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Abstract. With the growth of the PDB and simultaneous slowing of the dis-
covery of new protein folds, we may be able to answer the question of how
discrete protein fold space is. Studies by Skolnick et al. (PNAS, 106, 15690,
2009) have concluded that it is in fact continuous. In the present work we extend
our initial observation (PNAS, 106(51) E137, 2009) that this conclusion
depends upon the resolution with which structures are considered, making the
determination of what resolution is most useful of importance. We utilize graph
theoretical approaches to investigate the connectedness of the protein structure
universe, showing that the modularity of protein domain architecture is of
fundamental importance for future improvements in structure matching,
impacting our understanding of protein domain evolution and modification. We
show that state-of-the-art structure superimposition algorithms are unable to
distinguish between conformational and topological variation. This work is not
only important for our understanding of the discreteness of protein fold space,
but informs the more critical question of what precisely should be spatially
aligned in structure superimposition. The metric-dependence is also investigated
leading to the conclusion that fold usage in homology reduced datasets is very
similar to usage across all of PDB and should not be ignored in large scale
studies of protein structure similarity.
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1 Introduction

The three dimensional structures of proteins are often grouped into hierarchical clas-
sifications in order to facilitate our understanding of their relationships with each other.
Using this concept, one can envision a “fold space” for protein structures where a fold
is defined as a specific spacial arrangement of secondary structures. These folds of
single domain proteins have been classified by a number of structural ontologies
including CATH [1] and SCOP [2] that group most known protein structures based
upon combinations of sequence homology, structural topology, and function. Pfam [3]
is another well used resource, but focuses more on functional classification, rather than
structural (though the two are often related). Presently, structural classifications such as
CATH and SCOP still rely heavily upon expert manual curation. The prevailing view
concerning protein fold space is that it is comprised of a finite number of discrete folds
that are described by these structural ontologies. Recent updates have yielded increased
coverage of the diverse types of folds that proteins can assume [4], with a noticeable
saturation being reached. The results of such efforts, largely driven by structural
genomics initiatives [6], may imply that we are reaching full enumeration of the single
domain folds [5]. As such, one of the interesting and important implications that arise
from these works is that fold space is discrete and not continuous.

Work by Skolnick er al. [7] challenges this view concerning the discreteness of
protein structure space using a graph theory approach to analyzing the topological
relatedness of protein structures. By considering a large representative set of structures,
and a graph based on pair-wise structural relatedness judged by TM-score [8] of 5906
protein chains with low homology from the PDB [9], it was shown that the average
shortest path in this network is seven. In the graph, a node represents each PDB file and
edges are placed between them whenever pair-wise TM-score is greater than 0.4. We
believe that this may not necessarily be informative about protein structure space [10],
but instead is likely a general network property since the same result can be obtained in
a simpler way using the approximation of Watts and Strogatz [11] for random small
world graphs. Multiple questions still arise such as the metric-dependence of this
conclusion, if state-of-the-art structure matching algorithms can distinguish topological
diversity from conformational, and the overall role of domain architecture. In this work
we seek a more detailed understanding of the properties of fold space graphs and their
implications for our perceptive on protein structure relatedness. Our main contributions
are as follows (1) Graphs generated based on various TM score cutoffs show a high
degree of modularity, however (2) we show that the TM algorithm is not well suited for
distinguishing topology from conformation based on our comparative analysis (uti-
lizing TM align) of reverse transcriptase (RT) structures gathered from Pfam to man-
ually curated categories in CATH. Thus (3) we explored structure space using a
domain-based comparison utilizing CATH and SCOP categories. Our comparison
showed that there exists one dominant, modular cluster with some discontinuities in
structure space outside of the larger cluster. Thus, we conclude that the continuity (or
discreteness) of protein structure fold space depends highly on the resolution one is
willing to impose for distinguishing folds.
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Modularity, graph partitioning efficiency, and community detection are three terms
that refer to roughly the same concept; determining if there exist regions of a network
with high connectivity of nodes within individual clusters, but relatively low con-
nectivity between different clusters. For our application to fold space, this translates
into groups of structures that are close structural matches to each other within a group,
but not to members of other groups. Therefore, for community structure to be prevalent
there must be groups of structures that are closely related, but few structures that are
simultaneously similar to members of a different group. High modularity combined
with a relatively large number of clusters would point to a discrete fold space. Low
modularity or a high modularity with very few clusters would point toward a contin-
uous view. Various metrics to evaluate the community structure in graphs have been
developed including the modularity score of Newman and Girvan [12] that we apply
here. The logic behind community structure and graph clustering to explain the small
average shortest path is the following: Consider a cluster A that is well connected. That
is, for every node n; in A, any other node n; in A is reachable, on average, via a greater
number of shorter paths compared to another node, n, that is a member of a different
cluster B. This means that any neighbor of any node in A is quickly reachable from any
node in the cluster. Strong community architecture does exist in fold space graphs and
further analysis is performed by employing the Markov Cluster (MCL) Algorithm [13,
14]. If a large number of well-connected clusters exist in the graph and relatively few
edges connect them, then either the dataset is not a complete representation of fold
space or the space is not continuous.

