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ABSTRACT: The reaction−diffusion equations provide a power-
ful framework for modeling nonequilibrium, cell-scale dynamics
over the long time scales that are inaccessible by traditional
molecular modeling approaches. Single-particle reaction−diffu-
sion offers the highest resolution technique for tracking such
dynamics, but it has not been applied to the study of protein self-
assembly due to its treatment of reactive species as single-point
particles. Here, we develop a relatively simple but accurate
approach for building rigid structure and rotation into single-
particle reaction−diffusion methods, providing a rate-based
method for studying protein self-assembly. Our simplifying assumption is that reactive collisions can be evaluated purely on
the basis of the separations between the sites, and not their orientations. The challenge of evaluating reaction probabilities can
then be performed using well-known equations based on translational diffusion in both 3D and 2D, by employing an effective
diffusion constant we derive here. We show how our approach reproduces both the kinetics of association, which is altered by
rotational diffusion, and the equilibrium of reversible association, which is not. Importantly, the macroscopic kinetics of
association can be predicted on the basis of the microscopic parameters of our structurally resolved model, allowing for critical
comparisons with theory and other rate-based simulations. We demonstrate this method for efficient, rate-based simulations of
self-assembly of clathrin trimers, highlighting how formation of regular lattices impacts the kinetics of association.

1. INTRODUCTION
Multiprotein self-assembly is a critical step in a diverse array of
cellular pathways, including vesicle trafficking,1,2 signal trans-
duction,3 and viral bud formation.4 Computer simulations of
self-assembly such as viral capsid dynamics,5−11 crystal forming
polyhedra,12 and DNA building blocks13 provide detailed
insights into mechanisms, kinetics, and stability of assembly
formations. In clathrin-mediated endocytosis, the assembly of
the clathrin lattice,14 which we simulate here, is a driving force
for vesicle formation. Computer simulations have revealed
critical roles of clathrin structure,15 clathrin-adaptor struc-
ture,16,17 membrane stiffness,18,19 and nonspecific interactions
between clathrin trimers20 in reproducing both ordered and
disordered clathrin assemblies.
Standard computational approaches for self-assembly use

molecular dynamics,21 Monte Carlo,22 or Brownian dynamics
with potential-based interactions (e.g., see refs 23−28). With
these more commonly used energy-function-based approaches,
however, nonequilibrium events such as protein production
and external energy sources cannot be modeled. Moreover, the
coarse-graining5,9,29 necessary to reach the seconds time scale
prevents the incorporation of chemical transformations such as
phosphorylation. Rate-based approaches, such as the one we
develop here, offer an attractive alternative to energy-function-
based approaches because they can readily capture kinetics of
general nonequilibrium systems over long time scales.

Rate-based approaches, such as ordinary (ODE) or partial
differential equations (PDEs) and stochastic simulations
(spatial or nonspatial/Gillespie30,31), are well-established for
studying cellular dynamics. These methods solve well-defined
equations of motion and utilize experimentally measured rates
for binding interactions or chemical reactions, facilitating
studies of complex biochemical networks,32 for example.
However, self-assembly presents new challenges33 and has
almost exclusively been modeled with either ODEs or Gillespie
simulations, which lack any spatial or structural resolution34−36

(although heuristic spatial treatments exist37). These rule-
based simulations38−40 are efficient and powerful,34,40−43 but
without spatial or geometric constraints, they cannot capture
the impact of sterics, excluded volume, diffusion, or spatial
localization. The spatially resolved approaches such as
continuous (PDEs)44,45 or lattice-based46−49 simulators lack
particle (molecular) resolution, preventing their application to
structure-resolved self-assembly.
Single-particle reaction−diffusion (RD) methods50−56 pro-

