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Abstract

Owing to increases in computing power, high-order Eulerian schemes will likely become instrumental in
simulations of turbulence and magnetic field amplification in astrophysical fluids in the next years. We present the
implementation of a fifth-order weighted essentially non-oscillatory scheme for constrained-transport
magnetohydrodynamics in the code WOMBAT. We establish the correctness of our implementation with
extensive number tests. We find that the fifth-order scheme performs as accurately as a common second-order
scheme at half the resolution. We argue that for a given solution quality, the new scheme is more computationally
efficient than lower order schemes in three dimensions. We also establish the performance characteristics of the
solver in the WOMBAT framework. Our implementation fully vectorizes using flattened arrays in thread-local
memory. It performs at about 0.6 million zones per second per node on Intel Broadwell. We present scaling tests of
the code on up to 98,000 cores on the Cray XC40 machine “Hazel Hen,” with a sustained performance of about 5%
of peak at scale.
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1. Introduction

Most of the baryonic matter in the universe is in the form of
a thin ionized plasma. Hence, many numerical models of
astrophysical interest require the solution of magnetohydro-
dynamic (MHD) equations (e.g., Kulsrud & Ostriker 2006),
from the solar corona, the intergalactic medium, to the jets of
active galactic nuclei, the hot atmosphere of galaxy clusters,
and the filaments of the cosmic web. Finite difference (FD)
methods for hydrodynamics predate the earliest computers and
of course transcend the field of astrophysics (Richardson 1922;
LeVeque 2002). After seminal contributions by Lax (1954),
Godunov (1959), Babuška & Zlámal (1973), van Leer (1979),
and Roe (1981) and nearly a century of development, major
progress has been made in ever more accurate and efficient
finite volume (FV) and FD schemes to minimize spurious
errors and capture shocks accurately (Harten 1983; Colella &
Woodward 1984; Harten et al. 1987; Einfeldt 1988; Shu 1988;
Liu et al. 1994). For MHD, the development of constrained-
transport (CT) schemes marks the era of numerical magnetic
fields with vanishing divergence to machine precision (Evans
& Hawley 1988; Londrillo & Del Zanna 2000).

The plethora of available algorithms is only dwarfed by
the vast amount of codes that use FV or FD methods today.
In astrophysics, implementations would include AREPO
(Springel 2010), ART (Kravtsov et al. 1997), ATHENA (Stone
et al. 2008), CHOLLA (Schneider & Robertson 2015), DIS-
PATCH (Nordlund et al. 2018), ENZO (Bryan et al. 2014),
FLASH (Fryxell et al. 2000), GAMER (Schive et al. 2018),
GIZMO (Hopkins & Raives 2016), Nyx (Almgren et al. 2013),
RAMSES (Teyssier 2002), PLUTO (Mignone et al. 2007), ZEUS
(Stone & Norman 1992), and many more.

With supercomputers now approaching the regime of 1018

floating point operations per second (flops), algorithms beyond
the most commonly used second and third order for MHD are
very feasible (see Balsara 2017 for a recent review). These
methods offer increased accuracy over common codes, which
is advantageous in the simulation of turbulence (Guillet et al.
2019) and when problems include supersonic advection of the
fluid relative to the mesh.
However, improved accuracy comes at the expense of

additional computational costs. It has been argued by
Greenough & Rider (2004) that second-order codes are
computationally more efficient in one dimension, in the sense
of solution quality per computational cost. In this contribution,
we will argue that this is not necessarily true in three
dimensions for a fifth-order FD weighted essentially non-
oscillatory (WENO) scheme (Shu 1998; Jiang & Shu 1996;
Jiang & Wu 1999; Balsara & Shu 2000; Feng et al. 2004).
WENO schemes use a weighted average of several stencils
around a zone to achieve high accuracy and low truncation
error in spatial interpolation, while avoiding spurious oscilla-
tions near discontinuities (see Shu 2003 for an instructive
exposition). Modern WENO schemes come in many flavors.
Particularly relevant to this work are contributions by Henrick
et al. (2005), who have shown that the classical scheme is only
third-order accurate near critical points. Borges et al. (2008)
have proposed a simple set of weights to restore full order
(WENO-Z). Subsequent work has focused further improve-
ments of the scheme and extended it to very high order; for
reviews, see Shu (2009) and Balsara et al. (2016).
We will show that the classical FD method doubles the

effective resolution of the grid compared to the popular
piecewise parabolic method (PPM) or total variation
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diminishing (TVD) schemes in all dimensions. This is in line
with prior results that find WENO3, WENO5, and WENO9
double the effective resolution compared to the next lower
order scheme (Shu 2003; Zhang et al. 2003); similar results
have been obtained with other high-order schemes (Tóth et al.
2014). The excellent fidelity of these schemes allows in
principle a problem to be simulated at half the resolution with
WENO5 compared to PPM or WENO3, which more than
makes up for the added computational cost by the fifth-order
scheme. This is especially true for FD WENO schemes, which
are an order of magnitude cheaper to compute than finite
volume WENO schemes (Shu 2003) . WENO5 also reduces the
accumulated round-off error over many time steps and reduces
the data size by a factor of 8, which might be even more
important than the reduction in computational cost.

However, due to the wide use of multicore computers, most
fluid simulations today are not compute-bound. Thus, a WENO
implementation will likely run at the same resolution as a lower
order scheme to increase the fidelity of the simulation. Given
the wide use of accelerators and the increasing diversity of
CPU architectures, it is highly desirable to write a performance-
aware implementation of an efficient scheme using open
standards that can use many different architectures. The high
compute intensity of the WENO FD scheme, i.e., the large byte
per flop ratio in the main WENO loop, makes it very attractive
for such an approach. As always in high performance
computing (HPC), SIMD7 vectorization is key to achieving
good performance on CPUs and eventually GPUs by exposing
instruction-level parallelism. The regular data layout of an
Eulerian grid makes this significantly easier to achieve than in
particle-based schemes.

Instead of presenting a fundamentally new WENO scheme,
the aim of this work is to expose the efficiency of the FD
WENO5 approach in terms of compute time per solution
quality close to the petaflop scale on modern supercomputers.
To this end, we present the implementation of a classical fifth-
order FD WENO scheme (Jiang & Wu 1999) in the WOMBAT8

code framework (Mendygral et al. 2017). We use CT to evolve
the magnetic field with minimal divergence error with the
“transport-flux” formulation by Ryu et al. (1998). Formally,
spatial interpolation is fifth order, time interpolation is fourth
order, and CT is second order. We deliberately chose a four-
stage time integrator and a second-order CT scheme to keep the
implementation computationally cheap. High-order finite
volume schemes involving cross-dimensional averaging and
their corresponding CT schemes are much more computation-
ally expensive (e.g., Shu 2003; Londrillo & del Zanna 2004;
Mignone et al. 2010; Verma et al. 2019). We will show that by
sacrificing a little fidelity for computational speed, the FD
approach leads to a very efficient and robust method. In
particular, our simple second-order CT scheme affects only
magnetic field dispersion; diffusion remains fifth-order accu-
rate, at virtually no additional computational cost.

This work is structured as follows: we outline the scheme in
Section 2. The implementation is heavily optimized to expose
parallelism in the code at all levels; details are given in
Section 3. Code tests with a special emphasis on errors relevant
in cosmological simulations (advection error and angular
momentum conservation) are presented in Section 4. Aside
from WOMBATʼs own TVD+CTU implementation, we

frequently compare the code with published results from the
order CTU+CT code ATHENA (Stone et al. 2008), as well as
high-order finite volume codes. We test the code performance
on modern HPC hardware in Section 5. Conclusions are drawn
in Section 6. For reference purposes, we once again present the
eigenvectors used in the calculation in the Appendix.

2. Numerical Method

The equations of ideal magnetohydrodynamics read (e.g.,
Ryu & Jones 1995):
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where ρ is the density, v v v v, ,x y z
T= ( ) is the velocity, and

B B B B, ,x y z
T= ( ) is the magnetic field. We have chosen a

rationalized system of units, so factors of 4π do not appear.
Further, we define BB = ∣ ∣, vv = ∣ ∣, the adiabatic index γ and
the total pressure P*, the total energy E, and the entropy S (Ryu
et al. 1993) of the flow:
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A state vector of conserved quantities q can be defined:
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Then, Equations (1)–(4) can be written as a conservation law
for9 q:
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7 Single instruction multiple data.
8 wombatcode.org

9 We do not consider source terms like gravity, cosmic rays, radiative cooling,
etc.
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This equation can be approximated in quasilinear form
(Roe 1981, 1997; Einfeldt et al. 1991; van Leer 1979):

q q
t x

0 12xA
¶
¶

+
¶
¶

= ( )

where we define the Jacobian matrix F qxA = ¶ ¶ .
A complete set of left and right eigenvectors (see the

Appendix), and real, albeit possibly degenerate, eigenvalues
can be found for this Jacobian, thus the system (12) is
hyperbolic (Brio & Wu 1988a). The seven eigenvalues can be
identified with the three MHD waves: the slow, fast, and
Alfvèn modes, as well as an entropy mode. With the definition
of the (hydrodynamic) sound speed c Ps g r= , the MHD
wave speeds are (Brio & Wu 1988a; H. Jang et al. 2019, in
preparation):
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Using the left- (L(m)) and right-hand (R(m)) eigenvectors of the
linearized equations, the system can be decoupled into seven scalar
advection equations by multiplying it with L from the left and
using L RxA = L, where L is the diagonal matrix containing
the eigenvalues , , , , , ,fast A slow e slow A fastl l l l l l l l= - - - + + +( ), where

v cx wavel =  and cwave is the corresponding wave speed. Thus,
the linearized MHD equations encode the propagation of seven
MHD waves in time along characteristics (e.g., LeVeque 2002).
The solution can then be obtained componentwise from the
linearized scalar problem and be transformed back by multiplying
it with R.

In WOMBAT, we assume that space is discretized as
x i x L 2i Box= D - , with x L NxBoxD = , LBox the size of
the computational domain in the x-direction, and Nx the number
of zones in the x-direction. One can enforce numerical
conservation by writing Equation (12) with fluxes across the
zone boundaries at i 1

2
 in conservative form (Godunov 1959;

LeVeque 2002):
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Given suitable initial conditions, the solution of Equation (11)
then becomes an initial value problem and can be solved using
the method of lines (e.g., Sarmin & Chudov 1967).

Depending on the scheme, one chooses a suitable discretiza-
tion in time to integrate forward and in space to interpolate the
fluxes to the cell boundaries.

2.1. Time Discretization

Following Jiang & Shu (1996), we use a fourth-order, four-
stage Runge–Kutta (RK4) time integrator. It has been shown
that such a scheme cannot have the strong-stability-preserving
property (e.g., Spiteri & Ruuth 2002). In fact, the scheme used
here is not even total variation diminishing (TVD; Shu 1988;
Shu & Osher 1988). Nonetheless, it allows us to use

CFL 0.8= everywhere, even in three dimensions, and is
sufficiently robust in practice. Modern SSP RK schemes are
better behaved mathematically, but have to involve five or
more stages at fourth order and thus are computationally 25%
more expensive than the fourth-order scheme at the same time-
step size (e.g., Gottlieb et al. 2001; Spiteri & Ruuth 2002;
Gottlieb et al. 2009). As we aim for computational efficiency
per solution quality, we leave tests of SSP integrators to
future work.
In Nd dimensions, the time step is set as
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Omitting CT for now, the RK4 scheme from Jiang & Shu
(1996) and Jiang & Wu (1999) can be written as
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The CT time integration scheme is the same, but updates the
face-centered magnetic fields after the WENO step (see
Section 2.3). In three dimensions, it adds the three-component
magnetic field on the boundary and the three-component corner
flux to global storage.