Many methods to determine the relatedness of proteins and protein structures have
developed. These are dominated by sequence algorithms because sequence data is
abundant and sequence-based algorithms are computationally efficient and fairly
intuitive. One such scheme is VAST, Vector Alignment Search Tool [15], which
incorporates statistical significance thresholds and estimation of interactions chosen by
chance. The widespread use of PSI-BLAST [16] and similar string algorithms in
structure classifications like CATH and SCOP are further examples. Matches based on
sequence homology represent a conservative subset of similar proteins due to the fact
that the inverse folding problem, determining how many sequences can assume a given
3D shape (fold), is unsolved in general. Many cases exist where sequences with little to
no homology assume nearly identical folds; i.e. Ubiquitin (1UBI) and SUMO (1WM2)
have 15% sequence identity, but fold to practically similar structures differing only by
1.5 A C* RMSD. Many structure alignment procedures exist that are widely used in
structural biology. In this work, we will primarily use TM-align [8], which has been
shown to give excellent alignments and used for template detection in I-TASSER [17],
currently ranked among the best performing 3D structure prediction servers.

Another fundamental question that needs to be addressed is exactly what should be
compared? Proteins with different numbers of amino acids are, mathematically, objects
with different conformational dimensions; therefore, we commonly simplify the
problem to finding the best superimposition of two structures. Interestingly, there may
be patterns in other mathematical spaces that simplify the analysis of structures, such as
the relation between spectral dimension (related to energy transfer efficiency) and
fractal dimension (related to packing density) in protein structures [18, 19]. However,
the details of the structure can influence the energy transfer (allostery) pathways within



Characteristics of Protein Fold Space Exhibits Close Dependence 359

the structure [20] or their interactions [21]. A much coarser view could consider
proteins as approximate globules — amorphous 3D blobs whose surfaces are semi-
molten [22] and have mostly polar character but with some internal nonpolar groups
exposed to water. We have just described two very different views on protein structures
where the details can highly bias an analysis toward a specific conclusion. In the first
case, it is intuitive that relatively few structures will be similar whereas in the second
case, many proteins could resemble each other’s shape. Thus, the resolution with which
we consider structures will affect our conclusion about the discreteness of fold space. In
this work, we investigate the structure superimposition using TM-align and domain
similarity. Our application of TM-align procedure is similar to Skolnick et al. [7],
except that we consider various thresholds instead of a single, fixed TM score cutoff.
We also collect a representative from each known fold type and apply the same graph
analysis to this smaller dataset. These representatives have been deemed by expert
manual curation to symbolize distinct fold types and thus represent a best case scenario
for concluding that fold space is discrete. The results of this analysis are utilized to
interpret data obtained by using the complete protein dataset. For domain similarity, we
analyze fold space independent of any structure-based comparison by connecting nodes
if the proteins they represent share a common CATH or SCOP annotation. Annotations
were taken from CATH at the Topology level and from SCOP at the Fold level. Such
an analysis provides an impartial baseline for how any structure similarity metric that
seeks to approximate CATH or SCOP-level fold similarity will perform on the dataset.