vide a natural starting point for building structure into a
spatially resolved, rate-based approach. While not yet generally
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developed for self-assembly, single-particle RD simulations
have provided mechanistic insight into diverse cellular
processes,52,57−60 including a study of self-assembly of receptor
clusters on 2D lattices.61 The most versatile algorithm, brute-
force Brownian dynamics (BD) with reactive collisions, has
already been used to study association of rotating and
translating rigid molecules that can orient and interact via
potentials.62−66 However, because BD is only accurate if very
short time steps (femtosecond to picosecond) are used when
particles approach contact, it is inefficient and usually restricted
to simulations of two proteins. When BD is used within
multiscale methods,67 larger systems can be studied, but BD
still represents a rate-limiting step in the simulations. Here, we
consider as a starting point for our approach the recent single-
particle methods developed to enable relatively large time steps
(nanosecond to millisecond) while preserving RD dynamics.
They generally fall into two classes, the kinetic Monte Carlo
(KMC) approaches,54,55 which preserve the macroscopic
kinetics of association, and the more microscopic Green’s-
function (GF)-based approaches, which are derived from the
Smoluchowski model.68 Of the GF approaches, the GFRD
algorithm preserves exact dynamics of RD equations,52,69,70

Smoldyn produces approximate rate behavior,56,71,72 and the
free-propagator reweighting (FPR) algorithm we use here
preserves exact rates and long-range dynamics of RD
equations.50,51

The primary reason single-particle RD has not been used for
self-assembly is that any departure from simple translational
diffusion makes it exceedingly difficult to accurately propagate
both dynamics and binding reactions between particles. In
general, adding in free rotational diffusion to rigid bodies is not
difficult. The major challenge is to evaluate the reaction
probabilities that such species will react upon collision.
Reaction probabilities differ for KMC methods versus GF-
based methods, but they are ultimately calculated on the basis
of analytical equations that are only available for translationally
diffusing particles with spherical reactive boundaries. Thus, the
goal of our approach here is to derive a method for efficiently
and accurately evaluating reaction probabilities for RD models
that extend from a single site to a multisite molecule
undergoing rotation as a rigid body. We achieve this goal by
allowing reactions to occur at any molecular orientations, and
then defining an effective diffusion constant, Deff, that allows us
to evaluate reaction probabilities using well-known solutions to
the translation-only RD equation.73,74 We note that the Spring
SALAD method75 is similar to our model in that it connects
multiple spherical sites into one molecule, using harmonic
springs rather than rigid-body dynamics. This requires a
smaller time step to propagate dynamics but could similarly be
integrated with our approach here.
To briefly introduce our model, we have moved beyond

spherical particles by defining a protein as a series of spherical
interaction sites connected in a rigid geometry (Figure 1).
Reactions occur at a specific collision distance σ, irrespective of
orientation of the two proteins. Because reactions are
independent of molecular orientation, a limitation of our
approach is that binding events produce complexes with
arbitrary geometries. In our method, we must therefore enforce
any desired orientation after binding occurs. This artificial
“snapping” into place of the binding partners upon association
violates the governing equation of motion for the sites, as
discussed further below. However, we consider this trade-off of
orientational dynamics for structure to be justified for two

reasons. First, we can quantitatively compare the microscopic
kinetics produced by our model (dependent on ka, kb, σ, D1,
D2, DR1, DR2, and leg lengths l1 and l2) with the macroscopic
kinetics of rate equations and experimental measurements (kon
and koff). This facilitates ready comparison between our model
and other simulations and experiments. Second, we are able to
simulate thousands of molecules interacting over minutes or
longer time scales. These simulations are the first to the
authors’ knowledge for modeling self-assembly with a spatially
resolved rate-based method.
In this paper, we first provide background on single-particle

RD before deriving an effective diffusion constant Deff for
capturing single-particle rotational and translation diffusion.
We then demonstrate how this general theoretical approx-
imation can be used particularly well in GF-based methods for
efficient and accurate solutions to pairwise association. We
calculate exact numerical solutions of reaction probabilities
from full rotational and translational reaction−diffusion
simulations using BD simulations64 to test our approximate
reaction probabilities that use Deff. We provide validation for
many-body simulations of rotating and translating sites at
equilibrium, and their full time-dependent kinetics using
Smoluchowski theory,68 where rates are calculated from
numerical BD simulations.64,65 We validate the method in
3D and in 2D, where the kinetics of association are much more
sensitive to spatial considerations.51 Lastly, we illustrate the
potential of this method by simulating rigid-body assembly of
clathrin trimers, modeled here as three-site rigid bodies. We
compare and contrast our results with the lower resolution
rate-based Gillespie simulations30 with rule-based species
tracking.38 We discuss the portability of this approach to
other single-particle methods and spell out steps needed to use
it in these other methods. Overall, this method provides a
framework for nonequilibrium simulations of self-assembly in
the cell, which can be coupled to other rate-based reactions.

