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Abstract

Background: In the context of a severe generalized African HIV epidemic, the value of
geographically targeted prevention interventions has only recently been given serious
consideration. However, to date no study has performed a population-based analysis of
the micro-geographical clustering of HIV incident infections, limiting the evidential sup-
port for such a strategy.

Methods: We followed 17 984 HIV-uninfected individuals aged 15-54 in a population-
based cohort in rural KwaZulu-Natal, South Africa, and observed individual HIV
sero-conversions between 2004 and 2014. We geo-located all individuals to an exact
homestead of residence (accuracy <2 m). We then employed a two-dimensional
Gaussian kernel of radius 3 km to produce robust estimates of HIV incidence which vary
across continuous geographical space. We also applied Tango’s flexibly shaped spatial
scan statistic to identify irregularly shaped clusters of high HIV incidence.

Results: Between 2004 and 2014, we observed a total of 2311 HIV sero-conversions over
70 534 person-years of observation, at an overall incidence of 3.3 [95% confidence interval
(Cl), 3.1-3.4] per 100 person-years. Three large irregularly-shaped clusters of new HIV infec-
tions (relative risk = 1.6, 1.7 and 2.3) were identified in two adjacent peri-urban commun-
ities near the National Road (P = 0.001, 0.015) as well as in a rural node bordering a recent
coal mine development (P = 0.020), respectively. Together the clusters had a significantly
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higher age-sex standardized incidence of 5.1 (95% Cl, 4.7-5.6) per 100 person-years com-
pared with a standardized incidence of 3.0 per 100 person-years (95% Cl, 2.9-3.2) in the re-
mainder of the study area. Though these clusters comprise just 6.8% of the study area,
they account for one out of every four sero-conversions observed over the study period.

Conclusions: Our study has revealed clear ‘corridors of transmission’ in this typical rural,
hyper-endemic population. Even in a severely affected rural African population, an ap-
proach that seeks to provide preventive interventions to the most vulnerable geogra-
phies could be more effective and cost-effective in reducing the overall rate of new HIV
infections. There is an urgent need to develop and test such interventions as part of an

overall combination prevention approach.
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Key Messages

ing communities.

¢ Our study has revealed remarkable geographical variation in HIV incidence in this hyper-endemic population, with

the existence of clear ‘corridors of transmission’ where the rate of new HIV infections was 70% higher than surround-

¢ Despite the overall high incidence of HIV in many rural African populations, these findings, and observations from
similar settings, support an approach that seeks to provide preventive interventions to the most vulnerable geogra-

phies as part of an overall combination prevention approach.

Introduction

Despite impressive life expectancy gains due to antiretro-
viral treatment,"? the rate of new HIV infections remains
high in many communities in sub-Saharan Africa.>*
Consequently, innovative approaches are needed for pre-
vention strategies that make better use of the limited re-
sources available. Implementing effective HIV prevention
programmes requires knowledge of the geographical
distribution of HIV incidence and risk factors associated
with acquisition of infection.” However, the value of geo-
graphically targeted prevention interventions has only re-
cently been given serious consideration in the context of a
severe generalized African epidemic. In this regard, interna-
tional agencies such as Joint United Nations Programme on
HIV/AIDS (UNAIDS)® and the Global Fund” have recently
recommended that countries move to adopt a geographical
prioritization approach to optimize the provision of HIV
prevention and treatment services. A particularly prominent
adopter of this approach is the United States President’s
Emergency Plan for AIDS Relief (PEPFAR) which seeks to
use a ‘data-driven approach that strategically targets geo-
graphic areas and populations where we can achieve the
most impact’.® This approach allocates resources on the
basis of a geographical prioritization of districts, focusing
on those geographical regions and localities where most

transmission is occurring. The strategy recognizes that tar-
geting the populations implicated in these sub-epidemics is
vital to achieving large reductions in population-level
incidence.