Defining the entities that are compared: complete PDB files, PDB chains (indi-
vidual polypeptides), or single domains is an important problem. Much effort has been
applied to developing methods for computational domain prediction. Early contribu-
tions such as FSSP using Dali [23, 24] have been very influential, while newer algo-
rithms such as DomNet [25] show increased refinement and agreement with manual
curation. However, in this study we will focus on the manual curation levels of CATH
and SCOP. If whole PDB files or chains are used, there will be cases where the peptide
chain folds to two or more domains. These structures can act as cluster-linkers in the
fold space graph since one domain may have a significant score with structures in one
cluster, while the other domain will have high structural relation to a different cluster.
Alternatively, a single domain could require the interaction of more than one
polypeptide. Such proteins complicate the relationship between sequence-homology
reduced datasets and fold usage. Considering the size of a protein may also be
important since a small protein is more likely to possess a topology that is some subset
of a larger protein.

2 Results

For any approach that relies on graph theory, understanding the structure of the graphs
used is necessary. Figure 1 shows us that, for any TM-score threshold, there exist a
relatively small number of nodes possessing a high degree of connectivity. We have
investigated these hub nodes and draw two conclusions. Some of them are hubs
because they are among the smallest proteins in the dataset with approximately 50
residues. It is more likely for a small protein to be a topologically similar subset of a
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Fig. 1. Metrics evaluating MCL clustering on TM-score graphs. UW stands for uniformly
weighted meaning that if an edge exists in the graph, we assign it a weight of one. Area Fraction
is defined by Eq. 2 and relates to cluster size. Mass Fraction is the fraction of total edge weight
that is captured within clusters and is formally defined in Eq. 3. Including the edge weights does
not impact these metrics (see Tables 1 and 2).

larger protein than for two proteins of equal size to match. Others have high connec-
tivity because they have multiple domains. Each domain can individually have a sig-
nificant alignment with other structures, which inflates the connectivity relative to
single domain chains.

In our previous work [10], the relationship between average shortest path computed
using the WattsStrogatz approximation [11] and the TM-score threshold for retaining
edges in the graph was investigated. We found that the average shortest path is less
than seven for cutoffs below 0.75. Stricter cutoffs result in large areas of the graph
becoming disconnected. With increasing TM-score, the edge set gets sparser,
approaching a cardinality of zero. This is shown in Fig. 2 where the number of nodes
with no edges increases as the TM-score threshold increases.

Since TM-scores are numerical, defined on the interval from zero to one, and are
not symmetric, pairwise scores can easily be interpreted as a directed graph where we
use TM-scores as edge weights. In the MCL algorithm edge weight is the probability of
a random walk traversing along a given edge. We construct unweighted graphs by
assigning all edges a weight of one and undirected graphs by linking nodes (with or
without edge weights) based on the larger of their two TM-scores. From Supplemental
Tables 1 and 2, it is evident that the edge treatment makes a minimal impact upon
MCL clustering.

Since the sequence-structure relationship is not fully understood, sequence-
homology reduced datasets are not necessarily the same as topology reduced datasets.
The effect on graph behavior of a topologically reduced dataset is of interest for
comparison to the homology reduced dataset. Parameter choices that yield expected
results in the topologically reduced dataset will help us to better interpret the meaning
of clusters for the homology reduced set. For this reason, we also compare distinct
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Fig. 2. (A) Heat map of TM-scores between 283 reverse transcriptase (RT) structures and 1233
topology representatives from CATH v3.3. Rows are arranged in the same order as the columns
of Sects. 1 and 2. Sections 1 and 2 correspond to two orientations of the RT “fingers,” while
Sect. 3 is the TM score between the topology representatives and the RT structures.
(B) Histogram of the TM-scores within the set of 283 reverse transcriptase structures. The set
can easily be split into structures that are related to each other at a TM-score of greater or less
than 0.7. No pairwise scores are below 0.4. Low scores correspond to the two finger domains
being in different positions, while the higher scores correspond to the two fingers in roughly the
same orientation. The high scoring population can be somewhat thought of as two groups; one
where the fingers are in a more closed conformation, and one where they are both extended.
(C) We show a representative of the lower TM-score population; 1IRW3 aligned to 1JLA with a
TM-score of 0.56. The view shown highlights the different finger positions that are characteristic
of the lower scoring group. (D) Histogram of maximum TM-score between each reverse
transcriptase domain and the topology representatives from CATH (max for each row of Sect. 3).
Each reverse transcriptase domain has a TM-score between itself and a topology representative of
at least 0.53, but none are higher than 0.76. There are 277 topologies matched to the 283 reverse
transcriptase structures. Thus, large TM-scores, while relatively sparse, are not because of any
single (or even a small set) of reverse transcriptase like topologic representatives.

