ × [V ,V]. The preceding lemma implies that for any ζ ∈ -(ξ,Vsw)with (ξ,Vsw) ∈ Υ, it must be the case that ζ(z, n) � 0
for all z ∈ Z and all n≥Kmax. From the definition of Π̂, this implies that-(ξ,Vsw) ⊆ Π̂ for all (ξ,Vsw) ∈ Υ. Thus,we can view themap
(ξ,Vsw) → -(ξ,Vsw) as defining a correspondence - : Υ6 Π̂. □

Appendix G. Upper Hemicontinuity of 5
For (ξ,Vsw) ∈ Υ, define the map 5 as 5(ξ,Vsw) � -(ξ,Vsw) × {9sw(ξ,Vsw)}. Note that from Lemmas E.2–F.1, we obtain that
5(ξ,Vsw) ⊆ Υ for any (ξ,Vsw) ∈ Υ. This implies that we can view themap5 as a correspondence5 : Υ6Υ. In this appendix, we
seek to show that this correspondence is upper hemicontinuous. This result is directly used in the proof of Theorem 1.

To prove this, we first show that the value functions 9(ξ,Vsw) and 9sw(ξ,Vsw) are jointly continuous in (ξ,Vsw) ∈ Υ. In the
following, we use the following notation: for U ∈ #b(S), let ‖U‖∗ Δ�maxz∈Z,n<Kmax

|U(z, n)|. Note that ‖U‖∗ ≤ ‖U‖∞.
Lemma G.1. The map (ξ,Vsw) → 9(ξ,Vsw) is (jointly) continuous in (ξ,Vsw) ∈ Υ.

Proof of Lemma G.1. For (ξi,Vsw
i ) ∈ Υ for i � 1, 2, let Wi(z, n) � 9(z, n; ξi,Vsw

i ). Using the definition of T and Lemma F.1, we
obtain Wi(z, n) � F(z, n) + γVsw

i for all z ∈ Z and n≥Kmax. This implies that

|W1(z, n) −W2(z, n)|≤γ|Vsw
1 − Vsw

2 |, for z ∈ Z and n≥Kmax.

This implies that ‖W1 −W2‖∞ ≤ max{‖W1 −W2‖∗, γ|Vsw
1 − Vsw

2 |}.
Next, we have

‖W1 −W2‖∗ � ‖T(ξ1,Vsw
1 ,W1) − T(ξ2,Vsw

2 ,W2)‖∗
≤ ‖T(ξ1,Vsw

1 ,W1) − T(ξ2,Vsw
2 ,W1)‖∗

+ ‖T(ξ2,Vsw
2 ,W1) − T(ξ2,Vsw

2 ,W2)‖∗
≤ ‖T(ξ1,Vsw

1 ,W1) − T(ξ2,Vsw
2 ,W1)‖∗

+ ‖T(ξ2,Vsw
2 ,W1) − T(ξ2,Vsw

2 ,W2)‖∞
≤ ‖T(ξ1,Vsw

1 ,W1) − T(ξ2,Vsw
2 ,W1)‖∗ + γ‖W1 −W2‖∞,

where we have used Lemma E.1 in the last inequality. Using the fact that ‖W1 −W2‖∗ ≤ ‖W1 −W2‖∞ ≤ max{‖W1 −W2‖∗, γ|Vsw
1 −

Vsw
2 |}≤ ‖W1 −W2‖∗ + γ|Vsw

1 − Vsw
2 | and after some straightforward algebra, we obtain

‖W1 −W2‖∞ ≤ 1
1 − γ

‖T(ξ1,Vsw
1 ,W1) − T(ξ2,Vsw

2 ,W1)‖∗ + γ|Vsw
1 − Vsw

2 |( )
.

From Lemma G.2, we obtain that the first term in the parentheses can be made arbitrarily small by setting ‖ξ1 − ξ2‖∞ and
|Vsw

1 − Vsw
2 | correspondingly small enough. Thus, we conclude that 9(ξ,Vsw) is jointly continuous in (ξ,Vsw) ∈ Υ.

The following auxiliary lemma is used in the proof of Lemma G.1. □

Lemma G.2. Let (ξm,Vsw
m ) ∈ Υ with (ξm,Vsw

m ) → (ξ,Vsw) ∈ Υ as m → ∞. For any U ∈ #b(S), we have ‖T(ξm,Vsw
m ,U) −

T(ξ,Vsw,U)‖∗ → 0 as m → ∞.