This recent shift in thinking has been driven by high levels
of HIV prevalence in some communities,” ' detection of
localized spatial clustering of prevalent cases and HIV-related
deaths,'*™ variation in HIV prevalence at a district and

1117 and geographical variation in HIV incidence

clinic leve
among participating women in clinical trials.'® These results
have challenged the previous paradigm of a ubiquitous
‘generalized” epidemic in many hyper-endemic contexts.
Furthermore, mathematical models'® and phylogenetic
research?®*! have suggested that there may be real preven-
tion gains to be made by harnessing geographical differences
in HIV incidence for epidemic control, by intervening
aggressively in the most vulnerable, high-risk populations.
However, to date there remains limited population-based evi-
dence from a hyper-endemic setting to demonstrate whether
incident HIV infections do indeed cluster in space and there-
fore whether a geographically targeted strategy could poten-
tially pay prevention dividends. Such evidence is difficult and
expensive to obtain because of the large sample sizes and
long follow-up times required to directly observe a sufficient
number of HIV sero-conversions so as to be able to provide

6102 Key L€ U0 Josn zoN uuy Aq /€1.8.1/1€5/2/ L7 0BASAe-8joie/sli/w00 dno-olWapeoe//:Ssdny WOl papeojumoq



International Journal of Epidemiology, 2018, Vol. 47, No. 2

539

robust statistical inference when quantifying geographical
variations in HIV incidence. If this type of population-based
evidence were forthcoming, it could provide real impetus to
more widely adopt a strategy that seeks to deploy specific
interventions in high-risk geographical spaces as part of an
overall combination prevention approach.

Given this background, we followed up nearly 18 000
HIV-uninfected individuals (observing individual HIV sero-
conversions) over a decade, in a typical hyper-endemic,
rural South African setting. We precisely geo-locate all
participants to an exact homestead of residence and use
advanced spatial analytical techniques to identify and charac-
terize micro-geographies with excessive numbers of new HIV

infections.

Methods
Setting

The study uses data from one of the most comprehensive
demographic surveillance sites in Africa—the Africa Centre
(now Africa Health Research Institute) Demographic
Information System. ** The site has collected sociodemo-
graphic information on a population of approximately
87 000 individuals within a circumscribed geographical area
(438 km? in area) in rural KwaZulu-Natal, South Africa, for
over a decade. One of the notable strengths of the compre-
hensive demographic platform is its longitudinal integrity
and ability to record exact periods of time spent living at
multiple locations (including outside the study area) by each
individual under surveillance.”> Nested within the demo-
graphic information system are the population-based HIV
surveillance and sexual behaviour surveys which take place
annually. Between 2004 and 2006, all women aged 15-49
years and men aged 15-54 years resident in the surveillance
area were eligible for HIV testing. However, starting in
2007, eligibility was extended to cover all resident individ-
uals’ > 15 years of age. The longitudinal dynamics of partici-
pation in the HIV survey is described in detail elsewhere.*?
Overall, 29% of the adult population aged15 49 are infected
with HIV.** The rate of new HIV infections is high at around
2.7 new infections per 100 person-years in the entire adult
population (> 15 years of age).*

Ethics approval for all surveillance data collection activ-
ities was obtained from the Nelson Mandela Medical
School Research Ethics Committee, University of KwaZulu
Natal, Durban.

Statistical analysis

Individuals (aged 15-54) were included in the analysis
if they tested negative for HIV upon entry into the surveil-
lance cohort and consented to test at least once thereafter
(n =17 984); 80% of participants in the cohort agreed to

an HIV test at their first test offer, and 62% observed to be
HIV-negative at one point in time were tested on at least
one subsequent occasion. Participants seldom test every
year, and the median interval of time between last HIV-
negative and first HIV-positive test is 2.18 years. The date
of HIV seroconversion was assumed to occur according to
a uniform random distribution between the date of the last
negative and first positive HIV test. This avoided the biases
introduced by assuming that the date of HIV sero-
conversion occurred at the mid-point of these two dates.?’
To investigate the age-sex trends in incidence, we com-
puted HIV incidence [95% confidence interval (CI)] by 5-
year age-band. Crude incidence rates per 100 person-years
were age-sex standardized against the age and sex structure
of the entire cohort for the full period. We also computed
incidence by 1-year age band (stratified by gender) and fit-
ted a log-normal function for each group using a maximum
likelihood approach.

Spatial analyses

We geo-located all participants to their respective home-
steads of residence which have been comprehensively
mapped to an accuracy of <2 m.'* The population is
characterized by a high level of mobility,*® and the demo-
graphic information system was set up so as to be able to
precisely measure the amount of time each individual was
resident at any given location within the study area.”” To
ensure unbiased geographical estimates of incidence, it is
important that we adequately account for the mobility in
the study population and do not impose an overly simplis-
tic static residency assumption on the data. To accomplish
this, we included in the incidence denominator only
person-days of exposure that accrue to participants while
resident in the study area (i.e. person-days spent outside
the study area were not included in the incidence rate cal-
culations). Similarly, if the imputed sero-conversion date
coincided with a period of time during which the partici-
pant lived outside the study area, then the incident event
was not included in the numerator. In cases where a par-
ticipant was resident at multiple homesteads during the
period of observation, the exact number of days spent at
the location of each homestead was used in the geograph-
ical analyses. Incident events were attributed to the loca-
tion of the homestead at which the participant was
resident at the imputed sero-conversion date. This ap-
proach ensured that the numerator and denominator in the
incidence calculation were not systematically biased in ei-
ther direction, without the need to super-impose an arbi-
trary residency criterion or assume that individuals were
resident at a single location between survey rounds. We
then used two different spatial analytical techniques to
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measure the spatial distribution of HIV incidence across
the study area; these are described in detail below.