topologies to each other by gathering 1233 CATH version 3.3 topology representa-
tives; a collection of manually curated topology representatives that span all of PDB,
performing the same procedure. Interestingly, this dataset of distinct topology repre-
sentatives exhibits a high modularity, indicative of community structure (Supplemental
Table 2). We calculate a modularity score defined in [12] by comparing the number of
edges within clusters to the number of edges that are linking clusters to each other. At
low TM thresholds (0.4), the graph exhibits high connectivity (57550 edges) and the
majority of the nodes included in the largest cluster.

The extent of community structure is less than for the PDB300 dataset (as judged
by Fuass and Fae, — see Methods), but remains high. The MCL inflation parameter
determines granularity of the clustering with a low inflation yielding few large clusters
and high inflation producing many small clusters. Even for the high inflation value of 5,
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the largest cluster still contains 855 structures, whereas a low value of 1.2 retains 1217.
At a TM score cutoff of 0.6 we find that MCL consistently distinguishes many of the
topologies from each other (only 334 edges between the 1233 nodes). Thus, these
graphs may either be modular because they are significantly related (pointing to
structure space being continuous) or because they are mutually distantly related
(pointing to a discrete fold space).

Conformational variability is also an important consideration for comparing
topologies. Are our structure comparison metrics able to distinguish between confor-
mational variation and topological? To address this question, we will compare 283
reverse transcriptase (RT) structures gathered from Pfam [3] family PFO0078 to each
other and to the CATH topology representatives to investigate the ability for structure
comparison metrics to distinguish between conformational (within the RT family) and
topological (between RT and fold representatives) differences. RT structure is often
described by analogy to a human hand where the active site is in the center of the palm
and the fingers and thumb “grip” the substrate. The Pfam family set used corresponds
to two fingers and the palm, thus containing sequence (average sequence identity of
67%) and conformational variants. A TM-score above 0.4 is regarded as a significant
topological relationship. We find that all members of the reverse transcriptase family
have TM-scores above this threshold, but there is significant diversity of scores within
the family (Fig. 2). Roughly half of the pairwise comparisons are between 0.4 and 0.7
corresponding to different finger conformations (generalized from visualizing 100
randomly chosen pairs from this group). Higher scoring pairs are characterized by the
structures having the same general finger conformation. The subgroup at about 0.82 has
a higher representation of a more extended finger conformation (again from visual-
ization of 100 randomly chosen pairs; data not shown). A representative pair is shown
in Fig. 2. Further, each reverse transcriptase domain has a TM-score between itself and
a topology representative of at least 0.53, but none are higher than 0.76. Therefore, all
RT structures have a significant structure alignment to a topology representative. One
might expect that because all RT structures share a common fold, one topology would
be the best match to most of the RT structures. However, matching each of the 283 RTs
to its highest scoring topology yields 277 different topologies. Thus, large TM-scores,
while relatively sparse, are not because of any single (or even a small set) of RT- like
topologic representatives. Further, TM (and likely any rigid superimposition algorithm)
is, in general, unable to distinguish between conformational and topological variation.
Methods like Fr-TM-align [26] or FATCAT [27] that are capable of accounting for
flexibility of the biomolecule may perform better in this specific test, but fast and
accurate methods for incorporating flexibility in structure matching are still being
improved. Current structure comparison algorithms have difficulty in distinguishing
between conformational and topological differences.