2.2. WENO Spatial Discretization

For reference, we outline the WENO5 spatial discretization
to obtain fluxes at the zone boundaries in Equation (16). The
classical scheme from Jiang & Wu (1999) is an FD approach
that efficiently computes boundary fluxes from point-valued
cell-centered states and fluxes. This is in contrast to modern
schemes that often use a more flexible, but also more
computationally expensive, FV approach. For more details,
we kindly ask the reader to refer to the extensive literature on
the subject (e.g., Jiang & Shu 1996; Shu 1998; Jiang &
Wu 1999; Shu 2009; H. Jang et al. 2019, in preparation).
The fifth-order WENO scheme uses a weighted average of

three third-order stencils to approximate the solution at the
boundary. Thus, the WENO averaging itself requires two
boundary zones. Including an additional zone from the flux
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difference in Equation (16) gives a total of three boundary
zones per RK substep. To avoid Gibbs phenomena (ringing)
near shocks, the weights “switch off” one of the three
polynomials adjacent to discontinuities and inside a disconti-
nuity, where the method becomes first order.

We note that in two or three dimensions, all fluxes are
applied at the same time, starting from the same initial state
vector. Strang splitting is not used (Shu 2003). For the sake of
efficiency, the scheme does not include dimensional cross-
terms found in many recent FV schemes (see, e.g., Balsara
et al. 2009; Verma & Müller 2018). This strategy is common in
the FD WENO literature that commonly aims at cheap high-
order implementations (e.g., Shu 2003). The general argument
is that the time-integration scheme implicitly averages over all
three directions four times and thus maintains the high order as
long as cross-dimensional fluxes are not too large. The rotated
three-dimensional linear wave advection test (Section 4.1)
confirms that the WENO5 scheme is effectively unsplit at fifth
order in the linear regime. Cross-terms might be more relevant
for strongly nonlinear problems, where the influence of the grid
can be seen, e.g., in the Sedov–Taylor blast wave test,
Section 4.16. As we will show, the algorithmic fidelity of the
FD WENO5 scheme is then comparable to a third-order
discontinuous Galerkin scheme, however still at a fraction of
the computational cost.

Following Jiang & Wu (1999), we denote quantities in the
decoupled system with superscript s, denote the individual
components with m 1, 7Î [ ], and drop the vector notation.
Thus, the fluxes, state vectors, and their differences in the
decoupled system are
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respectively. Note that the left-hand eigenvector is taken at the
zone boundary using simple arithmetic averaging. In the
decoupled system, WENO uses Lax–Friedrichs-type flux
splitting to upwind the fluxes (Lax 1954). Jiang & Wu
(1999) and Shu (2003) have argued that this usually very
diffusive approach is sufficiently accurate and computationally
cheap in the FD WENO context:
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The WENO-interpolated fluxes at the zone boundary for
Equation (16) are given by F RF m mi i
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again the right-hand eigenvector is taken at the zone boundary.
In the decoupled system, the flux of each component m is

(Jiang & Wu 1999)
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where we have dropped the (m) notation for clarity. The
WENO interpolant a b c d, , ,Nj ( ) is defined as
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This description of the weights is generally fifth-order
accurate in smooth flows, but only third-order accurate near
critical points (extrema and saddle points). Borges et al. (2008)
proposed the WENO-Z weights to make the scheme truly fifth
order everywhere:

IS IS 325 0 2t = -∣ ∣ ( )

IS
1 , 33

Z
0

5

0
2

a
t

= +
+( )

( )

IS
6 1 , 34

Z
1

5

1
2

a
t

= +
+

⎛
⎝⎜

⎞
⎠⎟( )

( )

IS
3 1 , 35

Z
2

5

2
2

a
t

= +
+

⎛
⎝⎜

⎞
⎠⎟( )

( )

and 10Z
40 = - . As we will see, this is useful in advection-

dominated problems, but reduces the general robustness of the
scheme. For complex problems, WENO-Z will fall back into
protection fluxes more often, which might not aid the solution
for all problems.

2.3. Constrained-transport MHD

Equation (5) requires maintenance of a zero magnetic field
divergence at all times. In CT, the magnetic field is defined on a
staggered mesh, i.e., on the faces of the computational zones
(Evans & Hawley 1988; Dai & Woodward 1998; Balsara &
Spicer 1999b; Tóth 2000). This way, magnetic field divergence
can be maintained to machine precision. For computational
efficiency, we follow (Ryu et al. 1998) in our implementation
of CT, which uses second-order accurate averages to obtain the
corner fluxes. As we will see, this choice introduces additional
dispersion to the solution, but not additional diffusion.
We denote the magnetic field on the forward zone faces (i.e.,

i 1

2
+ for the x-component) as b b b b, ,x y z

T= ( ) . From the
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Riemann solver, we obtain the fifth-order accurate magnetic
field fluxes across the zone faces fy, fz during the sweep in the
x-direction (components six and seven); gz, gx for the y-
direction; and hx, hy for the z-direction:

f f B v B v
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Due to our implementation involving the rotation of the grid,
the components actually remain the same for every direction.
However, the fluxes have to be rotated backward (g g,x z) or
forward (h h,x y) into the original frame. The corner fluxes

, ,x y zW W W are then

g g f f
1

2

1

2
42x x i j k x i j k y i j k y i j k, , , , 1, , , , , , , 1,

* * * *W = + - ++ +( ) ( ) ( )

h h g g
1

2

1

2
43y y i j k y i j k z i j k z i j k, , , , , 1, , , , , , , 1

* * * *W = + - ++ +( ) ( ) ( )

f f h h
1

2

1

2
. 44z z i j k z i j k x i j k x i j k, , , , , , 1 , , , , 1, ,* * * *W = + - ++ +( ) ( ) ( )

The face-centered magnetic fields are then updated analogously
to Equation (16):

db

dt x

x

1

1
0 45

x
x i j k x i j k

z i j k z i j k

, , , , , 1,

, , , , , , 1

+
D

W - W

-
D

W - W =

-

-

( )

( ) ( )

db

dt x

x

1

1
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y
y i j k y i j k

x i j k x i j k

, , , , , , 1

, , , , 1, ,

+
D
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-
D
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-

-
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db

dt x

x

1

1
0. 47

z
z i j k z i j k

y i j k y i j k

, , , , 1, ,

, , , , , 1,

+
D

W - W

-
D
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-
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The zone-centered magnetic field is interpolated at fourth order
from face values:

B b b

b b

1

16
9

9 , 48

x i j k x i j k x i j k

x i j k x i j k

, , , , 2, , , 1, ,

, , , , 1, ,

= - +

+ -

- -

+

(

) ( )

and the other components follow accordingly along the j and k
indices.

We use the same fourth-order Runge–Kutta scheme
presented in Section 2.1. The CT update is interleaved with
the WENO update, with boundary communication of Ω

between a WENO and a CT step. As we will see, the CT
scheme converges to second order. However, it can be shown
that magnetic field dissipation converges to fifth order, so the
additional error is in the shape of the field, not its energy (see
also H. Jang et al. 2019, in preparation).

3. Implementation

We implement the scheme in the numerical code WOMBAT
(see footnote 8). For a detailed description of the code
infrastructure and its performance, readers may consider
Mendygral et al. (2017). The code is written in object-oriented
Fortran 2008 and hybrid-parallelized with MPI and OpenMP. It
decomposes the computational domain into patches, blocks of
independent work of variable size that can be cache-blocked
(16–32 zones per dimension depending on architecture). This
way, communication is reduced to a boundary problem, i.e., the
boundary (ghost) zones between patches need to be commu-
nicated (resolved). Patches are implemented as Fortran objects
and store boundary zones alongside all necessary information
about neighboring patches and MPI ranks. Thus, there is no
global data structure keeping track of patch distribution that
may grow with an increasing number of MPI ranks, and
communication and computation are intrinsically separated,
i.e., the program is highly modular.
Initially, each MPI rank carries a cubic portion of the world

grid (in 3D), a domain, containing a large number of patches.
Patches are load-balanced via tunable virtual domains, where
neighboring MPI ranks are included into a ranks domain.
Patches are offloaded to other MPI ranks by exporting them
into the virtual domain region and are then communicated
analogous to the boundary exchange.
OpenMP threads are implemented using a single parallel

region and combined with MPI_THREAD_MULTIPLE, so
that threads independently and asynchronously carry out MPI
communication of boundaries and resolution of patches
(computational work). WOMBAT currently uses one-sided
MPI-RMA with calls to MPI_Put to place each of the 27
patch boundary regions in a neighbor’s mailbox of user-
definable size. A signal per mailbox of 8 bytes (the “heartbeat”)
is used to notify the neighboring MPI rank of completed
communication. The signal is updated at every loop iteration
even if no data was communicated to achieve a form of weak
synchronization among ranks. Once every boundary is
communicated (i.e., all the signals are set as completed), a
thread on the other rank unpacks all boundaries from the
mailbox into the corresponding patch object. The patch is then
“resolved” by any OpenMP thread on the rank. This way,
communication can react to load-imbalance and also network
contention on large multiuser machines. This represents fine-
grained communication–computation overlap on the thread
level. This implementation shifts the communication pattern
from few large MPI messages requiring large buffers to many
small messages with accordingly smaller buffers. Thus, this
approach requires the MPI library to support lock-free OpenMP
and lowest overhead, which is currently the case for Cray’s
MPI library and also OpenMPI, where WOMBAT is part of the
regression testing. The communication scheme is actively
researched for exascale systems by performance engineers at
Cray Inc. and thus subject to continuous improvements.
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3.1. The WENO Solver

In WOMBAT, every solver works on a single boundary
communicated patch, where the grid data reside in rank global
memory. At this point, no communication is required any
longer; work and communication are completely separate in the
implementation. This eases maintenance of the code
considerably.

In the WENO solver, we first copy the grid data into
OpenMP thread private buffers to minimize Non-Uniform
Memory Access effects. This introduces memory overhead of
about 25MB per thread for patches with 183 zones. In multiple
dimensions, the grid is explicitly flattened as well, i.e., the
number of indices of all arrays is reduced to one along spatial
dimensions and all loops run over the flattened array, ignoring
the boundaries between dimensions. Thus, memory and code-
level layout of the data are identical. This increases vector
length and decreases cache-blocked patch size, which in turn
eases MPI load balancing. It also improves code readability, as
all lower level routines (fluxes, eigenvectors) remain inherently
one-dimensional. This layout naturally leads to an explicit
separation of computation and data movement in the code. In
two and three dimensions, the sweeps in the y-direction and
z-direction are implemented as rotations of the plane/cube in
flattened memory. The resulting WENO fluxes are later rotated
back into the original coordinate system to compute the state-
vector updates (Equation (16) and Section 2.1). Using the
Fortran CONTIGUOUS keyword and implied array sizes, all
relevant loops in the implementation auto-vectorize with
current Cray and Intel compilers. This is a necessary
prerequisite to achieve a significant fraction of peak perfor-
mance on current CPUs. We anticipate that this implementation
will be very convenient to port to accelerators (GPUs) as it
naturally exposes long vectors and makes memory movement
explicit.

Due to WOMBAT’s parallelization strategy, the RK4 scheme
presented in Section 2.1 is implemented using a running state
vector q, a state vector buffer qsave to accumulate intermediate
results, and a copy of the initial state q qi

n
0 = . Note that we

communicate boundaries twice (once for WENO, once for CT
update) per RK4 substep. This allows us to retain three
boundary zones on the patch, which is optimal regarding flops
and memory consumption given that communication in
WOMBAT is local, asynchronous, and thus extremely cheap.