First, we used a Gaussian kernel (radius = 3 km) meth-
odology to produce robust estimates of HIV incidence that
vary across continuous geographical space.'**” The size of
the kernel was determined on the basis of previous work in
this population, which measured the spatial dependence in
ward-level HIV prevalence.'* The smaller the radius used
in the kernel, the greater the range in estimates obtained
and the greater the sensitivity to local variation. The use of
a larger kernel will result in smoothing towards the mean,
and important variation in HIV incidence may be lost. The
Gaussian kernel does not impose any static geographical
boundaries on the data, but uses the precise location of
each individual to derive the resulting community-level
estimates. A median of 463 [interquartile range (IQR):
211-1033] person-years of observation was evaluated in
the virtual community surrounding each participant’s
homestead in the kernel-based approach. The methodology
produces spatially continuous HIV incidence estimates that
are sensitive to local variations while at the same time
being robust to the effects of random noise.

From a resource allocation perspective, it is important
to quantify not only the risk of new HIV infection over
person-time but also the density of new HIV infections per
unit area. In our previous work, we used the Gaussian ker-
nel approach to estimate the density of existing HIV infec-
tions per km”.'* In a similar fashion, to derive the density
of HIV incident events, we multiplied the HIV incidence
map by the geographical distribution of all HIV-negative
residents in 2014 (adjusted for non-consent) to derive the
total number of HIV sero-conversions per km? per year.
The latter surface was derived from the 2014 population-
based HIV sero-survey of 9508 individuals living in the
study area. We applied an edge correction factor within
3 km of the boundary of the study area, to accurately
quantify the total number of HIV sero-conversions per
km? across the whole study area in a given year.

Second, for the first time to our knowledge, we applied
Tango’s flexibly shaped spatial scan statistic*® (implemented
in FleXScan software®’) to identify micro-geographical clus-
tering of new HIV infections. Spatial scan statistics are de-
signed to detect a local excess of events and to test whether
such identified excess could reasonably have occurred by
chance.?® A window is imposed on an area of interest by the
statistic, and the centre of the windows moves across the
study region while also varying in size (diameter). The spa-
tial scan statistic calculates the likelihood of observing the
number of events inside and outside each window. The win-
dow with maximum likelihood is defined as the most likely
cluster, i.e. least likely to have occurred by chance. Most dis-
ease or health outcome events are not likely to conform to a

predefined geometrical shape (circle or ellipse) as imposed
by other commonly used spatial scan statistics, such as the
Kulldorff statistic.>! The Tango flexible spatial scan statistic
instead allows an irregularly shaped scanning window to be
imposed on each location by iteratively adding connected
(or adjacent) locations. Therefore, this advanced analytical
technique can detect irregularly (arbitrarily) shaped spatial
clusters by iteratively (via Monte Carlo replication) combin-
ing adjacent locations, and has higher power when the true
cluster is non-circular compared with a regularly shaped
spatial scan statistic.>*%*

We assumed a Poisson model for these analyses, i.e.
number of incident events (numerator) scaled by person-
years (PY) as the denominator. The Poisson model calcu-
lates an expected number of incident events based on the
overall incidence rate, and applies this to the observed de-
nominator (PY) within a given scan window (‘cluster’) to
calculate the expected number of events. The ratio of the
observed vs expected yields the relative risk (RR) for a
given cluster. A P-value for the observed cluster (differ-
ence) is also calculated, based on the null distribution of
likelihood ratio test statistic with a large number of Monte
Carlo replications of the data set generated under the null
hypothesis.?® We classified any cluster with a P-value
of < 0.05 as being statistically significant.