Metrics similar to Silhouettes [28] have also been generated (not shown). These are
basically average path length from a node to any other node within a given cluster
compared to the average path length from a node to every node that is not in that cluster.
Evidence of the high number of connections within each cluster exists in that the average
out-of-cluster path is only slightly longer than the average within-cluster path.
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A critical point of the above analysis hinges on the efficacy of the TM score
algorithm in quantifying the fold space of proteins. Thus, it is reasonable to ask: are
these investigations into protein fold space dependent upon the metric used? We have
already shown that the state-of-the-art structure comparison method has difficulty in
distinguishing topological and conformational differences, but can we explore fold
space independent from structure superimposition? One way is to make a graph where
each protein chain is represented by a node and nodes are connected by edges if the two
proteins share a common fold. Common folds are determined by a shared CATH
topology or SCOP fold using CATH version 3.4 and SCOP version 1.75. In the
PDB300 dataset 90% of the protein chains are annotated by at least one of these
ontologies, while all of the PISCES proteins are annotated (see Methods for dataset
details). Unannotated nodes are neglected in the following analysis. Using the same
graph analysis procedure, we find that this domain based graph also has a very high
degree of connectivity and modularity. See Table 1 for details. We again find that there
exists one dominant cluster. It has been shown that MCL usually generates a dominant
cluster and for some applications modifications that generate a more even granularity
are preferred [29]. However, using these approaches would be equivalent to assuming
fold space is discrete. Another explanation for the dominant cluster is the imbalance in
topology usage. Table 2 summarizes the usage of the ten most used topologies across
all of CATH, PDB300, and the PISCES dataset. Seven of the ten most used annotations
across all of CATH are also in the top ten most used topologies in the datasets used
here. Further, if we sort the topology classes by their use across all of CATH, and
compare with the topology use in each of our datasets, PDB300 and PISCES have a
correlation coefficient with CATH of 0.94 and 0.93, respectively. Thus, the relative
distribution of domain types is similar in these datasets compared to the whole PDB.
We conclude that the reason for the observed shortest paths in TM-score based graphs
is the modularity of proteins and the bias in topology usage. Protein structures exhibit
variation upon themes — stable domains develop and are embellished upon for further
modification of function.

Viksna and Gilbert [30] proposed a new method of assessment of domain evolution
by measuring the rate of certain kinds of structural changes that can lead to novel fold
development. Birzele er al. [31] find fascinating evidence that alternative splicing plays
a role in protein structure evolution by developing transitional structures between fold
types. Fong and colleagues [32] emphasize the modularity and importance of domain
fusion events in the evolution of protein domains. Meier et al. [33] suggest a link
between conformational flexibility and domain evolution where the native state
ensemble can partially occupy at least two intermediate fold types and the relative
population of each may be influenced by single amino acid mutations. The results
presented here combined with these studies point to the importance of considering
protein folds more rigorously in structure matching. It is not only important for our
understanding of the discreteness of protein fold space, but informs the more critical
question of what precisely should be spatially aligned in structure superimposition.
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3 Discussion

We have shown that graphs generated either from TM scores or domain annotation
show a high degree of community structure (modularity). TM-scores alone are not able
to fully distinguish manually curated topology representatives from each other at the
same threshold levels that have been used to analyze fold space across the PDB. This is
partly due to the effect of conformation on TM-score. It is shown here that confor-
mational variability within a set of reverse transcriptase structures can lead to very
different conclusions about which CATH topology is a closest representative. It is
important to realize that since we do not fully understand the relationship between
protein sequence and structure, homology reduced datasets may not be topology
reduced. This has been shown by analyzing graphs generated by connecting nodes if
they share any common CATH topology or SCOP fold and showing that they have
similar modularity and graph structure compared to graphs based on structure super-
imposition (see Fig. 3). It is possible that improving coarse-grained representations like
TOPS strings [34, 35] will be useful in the future for handling the multi-resolution
complexities of structure comparison.

800

- 600 [ JCATH
PISCES

enc

> 400
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0

Fig. 3. Frequency of CATH topology usage in three datasets. Using CATH version 3.4, we
consider the 1282 topology IDs, counting the number of times a structure in each dataset is
annotated with each topology ID. For both of the datasets used in this study, we find that many
topologies are not used at all (abscissa value of 0), and that relatively few topologies have a high
rate of use. In the CATH database, most topologies have a high rate of use. Interestingly, the
PISCES dataset is more topologically diverse than the PDB300 dataset.