3.1.1. WENO–WOMBAT in One Dimension

The program proceeds as follows:

1. Copy-in q. If executing the first substep, initialize q0 and
set qsave.

2. Compute cell-centered pressure P (Equation (7)), eigen-
values c c c, ,A fast slow (Equations (13)–(15)), and fluxes F
(Equation (10)).

3. Compute eigenvectors L and R on the cell boundaries,
compute WENO fluxes, Equation (24).

4. Update q using WENO fluxes, update qsave using new q.
5. Move q q q, ,0 save on the patch, communicate patch

boundaries.

Repeat four times with corresponding Runge–Kutta factors
so that q qn 1

save=+ at the last substep.

3.1.2. WENO–WOMBAT in Two Dimensions

In two dimensions, we have to interleave the CT step into the
WENO5 RK4 update. The program proceeds as follows:

1. Copy-in and flatten q. If executing first substep, initialize
q0 and set qsave, else copy-in and flatten them. Set a
buffer q qbuf 0= .

2. Compute from q the cell-centered pressure P (Equation
(7)), eigenvalues c c c, ,A fast slow (Equations (13)–(15)), and
fluxes F (Equation (10)).

3. Compute from q the eigenvectors L and R on the cell
boundaries, compute WENO fluxes (Equation (24)), and
compute 2D CT fluxes (Equations (36) and (37)).

4. Update qbuf using WENO fluxes.
5. Rotate q forward so the flattened index is along the

y-direction.
6. Compute from q the cell-centered pressure P (Equation

(7)), eigenvalues c c c, ,A fast slow (Equations (13)–(15)), and
fluxes (Equation (10)).

7. Compute from q the eigenvectors L and R on the cell
boundaries, compute WENO fluxes (Equation (24)), and
compute 2D CT fluxes (Equations (38) and (39)).

8. Rotate q and CT fluxes backwards.
9. Update qbuf using WENO fluxes, copy qbuf into q, and

compute CT corner flux xW (Equation (42)).
10. Update qsave using new q, but not the magnetic field.
11. Move q q q, ,0 save, xW on the patch; communicate

patch boundaries, face-centered magnetic fields, and
corner flux.

12. Copy-in and flatten q, b, xW .
13. Update face-centered magnetic field b from xW .
14. Interpolate face-centered magnetic field b to zone-

centered magnetic field B at fourth order. Update qsave
with new magnetic field.

15. Move q b q, , save to the patch object.

Repeat four times with corresponding Runge–Kutta factors so
that q qn 1

save=+ at the last substep. Perform another CT update
on qsave before moving it into q.

3.1.3. WENO–WOMBAT in Three Dimensions

In three dimensions, the program proceeds as follows:

1. Copy-in and flatten q. If executing first substep, initialize
q0 and set qsave, else copy-in and flatten them. Set a
buffer q qbuf 0= .

2. Compute from q the cell-centered pressure P (Equation
(7)), eigenvalues c c c, ,A fast slow (Equations (13)–(15)), and
fluxes F (Equation (10)).

3. Compute from q the eigenvectors L and R on the cell
boundaries, compute WENO fluxes (Equation (24)), and
compute 3D CT fluxes (Equations (36) and (37)).

4. Update qbuf using WENO fluxes
5. Rotate q and qbuf forward so the flattened index is along

the y-direction.
6. Compute from q the cell-centered pressure P (Equation

(7)), eigenvalues c c c, ,A fast slow (Equations (13)–(15)), and
fluxes (Equation (10)).

7. Compute from q the eigenvectors L and R on the cell
boundaries, compute WENO fluxes (Equation (24)), and
compute 3D CT fluxes (Equations (38) and (39)).

8. Update qbuf using WENO fluxes.
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9. Rotate q and qbuf forward so that the flattened index is
along the z-direction. Rotate CT fluxes backwards.

10. Compute from q the cell-centered pressure P (Equation
(7)), eigenvalues c c c, ,A fast slow (Equations (13)–(15)), and
fluxes (Equation (10)).

11. Compute from q the eigenvectors L and R on the cell
boundaries, compute WENO fluxes (Equation (24)), and
compute 3D CT fluxes using (Equations (40) and (41)).

12. Update qbuf using WENO fluxes.
13. Rotate forward q and qbuf and CT fluxes, so that the first

index runs along the x-direction again.
14. Update qbuf using WENO fluxes, copy qbuf into q,

compute CT corner flux (Equations (42)–(44)) from
rotated CT fluxes.

15. Update qsave using new q, but not the magnetic field.
16. Move q q q, ,0 save, Ω on the patch, communicate patch

boundaries, face-centered magnetic fields b, and corner
flux.

17. Copy-in and flatten q, b, Ω.
18. Update face-centered magnetic field b from Ω.
19. Interpolate face-centered magnetic field b to zone-

centered magnetic field B at fourth order. Update qsave
with the new magnetic field.

20. Move q b q, , save to the patch object.

Repeat four times with corresponding Runge–Kutta factors so
that q qn 1

save=+ at the last substep. Perform another CT update
on qsave before moving it into q.

4. Test Calculations

All simulations in this section are run with CFL=0.8 in
8 byte precision. We also do not use protection fluxes or
density/pressure floors, unless noted otherwise. State vectors are
defined as primitive variables U v v v B B B P, , , , , , ,x y z x y z

Tr= ( )
or as conserved variables Q v v v B B B E, , , , , , ,x y z x y z

Tr r r r= ( ) ,
where E(U) can be obtained from Equation (7). We compare our
WENO5 or WENO5-Z results with WOMBAT’s second-order
TVD+CTU implementation presented in Mendygral et al.
(2017). The L1 error norm is given by

q
q q

L
t

N

0
, 49

s i

N
i i

1
1

2
Zones

å å=
-

=

⎛
⎝⎜

⎞
⎠⎟( )

∣ ( ) ( )∣
( )

where s denotes the components of the state vector. We are
using the geometrical norm of the L1 error to keep the results
comparable to those of Gardiner & Stone (2005, 2008), Stone
et al. (2008), and Felker & Stone (2018). Other definitions are
in use as well, e.g., the mean of L1.

4.1. Linear Wave Convergence

The convergence order of the scheme can be exposed by
advecting a perturbation corresponding to one of the (M)HD
eigenvectors through a periodic box with 2N×N×N zones
and a domain of 3×1.5×1.5 in three dimensions. This test
evaluates the code in the linear regime and is very valuable for
debugging. As the setup is not trivial, especially in three
dimensions, we describe it in greater detail here, but note that
the WOMBAT or ATHENA source code is likely indispensable to
fully reproduce the results. A very instructive discussion of
advection comparing WENO5 with TVD in one dimension can
be found in the introduction of Shu (2003).

Following Gardiner & Stone (2005, 2008) and Stone et al.
(2008), we set γ=5/3 andU v B B B1, , 0, 0, , , , 1x x y z

Tg=¯ ( ) ,
where vx=1 for shear and entropy modes and vx=0 otherwise.
For hydrodynamic waves, B=0; for MHD waves, B =
1, 2 , 1 2 T( ) . We add a perturbation on the conserved
variables: Q Q RA xsin 2k0 p= +¯ ( ). Here, Rk is the right-hand
eigenvector of mode k and A 100

6= - . We note that the
perturbation is applied only once per component, i.e., the
momentum fluctuation uses the unperturbed background density.
The right eigenvectors for the (M)HD waves are

R
1

6 5
0, 0, 1, 2 2 , 0, 1, 2 2 , 0 50T

Alfven = - -( ) ( )

R
1

6 5
6,12, 4 2 , 2, 0, 8 2 , 4,27 51T

fast = - -( ) ( )

R
1

6 5
12, 6, 8 2 , 4, 0, 4 2 , 2,9 52T

slow = - -( ) ( )

R 1,1, 0, 0, 0, 0, 0,
1

2
. 53

T

entropy = ⎜ ⎟⎛
⎝

⎞
⎠ ( )

R 1,1, 0, 0, 0, 0, 0,1 1 54T
sound g= -( ( )) ( )

R 0, 0, 1, 0, 0, 0, 0,0 . 55T
shear,y = ( ) ( )

In three dimensions, we rotate the zone positions parallel to the
wave vector following Gardiner & Stone (2008), with the
rotation matrix

M ,
cos cos sin sin cos
cos sin cos sin sin

sin 0 cos

, 56a b
a b b a b
a b b a b
a a

=
-

-

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥( ) ( )

where sin 2 3a = and cos 2 5b = . We use its inverse/
transpose to rotate back into the laboratory frame. We set a
magnetic vector potential:

A 0 57x = ( )

A
A

R x B x
2

sin 2 58y k z k
0

,7
p

p= +( ) ( )

A
A

R x B x B y
2

sin 2 , 59z k y k x k
0

,6
p

p= - - +( ) ( )

Figure 1. Density contrast in the one-dimensional sound wave advection test.
Initial conditions with 1024 zones are shown by the black line. Simulation at
t=10 with 8, 16, 32, and 64 zones shown as violet diamonds, green square,
blue crosses, and red circles, respectively.
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where xk and yk are the x and y components of the zone
position rotated with the inverse rotation matrix. We note
that the vector potential has to be evaluated on the edges of
the zone in three dimensions, so that the resulting magnetic
field is field-centered. An example in our case Ax is defined

at i j k, ,1

2

1

2
+ +( ). The vector potential is then multiplied

with the forward rotation matrix, and the magnetic field on
the interfaces is obtained using a standard first-order FD
rotation operator. We observe B 10 12 < -· in all tests at all
times.

In Figure 1, we compare the profile of the density contrast at
t=10 in one dimension with the analytic solution. Simulations
are done with 8, 16, 32, and 64 zones and shown as violet
diamonds, green square, blue crosses, and red circles,
respectively. Dispersion is visible only at the lowest resolution,
eight zones. This compares well with results shown in
Wongwathanarat et al. (2016). In Figure 2, we plot the resulting
L1 error for resolutions between 8 and 128 zones run with
WENO5-Z. From top left to bottom right, we show 1D
hydrodynamic waves, 3D hydrodynamic waves, 1D MHD
waves, and 3D MHD waves. In the 1D case, the simulation
converges as N 5- , as expected, down to 10−11, where the effect
of wave steepening begins to limit further convergence of the
compressive modes. We note that for N 128> , the round-off
error from the 8 byte variables leads to an increase in L1 again
(see also Donnert et al. 2018). This suggests that the scheme
needs to be run with at least 8 byte precision to take advantage
of the high-order convergence properties.

In three dimensions, all hydrodynamic waves converge to
fifth order. The entropy MHD wave converges to fifth order in
L1 as well. This mode does not feature a fluctuation in the
magnetic field (Equation (53)); the background magnetic field
is only advected. All other MHD waves converge to second
order in L1, because our CT scheme is geometrically only
second order. However, the fluxes used are of course fifth-order
accurate, thus this error should be dominated by dispersion, not
dissipation (LeVeque 2002). The L1 norm measures both
errors, dispersion and diffusion.

Figure 2. L1 error over resolution for advecting hydrodynamic (top) and MHD waves (bottom) in one dimension (left) and in three dimensions (right) with WENO5-Z
across a unit computational domain for one wavelength following (Gardiner & Stone 2008). Fifth order is marked as dotted black line, second order as black line.

Figure 3. Decay rate (Equation (60)) of the y-component of the magnetic field
between t=0 and t=2 for the fast mode (red), the slow mode (green), and
the Alfvén mode (purple) with WENO5-Z.
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To further investigate this, we consider the decay rate of the
magnetic field in the wave that is sensitive only to the dissipation
error of the scheme (numerical diffusion), not the dispersion of
the wave. The decay rate Dt of By is defined as

B
t

B t t

B t

1
log

0
, 60y

y

y
D

end

endt
d
d

= -
=

=

⎛
⎝⎜

⎞
⎠⎟( )

( )
( )

( )

where δBy(t) is the root-mean-square magnetic field fluctuation
in the frame parallel to the wave vector. We plot the decay rate
of the fast, slow, and Alfvén waves in Figure 3 between the
initial conditions and time t=2. The time was chosen so that
all wave families have been advected through the domain at
least once. It is important to evaluate the decay time at a late
enough time, as the rms values fluctuate with time, indicative of
additional waves being present in the test setup. Fifth-order
convergence of the decay rate is observed for all three
remaining MHD waves.