More specifically, consider the scenario where the study
area is divided into m nodes (~800 aggregated homesteads
as specified above). The number of cases in a given node i
can be represented by the random variable N; with
observed value of incident HIV cases n,;, where i=1, ..., m.
Under the null hypothesis (Hy) of no clustering, the N; are
assumed to be independent Poisson variables whereby:

Ho: E(Nj) =&, N;~ Pois(§), i=1, ..., m

We employed the likelihood ratio (LLR) with restriction
statistic by Tango (2005)*® as implemented in FleXScan,
with a default restriction (‘alpha’) parameter setting of 0.2.
This approach avoids detecting meaninglessly large clusters
(little practical/policy relevance in a relative small
geographical area) and also improves calculation time with
a large number of locations, as found in our data.
Furthermore, the pre-specified maximum length of cluster
(or K parameter) for the flexible spatial scan statistic has to
be set at a realistic upper bound to avoid computationally
infeasible scans. The current practical upper bound as sug-
gested by Tango is around K =30, which we employed in
our analyses.”® Tango has suggested that the execution
time of the current algorithm will take more than a week if
K > 30 for the number of regions m ~200-300. However,
in our data we had 8590 unique locations before aggrega-
tion. With a value of K=30 it would be statistically
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impossible to identify significant and meaningful clusters,
as the scan statistic would only search through a maximum
of 30 adjacent nodes (homesteads), and the number of inci-
dent HIV events in such a number of homesteads would be
largely O across the site. Hence our choice to aggregate the
homesteads to a regular grid of n = 760, for the FleXScan
analysis to be able to identify meaningful clusters with sig-
nificance without substantial loss of fine geographical pre-
cision/resolution.

Cluster characterization

We employed mixed effects linear and logistic regression
models to compare selected characteristics between clusters
and non-clusters. The regression models include fixed effects
for cluster membership and normally distributed random
intercepts that capture the correlation between the samples
associated with the same individual. Testing whether there
is a relationship between a selected characteristic and the
clustering of locations is done by testing the null hypothesis,
that the fixed effects for cluster membership are zero,
against the alternative hypothesis, that at least one of the
fixed effects is different from zero (see Supplementary mater
ials, available as Supplementary data at IJE online).

We examined the relationship between incidence rates
and the clustering of locations by fitting separate survival
models for men and women. These are Cox proportional
hazards models for time to HIV seroconversion, which have
cluster membership indicator variables as time-dependent
covariates. Assessing whether the clustering of locations is
associated with the hazard of HIV acquisition is performed
by testing the null hypothesis that the slope coefficients

5.0
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3.0
2.5
2.0

1.5

Age-standardised Incidence (per 100 PY)

1.0

0.5

0.0
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associated with cluster membership are zero. A complete de-
scription of the statistical models employed is provided in
the Supplementary materials, available at IJE online.

Results

Between 2004 and 2014, we observed a total of 2311 HIV
sero-conversions during 70 534 person-years of observa-
tion among the cohort, at a crude HIV incidence rate of
3.3 (95% ClI, 3.1-3.4) per 100 person-years. The overall
HIV incidence rate amongst the male population for the
period was 2.0 per 100 person-years (95% CI, 1.8-2.2)
compared with 4.1 per 100 person-years (95% CI, 3.9-
4.3) among the female population. Overall incidence for
the population remained relatively stable when assessed by
year (Figure 1). Based on a log normal curve (Figure 2), in-
cidence was highest in females 22 years of age at an inci-
dence of 7.6 cases per 100 person-years (95% CI, 6.5-8.9)
and peaked later in males at 27 years of age (4.0 incident
cases per 100 person-years, 95% CI, 2.7-6.0). Incidence
risk for females was much higher at earlier age but inverted
at ~32 years of age, when males’ risk was subsequently
marginally higher. The striking sex differences in HIV inci-
dence are a result of a combination of increased biological
susceptibility to infection,*® as well as the unequal cultural,
social and economic status of (particularly young) women
in society.>*?°

Our analyses revealed considerable spatial variation in
HIV incidence (Figure 3). Overall, the kernel-based spatial
analytical approach showed that HIV incidence varied be-
tween 0.86% and 5.21% per year in the unique virtual
community evaluated around each participant’s homestead

2009 2010 2011 2012 2013 2014
Year

Figure 1. Age-sex standardized HIV incidence by year for individuals aged 15-54 [70 534 person-years (PY), 2311 sero-conversions at crude incidence

of 3.3 per 100 PY].
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Figure 2. Female and male age variations in HIV incidence (95% Cl) for entire sample of repeat-testers aged 15-54. Superimposed on the graphs are
log-normal functions (obtained by maximum likelihood) fitted to 1-year incidence estimates.