2. THEORY
2.1. Smoluchowski Model for Single-Particle Reac-

tion−Diffusion. Background. Before describing our model
(Figure 1), it is necessary to provide background on the
Smoluchowski model.68 Point particles obey diffusive dynam-
ics. For a pair of particles, 1 and 2, the reaction is entirely
dependent on the separation between the two particles, and

Figure 1. Schematic of the model of two rigid proteins. (A) Each
protein here has a single reactive particle pi (i = 1 or 2) connected
rigidly to a central, nonreactive site ci that undergoes purely
translational diffusion. The “leg” vectors l1 and l2 (blue) undergo
purely rotational diffusion. Reactions occur when the reactive particles
collide, at rσ = σ. (B) The solution to this model can be solved
numerically as a function of the separation rσ and three relative angles:
the dihedral angle ψ (pink) of l1 relative to l2, and the polar angles θA
and θB (brown) of l1 and l2 relative to the vector rσ.
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reactions occur upon collision at the binding radius σ with an
intrinsic reaction rate ka (due to Collins and Kimball76). The
net diffusion is solely due to translational diffusion,

D D Dtot 1 2= + (1)

with translational diffusion constants always notated with
subscript 1, 2, or t. The separation r between the particle pair
with initial separation r = r0 at time zero obeys the diffusion
equation,

p r t r
t

D
r r

r
p r t r

r
( , ) 1 ( , )

d
d0

tot 1
1 0ikjjjj y{zzzz∂ |

∂ = ∂
∂

∂ |
∂−

−
(2a)

where d is the dimensionality and p(r,t|r0) is the probability of
finding the particles separated by r at time t. The reactive
boundary at r = σ is modeled via the radiation boundary
condition (RBC)76

D
p r t r

r
p t r

( , )
( , )

r
tot

0
0κ σ∂ |

∂ = |
σ= (2b)

where κ = ka/B(σ,d). In 2D the boundary region B(σ,d=2) =
2πσ, and in 3D, B(σ,d=3) = 4πσ2. The other boundary
condition is

p r t r( , ) 00=∞ | = (2c)

and the initial condition is a delta function,

p r t r r r B d( , 0 ) ( )/ ( , )0 0δ σ= | = − (2d)

The Green’s function (GF) solution to eq 2, which we will
denote as pirr(r,t|r0) for irreversible association, can be solved
analytically for this model.74 However, once rotation,
orientation, or forces are introduced, as we do below with
rotation, the model can only be solved numerically.
The central challenge of propagating single-particle reaction

diffusion is defining the probability of a reaction occurring
between two particles that have collided or may, in the next
time step, collide with one another. For the Smoluchowski
model, there is a rigorous definition of the reaction probability
for association, preact, which is the complement of the survival
probability S, the integral over the GF. The probability of a
reaction occurring in a time t given an initial separation r0 is
thus given by

S t r p r t rr( ) d ( , )0 irr 0∫| = |
σ

∞

(3a)

p t r S t r( ) 1 ( )react 0 0| = − | (3b)

Through the GF, the reaction probabilities depend on the
parameters ka, D1, D2, and σ. The functional forms of these
probabilities are known analytically in all three dimensions74

and analyzed elsewhere (see, e.g., 3D50 and 2D51).
Dissociation in microscopic models is independent of the

dynamics of the particles and is controlled by the intrinsic
dissociation rate, kb (s−1). It can be accurately modeled as a
Poisson process, where

p t k t( ) 1 exp( )dissoc b= − − (4)

For the Smoluchowski model, association occurs upon
collision, where r = σ. To ensure detailed balance, dissociation
events must return particles back to contact, r = σ.
Macroscopic vs Microscopic Rates. One can directly

compare the microscopic kinetics (dependent on ka, kb, σ,

D1, D2) with the macroscopic kinetics of rate equations and
experimental measurements (kon, koff). The macroscopic rate
from the Smoluchowski model is a function of time and is
related to the survival probability (eq 3a) via65

k t k S t( ) ( )a σ= | (5)