This confirms that the error introduced by the second-order
CT scheme is indeed in the form of wave dispersion only, not
dissipation, i.e., the price paid for the computationally cheap
CT method from Ryu et al. (1998) is in the form of the
magnetic field shape, but not magnetic energy conservation.
This view is supported by results in the Alfvén wave and
magnetic field loop advection tests shown later in the paper.
Nonetheless, a comparison of the absolute value of the L1 error
with Stone et al. (2008 their Figure 32) yields that CT-WENO5
increases the effective resolution compared to ATHENA in three

dimensions by roughly a factor of 2, even for linear MHD
waves propagating with an oblique angle to the grid in three
dimensions. The L1 error is significantly smaller even at
N=16, so the statement is true despite the second-order
convergence for MHD waves.

4.2. Circularly Polarized Alfvén Waves

Polarized Alfvén waves are important in heating the solar
corona due to instabilities and have been studied for many
decades (e.g., Goldstein 1978; Del Zanna et al. 2001;
Ruderman & Simpson 2005; De Pontieu et al. 2007). As a
numerical test, polarized Alfvén waves can be used to evaluate
the fidelity of the CT scheme (Tóth 2000).
Following Gardiner & Stone (2005), we set U v1, 0, ,y= (

v B B, 1, , , 0.1z y z
T) , with v B x0.1 sin 2y y p= = ( ), v Bz z= =

x0.1 cos 2p( ). In two dimensions, we rotate U by the second
Euler angle tan 2 63 .51q = » - ( ) . The computational domain
has N N2 ´ zones and covers L L, 5 , 5 2x yBox, Box, = . In
three dimensions, the wave is rotated similarly to Section 4.1.
The computational domain of 2N×N×N zones covers
L L L, , 3, 3 2, 3 2x y z =( ) ( ). Gardiner & Stone (2005) did
not find an instability using these parameters. We note that the
analytical rms at t=0 is given as 0.1 2 for fluctuating
quantities, while for all other quantities the initial rms is zero.
Thus, the former errors dominate the simulation, while the
latter quantities are subject to truncation errors from the
rotation operation.

Figure 4. Top left: L1 error of the circularly polarized Afvén wave test over resolution in 2D (blue) and 3D (green). Decay rate of the transverse magnetic flux is
shown by the dashed lines in units of 100. We mark second order as solid and fifth order as dotted black lines. Top right: Bz for the circularly polarized Alfvén wave
test in two dimensions at t=5 with N 8, 16, 32, 64, 128Î [ ] in red, blue, green, purple, and orange, respectively. Right: time evolution of root-mean-square
fluctuations around the background state in the Alfvén wave test with 64 322´ zones for the state vector components that carry a fluctuation.
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On the top left of Figure 4, we show the L1 error norm in 2D
(blue) and 3D (green) over the number of zones after the wave
has traveled for a five-wave period (c 1A = ) in a frame parallel
to the wave vector. The scheme converges at second order in

L1. This is in line with the result from the previous linear wave
convergence test.
We also show the decay rate convergence as dashed lines in

Figure 4. However, this time, oscillations in the rms of the state

Figure 5. Shock tube test 2a from Ryu & Jones (1995) at time t=0.2 in one dimension. The TVD+CTU result with 10,000 zones is shown by the red line, WENO5
result with 512 zones as black squares. Density, velocity components, magnetic field components, pressure, and energy are shown from top left to bottom right.
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vector components can lead to negative decay rates even at
rather late times. In Figure 4, bottom, we show these rms
fluctuations over time for 64 322´ zones in three dimensions
for the components that carry a fluctuation in the initial
conditions. Dissipation in the solution is observed as
asymmetry in the rms at late times. To obtain a robust measure
for the wave decay, one may consider the rms of the transverse
magnetic flux in the wave (red line):

F B v B vrms 61y y z zB,tv
2 2d = +( ( ) ( ) ) ( )

For this quantity, fifth-order convergence is observed at all
times in Figure 4, top left.

In Figure 4, top right, we show the z-component of the
magnetic field in two dimensions after advecting for five wave
periods for resolutions of N 8, 16, 32, 64, 128Î [ ] in red, blue,
green, purple, and orange, respectively. Only the lowest
resolution shows some dissipation; dispersion is observed for
the two lowest resolutions. This is a significant improvement
over the results shown in Tóth (2000) for the same CT scheme.
It also compares favorably with WOMBAT’s TVD+CTU
implementation (see Mendygral et al. 2017) and matches
results from the ATHENA solver (Gardiner & Stone 2008, their
Figure 4), despite the simpler CT scheme.

4.3. RJ95 2a Shock Tube

We compute shock tube number 2a from Ryu & Jones (1995)
with WOMBAT’s TVD+CTU and WENO5 solver. The shock
tube features all four MHD modes. The left-hand state vector

is U 1.08, 1.2, 0.01, 2 4 , 3.6 4 , 2 4 , 0.95 T
L p p p= ( ) .

The right-hand state vector is U 1, 0, 0, 0, 2 4 ,R p= (
4 4 , 2 4 , 1 Tp p ) . We plot the TVD+CTU result with 104

zones using the red line and the WENO5 result with 256 zones as
black circles. The evolved state vector components at t=0.2 for
the one-dimensional computation are found in Figure 5; those in
three dimensions are in Figure 6. For three dimensions, we
rotated the shock normal along k=(1, 1, 1)T in a 1283 zone
simulation. The primitive variables alongside the magnetic field
angle B Barctan y z

1f = - ( ) in degrees are shown in Figure 6.

4.4. RJ95 4d Shock Tube

We compute shock tube number 4d from Ryu & Jones
(1995) with WOMBAT’s TVD+CTU and WENO5 solver. The
left-hand state vector is U 1, 0, 0, 0, 0.7, 0, 0, 1 T

L = ( ) . The
right-hand state vector is U 0.3, 0.0.1, 0.7, 1, 0, 0.2 T

R = ( ) .
We plot the TVD+CTU result with 104 zones using the red line
and the WENO5 result with 256 zones as black circles. The
evolved state vector components at t=0.16 are shown in
Figure 7.

4.5. Brio & Wu Shock Tube

The MHD shock tube from Brio & Wu (1988a) has the initial
conditions U 0.125, 0, 0, 0, 0.75, 1, 0, 1 T

L = ( ) , U 0.125,R = (
0, 0, 0, 0.75, 1, 0, 0.1 T- ) , with 2g = . In Figure 8, we show
the solution at t=0.08 with 400 zones as black squares and the
solution from TVD+CTU with 104 zones as the red line.

Figure 6. Shock tube test 2a from Ryu & Jones (1995) at time t=0.2 in three dimensions along the zone diagonal of the computational domain. The WENO5 result
with 1283 zones is shown by the black squares. Density, pressure, energy, velocity components, magnetic field components, and magnetic field angle f in degrees are
shown from top left to bottom right.
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We note that this problem starts with a degeneracy in the
magnetic field when computing the eigenvectors of the initial
conditions in the single zone at x=0.5. Following Brio & Wu
(1988a), we resolve this degeneracy by setting B B 1 2y z= = .

However, in this particular problem, Bz=0 at all times. Thus, the
test exposes this choice in the eigenvectors. Setting Bz=0 for this
problem only would remove the oscillations in Figure 8. Balbás &
Tadmor (2006) have shown that the issue can also be fixed with

Figure 7. Shock tube test 4d from Ryu & Jones (1995) at time t=0.2 in one dimension. The TVD+CTU result with 10,000 zones is shown by the red line, WENO5
result with 256 zones as black squares. Density, velocity components, magnetic field components, pressure, and energy are shown from top left to bottom right.
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global smoothness indicators. In real world applications in two or
more dimensions, this is not an issue. H. Jang et al. (2019, in
preparation) found that the oscillations disappear with WENO3,
i.e., in lower order codes, increased dissipation leads to a constant
solution.

4.6. Shock-density Wave Interaction

The Shu–Osher shock tube simulates the interaction of a
shock with a smooth flow (Shu & Osher 1989). Greenough &
Rider (2004) used it to argue that second-order PPM methods
give results comparable to third-order WENO methods and are
thus computationally more efficient. It exposes that the
standard WENO5 weights are at best third-order accurate in
critical points (Borges et al. 2008).

The initial conditions contain a shock tube with left and right
states U 3.857143, 2.629369, 0, 0, 0, 0, 0, 31 3 T

L = ( ) and

U x1 0.2 sin 5 , 0, 0, 0, 0, 0, 0, 1 T
R = +( ( ) ) on a domain of

size Lx=10. The shock is located at x=−4. The shock tube
is evolved until t=2.
In Figure 9, we show the result from the WENO5 (green

circles) and WENO5-Z simulations (black squares) with 300
zones and TVD+CTU with 10,000 zones (red line). Clearly,
the WENO-Z result traces the complex flow behind the shock
more accurately than the WENO5 result.
Another variant of the test, run on a domain of [−1, 1] and

with a factor π in the sine function of the initial conditions, is
shown in Figure 9, bottom. The result can be directly compared
to Felker & Stone (2018), their Figure 5. WENO5 roughly
performs as well as their PPM+RK4 scheme, while WENO5-Z
traces the complex shock wave structure better than PPM
+RK4. This is in line with expectations from the WENO
literature (e.g., Borges et al. 2008).

Figure 8. Shock tube test from Brio & Wu (1988b) at time t=0.08. We show the density, x and y components of the velocity, y component of the magnetic field,
pressure, and energy from top left to bottom right. Results from WENO5 with 400 zones are shown by the black squares, and those from TVD+CTU with 10,000
zones as the red line.
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4.7. Gaussian Pulse

Following McCorquodale & Colella (2011), we simulate the
time evolution of a Gaussian acoustic pulse in two dimensions.
In a periodic domain of size one, we set

r
e r r0 cos if

0 otherwise
62

r
0

16 1

2

2 
r

r dr p

r
=

+ -⎪

⎪

⎧
⎨
⎩

( ) ( ) ( ) ( )

p
0

63
r
r

=
g⎛

⎝⎜
⎞
⎠⎟ ( )

with 1.40r = , 0.140dr = , γ=1.4. The simulation ran
until t=0.24.

We show the resulting density in Figure 10 at t=0 (left)
and at t=0.24 (right). The color scale ranges from 0.136 to
1.54; we add contours at 1.375, 1.4, 1.425, 1.45, 1.475, 1.5,
and 1.525.

To compare directly with McCorquodale & Colella (2011),
we run a convergence study of the density differences at time
0.24. To this end, we compute the density error using cubic
spline interpolation to obtain a reference solution from a run
with 10242 zones. We obtain second-order convergence.

4.8. Implosion

The noise inherent in an implementation can be exposed in
the two-dimensional implosion test (Liska & Wendroff 2003).