(a> 6-fold variation). Three clear high-risk spatial clusters
(RR=1.6, 1.7 and 2.3, respectively) were identified using
the flexibly shaped spatial scan statistic (Figure 3).
Together the clusters had a significantly higher
standardized incidence of 5.1 (95% CI, 4.7-5.6) per 100
person-years compared with a standardized incidence of
3.0 per 100 person-years (95% CI, 2.9-3.2) in the remain-
der of the study area. Clusters 1 and 2 (4.9 and 4.1 km in
extent, respectively) were in peri-urban communities in the
south-east and eastern portion of the study site, both in
close proximity to a National Road (P = 0.001, 0.015, re-
spectively). The third cluster (4.7 km in extent) was situ-
ated more internally to the south central of the study area,
near a recent coal mine development which first became
operational in 2007 P=0.020). The clusters contained
322,185 and 64 incident cases, respectively (25% of all in-
cident cases observed over the duration of the study). The
clusters had standardized incidence rates of 5.3 (95% CI,
4.7-5.8),4.6 (95% CI, 3.9-5.3) and 6.7 (95% CI, 4.9-8.4)
per 100 person-years, respectively, for the period 2004-14.
Whilst the HIV incidence in clusters 1 and 2 (peri-urban
communities) remained relatively constant over time,
cluster 3 (located near the coal mine) showed a striking in-
crease in standardized HIV incidence (per 100 PY) towards
the end of the study period, from 6.1 (2004-08) to 5.6
(2009-12) to 16.2 between 2013 and 2014 (time period 3
vs time period 1 hazard ratio = 3.34, P = 0.001). Analysis
of spatial clustering of HIV incidence stratified by gender
suggested a similar high-risk cluster respectively for both
females and males in the the same location as the primary
cluster identified as part of the combined sex analysis,

bordering the national highway (Figure 4a, b). Similarly,
there was some evidence of a secondary female cluster
(P=0.086) in a similar location to the secondary cluster
identified as part of the combined sex analysis.

Overall, the most prominent differences in the cluster vs
non-cluster communities (Figure 3) were the population
growth rate between 2004 and 2014 (+6.1% vs -10.9%),
migration intensity (160 vs 148 migration events per 100
person-years) and HIV prevalence (38.9% vs 27.5%)
(Table 1). The cluster communities also had higher num-
bers of reported lifetime partners, lower reported number
of years of education and lower reported mean age at first
sex (females). There was a lower number of births per
1000 females of child-bearing age, and contraceptive use
was marginally higher in the cluster communities. Overall,
the ratio of female to male incidence was 14% lower (i.e.
male incidence was disproportionally higher) in the cluster
communities (compared with non-clusters) but this differ-
ence was not significant (P = 0.185).

The map showing the estimated number of HIV sero-
conversions per km?® per year is presented in Figure 5.
Despite the clusters comprising just 6.8% of the study area,
they account for one out of every four HIV sero-conversions
observed over the study period. Of course, the ‘Achilles heel’
of such a geographically focused strategy is the detailed
‘granular’ data needed to be able to pin-point areas most in
need of intervention. In most cases, such data are not avail-
able nor indeed feasible to collect. Given this reality, we
quantified the implications of a more typical situation in
which programme managers did not have knowledge of the
exact location of the high-risk clusters, and were instead to
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Figure 3. Geographical variations in population-level HIV incidence (ages 15-54) as measured by a standard Gaussian kernel (3.0 km radius).
Superimposed on the map are the high-risk clusters identified by the Tango’s flexibly shaped spatial scan statistic: Cluster 1 [322 sero-conversions,
6233 person-years of observation (PYO), RR=1.59, P = 0.001, area = 8.3 km?]; Cluster 2 (185 sero-conversions, 3630 PYO, RR=1.57, P = 0.015, area
= 12.7 km?); and Cluster 3 (64 sero-conversions, 891 PYO, RR=2.27, P = 0.020, area = 9.4 km?). Phase 1 of a recent opencast coal mining develop-

ment is shown immediately north of cluster 3.

target communities within 2 km of the National Road, which
are characterized by both overall high incidence as well as a
high population density (Table 2). Given this scenario, by
focusing efforts on the 8% of the study area that lies within 2
km of the National Road, ~37% of HIV sero-conversions
observed could theoretically be targeted at an ‘effectiveness
ratio’ (ratio of the proportion of sero-conversions targeted to
proportion of the area covered) of 4.6.