For binding reactions (A + B) in solution (3D), the time-
dependent rate reaches a steady state rate given by73

k
k D

1 1
4on

3D

a
3D

tot

1ikjjjjj y{zzzzzπ σ= +
−

(6)

and the equilibrium is preserved for microscopic and
macroscopic rates in 2D and 3D:

K
k
k

k
kq

on

off

a

b
= =

(7)

In 2D (on surfaces), unlike in 3D, there is no steady-state rate,
due to the fundamental properties of diffusion in 2D (the
critical dimension) versus 3D. We previously derived regimes
to establish when a steady-state rate is a valid approximation
and defined an optimal value for kon2D.

51 See the Methods for
adjustment for self-binding (A + A).

2.2. Model for Single-Particle Reaction−Diffusion
with Rotating Sites. Our model here (Figure 1) differs
from previous work on particles undergoing rotational and
translational diffusion64,66,77,78 because we have added the
second center of mass site, and we do not place orientational
constraints on reactions. We consider a reactive particle p1 that
is connected to a nonreactive center position c1 through a rigid
arm, l1 = p1 − c1. Similarly, reactive particle p2 is connected to
its center position c2 through a rigid arm, l2 = p2 − c2. The
lengths of both arms, l1 and l2, do not change. Reactions occur
along the vector separating the reactive particles, rσ = p2 − p1.
The dynamics of rσ depends on the translational diffusion of
the centers and the rotational diffusion of the legs, since

r r l l12 2 1= + −σ (8)

The model is parametrized by the familiar parameters for the
Smoluchowski model of ka, D1, D2, and σ, as well as four
additional rotational parameters: DR1, DR2, l1, and l2.
The equation of motion can be defined on the basis of the

purely translational diffusion of the centers c1 and c2, and the
purely rotational diffusion of l1 and l2. The diffusion of the
centers relative to one another, r12 = c2 − c1 obeys the
translational diffusion equation with Dtot = D1 + D2, such that,
similar to previous work,64 we can write

p t
t

D D D p

r l l r l l( , , , , , )

( )

12 1 2 120 10 20

tot 12
2

R1 1
2

R2 2
2

∂ |
∂

= ∇ + ∇ + ∇ω ω (9a)

The Laplacian for the translational diffusion of a vector r with
length r, polar angle θ, and azimuth φ in spherical coordinates

is given by ∇2 = ( )r
r r r r
1 2 1 2
2 2+ ∇ω

∂
∂

∂
∂ , where ∇ω

2 =

( )sin1
sin

1
sin2

2

2θ +θ θ θ θ φ
∂
∂

∂
∂

∂
∂ . Reactions are introduced as usual

via the RBC applied along the vector separating the reactive
particles, which for this model is rσ = p2 − p1. Reactive
collisions occur at rσ = σ, independently of the orientations of
l1 and l2. The flux along rσ at the separation σ is proportional to
the density at σ, giving

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.8b08339
J. Phys. Chem. B 2018, 122, 11771−11783

11773

http://dx.doi.org/10.1021/acs.jpcb.8b08339


r l lp r tJ r ( , , , )r 120 10 20κ σ− · ̂ | = = |σ σ σ=σ (9b)

where the flux is given by J = −(Dtot∇12 + l1DR1∇rot1 +
l2DR2∇rot2)p(r12,l1,l2,t|r120,l10,l20) and where ∇ = r

r r
1

rot̂ + ∇∂
∂

and ∇rot =
1

sin( )
θ φ̂ + ̂θ θ φ

∂
∂

∂
∂ . Similar to eq 2, the same large-

separation BC applies (eq 2c) and the same delta function
initial conditions are used for each variable (eq 2d). In the
limit of no rotational motion (DR1 = DR2 = 0, or l1 = l2 = 0),
this model (eq 9) simplifies back to the purely translational
result of eq 2.
Generally, the full model (eq 9) cannot be solved