Proof of Lemma G.2. Let (ξm,Vsw
m ) be as in the statement of the lemma, and let Wm � T(ξm,Vsw

m ,U) and W � T(ξ,Vsw,U). By
definition of T, we have

|Wm(z, n) −W(z, n)| � γ |max{Em[U(Zτ,Nτ) | z, n],Vsw
m}

−max{Eξ[U(Zτ,Nτ) | z, n],Vsw}|
≤γmax |Em[U(Zτ,Nτ) | z, n]{

− Eξ[U(Zτ,Nτ) | z, n]| , |Vsw
m − Vsw|},

where we let Em � Eξm . Thus, it suffices to show that the first term inside the maximization converges to zero as m → ∞ for all
z ∈ Z and n<Kmax. Observe that because U ∈ #b(S) and τ is exponentially distributed with parameter λ, we have

Eξ U(Zτ,Nτ) | z, n[ ] �
∫ ∞

0
λ exp(−λt)Eξ[U(Zt,Nt) | z, n, τ � t]dt

�
∫ T

0
λ exp(−λt)Eξ[U(Zt,Nt) | z, n, τ � t]dt

+
∫ ∞

T
λ exp(−λt)Eξ[U(Zt,Nt) | z,n, τ � t]dt
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with similar expressions for ξm in place of ξ. For a large enough value of T> 0, the second term in the last equation can be made
arbitrarily small (uniformly for ξ and all ξm). Thus, again, it suffices to show that the first term in the last equation is continuous
in (ξ,Vsw) for all z ∈ Z and n<Kmax and for large enough T.

Now, using the definition (1) of the transition-rate matrix Qξ of the chain MC(ξ, κ(ξ)) (and similarly Qm � Qξm of the chain
MC(ξm, κ(ξm))), we obtain that Qm((u, k) → (v, �)) −→Q((u, k) → (v, �)) as m → ∞ for all (u, k), (v, �) ∈ S. Then, from Xia (1994,
example 1.1) or Ethier and Kurtz (1986, problem 8), we obtain that the measure Pm(· | z, n, τ � t) converges weakly to Pξ(· |
z, n, τ � t). From this, we conclude that

∫T
0 λ exp(−λt)Em[U(Zt,Nt) | z, n, τ � t]dt converges to ∫T

0 λ exp(−λt)Eξ[U(Zt,Nt) | z, n, τ �
t]dt as m → ∞. This completes the proof. □

The continuity of 9sw(ξ,Vsw) is then obtained as a corollary of Lemma G.1.

Lemma G.3. The value function 9sw(ξ,Vsw) is jointly continuous in (ξ,Vsw) ∈ Υ.

Proof of Lemma G.3. Recall the definition (23) of 9sw(ξ,Vsw):
9sw(ξ,Vsw) �

∑
(z,n)∈S

π(z, n)9sw(z, n + 1; ξ,Vsw),

where π � π(ξ, κ(ξ)) is the invariant distribution of MC(ξ, κ(ξ)). From Lemma E.2, we have ‖9st(ξ,Vsw)‖∞ ≤V. Also, note that
Lemmas C.1 and D.4 imply that the invariant distribution π(ξ, κ(ξ)) is continuous. Moreover, from Lemma C.2, we obtain that
the set of invariant distributions Γ is tight. These results together imply that it suffices to show that 9st(z, n; ξ,Vsw) is uniformly
continuous in (ξ,Vsw) ∈ Υ for all z ∈ Z and all n<M for some large enough M.

Let (ξm,Vsw
m ) ∈ Υ with (ξm,Vsw

m ) → (ξ,Vsw) ∈ Υ as m → ∞. We have

|9st(z, n; ξm,Vsw
m ) −9st(z, n; ξ,Vsw)|

≤ |Eξm [9(Zτ,Nτ; ξ
m,Vsw

m ) | z, n] − Eξ[9(Zτ,Nτ; ξ,Vsw) | z, n]|
≤ |Eξm [9(Zτ,Nτ; ξ

m,Vsw
m ) | z, n] − Eξm [9(Zτ,Nτ; ξ,Vsw) | z, n]|

+ |Eξm [9(Zτ,Nτ; ξ,Vsw) | z, n] − Eξ[9(Zτ,Nτ; ξ,Vsw) | z,n]|
≤ |9(ξm,Vsw

m ) −9(ξ,Vsw)‖∞ + |Eξm [9(Zτ,Nτ; ξ,Vsw) | z, n]
− Eξ[9(Zτ,Nτ; ξ,Vsw) | z, n]| .