Discussion

We have used one of Africa’s largest ongoing population-
based cohorts to analyse the micro-geographical clustering
of HIV incident infections in a hyper-endemic, rural sub-
Saharan African context. We use the precise location of
each of the nearly 18 000 HIV-uninfected individuals (and
exact time spent at each location) followed prospectively
over a decade to reveal >6-fold geographical variations in
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Figure 4. Geographical variations in population-level HIV incidence
(ages 15-54) in females (a) and males (b), as measured by a standard
Gaussian kernel (3.0 km radius). Superimposed on the map are the
high-risk clusters identified by the Tango’s flexibly shaped spatial scan
statistic: (a) Cluster 1 = 296 sero-conversions, RR=1.52, P = 0.002;
Cluster 2 = 91 sero-conversions, RR=1.57, P=0.081; and (b) Cluster =
131 sero-conversions, RR=1.92, P=0.001.

HIV incidence. In addition to the ‘expected” high-risk clus-
ters in high-density populations near the National Road,
the most surprising aspect of the analysis has been the
rapid emergence of a rural high-risk cluster with unusually

high numbers of new HIV infections near a recent mining
development. Overall, the results provide clear empirical
evidence for localized ‘corridors of transmission’, and imply
that targeting evidence-based interventions to the most vul-
nerable populations in areas of greatest HIV incidence could
be powerful and cost-effective in this typical rural African
population, as part of an overall combination prevention
approach. Our results add to an increasing body of work
from multiple sub-Saharan African environments that
have challenged the previous paradigm of a ubiquitous
generalized epidemic.””'!*!%183¢ Rather, the findings
demonstrate the existence of multiple geographically-
defined sub-epidemics which make up the composite
epidemic in a given population. Taken together, this body
of work suggests that there may be a remarkable opportun-
ity to exploit these geographical heterogeneities for epidemic
control by intervening in the most vulnerable populations.
Significant clustering of new HIV infections in particu-
lar communities can decrease the efficacy of existing
population-based intervention measures, but also implies
that targeted interventions could be highly effective.'”>”
Identification of the localized clustering of HIV incident in-
fections, or so-called ‘hot spots’, also has important local
policy relevance, because it has immediate implications for
where to focus new prevention programmes or to intensify
existing programmes.>® A recent review of research con-
ducted in the 10 highest HIV prevalence countries in the
world, concluded that ‘recent empirical findings combined
with evidence from phylogenetic studies and supported by
mathematical models provide a rationale for testing the
feasibility, acceptability, and effectiveness of targeted HIV
prevention approaches in hyper-endemic populations to
supplement measures aimed at the general population’.*”
Although some critical questions remain around the reach
and acceptability of such interventions, the results of the
review suggested that maximum reductions could be
achieved by employing an approach that specifically seeks
to target the most vulnerable geographies, in addition to a
broad set of interventions targeting the larger population.
Our results raise a fundamental and a related practical
question: what is the underlying reason for the clustering of
these new HIV infections? High levels of mobility, high rates
of sexual partner turnover, younger age at first sex and a
high population growth rate are some of the key factors that
have been implicated in this research. In recent work, based

on the underlying theory of social disequilibrium,***!

we
investigated the individual, social and community challenges
to HIV acquisition risk in this study population.** We found
that particularly among men, the effect of migration inten-
sity in predicting HIV acquisition risk was more pronounced
and localized in the high-incidence communities near the
National Road. This finding was over and above the risk

conferred on the basis of individual mobility levels,
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Table 1. Comparison of key characteristics of three high-incidence clusters identified by the Tango flexible spatial scan-statistic

(Figure 3) vs non-clusters

Characteristic Non-cluster (7 = 15254) Cluster (n = 2730) P-value®
% Female 58.9 58.5 0.122
Ratio of female to male incidence® 2.2 1.9 0.185
Mean (SD) age of adults (15-54 years) 28.0 (11.3) 28.3 (10.8) <0.001
Median (IQR) number of lifetime partners (females) 1(1-2) 2(1-2) <0.001
Mean (SD) years of education of adults (15-54 years)® 9.2 (3.6) 8.8 (3.5) 0.007
Household assets, mean (SD) quintile score 3.0(1.4) 2.9 (1.4) <0.001
Fertility rate (births per 1000 females, 15-49 years, PY)" 62.5 62.2 0.014
Migration events among ages 15-54 years (per 1000 PY)® 147.8 160.6 < 0.001
Mean (SD) age first married (females) 26.1(7.0) 27.4(7.3) 0.015
Mean (SD) age at first sex (female) 18.0 (3.0) 17.7 (3.1) <0.001
Current contraception use (females 15-49 years) (%)b 44.0 46.9 0.030
Growth over study period (%)° -10.9 +6.1% <0.001
HIV prevalenceCl among adults (15-54 years) (%) 27.5 38.9 < 0.001

SD, standard deviation; IQR, interquartile range. Bold indicates a P-value of <0.05.