Classifying protein tertiary structures into a discrete set of domains is useful in that
it helps our conceptual understanding of protein structures, aids in reducing the pos-
sible outcomes for sequence based folding procedures, adds to our understanding of the
structure-function relationship, as well as many other applications. Whether protein
fold space is continuous or discrete depends upon the resolution with which it is
viewed. We believe the more fundamental observation is the usage of topology types.
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4 Methods

Datasets

We use the PDB300 dataset from [7], which consists of 5906 protein chains of lengths
between 40 and 300 residues sharing less than 35% sequence identity. Here, the word
“chain” refers to a single polypeptide. It is worth noting that numerous individual
protein chains in this dataset contain more than one domain (topology or fold) as
defined by CATH or SCOP. Also, the PDB has been updated since this dataset was
gathered; 3 structures have become obsolete and were not superseded by a new ID,
while 41 have been updated to new IDs. For the purpose of comparison, we continue to
use the original version of each PDB ID when employing TM-align.

Domain centric datasets are constructed in two ways. The first is to cut the CATH
hierarchy at the topology level resulting in 1233 or 1282 representative domains for
version 3.3 and 3.4 respectively. The second begins by using the PISCES server [36] to
gather a representative set of chains that are of better than 2.5A resolution, less than
20% mutual sequence identity, and a crystallographic R-factor of less than 0.25. This
dataset contains 4750 PDB chains. We then use CATH to identify individual domains
at the Topology level within this set.

The final dataset used is Pfam family PFO0078, corresponding to reverse tran-
scriptase (RT). At the time of data download, 283 members with full 3D coordinates
were available in the PDB. These structures were downloaded and the subset of points
agreeing with the Pfam family definition was retained.

Protein Structure Evaluation Metrics
In this paper, the TM-score defined in [8], is used to analyze the structural similarity of
protein structures. This metric is interesting in that it is not symmetric; TM (A,B) does
not necessarily equal TM (B,A) particularly when proteins A and B are of different
lengths. The TM-score is defined as:

1 Laii 1
TM — score = Max (1)

LTarget Z 1 J 2
+ d() (LT arg et )

Where L, is the length of the alignment, Ly,,,,, is the sequence length of the target
structure, d; is the Euclidean distance between aligned points, and d, is a normalization
factor based on Lygyger

Analysis of Structural Classification

A number of structural classification schemes exist including the CATH database (1),
SCOP (2), and PFAM (3). Both CATH and SCOP are hierarchical in nature and utilize
a combination of homology, topology, and biochemical function to organize protein
structures. The first level of CATH and SCOP classification consists of 4 classes,
binning structures into predominantly a-helix or B-sheet content, presence of both, or
lack of secondary structure elements. The second level of SCOP, as well as the second
and third levels of CATH, is based on overall secondary structure orientation. These
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levels are manually curated and place proteins into general categories like beta-barrel
and two-layer sandwich. The third level of SCOP takes into account the topology and
function of a given protein to decide how related they are evolutionarily. All subse-
quent levels in both classifications are decided by sequence identity or, in some cases,
other sequence based scoring schemes. Pfam families are generated by manual func-
tional curation, multiple sequence alignments, and Hidden Markov Models and come
in two varieties: Pfam-A for only manually curated entries and Pfam-B where auto-
mated methods are also used to extend the sequence space covered by classification.
All three of these databases rely on sequence homology and biochemical functions to
group proteins into fold types rather than directly comparing quantitatively the
topology of the biomolecules.

Graph Construction

We define a graph based on TM-score as G, = {E, V} where ¢; € E is an edge in G, if
it connects two vertices a € V and b € V and TM(a,b) > t. Each PDB chain in the
dataset is represented by a single node. The TM-score threshold 7 is initially set at 0.4
as in [7], but values up to 0.9 are also considered to further analyze the graph structure.
Graphs are either undirected or directed. To make the directed graphs we consider
t = max(t;,t;) where TM(a,b) = t; and TM(b,a) = t,.

Cluster Generation and Comparison

To investigate the community structure of graphs we first employ the Markov Cluster
Algorithm (MCL) [13, 14]. In this procedure, graphs are clustered based on random
walks that simulate flow along the graph’s edges. Nodes that are well connected will
exhibit more flow between them than nodes with few connections; the probability of
selecting an edge to walk along within the cluster is higher than choosing an edge that
leads you out of the cluster (provided the probability of selecting any edge at random is
uniform). As the algorithm progresses, nodes that share high amounts of flow (many
common walks) are grouped together into clusters.