From Lemma G.1, we obtain that asm → ∞, the first term converges to zero. Moreover, from the same argument as in the proof
of LemmaG.1, we obtain that Eξm [9(Zτ,Nτ; ξ,Vsw) | z, n] → Eξ[9(Zτ,Nτ; ξ,Vsw) | z, n] asm → ∞ for each (z,n) ∈ S. From this, we
conclude that 9st(z, n; ξ,Vsw) is uniformly continuous in (ξ,Vsw) ∈ Υ for all z ∈ Z and all n<M for large enough M. □

We are now ready to show that the correspondence 5 is upper hemicontinuous.

Lemma G.4. The correspondence 5 : Υ6Υ is upper hemicontinuous.

Proof of Lemma G.4. By definition, 5(ξ,Vsw) � -(ξ,Vsw) × {9sw(ξ,Vsw)} for (ξ,Vsw) ∈ Υ. From Lemma G.3, we obtain that
9sw(ξ,Vsw) is jointly continuous in (ξ,Vsw) ∈ Υ. Thus, it suffices to show that the correspondence - : Υ6 Π̂ is upper
hemicontinuous.

Consider a sequence (ξn,Vsw
n , ζn) → (ξ,Vsw, ζ) as n → ∞ such that ζn ∈ -(ξn,Vsw

n ) for each n≥ 0. By continuity of 9st(·), we
obtain that if 9st(z, n, ξ,Vsw)>Vsw for some (z, n) ∈ S, then, for all large enough m, we must have 9st(z, n, ξm,Vsw

m )>Vsw
m and,

hence, ζm(z, n) � 1. Similarly, if 9st(z, n, ξ,Vsw)<Vsw, then ζm(z, n) � 0 for all large enough m. Because ζm → ζ, this implies that
ζ(z, n) � 1 if 9st(z, n, ξ,Vsw)>Vsw and ζ(z,n) � 0 if 9st(z, n, ξ,Vsw)<Vsw. Thus, we obtain that ζ(z,m) ∈ -(ξ,Vsw). □

Appendix H. Existence of an Optimal Threshold Strategy
In this appendix, we provide the proof of Theorem 2. We prove this result in two steps. First, we prove Lemma 1, which states
that the value function Vst : S → R is nonincreasing in the number of agents n at the location for any fixed resource level z ∈ Z.
Second, we show in Lemma F.1 that limn→∞ Vst(z, n)≤γVsw for all z ∈ Z. Therefore, there always exists a threshold strategy in the
set of best responses OPT(ξ, κ,Vsw).
Proof of Lemma 1. We define a partial order 7p on the state space S of MC(ξ, κ) as follows: for (z1, n1), (z2, n2) ∈ S,
(z1, n1)7p (z2, n2) if and only if z1 � z2 and n1 ≤ n2. For any function f : S → R, we say that f is decreasingwith respect to7p if, for
all (z1, n1), (z2, n2) ∈ S such that (z1, n1)7p (z2, n2), we have f (z1, n1)≥ f (z2, n2).

Thus, our goal is to show that the value function Vst of DEC(ξ, κ,Vsw) is decreasing with respect to 7p. We note that the
property “decreasing with respect to7p” is a closed convex cone property for functions on S, as defined in Smith andMcCardle
(2002). Thus, using their proposition 5, we can conclude that Vst has this property if the following two conditions hold:
(1) The resource-sharing function F is decreasing with respect to 7p.
(2) Let (Zt,Nt) ∼ MC(ξ, κ). For any (z, n) ∈ S, let ν(z,n) be the probability distribution of (Zτ,Nτ) ∼ ν(z,n) conditioning on

(Z0,N0) � (z, n), where τ is distributed independently as an exponential with rate λ, denoting the first decision epoch of a fixed
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agent. Then, for any f : S → R that is decreasing with respect to 7p, it must hold that E[ f (Z,N) | (Z,N) ∼ ν(z1 ,n1)]≥
E[ f (Z,N) | (Z,N) ∼ ν(z2 ,n2)] for all (z1, n1)7p (z2, n2).