?Adjusted for within-subject correlation (multiple or repeated measurements). See supplementary materials for more details of the modelling approaches used,

available at IJE online.
bAge-standardized.
“Based on growth of entire population under surveillance.
9Based on population-based HIV testing survey of 2014.

Sero-conversions per km? per year
. -2

I 10-24
] 5-10

Figure 5. Estimated HIV sero-conversions per km? per year for population aged 15-54, obtained using the Gaussian kernel (radius = 3.0 km). The Z
axis is proportional to the total HIV sero-conversions per km? per annum for any geographical location.

highlighting the multiple impacts of mobility on HIV acqui-
sition risk and also attesting to the importance of the social
and geographical context in predicting risk of HIV acquisi-
tion. These risk factors are particularly pertinent in South
Africa, given the labour migration history in the apartheid
era as well as extremely high levels of socioeconomic in-
equality.**** In addition, high concentrations of sex

workers around mines and other industrial developments
have been documented,*>*® and this constitutes one possible
contributory factor in explaining the high incidence in the
high-risk cluster adjacent to the coal mine. Ultimately how-
ever, these clusters arise from a complex web of structural,
biological and sociodemographic factors which act together
synergistically at the level of the individual, the network and
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Table 2. Hypothetical targeting strategies to evaluate the number of HIV sero-conversions relative to the size of a given geo-

graphical area

Area km? (% total) Person-years (% total) HIV sero-conversions (% total) Effectiveness ratio®

29.9 (6.8%)
35.8 (8.2%)
438.1 (100%)

High-risk clusters®
Communities within 2 km of National Road

Study area

10763 (15.2%) 550 (23.8%) 3.5
22641 (32.1%) 866 (37.5%) 4.6
70534 (100%) 2311 (100%) 1.0

“The ratio of % sero-conversions targeted to % area covered

Only high-risk clusters identified by the Tango flexible scan-statistic (Figure 3) targeted.

the community to produce incidence rates of this magni-
tude. These factors have been the subject of research in our
team and many others over the past 20 years.”**”™* In the
long term, if we more fully understand the underlying causal
processes, we will be better placed to design and implement
robust interventions across different contexts. Nevertheless,
whereas a better understanding this web of causality re-
mains of fundamental importance, basic characterization of
the communities in a way that will allow them to be readily
identified in other settings is of immense immediate value.

Despite the accuracy and strengths of the micro-
geographical approach used, our work has some limita-
tions. The length of time between last HIV-negative and
first HIV-positive test in this cohort (~2 years), combined
with high levels of mobility in this population,*® mean that
any geographical clustering analysis would be biased to-
wards the null hypothesis of spatial randomness. Although
these effects cannot explain the false detection of a spatial
cluster of new infections, it is nevertheless conceivable that
we may have missed detection of some clusters as a result.
In addition, the analytical approach used in comparing
clusters with non-clusters, in terms of the sociodemo-
graphic and behavioural characteristics, is ecological in na-
ture and as such cannot be used to establish causal
relationships. Work is ongoing to establish what drives
spatial differences in risk, using individual-level spatial
models to provide a stronger basis for causal inference.

In this typical rural setting, nearly 40% of all HIV sero-
conversions take place in communities occupying only 8%
of the study area. The combination of highest individual-
level risk of infection as well as high population densities
in these communities give rise to this finding. Thus, there
will likely be efficiency gains in the deployment of preven-
tion interventions to such communities, driven by econo-
mies of scale. Such gains would be further amplified if
individuals in these communities play a disproportionate
role in re-seeding epidemics in other populations or act as
short-term ‘nodes of attraction’ for high-risk, HIV-infected
individuals from more rural communities.'**'® In this re-
gard, our results suggest that high-density peri-urban com-
munities with rapid population growth, located along
National Roads, should be prioritized for intervention in

this and other similar settings. Given the high levels of mo-
bility in these populations,®® it is likely that the effect of
such an intervention would extend well beyond the inter-
vention community. Similarly, populations surrounding
recent mining and other industrial developments should be
given special prevention consideration over and above the
clear need to focus prevention efforts on the employees of
these developments themselves. This may be particularly
pertinent given the scale of the mining industry in South
Africa and Southern African in general.’°