The setup leads a series of shock waves, which are intersecting
many times in the simulation. The problem is highly nonlinear
and thus not very useful to compare algorithmic fidelity. There
is simply no convergence to a universal solution that results
could be compared to. However, the nonlinearity ensures that
computational noise gets amplified very quickly and solutions
diverge strongly from correct, less noisy results. Using this test,
we found noise injected by the compiler at the 10 16- level in
the eigenvector calculation (see the Appendix) by comparing
the solution to TVD+CTU. This may be a word of warning for
running Eulerian methods with 4 byte floating point precision,
where numerical noise itself resides at 10−8 and thus will
influence this test significantly. Many real world applications
are strongly nonlinear and thus may not be correct with 4 byte
variables.
We set U 1, 0, 0, 0, 0, 0, 0, 1 T= ( ) everywhere in a

periodic domain with size L L 0.3x y= = and 2002 zones.
When x+y<0.15, we set U 0.125, 0, 0, 0, 0, 0, 0,= (
0.14 T) . We show the resulting density in Figure 11 at
t=0.2, 0.3, 0.5, and 0.7 (top left to bottom right) on a color
scale ranging from 0.4 to 1.2. We notice that the symmetry in
the simulation is not visibly broken, and the results are
reasonably similar to the tests shown in Liska & Wendroff
(2003). We show the vorticity of the test at t=0.3 in
Figure 12, where no noise is visible. In particular, the result is
symmetric along the x=y axis down to single zones.
The implosion test was used by Sijacki et al. (2012) to

compare results between a traditional SPH and a Lagrangian
finite volume method. Both show more computational noise
than our Eulerian method due to particle motion. The same
seems to be true for the low-order DG scheme presented in
Mocz et al. (2014). There are sizable differences in the shape of
the “bird” in the lower left corner between all these codes and
our results. In particular, interfaces in the results of the
Lagrangian FV and DG schemes differ from our WENO5
simulation. Numerical noise seems to trigger Raleigh–Taylor
instabilities in the Lagrangian simulation that are absent in the
Eulerian simulations. This noise is clearly visible in the
vorticity maps (their Figure 3). Runs at much higher resolution
show that indeed these interfaces do become unstable
eventually. However, due to the nonlinearity of the flow, the
high-resolution Eulerian result differs significantly from both
low-resolution runs in that all instabilities grow faster in the
high-resolution Eulerian runs. As mentioned above it is unclear
which result is closer to the “true solution” in this test, and we
conclude that numerical noise affects the growth of instabilities
in highly nonlinear solutions of the hydrodynamic equations,
which is of course not a new result at all (e.g., McNally et al.
2012).

4.9. Orszag–Tang Vortex

The Orszag–Tang vortex is a standard MHD test that
mimics the transition of a smooth flow into 2D turbulence
(Orzang & Tang 1979; Tóth 2000; Stone et al. 2008). The
initial conditions in a unit domain are U 25 36 ,p= ( ( )

y y B B Bsin 2 , sin 2 , 0, , , 5 12 ,x y z
Tp p p- ( ) ( ) ( )) where the magn-

etic field components are obtained from a vector potential with
the z-component A B x B y4 cos 4 2 cos 2z 0 0p p p p= +( ) ( ) ( ) ( ),
with B 1 40 p= .
We show in Figure 13, top left to bottom right, the density,

pressure, velocity magnitude, and magnetic field strength at
time t=0.5 at a resolution of 1922 zones with WENO5-Z. In

Figure 9. Top: density of the shock-density wave interaction test at time t=1.
Bottom: Shu–Osher test at t=0.47 with 200 zones for WENO and WENO-Z,
and 10,000 zones for TVD.
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Figure 14, we show the vortex at t = 1 run with 5002 zones.
Some schemes produce negative pressures at these late times.
The results compare very well to the high-order code shown in
Felker & Stone (2018). In particular, we see more structure in the
central vortex and no break in symmetry. In Figure 15, we show
the pressure in two slices through the domain at t y0.5,= =

0.1875- (top) and t=0.5, y=0.073 (bottom). A high-
resolution run with TVD+CTU is included as a reference
solution.

In Figure 16, we compare the pressure at y=−0.1875,
−0.5<x<0, and t=0.5 of WENO5-Z with 1282 zones
(green squares) with TVD+CTU (blue circles) with 2562

zones. The reference solution with 10242 zones is plotted by
the red line. Apparently, WENO5-Z has fidelity comparable to
or better than that of TVD+CTU at double the resolution in
this test. In particular, the blip at x 0.45= - is better resolved
in the WENO5-Z solution. A comparison with Figure 15 shows
that the blip becomes fully resolved at 1922.

Figure 10. Left: convergence study of the Gaussian pulse test. Right: density of the initial conditions and at t=0.24 in the Gaussian pulse test, run with WENO5-Z
and 1282 zones. Black contours are at 1.375, 1.4, 1.425, 1.45, 1.475, 1.5, and 1.525.

Figure 11. Density of the implosion test at times t=0.2, t=0.3, t=0.5, and t=0.7 (top left to bottom right). The color bar ranges from 0.4 to 1.2; the resolution
was 2002 zones.
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In Figure 17, we compare Schlieren images (Hooke 1665;
Helzel et al. 2011) of the density in TVD+CTU runs at 5122

and 2562 zones (left, middle), with the WENO5-Z run at 1282.
Following Guo & Zhang (2004), we obtained a synthetic
brightness value by adding the red and yellow channels with a
Gladstone–Dale constant of K 1GD = , L=1, and a contrast
parameter of C=0.075. Schlieren images visualize the
gradient of the solution, which makes the Orszag–Tang vortex
test more discriminating between schemes. We observe that all
main features of the low-resolution TVD+CTU simulation are
reproduced in the WENO5-Z simulation at half that resolution.
We conclude that WENO5-Z doubles the effective resolution
compared to TVD+CTU in this test.

4.10. MHD Rotor

The MHD rotor test simulates a rapidly rotating disk in two
dimensions, which produces shocks and rarefaction waves as
the disk expands due to centrifugal forces (Stone & Norman
1992; Balsara & Spicer 1999a; Stone et al. 2008). The solution
needs to remain symmetric, and no spurious oscillations may
occur. We set initial conditions with γ=5/3 in a unit domain
of P=1, B 5 4 , 0 Tp= ( ) , v 20 = , r 0.10 = , r 0.1151 = ,
f r r r

r r
1

1 0
= -

-
( ) , and (Tóth 2000)

r r
f r r r r

10
1 9
1 otherwise.
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We show the test result with WENO5 and 2002 zones at time
t=0.15 in Figure 18. A slice through the rotor at t=0.5 and
y 0.1875= - (top) and y=0.073 are shown in Figure 19.
We show the WENO5 solution with black squares, and TVD
+CTU with 10242 zones with the red line and with 4002

zones with blue dots. No asymmetries or oscillations are
visible; the WENO5 solution at 2002 resolves the small
features comparably to or better than TVD+CTU. A by-eye
comparison with published results from ATHENA (Stone et al.
2008, their Figure 26), yields that WENO5 at half resolution
is not quite as resolved as ATHENA at full resolution, likely
because our CT scheme is only second order in space. There
is some ringing visible in the density maps, which could
likely be alleviated using global weights. We leave the
improvement to future work.

4.11. Double Mach Reflection Test

The double Mach reflection test simulates the evolution of a
Mach 10 shock at an oblique 60° angle to the grid with
reflecting boundaries on the bottom x-axis, continuous upper
x-boundary, and open y-boundaries (Woodward &
Colella 1984; Stone et al. 2008). Here, the adiabatic index
γ=1.4 for air, the state ahead of the shock is
U 1.4, 0, 0, 0, 0, 0, 0, 1 T= ( ) , and the domain size is
3.25×1. Because the shock is reflected off the bottom wall,
a second weak shock and a jet form. In the upper boundary, the
evolution of the shock is followed analytically, i.e.,
x t1 6 1 20shock = + +( ). As the shock in the setup is only
one cell wide, the initial conditions contain an error, which is
also continuously injected at the upper boundary. A one-cell-
wide shock is not a “natural” solution to the numerical scheme,
similar to the common shock tube setup used in SPH code tests.
The test foremost exposes the robustness of the numerical
scheme that has to handle these errors by injecting numerical
diffusion. This differs from SPH shock tube tests, where
dissipation and conduction has to be explicitly added. This test
produces negative pressures when run with the WENO5-Z
scheme without protection floors or protection fluxes.
In Figure 20, we show the density from the test run with

the standard WENO5 scheme at times t=0.05, 0.1, and 0.2
(top to bottom). We also overlay 30 contours between 1.73
and 20.92, which can be directly compared to Woodward &
Colella (1984), their Figure 4. In the top panel, the error of
the initial shock is visible in the color scheme as two stripes
with slightly lower density left of and parallel to the shock.
Over time, another such dip forms, starting at the location of
the shock at the upper y-boundary traveling toward the
lower left.
A zoom into a simulation with 1024×256 zones at t=2

is shown in Figure 21 and can be directly compared to
McCorquodale & Colella (2011), their Figure 7. In some
codes, the reflection of the shock off the bottom y-boundary
causes a carbuncle instability, because the Mach number
is very high here. We do observe this instability with
the standard WENO5 scheme, although only at high
resolution.

Figure 12. Logarithm of the vorticity of the implosion test at time t=0.3. The
color bar ranges from 0.001 to 50, the resolution was 2002 zones.
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4.12. Kelvin–Helmholtz Instability

The growth of instabilities plays a crucial role for mixing and
the injection of vorticity in astrophysical fluid flows (e.g.,
Sheardown et al. 2018). We evaluate the performance of the code
using the Kelvin–Helmholtz (KH) test, where the kinetic energy
of a slightly perturbed shear flow generates vorticity at the

interface (e.g., Parker 1958; Miura & Pritchett 1982; Frank et al.
1996). This test has been used extensively in the literature to test
hydrodynamic codes (e.g., Springel 2010; McNally et al. 2012;
Hopkins 2015; Schaal et al. 2015; Beck et al. 2016). In particular,
the KH problem was used to expose the artificial surface tension
of traditional SPH methods (e.g., Hopkins 2013). It also exposes

Figure 13. Images of the Orszag–Tang vortex test at time t=0.5 with 1922 zones. Top left to bottom right: density, pressure, v2, and B2.

Figure 14. Density (left) and pressure (right) of the Orszag–Tang vortex as t=1 with 5002 zones.
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the velocity-dependent truncation error in Eulerian grid methods
(Robertson et al. 2010). Our setup follows Lecoanet et al. (2016):
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with the parameters A= 0.01, P 100 = , a= 0.05, 0.4s = ,
z 0.51 = , z2= 1.5, u 1flow = , and 10 0r r rD = = . We note
that the instability is not resolved in our runs with this choice of
parameters, i.e., the instability grows too slowly due to
numerical effects. Simulations are run in a periodic domain
with L L2, 1y x= = .

In Figure 22, we show the density of four simulations at
t=2. The top-left to bottom-right panels show WENO5-Z
without boost with 512×1024 zone resolution, WENO5 with
32×64 zones without a velocity boost, WENO5 with 32×64
zones boosted by vx=50, and TVD+CTU with 128×256
zones without boost.

The TVD+CTU run does not develop a vortex roll due to
numerical diffusivity, even at twice the resolution from the
WENO5 runs. In contrast, the low-resolution WENO5 runs
develop a vortex similar to the high-resolution simulation (see
Lecoanet et al. 2016). This shows that WENO5 resolves
instabilities much better than the second-order TVD+CTU,
even at half the grid resolution. WENO5 is also much less
susceptible to advection errors. The boost of vx=50 (!) barely
changes the result. Some differences are visible at the tip of the
roll, because the truncation error is not Galilean invariant.
Nonetheless, we expect significant improvements in the growth
of instabilities in cosmological simulations, where advection is
commonplace and may be a major source of diffusivity for
second-order Eulerian methods (Springel 2010).