Because F(z, n) is decreasing in n for each z ∈ Z, we immediately obtain the first condition. We now show that the second
condition also holds using a coupling argument.

Suppose that (z1, n1)7p (z2, n2). By using an argument that is the same as that in the proof of Lemma I.2, we obtain that there
exists a coupling of the two processes (Z(i)

t ,N(i)
t ) ∼ MC(ξ, κ) with (Z(i)

0 ,N(i)
0 ) � (zi, ni) for i � 1, 2 such that for all t≥ 0,

(Z(1)
t ,N(1)

t )7p (Z(2)
t ,N(2)

t ). Thus, for any f that is decreasing with respect to7p, we have f (Z(1)
t ,N(1)

t ) ≥ f (Z(2)
t ,N(2)

t ) for all t≥ 0, and
therefore, E[ f (Z(1)

τ ,N(1)
τ )]≥E[ f (Z(2)

τ ,N(2)
τ )], where τ is distributed independently as an exponential with rate λ. Because

(Z(i)
τ ,N(i)

τ ) ∼ ν(zi ,ni) for i� 1,2, we obtain the result. □

Appendix I. Coupling Results
In this appendix, we obtain structural properties of theMarkov chainMC(ξ, κ) by coupling the chainwith anM/M/∞ queue. Let
M/M/∞(λ, κ) denote an (independent) M/M/∞ queue with arrival rate κ and service rate λ. We begin with the following
simple result that states that a queue with a higher arrival rate and/or lower service rate is more likely to havemore agents in the
queue. The proof is straightforward and omitted.

Lemma I.1. Let N(i)
t for i � 1, 2 denote the number of agents at time t in an (independent) M/M/∞ queue with arrival rate κi and service

rate λi. Suppose that N
(1)
0 � N(2)

0 and that one of the following two conditions holds: (1) λ1 � λ2 and κ1 ≤κ2 or (2) λ1 ≥λ2 and κ1 � κ2.

Then, for all t≥ 0, N(1)
t is stochastically dominated by N(2)

t ; that is, for all n ∈ N0, we have P(N(1)
t ≥ n)≤P(N(2)

t ≥ n).
In the proof of Theorem 1, we frequently compare theMC(ξ, κ) process for two (or more) different values of (ξ, κ) to show the

monotonicity of various quantities. Our next result justifies these stochastic comparisons. Before we state the lemma, we make
the following definition of stochastic dominance. Let

(
Z(i)
t ,N(i)

t
) ∼ MC(ξi, κi) with

(
Z(i)
0 ,N(i)

0
) � (zi, ni) for i � 1, 2. We say the

process
(
Z(1)
t ,N(1)

t
)
is stochastically dominated by the process

(
Z(2)
t ,N(2)

t
)
if

P(Z(1)
t � z,N(1)

t ≥ n)≤P(Z(2)
t � z,N(2)

t ≥ n), for all (z, n) ∈ S.

In this case, we denote as
(
Z(1)
t ,N(1)

t
)
7sd

(
Z(2)
t ,N(2)

t
)
. Note that this also implies thatN(1)

t is stochastically dominated byN(2)
t under

the usual sense of stochastic dominance.

Lemma I.2. Let ξ ∈ Π and κ> 0. Let (Zt,Nt) ∼ MC(ξ, κ).
(1) Let κ0 ≥κ, and let ξ0 ∈ Π be such that ξ0(z, n)≥ ξ(z, n) for all (z, n) ∈ S. Then we have (Zt,Nt)7sd

(
Z(0)
t ,N(0)

t
)
for all t≥ 0, where(

Z(0)
t ,N(0)

t
) ∼ MC(ξ0, κ0) with Z(0)

0 � Z0 and N(0)
0 ≥N0.

(2) Let Xi
t ∼ M/M/∞(λi, κ) for i � 1, 2 be two independent processes with X1

0 � X2
0 � N0, where λ1 � λ and λ2 � (1 − γ)λ. Then we

have, for all t≥ 0, (Zt,X1
t )7sd (Zt,Nt)7sd (Zt,X2

t ).