The cornerstone of any combination prevention ap-
proach must be treatment as prevention.”! One obvious
component of the prevention strategy, would therefore be
to rapidly increase antiretroviral therapy (ART) coverage
in these high-risk communities, particularly in light of at-
taining the UNAIDS 90-90-90 treatment targets.’”
Remarkably, in some of the high-incidence communities
near the National Road, 65% of HIV-infected individuals
had unsuppressed viral loads and > 20% of the entire
adult population—i.e. irrespective of HIV status—were
viraemic for HIV in 2011 (7 years after roll-out of ART).*3
We have previously demonstrated, in this real-world set-
ting, that individual HIV acquisition risk declines signifi-
cantly with increasing ART coverage in the local
community,* the household®* and the sexual partnership;*®
and in forthcoming work, we show a significant
population-level decrease in HIV incidence in men (consist-
ent with a higher uptake of ART in women,’” as well as in-
crease in the prevalence of circumcision).’® However,
uptake of ART is impeded by geographical and transport-
related barriers which can also produce negative HIV
treatment outcomes in those individuals who have been
initiated on ART.>”>*® In this vein, we have shown empiric-
ally that there is a steep and immediate fall-off in uptake of
ART with increasing distance from a service delivery
point.*” For example, holding other factors constant, at ap-
proximately 4.8 km from a clinic providing ART, the odds
of an HIV-positive individual being on ART are half those
of someone living immediately next to a clinic. It follows
that by locating ART services in these populous areas of
highest transmission intensity, the most vulnerable popula-
tions could be intensively targeted to achieve maximum
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reductions in HIV incidence. Other components of such a
strategy could include intensive messaging campaigns,®”
the use of micro-financial incentives to increase rates of
HIV testing and linkage to care particularly among

,217% improved access to voluntary medical male cir-

men
cumcision®® and the use of pre-exposure prophylaxis®’
among vulnerable groups such as young women and sex
workers®® (who may be over-represented in communities
characterized by intense transmission).

Implementing a geographically orientated intervention
approach is not without its drawbacks and programmatic
challenges even when the epidemiological rationale is
clear.®” First, the data required to implement the strategy
can be numerous and the burden on health care workers to
collect this data could be substantial. However, as we out-
lined earlier in the paper, even targeting ‘obvious’ high-risk
populations, such as peri-urban communities living within
2 km of major transport routes, could achieve substantial
prevention dividends. Second, there could be a danger that
populations outside the high-risk communities could be-
come marginalized in terms of treatment and prevention
efforts. After all, 75% of HIV sero-conversions in this
population still occur outside the identified incidence clus-
ters, and individuals in these other communities are also
vulnerable to HIV infection. It is therefore essential that
good services continue to be provided to these populations
as well, if the UNAIDS 90-90-90 targets are to be reached
and the tide of the epidemic is to be turned through a sus-
tained combination prevention approach. Third, scaling up
services in high-risk communities implies a level of budget
flexibility that may not exist in some HIV hyper-endemic
contexts. However, notwithstanding these difficulties, the
potential rewards of such an approach may be substantial.
For example, a recent modelling exercise undertaken in
Kenya estimated that, with no additional cost, a geograph-
ically tailored approach could result in a 33% drop in the
rate of new infections towards the end of a 15-year peri-
od.'” A subsequent study estimated the potential impact of
a localized, integrated approach to HIV prevention fund-
ing that prioritized populations on the basis of both geo-
graphical and individual risk factors, across the continent
of Africa. The results suggested that for a US$20 billion
representative expenditure over a 15-year period, scale-up
of prevention along present funding channels could avert
5.3 million new infections, relative to no scale-up.®®

Our study has revealed remarkable geographical vari-
ation in HIV incidence in this hyper-endemic population,
with the existence of clear ‘corridors of transmission’ where
the rate of new HIV infections was 70% higher than in sur-
rounding communities. Targeting efforts at settings where
HIV transmission is most intense is crucial. A considerable
body of evidence now supports the contention that even in

a severely affected rural African setting, interventions that
strategically target geographically defined high-risk com-
munities, as part of a combination prevention approach,
could be more effective in reducing the overall rate of new
infections. Most recently, this type of geographical priori-
tization approach has been adopted by PEPFAR in order to
maximize the impact of their investment.® Despite pro-
grammatic and other challenges, our empirical results, com-
bined with insights from recent mathematical modelling
studies as well as observations from other generalized epi-
demic settings, strongly suggest that, given finite (and likely
decreasing) resources, targeted HIV prevention strategies
could be effective even in a population with very high over-
all HIV incidence. There is therefore an urgent need to de-
velop and test such interventions as part of an overall
combination prevention approach.
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