4.13. Gresho Vortex

The Gresho vortex (Gresho & Chan 1990; Liska &
Wendroff 2003; Springel 2010) is a two-dimensional rotating
structure in hydrodynamic equilibrium that evaluates the
angular momentum and vorticity conservation of the code.
The test becomes very challenging for Eulerian codes, when
the vortex is advected to the grid. It exposes how the increase
in truncation error affects angular momentum conservation.
Instructive discussions can be found in Miczek et al. (2015) and
Wongwathanarat et al. (2016).
In a two-dimensional unit domain, we set

U v r v r P r1, , , 0, 0, 0, 0, , 71x y
T= ( ( ) ( ) ( )) ( )

with the radius r and10
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Figure 15. Pressure in the Orszag–Tang vortex test at y=−0.1875 (top) and
y = 0.073 (bottom) and at time t=0.5. WENO5-Z with 1922 zones is shown
by the black squares, TVD+CTU with 10242 zones by the red line.

Figure 16. Pressure in the Orszag–Tang vortex test at y=−0.1875,
−0.5<x<0, and at time t=0.5. WENO5-Z with 1282 zones is shown by
the black squares, TVD+CTU with 10242 zones by the red line, and TVD
+CTU with 2562 zones by the blue circles.

10 We use the Fortran ATAN2 function here.
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The tests shown in Springel (2010) correspond to p 50 = , a
relatively high maximum Mach number of M 0.41max » .

We run a convergence study of the test with the WENO5-Z
algorithm using three different boost velocities in the
x-direction: 0, 1, 3. The results are shown in Figure 23 where
we show the L1 error over resolution. Blue, green, and purple
lines correspond to boost velocities of 0, 1, 3, respectively. We
add a dotted line scaling with N 1.4- , which corresponds to the
scaling obtained with AREPO in Springel (2010). In this
regime, our results compare quite favorably to the results
obtained with lower order FV codes. In particular, the error
remains small even with the velocity boost at most resolutions
and is smaller than the errors observed with ATHENA at all
times.

The boost mostly affects resolutions below 1002, where the
vortex becomes underresolved. Below 202, the L1 error with
velocity boost is reduced again. We note that the error changes
depending on how the center of the vortex is placed on the grid,
likely because the initial conditions contain a discontinuity at
r=0.2. As discussed in Muñoz et al. (2013), the sampling of
the discontinuity affects the convergence properties of the
simulations.

To illustrate this further, we show in Figure 24 (left to right)
the angular velocity vf, pressure, and vorticity vrw =  ´( )
over radius. We compute

v r
xv yv

x y
, 78

y x
2 2

f =
-

+
( ) ( )

and the vorticity from the standard FD operator. Analytic
profiles are shown as red lines, the initial conditions as red dots,
the simulation at t=3 without boost as black dots, and the
simulation with velocity boost of vx=3 as blue dots. From
top to bottom, we show resolutions of 16 , 322 2 and 642 zones.
The results for the static compare well with the results of the

low-order DG scheme on a rectangular grid shown in Mocz
et al. (2014), their Figure 5. Low-order DG codes on polar
grids, however, show better conservation properties in vorticity
(e.g., Velasco Romero et al. 2018, their Figure 3). The run
with 322 zones and velocity boost shows the largest scatter, in
line with the increase in L1 error observed before. At 16

2 zones,
the profiles show less scatter, but are only sampled with 15
unique values below r= 0.4 in the ICs. At this low resolution,
the problem is underresolved, and it stands to reason that the
reduced scatter in the evolved boosted profiles is a result of the
poor sampling. In particular, the discontinuous peak of the vf
profile is not sampled directly, which should lead to additional
error (Springel 2010; Muñoz et al. 2013). We speculate that the
pronounced increase in L1 error around 32

3 zones is a feature of
the FD WENO5 reconstruction without cross-terms. Indeed,
Liska & Wendroff (2003) found a relatively high L1 error in
total kinetic energy for their WENO5 scheme at low
resolutions.
To fully expose the fidelity in momentum conservation, we

show the normalized velocity at t=1 with 402 zones in
Figure 25. From left to right, we show runs with decreasing
M 10 , 10 , 10max

1 2 3= - - - . The vortex clearly loses integrity at
low Mach numbers. This result can be compared directly to
Wongwathanarat et al. (2016), their Figure 3. Following the
discussion in Miczek et al. (2015), this result is likely due to the
scaling of the Roe fluxes, and the missing cross-terms in our
FD WENO scheme.
We conclude that the stationary solution with WENO5

is competitive with the AREPO and ATHENA solutions
presented in Springel (2010), but not with high-order DG
codes (Velasco Romero et al. 2018) or FV codes on polar grids
(Wongwathanarat et al. 2016). At relatively high Mach
numbers, the error in the boosted solutions is comparable with
second-order static Cartesian mesh solutions at intermediate
resolutions and approaches the Lagrangian error at resolutions
above 1002 zones.

4.14. Advection of a Density Square

The velocity-dependent truncation error of Eulerian grid
methods can be clearly exposed in the density advection test
(Robertson et al. 2010; Hopkins 2015). In two dimensions, a
density square in hydrodynamic equilibrium with the

Figure 17. Schlieren image of the density in the Orszag–Tang vortex test at t=0.5 for TVD+CTU with 5122 zones (left) and 2562 zones (middle), and WENO5-Z
with 1282 zones (right).
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surrounding medium is advected supersonically through a unit
domain: U 1, 100, 50, 0, 0, 2.4 T= ( ) , except 4r = , when

x0.25 0.25- < < and y0.25 0.25- < < . Here, γ=5/3,
thus cs = 2, so the advection is supersonic (M 100> ) with
respect to the reference frame of the mesh. Although this test is
trivial with Lagrangian schemes such as SPH, meshless finite
volume, and moving finite volume schemes, it presents a very
serious challenge to Eulerian grid methods.

We show the result of the test run with TVD+CTU,
WENO5, and WENO5-Z in Figure 26 at time t=10. We also
include a WENO5-Z run with CFL=0.2. The convergence
rate is shown in Figure 27.

Due to the high velocity relative to the grid, the solution is
smeared out significantly by the TVD+CTU algorithm, as
expected from a second-order method. WENO5 performs a bit
better, although still with significant dispersion. This is because
the edges of the density square are critical points in the flow,
where the classical WENO5 weights are only third-order
accurate. WENO5-Z performs significantly better, with the
density square being preserved, but strongly distorted.
Quantitatively, WENO5-Z shows an improvement in L1 error
by roughly a factor of 2 at late times.

These results can be directly compared to the results shown
with the discontinuous Galerkin (DG) code TENET in Schaal
et al. (2015). In terms of L1 error, WENO5 performs roughly

like a second-order DG code. WENO5-Z performs better than
second-order DG, but worse than third-order DG. We note that
increasing the convergence order in a DG scheme reduces the
time step by a factor of 2. Thus, the time step of the DG3
scheme is 20 times smaller than in our WENO5-Z run
(compare their Equation (24), CFL= 0.2, with our
Equation (17), CFL=0.8, in three dimensions). Thus, these
DG schemes are more computationally expensive than
WENO5, where the time step does not change with the order
of the scheme.11 DG schemes also require more memory,
because the full polynomial has to be stored in every zone in
one way or another. We ran the WENO5-Z simulation with a
reduced CFL number of 0.2 to approach the computational cost
of a DG3 algorithm. The distortion of the square is reduced
further, but the L1 error remains roughly the same.
This result suggests running strongly advection-dominated

problems with WENO5-Z, not with the classical WENO5
method. As the method is significantly less robust, this results
in a trade-off between more protection fluxes and reduced
advection error for complex problems. It will depend on the
problem under consideration on which approach delivers better
results.

Figure 18. Images of the MHD rotor test at time t=0.15 with 4002 zones. Top left to bottom right: density, pressure, v2, and B2.

11 This result is independent of architecture if both codes are properly
vectorized and cache-blocked, and compilers are mature.
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4.15. Advection of a Magnetic Field Loop

The field loop advection test is instrumental for the
development and testing of CT schemes for the magnetic field
evolution in Eulerian codes (Gardiner & Stone 2008). This is a
difficult test for the CT scheme of the code, as only the electric
field and magnetic field are moving through the domain. In
applications, this will rarely be the case.

In two dimensions, we set up a periodic domain of size
L L 2 1x y´ = ´ with U B B1, 2, 1, 0, , , 0, 1x y

T= ( ) and a
vector potential on the interfaces with zero x and y components,
but

A A r r , 79z c0= -( ) ( )

where A 100
3= - , rc= 0.3. The magnetic field on the

interfaces is then obtained as the curl of the vector potential
on the faces. In Figure 28, we show the resulting magnetic field
energy density of the initial conditions (left) and the simulation
at time t=2 with TVD+CTU (middle) and WENO5 (right)
with 128×64 zones. The WENO5 scheme keeps the shape of
the loop well while it is advected through the box. The shape of
the loop is comparable to second-order CT schemes (Stone
et al. 2008; Lee 2013). In contrast, the TVD+CTU loop is
barely visible; most of the magnetic energy has dissipated into
heat. To quantify this, we show the time evolution of the
normalized magnetic energy in three runs with 32, 64, and 128
zone base resolution in Figure 29. We mark 98% by the dotted
horizontal line.

WENO5 retains more than 90% of the magnetic energy of
the field loop, even at the lowest resolution run, while TVD
+CTU loses more than half of the magnetic energy until that
time, even at the highest resolution. The conservation of
magnetic energy also compares favorably with the results
shown in Lee (2013) and Felker & Stone (2018). Even though
our CT scheme is much less elaborate than theirs, the magnetic
field fluxes are fifth-order accurate and thus improve energy
conservation. Again, WENO5 roughly doubles the effective
resolution of the simulation, i.e., our run with 642 zones
conserves magnetic energy roughly like ATHENA with 1282

zones. These results are in line with our findings from the wave
convergence tests, where wave diffusion is fifth-order accurate,
but wave dispersion is second-order accurate. The structural
integrity of our field loop is comparable to the results in Felker
& Stone (2018), which is third order in space and fourth order
in time. As expected, WENO5 with CT conserves magnetic
energy better than Felker & Stone (2018), due to the fifth-order
fluxes. The scheme also compares well with the FDs schemes
shown in Mignone et al. (2010). This shows the advantage of
the CT approach over divergence-cleaning methods, despite the
second-order convergence in the linear wave advection tests.
The fourth-order FV CWENO code presented in Verma et al.
(2019) shows even better conservation properties. The
CWENO code retains 98% of magnetic energy at t=100 for
1282 zones. These results place our FD WENO5 scheme in
between high-order FV WENO codes and low-order FV codes
or high-order codes without CT. Considering the usual trade-
off in efficiency and fidelity, our simple but fast CT approach
sacrifices some magnetic field structure for computational
efficiency, but not magnetic energy conservation. In three
dimensions, the loop is rotated around the y-axis by

arctan 0.5f = ( ) (Gardiner & Stone 2008). We set up the
magnetic vector potential as

A A
r r
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A rendering of the resulting magnetic energy at time t=2 is
shown in Figure 30, i.e., after advecting the loop twice through
the grid. Following Gardiner & Stone (2008), we impose a
threshold in the projection at B 102 7= - to show the shape of
the loop edge. Again, the structure of the loop is comparable
with the rendering shown in Gardiner & Stone (2008).