Proof of Lemma I.2. First note that the second statement in the lemma is implied by the first. In particular, let ξ1(z,n) � 0 and
ξ2(z, n) � 1 for all (z, n) ∈ S. Then, using the first statement in the lemma, we obtain

(
Z(1)
t ,N(1)

t
)
7sd (Zt,Nt)7sd

(
Z(2)
t ,N(2)

t
)
, where(

Z(i)
t ,N(i)

t
) ∼ MC(ξi, κ)with

(
Z(i)
0 ,N(i)

0
) � (Z0,N0). The second statement then follows directly by the fact that under ξi, the process(

Z(i)
t ,N(i)

t
)
has the same distribution as (Zt,Xi

t) for i � 1, 2.

To prove the first statement in the lemma, we use a coupling argument. We construct two chains as follows. Let t0 � 0,
(Z0,N0) � (z0, n0), and (Z(0)

0 ,N(0)
0 ) � (u0, v0) with u0 � z0 and v0 ≥ n0. For k � 1, 2 . . . , define the following recursively:

(1) Let τk ∼ Exp(Δk), where Δk
Δ�
∑

y��uk−1 μuk−1 ,y + κ0 + λvk−1. Let tk � tk−1 + τk.
(2) Let

(
Z(0)
t ,N(0)

t
) � (uk−1, vk−1) and (Zt,Nt) � (zk−1, nk−1) for t ∈ [tk−1, tk).

(3) For t � tk, let
(
Z(0)
t ,N(0)

t
) � (uk, vk), where

(uk, vk) �

( y, vk−1)
with probability μuk−1 ,y/Δk, for each y ∈ Z with y �� uk−1;

(uk−1, vk−1 + 1)
with probability κ0/Δk;

(uk−1, vk−1 − 1)
with probability λvk−1(1 − γξ0(uk−1, vk−1))/Δk;

(uk−1, vk−1)
with probability λvk−1γξ0(uk−1, vk−1)/Δk.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4) Define ζk

Δ� nk−1(1 − γξ(zk−1, nk−1))/(vk−1(1 − γξ0(uk−1, vk−1))) and ηk
Δ�(1 − γξ0(uk−1, vk−1)/(γξ0(uk−1, vk−1)))max(ζk − 1, 0).

It is straightforward to verify that ηk ∈ [0, 1].
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(5) Let (Zt,Nt) � (zk, nk) for t � tk, where

(zk, nk) �

(uk,nk−1) if uk �� uk−1;
(zk−1, nk−1 + 1)

with probability κ
κ0
;

(zk−1, nk−1)
with probability 1 − κ

κ0
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ if (uk, vk) � (uk−1, vk−1 + 1);

(zk−1, nk−1 − 1)
with probability
min(ζk, 1);

(zk−1, nk−1)
with probability
max(1 − ζk, 0),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
if (uk, vk) � (uk−1, vk−1 − 1);

(zk−1, nk−1 − 1)
with probability ηk;

(zk−1, nk−1)
with probability 1 − ηk,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ if (uk, vk) � (uk−1, vk−1).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
It is straightforward to verify that under this construction, we have

(
Z(0)
t ,N(0)

t
) ∼ MC(ξ0, κ0) and (Zt,Nt) ∼ MC(ξ, κ) with Z(0)

0 �
Z0 and N0 ≤N(0)

0 . Furthermore, by construction, we have zk � uk for all k and, hence, Z(0)
t � Zt for all t≥ 0.

To show that Nt ≤N(0)
0 for all t≥ 0, we perform induction on k in this construction. Note that n0 ≤ v0. Suppose that for some k

we have nk−1 ≤ vk−1. Then, from the definition, we obtain that nk ≤ vk for all the cases except possiblywhen (uk, vk) � (uk−1, vk−1 − 1)
and (zk, nk) � (zk−1, nk−1). In this case, if nk−1 < vk−1, then againwehavenk ≤ vk. By contrast, if nk−1 � vk−1, then togetherwith the fact
that zk−1 � uk−1, we obtain ξ(zk−1, nk−1)≤ ξ0(uk−1, vk−1), implying that ζk ≥ 1. However, note that if ζk ≥ 1, then the event in which
(uk, vk) � (uk−1, vk−1 − 1) and (zk, nk) � (zk−1, nk−1) occurs with zero probability. Thus, we obtain that in all cases, nk ≤ vk. This
completes the induction step and, hence, the proof. □

Endnotes
1Proving this statement rigorously is an interesting direction for future work.
2We conjecture that the equilibrium is unique when the resource-sharing function is decreasing and the resource level is binary, the setting we
study for comparative statics in Section 5.2. An extensive numerical investigation supports this conjecture, but we do not have a formal proof.
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