analytically because the RBC is along rσ and this vector
depends on both translational and rotational diffusion. To
simplify our numerical calculations performed with BD
simulations,65 we can redefine the GF as a function of fewer
variables, as illustrated in Figure 1b, given that it is only the
relative separation and orientations of the molecules that
affects their collision probability. Thus, the GF becomes
pirr,rot(rσ,θA,θB,ψ,t|rσ0,θA0,θB0,ψ0); it is a function of the
separation rσ, the angle of each leg vector relative to rσ: θA =
acos[rσ·l1/(rσl1)], and θB = acos[rσ·l2/(rσl2)], and the dihedral
angle between the leg vectors ψ = acos[n1·n2/(n1n2)], where n1
= rσ × l1 and n2 = rσ × l2. The survival probability and reaction
probability for this full rotational and translational GF is

S t r

p r t r

r

( , , , )

d d cos( ) d cos( )

d ( , , , , , , , )B

rot 0 A0 B0 0

1

1

A
1

1

B

0

2

irr,rot A B 0 A0 0 0

∫ ∫ ∫
∫

θ θ

θ θ

θ θ θ θ

Δ | ψ

=

× ψ ψ Δ | ψ

σ

σ σ

π
σ σ

∞

− −

(10a)

p t r S t r( , , , ) 1 ( , , , )react,rot 0 A0 B0 0 rot 0 A0 B0 0θ θ θ θΔ | ψ = − Δ | ψσ σ
(10b)

2.3. Derivation of Effective Diffusion Constant Deff for
Describing Translational and Rotational Diffusion.
When a site with arm length l1 and rotational diffusion
constant DR1 rotates over a time step Δt, it sweeps out an
average squared angular displacement (Figure 2) of

t d D t( ) 2( 1) R
2

1ω⟨ Δ ⟩ = − Δ (11)

where

t t ll l( ) acos( ( ) (0)/ )1 1 1
2ω = · (12)

and d is the dimensionality. Using the law of cosines, the
average squared Cartesian distance traveled over this angular
displacement is then

r t l t( ) 2 (1 cos( ( )1
2

1
2 2ωΔ Δ = − ⟨ Δ ⟩ (13)

Using the familiar Einstein relation, we can then define a
translational diffusion constant that would produce this
squared displacement as

D r t d t( )/21,rot,diff 1
2≈ Δ Δ Δ (14)

The same calculation applies to p2. We approximate net
diffusion along rσ as the sum of the particles’ translational
diffusion constants and these contributions from rotational
diffusion (eq 14), producing the main result:

D t D D
r r

d t
( )

2eff 1 2
1

2
2

2
Δ = + + Δ + Δ

Δ (15)

This approximation produces the correct limiting behavior: as
either l1,2 → 0 or DR1,2 → 0, rotation no longer influences
reactions and the purely translational result is recovered.
Since Deff depends on the size of ⟨ω2(t)⟩1/2, we note that eq

11 ignores the periodicity of rotation. As far as net Cartesian
displacement is concerned (eq 13), rotation of 2π is the same
as 4π. Thus, when angular displacements are limited to
between 0 and π, eq 11 works well up to ⟨ω2(t)⟩1/2 ∼ <1 rad
(Figure 2). We can derive the squared angular displacement

t t

p t

( ) ( ) 0

2 sin( ) d ( , 0)

2 2
0

0

2
free,rot 0∫

ω θ θ

π θ θ θ θ θ

⟨ ⟩ = ⟨ | = ⟩

= | =
π

(16)

using the well-known solution for free rotational diffusion,

p t

Y Y

( , , , )

( , ) ( , )e
l m

l

l
m

l
m tD l l

free,rot 0 0

0 1
0 0

( 1)R∑ ∑

θ φ θ φ

θ φ θ φ

|

=
=

∞

=−

* − +

(17)

given delta function initial conditions p(θ,φ,t=0|θ0,φ0) =
δ(θ−θ0) δ(φ−φ0). With an initial polar angle of θ0 = 0, the
resulting distribution will be uniform in φ. At long times the
distribution becomes uniform in θ, and the asymptotic value is