4.16. Sedov–Taylor Blast Wave

This test models the self-similar evolution of a point-like
thermal detonation (von Neumann 1942; Sedov 1946; Taylor
1950). Despite its unpleasant historical context, it also is a

Figure 19. x-component of the magnetic field (top) and y-component of the
magnetic field (bottom) in the MHD rotor test at y 0.1875= - (top) and
y = 0.073 (bottom), at time t=0.5. WENO with 2002 zones is shown by the
black squares, TVD+CTU with 4002 zones by blue dots, and TVD+CTU with
10242 zones by the red line for reference.
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model for early supernova explosions and is useful to expose
the effects of the regular grid on the evolution of a strong
spherical shock wave propagating into a thin medium with

negligible pressure. We set U 1, 0, 0, 0, 10 , 0, 0, 108 5= - -( )
everywhere in a three-dimensional computational domain with
L L L 1x y z= = = . We inject a unit energy E 11 = in the center
of the box and distribute it using a Gaussian with FWHM

0.5 dxs = , where dx is the zone size. Our simulation uses
γ=5/3 and N=643 zones. The self-similar analytic solution
of the problem can be found in Landau & Lifshitz (1966),
with β=1.15.
In the left panel of Figure 31, we plot the radial profile of the

shock at t=0.06: the analytic solution in the red line and every
20th zone of the simulation by a black dot. On the right of
Figure 31, we show a slice through the simulation at
z t0, 0.06= = with colors on a log scale from 10−3 to 2
and contours at 0.01, 0.05, 0.1, 0.2, 0.5, and 2. The imprint of
the grid on the explosion is clearly visible at radii below 0.3
and comparable to the DG3 method reported in Schaal et al.
(2015), but better than the lower order WENO method
presented in Feng et al. (2004), likely due to our higher order
time integrator. Although these results seem disappointing at
first, it is worth remembering that the DG3 scheme results used
a 20 times smaller time step than ours and are an order of
magnitude more expensive to compute.

Figure 20. Density of the 2D double Mach reflection test with WENO5 at times 0.05, 0.1, and 0.2 (top to bottom) and resolution 260×80 zones. We overplot 30
contours between 1.73 and 20.92, following Woodward & Colella (1984).

Figure 21. Density of the 2D double Mach reflection test with WENO5 at
t=0.2 and resolution 1024×256 zones. We overplot 30 contours between
1.73 and 20.92, following Woodward & Colella (1984).
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In this test, Lagrangian schemes perform much better than our
Eulerian scheme, due to the adaptive sampling (e.g., Springel
2010).

4.17. MHD Blast Wave

The magnetized blast wave simulation tests code performance
in the low-β regime, i.e., when shocks are evolved in the presence
of strong magnetic fields. Following Londrillo & Del Zanna
(2000), we set U B B P1, 0, 0, 0, 2 , 2 , 0, T

0 0= ( ) , with
P r r 1c< =( ) , P r r 100c> =( ) , B 100 = , and rc= 0.125. It
follows that 0.02b = in the medium ahead of the shock. The
domain is L L L 1 1.5 1x y z´ ´ = ´ ´ . Slices through density,
pressure, v2, and B2 from a WENO5 simulation at time t=0.2
and z=0 with resolution of 200×300×200 zones are shown
in Figure 32. The imprint of the magnetic field that is oriented
along 1, 1, 0 T( ) on the shock is clearly visible. We note that this
test evaluates the robustness of the algorithm, and indeed,
WENO5 required protection floors to complete the simulation.

Figure 22. Density in Kelvin–Helmholtz simulations at t=2. The color bar ranges from 0.95 to 2.05. Top left to bottom right: WENO5-Z with 512×1024 zones,
WENO5 with 32×64 zones, WENO5 with 32×64 zones and a velocity boost of vx=10, and TVD+CTU with 128×256 zones and vx=0. We have duplicated
the domain once along the x-direction to ease comparison with other publications.

Figure 23. L1 error norm of the angular velocity vf in the Gresho vortex test at
t=3 for three WENO5 simulations with vx=0 (blue), vx=1 (green), and
vx=3 (purple). The dotted line corresponds to a scaling of N 1.4- and is
normalized to approximately correspond to the results shown in Springel
(2010), their Figure 29.
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We leave a more elaborate implementation of protection fluxes to
future work.

5. Code Performance

5.1. Cache Blocking

All modern HPC systems feature a cache hierarchy to
increase effective memory bandwidth to the CPUs (level 1,
level 2, ...), with the fastest cache usually being the smallest

due to silicon cost. To achieve good performance, it is desirable
to divide the computational problem into subproblems that fit
into the cache hierarchy, so that memory bandwidth is
increased. This technique is called cache blocking. The optimal
size will depend on the architecture of choice and the overhead
in the algorithm, thus it has to be determined empirically. In
WOMBAT, cache blocking is mitigated by tuning the patch size
for a given architecture. Small patch sizes are desirable,
because they enable more fine-grained load balancing.

Figure 24. Left to right: angular velocity, pressure, and vorticity profile of the Gresho vortex simulations at (top to bottom) 16 , 32 , 642 2 2 zones. In each panel, we
show the exact solution as the red line, the initial conditions as the red dots, and at t=3 the WENO5 solution without boost as the black dots alongside the WENO5
solution with vx=3 as the blue dots.

Figure 25. Normalized velocity of the Gresho vortex run with WENO5-Z at t=1 with 402 zones. Left to right: M 0.1, 0.01, 0.001max = .
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We run a patch size optimization study with 27 nodes to saturate
MPI communication on the Aries interconnect. In Figure 33, we
show the performance of the WENO5 algorithm on the Broadwell
architecture with 2 × 18 cores per node in million zones per
second per node as a function of number of zones per dimension
per patch. The problem size is at least 5123 zones, but varies by
about 30% between runs, as the number of patches must be evenly
divisible by the number of threads to not induce load imbalance in
the threading. Colors correspond to runs with a varying number of

MPI processes per node—blue: 2 MPI ranks/12 OpenMP threads;
green: 4 ranks/9 threads; purple: 12 ranks/3 threads; orange: 18
ranks/2 threads; yellow: 36 ranks/1 thread.
For all decompositions, the performance is maximized at 183

zone patches, then drops slightly and increases again toward
703 zone patches. This behavior differs from the TVD+CTU
solver that peaks at 323 and shows a strong drop in
performance for a larger patch size (see green dashed line
from Mendygral et al. (2017). The flattening of the data arrays
increases the vector length of all loops in the algorithm and
shifts the optimal cache block to smaller patch sizes in the
WENO5 solver. It also leads to effective use of the hardware
prefetcher at large patch sizes, so the cache blocking is
effectively done in hardware. This is not possible in the TVD
+CTU solver that is not flattened. With the side constraint of
small patch sizes, we conclude that WENO5 performs at 0.6
million zones per node with 183 zones per patch on Broadwell,
with four MPI ranks per node. WENO5 is thus a factor of 7.5
slower than the TVD+CTU solver at the same resolution, but
doubles the effective resolution. It follows that the WENO5
solver is more efficient than the second-order scheme, because
increasing the resolution by a factor of 2 per dimension
increases the runtime of the TVD+CTU solver by roughly a
factor of 16: 2× per dimension and roughly 2× because the
time step halves due to the factor 2 in xD in Equation (17)
(TVD+CTU uses a 1D criterion, but with CFL= 0.4 in 3D).

Figure 26. Density in the square advection test at t=10 with 642 zones. Top left to bottom right: TVD+CTU, WENO5, WENO-Z, and WENO-Z with CFL=0.2.

Figure 27. L1 error norm over time in square advection test with 642 zones. We
show TVD+CTU (blue), WENO5 (green), and WENO-Z (purple).
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5.2. Vectorization

Our implementation uses vector-processing registers (SIMD) in
modern CPUs extensively. Flattening the data arrays leads to large
trip counts in the vector loops that are well cache-blocked. For
every memory access, the virtual address has to be translated into
a physical address. In the translation look-aside buffer (TLB), the
memory management unit buffers page addresses for this
translation from virtual to physical memory. On a standard
system with 4 kb memory pages, our optimized vector loops can
lead to a large miss rate in the TLB; the resulting page walk
reduces performance by a factor of 2 (TLB thrashing). Thus, it is
important to run WOMBAT with some form of huge pages enabled.

To demonstrate the performance gain from vectorization, we
show the performance of the WENO5 solver on a 3D problem
in GFlops on the Intel Broadwell architecture in Figure 34: in
red, a single core without threads; in blue, a single core with
whole node active (36 cores as 4 ranks with 9 threads). The
performance of the run was measured by Cray Perftools.

In Figure 35, we compare the fractional number of
instructions generated by the Cray compiler for the Intel
Broadwell and Intel Skylake architecture, given a largest vector
length using the -vector0 and -preferred-vector-
length compiler flags. The top panel shows the instruction

for the Intel Broadwell architecture. Clearly, the compiler
vectorizes virtually all of the code at the highest vector length.
The bottom panel shows the same graph, but for the Intel
Skylake architecture. Here, the compiler only vectorizes the
complete code at 128 bit vector length, but chooses a mix of
vectorization and scalar instructions at broader vector lengths.
In particular, at 512 bit vectors, scalar instructions make up half

Figure 28. Magnetic field energy density B2 at zone center in units of 10−6 of the magnetic field loop advection test in two dimensions with 128 × 64 zones. Left to
right: initial conditions, TVD+CTU at time t=2, and WENO5 at time t=2.

Figure 29. Total magnetic field energy density over time for the magnetic field
loop test in two dimensions. We show WENO5 at three resolutions: 64 × 32
zones (red), 128 × 64 zones (blue), and 256 × 128 zones (green).

Figure 30. Magnetic field energy density B2 of the magnetic field loop
advection test in three dimensions with 128 2562 ´ zones at time t=2. A
threshold was imposed at 10−7.
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of the program. We note that the version with the widest
vectors is the fastest for both architectures, reaching about 20%
of double precision peak performance. Thus, Skylake is still
faster than Broadwell by about 500 MFlops.

This shows that on some architectures, constraints other than
vector length influence performance of the code. This is a good
argument against using intrinsics or compiler pragmas to
vectorize the whole program manually. Aside from the additional

Figure 31. Left: radial density profile of the three-dimensional Sedov–Taylor test at t=0.06, WENO5 simulation, shown as black dots; the analytic solution is shown
by the red line. Plotted is only every 20th zone. Right: slice through the simulation at z=0. We include contours at 0.01, 0.05, 0.1, 0.2, 0.5, and 2.

Figure 32. Slices through the MHD blast wave test at time t=0.02. Shown is the center of the domain with 200×300×200 zones along z=0. Top left to bottom
right: density, pressure, v2, and B2.
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maintenance effort required to port the program to new
architectures, the approach can actually increase execution time
on architectures like Skylake. The better strategy is to expose
instruction-level parallelism to the compiler and let the auto-
vectorizer choose the instructions depending on its internal
metrics. Given the increasing variety of HPC architectures
competing for new exascale systems in the next years, the
compiler remains the central tool for the programmer to achieve
optimal performance on a given architecture.

5.3. Weak Scaling

We test the weak scaling of WOMBAT on the Cray XC40
“Hazel Hen” at HLRS Stuttgart. The machine features a Cray
Aries interconnect, which uses a Dragonfly network with
adaptive routers that are well suited for the high rate of small
MPI messages in WOMBAT’s communication pattern. Large
pages of 16MB are enabled by default. We note that the
problem is well balanced, i.e., that the workload per node is the
same on all ranks. Thus, WOMBAT’s load-balancing capabilities
are not tested here. For large problems, communication is only

a small fraction of the total workload, which effectively hides
communication inefficiencies. Hence, we choose a particularly
small workload to clearly expose overhead from the MPI
communication in the run. Unfortunately, this is not true for all
weak scaling tests in the literature, and direct comparison with
other codes is not always straightforward. We also note that for
large-enough machines (millions of cores), communication
overhead will eventually always be exposed. Thus, the
argument that enough work is available per time step to hide
communication inefficiencies is just another way of saying that
an implementation does not scale beyond a certain point.
Here we use 3×4×4 patches per MPI rank with 183

zones per rank, which results in a step time of about 2.5 s and a
throughput of about 500,000 zones per second per node. We
evolve the 3D problem for 100 steps, which means a total
runtime of about 4 minutes. Every run was a separate
submission on a different set of nodes on the system. The
resulting mean step time over the number of nodes and cores is
shown in Figure 36, from 1 node (24 cores) to 4096 nodes
(98,304 cores). The minimum and maximum time per step
is shown by the error bars. Ideal scaling at 2.45 s per update is
shown by the dotted line. We also run the same test with the
TVD+CTU solver, but with 323 patches, which is its optimal
cache-blocked patch size on Broadwell. The difference stems
from the flattened array implementation, which TVD does not

Figure 33. Compute performance in million zones per second per node over
patch size (i.e., number of zones per dimension per patch) for 27 nodes on Intel
Broadwell architecture. Problem size was about 5123 zones. Blue: 2 ranks and
18 threads per node. Green: 4 ranks and 9 threads per node. Purple: 12 ranks
and 3 threads per node. Orange: 18 rank and 2 threads per node. Yellow: 36
ranks and 1 thread per node.