MCL has evaluation protocols to explore the relatedness of clustering with different
parameters. In MCL each edge has a weight. Here we use uniformly weighted
(UW) graphs or we use the TM-score as the edge weight. Defining cluster size as the
number of nodes within a cluster, MCL computes the Area Fraction (Fa,.,) defined by
Eq. 2. This metric gives an indication for the size of clusters as many small clusters or
isolated nodes will result in a low Fa.,. The Mass Fraction (Fy,) is the sum of all
edge weights within clusters and is shown in Eq. 3 where w; is the edge weight of edge
i such that edge i is in Cluster c.

3" clusterSize?
Fape = S SteTOIZE 2
At NN = 1) @
lel IE]

Fass = Z Zwi s.tw; € C. (3)
i=1

c=1

Having Fj,., close to zero implies that the graph has been clustered into many
small clusters, while a value of one implies that all nodes occupy one cluster.
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Possessing Fyy,ss close to one indicates that clusters are tightly connected with rela-
tively few edges connecting them. How the algorithm treats the length of a walk
(number of edges traversed) is very important to the process and is controlled by a
parameter called Inflation, I. Penalizing longer walks produces a large number of small
clusters. Allowing longer walks generates fewer, but larger, clusters. It is informative to
compare results across multiple inflation values to better understand the organization of

the graph.
Table 1. Clustering metrics for graphs of common CATH or SCOP annotations
Dataset | Inflation | Mods | Mod; | Mod,y; | Eff | Faass | Farea | #C | Max | Avg
PDB300| 1.2 .98 98 .99 211.98 |.58 |137|3617 34.8
2.0 .89 .90 92 331 .91 25 |183|2155/26.1
4.0 75 78 .82 49| .81 10 3251|1429 147
6.0 S1 54 .59 491 .71 .07 [450|1179|10.6
8.0 37 40 45 491.66 |.05 |519/1006 | 9.2
12.0 .26 .28 33 471.62 .04 |580| 931 8.2
PISCES | 1.2 .96 97 97 34197 |27 |138| 864 15.7
2.0 .89 91 94 59193 .09 |174| 465|124
4.0 78 .82 .86 66].88 |.06 |236| 357 9.2
6.0 .61 .64 .68 .65[.82 .04 |289| 303 7.5
8.0 .59 .62 .65 .64 | .81 .04 [302| 296| 7.2
12.0 .55 57 .61 641.80 |.04 |316| 281 6.9
Table 2. Top 10 CATH topology usage
CATH PDB300 PISCES
D Usage | Architecture Topology ID Usage | C, | ID Usage | C,
3.40.50 | 19229 | 3-Layer(aba) Rossmann fold 3.40.50 | 1339 1/3.40.50 | 379 1
sandwich
2.60.40 | 13806 | Sandwich Immunoglobulin- |2.60.40 | 678 212.60.40 |132 2
like
3.20.20 | 6106 | Alpha-beta barrel | TIM Barrel 1.10.10 | 384 |11(3.20.20 | 118 3
3.30.70 | 4236 | 2-layer Sandwich | Alpha-Beta Plaits |3.30.70 | 334 | 4|3.30.70 | 101
2.40.10 | 3954 | Beta barrel Thrombin 2.60.120 | 312 | 62.60.120| 96 6
2.60.120 | 3433 | Sandwich Jelly Rolls 2.40.50 268 71.10.10 81 11
2.40.50 | 2244 | Beta barrel OB fold 1.20.5 263 | 15|1.20.5 65 15
3.30.200 | 2012 | 2-layer sandwich | Phosphorylase 3.20.20 | 250 | 3|1.10.287| 57 19
Kinase
1.10.510 | 1992 | Orthogonal bundle | Phosphotransferase | 2.40.10 | 206 | 5|2.40.50 | 49 7
1.10.490 | 1983 | Orthogonal bundle | Globin-like 2.30.30 | 205 |16|1.20.120| 44 |29
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Column titles are: Inflation for the MCL parameter that determines granularity of
the clustering, Mods - modularity using the 5 largest clusters, Eff - efficiency of the
clustering, Fyass and Fare, are given in Egs. 2 and 3, #C - number of clusters, Max -
number of nodes in the largest cluster, Avg - average number of nodes across all
clusters.

Usage is the number of protein chains that are annotated with the given CATH
topology ID. C; is the rank of this topology ID in CATH.
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