Figure 34. Performance per core in billion floating point operations per second
over SIMD vector length of the WENO solver on a single Broadwell core (red)
and a full Broadwell node (blue).

Figure 35. Fractional number of instructions generated by the Cray compiler
over the limit of the vector length. Top for Intel Broadwell, bottom for Intel
Skylake.
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share with WENO5. The resulting scaling is shown by the blue
line. The step time is reduced by a factor of 1.2 relative to the
WENO solver, and the problem is a factor of 5.6 larger, so
the TVD+CTU solver is a factor of 6.7 faster at scale than the
WENO solver. But the WENO solver doubles the effective
resolution, which would increase the runtime of TVD+CTU by
a factor of 16. TVD+CTU runs with CFL= 0.4, half the step
size of WENO. Thus, the WENO solver is more efficient
(“faster”) than TVD+CTU by a factor of about 2×2.3=4.6
at scale.

We expect this difference in throughput (zones per second
per code) to hold across architectures. Although TVD does not
use flattened arrays, both implementations reach similar
performance on the Broadwell architecture (14% versus 20%
of peak), if properly cache-blocked. WOMBAT is written in
vanilla Fortran 2008, which makes the code as portable as
possible and gives access to the most mature compilers in the
industry. Thus, the higher efficiency of WENO5 cannot be
explained simply by implementation details or architecture and
will, due its complete vectorization, very likely translate to

accelerators as well. The cache-blocking properties will change
of course, but the program design allows adapting to this side
constraint and achieving optimal performance independent of
cache size and properties.
We note that the scaling is quite flat at about 2.45 s per update

with about 10% scatter around the mean. Differences arise from
network contention on the system, as runtime is dominated by the
slowest node during the run. They are much smaller than seen
previously on the Blue Waters system with the Gemini
interconnect (Mendygral et al. 2017). This view is supported
by the decrease in scatter in step times for the largest runs, where
a significant fraction of the machine is used. The largest run uses
more than half of the Hazel Hen system and performs at about
150 TFlops, or about 5% of the peak performance of the system.
We leave it to the reader to compare with other community codes
(e.g., Nordlund et al. 2018).

5.4. Strong Scaling

Strong scaling refers to the speed-up of an algorithm as the
problem size is kept fixed and the compute power is increased.
Ideally, execution time should half as the computing power
doubles. According to Amdahl’s law (Amdahl 1967), the
execution time of any parallel algorithm will eventually be
dominated by the nonparallelizable part of the work, which can
be in the form of branching, communication, or load
imbalance.
We run a strong scaling test on the Cray XC40 “Hazel Hen”

at HLRS Stuttgart 4 MPI ranks and 12 OpenMP threads per
node. We use 183 patches with an initial patch distribution of
96 × 12 × 12 patches, so the world grid has 1728 2162´
zones. For the final point at 512 nodes, we reduced the patch
size to 9×182 zones.
The result is shown in Figure 37 as seconds per time step

over the number of nodes and cores. WENO–Wombat follows
the ideal scaling closely down to 128 nodes. The point at 512
nodes deviates from the ideal scaling, due to the decreased
patch size. There was simply not enough work available
anymore with 512 nodes, which limits WOMBAT’s ability to
further strong scale.

6. Conclusions

High-order Eulerian schemes will likely become instrumen-
tal to simulations of turbulence and magnetic field amplifica-
tion in the astrophysical context (Balsara 2017; Felker &
Stone 2018; Guillet et al. 2019). The inevitable growth of
computing power has led to ample resources available for
highly optimized numerical implementations that scale to >105

cores. With the advent of accelerators and high-bandwidth
memory on the horizon, complex high-order simulations with
rich subgrid physics are within reach for the community.
We have presented an implementation of a fifth-order

WENO scheme in the numerical WOMBATframework. We
combined the classical FD scheme with a simple CT scheme
for the evolution of magnetic fields. We have demonstrated
algorithmic correctness and fidelity on a variety of test
problems in one, two, and three dimensions. We argued that
the CT-WENO5 scheme:

1. Doubles the effective resolution compared to common
second-order schemes like CTU+CT or TVD+CTU.

2. Resolves instabilities better than a lower order scheme,
due to its very low numerical diffusivity.

Figure 37. Strong scaling of WENO–Wombat on HLRS “Hazel Hen” as time
per update over the number of nodes/cores.

Figure 36. Time per update in seconds over the number of nodes and cores
(weak scaling) on HLRS Cray XC40 “Hazel Hen.” Red: WENO5 solver with
183 patches and 3×4×4 patches per rank. Blue: TVD+CTU solver with
same configuration but 323 patches.
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3. Is less affected by advection relative to the grid. It is
competitive with Lagrangian methods in tests with
moderate advection velocities.

4. Is more computationally efficient than a lower order
scheme in three dimensions at similar solution quality.

5. Needs to use double precision floating point arithmetic to
deliver good results. The low diffusivity of the scheme
exposes noise very quickly.

The limitations of our CT-WENO5 implementation are in the
dispersion of MHD waves, where, due to the simple CT
scheme, the implementation roughly matches a good second-
order scheme. Nonetheless, we have shown that MHD wave
dissipation by numerical diffusion is accurate to fifth order.
Furthermore, the CT-WENO5 scheme does not handle
advection and angular momentum conservation as well as
discontinuous Galerkin schemes of third or higher order. These
limitations are compromises that keep the implementation
computationally cheap. For example, WENO5 is significantly
cheaper than third-order discontinuous Galerkin implementa-
tions, due to the about 20 times larger time step in three
dimensions.

We showed that our implementation reaches about 20% of
peak double precision performance on a single Broadwell or
Skylake core and ∼5% on 98,000 cores on a Cray XC40. On
Intel Broadwell processors, we observe a throughput of about
0.5 million zones per node at twice the solution fidelity of a
typical second-order scheme with a Roe solver. We conclude
that our implementation represents a favorable compromise of
fidelity, robustness, and computational efficiency, awaiting
astrophysical applications.

6.1. Outlook

WENO–WOMBAT already includes a treatment of cold super-
sonic flows using an elegant entropy scheme based on flux
splitting (H. Jang et al. 2019, in preparation). A few
improvements to the implementation presented here come to
mind. A high-order CT scheme that matches the accuracy of
the spatial interpolation would reduce magnetic field disper-
sion, albeit at considerable computational cost. High-order CT
schemes exist for FV approaches (e.g., Londrillo & del
Zanna 2004; Felker & Stone 2018; Verma et al. 2019), but
need to be adapted to our FD algorithm. Global smoothness
indicators could be used to improve the robustness of the
scheme (e.g., Balbás & Tadmor 2006). Worth another look is
likely a low-storage fourth-order Runge–Kutta integrator. A
wide variety of strong-stability-preserving schemes exist,
usually with five of more stages and CFL numbers >1 (Spiteri
& Ruuth 2002). Furthermore, a ninth-order WENO implemen-
tation might become affordable once supercomputers reach
exaflop performance, further doubling the effective resolution
of the simulation and reducing storage and memory require-
ments. An extension of our WENO5 implementation would be
straightforward. On the technical side, the flattened array
implementation will make it trivial to port the WENO solver to
accelerators. The OpenMP 4 standard would be the natural
choice, providing a portable approach for a wide variety of
accelerator technologies.

6.2. Reproducibility

It has been shown that computational fluid dynamics without
code-level transparency is not reproducible, even by the authors

of the original publication: Mesnard & Barba (2017) found that
open source code, logs, and data are a bare minimum to
reproduce results years later. WOMBAT follows their reproduci-
bility policy: sources and logs used to produce this document are
available at https://wombatcode.org/publications/. Most data
are made available, but have to adhere to certain space
limitations. This data file also contains the complete source
code tree of the WOMBAT version used in this paper, for reference
purposes only. We did not yet include WENO5 in the public
version of WOMBAT as we do not yet consider the scheme robust
enough for applications.

We thank the anonymous referee for helpful comments that
significantly improved the manuscript.
J.D. thanks Louiz de Rose and the programming environ-

ment group for two years of hospitality and a great work
environment at Cray Inc. in Minnesota. J.D. thanks H.
Roettgering and E. Deul for support toward the end of the
project. The authors thank J. Delgado for comments on the
manuscript.
We used Julia12 and PGFPlots for postprocessing and graphs

shown in this document. Volume rendering was done with
ParaView. Perceptually uniform color maps were obtained
from Kovesi (2015) and colorbrewer.org.
Parts of this work were computed on the Cray development

system “Kay”; J.D. thanks Cray Inc. for continuous access to the
system. Some code tests were performed on the MACH64
machine at IRA Bologna. J.D. thanks F. Bedosti for support with
the system. T.W.J. was supported at the University of Minnesota
by NSF grant AST. The work of H.J. and D.R. was supported by
the National Research Foundation (NRF) of Korea through
grants 2016R1A5A1013277 and 2017R1A2A1A05071429.
This research has received funding from the People Programme
(Marie Sklodowska Curie Actions) of the European Unions
Eighth Framework Programme H2020 under REA grant
agreement No. 658912, “Cosmo Plasmas.” Access to the “Hazel
Hen” at HLRS has been granted through the PRACE preparatory
access project “PRACE 4477.”

Appendix
MHD Eigenvectors

The eigenvectors decouple the system of partial differential
equations into scalar advection equations. Every component m
of the decoupled system corresponds to an eigenvalue λm with
a left eigenvector Li(m) and right eigenvector R mi ( ) with
L Ri

i I= (Jeffrey & Taniuti 1964). The eigenvalues by
component m are v c1, 7 x fastl = ( ) , v c2, 6 x Al = ( ) ,

v c3, 5 x slowl = ( ) , and v4 xl =( ) . For MHD, degeneracies
occur in the case of vanishing magnetic field components (Brio
& Wu 1988b), so we set

B B
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, otherwise
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1, 1 otherwise
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where òB=10−30. We note that in some cases, numerical noise
from compiler optimizations can break the degeneracy of the
MHD eigenvalues with the sound speed (but not between fast
and slow modes) in the calculation of Equation (88). This can
lead to noise in the calculation that can be exposed, e.g., in the
implosion test, Section 4.8. It is advisable to explicitly check
for the eigenvalue degeneracy in the code and set Equation (88)
explicitly to zero. For similar reasons, we found it practical to
explicitly store the sound speed and not its square in the
eigenvector calculations.

Our eigenvectors follow Jiang & Wu (1999) and H. Jang
et al. (2019, in preparation) with
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The eigenvectors for the slow mode (m m2, 6= = ) are
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The eigenvectors for the Alfvén mode (m m3, 5= = ) are
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The eigenvectors for the entropy mode (m= 4) are
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These components are evaluated at the boundary using simple
arithmetic averaging.
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