⟨ω2(∞⟩ = 4
2

2π − in 3D and π2/3 in 2D. We numerically solved
eq 16 over all other times (Figure 2 black dashed). We also
found a reasonable global fit for values where ⟨ω2(t)⟩1/2 > 1
rad and eq 11 does not apply, on the basis of comparing fits
across several different values of DR. In 3D,

t D t( ) 1.45 exp( 2.6 ) ( )2 1/2
R

2 1/2
3Dω ω⟨ ⟩ ≈ − − + ⟨ ∞ ⟩

(18a)

and in 2D,

t D t( ) 1.5 exp( 1.2 ) ( )2 1/2
R

2 1/2
2Dω ω⟨ ⟩ ≈ − − + ⟨ ∞ ⟩

(18b)

We demonstrate in Figure 3 that our assumption that
rotational dynamics can be approximately captured by Deff
works well. The mean squared Cartesian displacement (MSD)

Figure 2. Mean squared angular displacements (MSAD) from purely
rotational diffusion of a vector l is known over all time scales and
values of DR. The expected result (blue) ignores the periodicity of
rotation, and we are interested in the Cartesian displacement |l(t) −
l(0)|2 after a time t. With ω (see inset) thus limited to the range 0:π,
the MSAD can be calculated from eq 16 (black dashed), with the
asymptotic value reached upon uniform sampling shown in solid
black. We found a reasonable fit shown in the green curve (eq 18) to
simplify calculations of ⟨ω2(t)⟩1/2. Our simulations of free rotational
diffusion using Euler angle updates (red) correctly sample the exact
solution (black dashed).
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of a single particle p1 undergoing free translational and
rotational diffusion is calculated from simulation. At short
times (<∼10 μs), the slope is steeper than expected from
purely translational diffusion, due to the effects of rotation. At
longer times, however, the slope of the MSD is again described
by the translational diffusion constant only, as rotation can
maximally contribute a net displacement of 2l2. The simulation
data are well described by the use of the Einstein relation with
Dt replaced by Deff(t) (eq 15).

3. METHODS
3.1. Simulation Algorithm Outline. On the basis of the

theory above, we outline here a general stepwise implementa-
tion for association of pairs.

1. Given an instantaneous configuration, calculate the
separation r between pairs of reactive sites.

2. For each reactive pair, calculate their effective diffusion
constant Deff using eq 15.

3. For each reactive pair, calculate preact (using, e.g., eq 3b),
given the time step, the current particle separation r, and
the reaction parameters: ka, σ, and Deff.

4. (A) If preact > URN, move sites to contact and “snap”
them into place.
(B) Else, sample Brownian displacements (rotational
and translational) for both molecules (Supporting
Information), and reject moves that create overlap
between pairs (r < σ).

We note that any specific method may have minor
modifications from this procedure. For the FPR method, for
example, in step 3, we would also need to calculate and apply
reweighting ratios to the reaction probabilities. Time steps
should also be chosen such that, on average, only pairs of
molecule could react in each step.50

3.2. Simulation Details for Many-Body Rotational
FPR. All many-body simulations used the FPR algorithm.50,51

Rigid molecules were initialized in the unbound state and
positioned randomly in a box. Reactive sites were prevented
from overlapping. Box lengths were 494 nm in x, y, and z
unless otherwise indicated, and 2D simulations were restricted
to the x−y plane. Reflective boundary conditions were used for
the box boundaries; sites that diffused out of the box were
placed back inside by the displaced amount. Diffusion
constants for complexes were slowed on the basis of the
growth in the hydrodynamic radius (Supporting Information).
For each system, at least 20 trajectories (Ntraj) were collected,

and the standard error of the mean (SEM) for a variable x was
calculated at each time point using SEM(t) = ⟨(x(t) −
⟨x(t)⟩)2⟩1/2/ Ntraj .
For self-binding reactions (A + A), we note that the

relationship between macroscopic and microscopic rates (eq

6) is instead given by kon3D = ( )k D
1
2

1 1
4

1

a
3Dself

tot
+ π σ

−
, and eq 7 is

Keq =
k
k

k
k2

on

off

a
self

b
= in 3D and 2D. These relationships are needed

to define the ka and kb values for direct comparison to the
Gillespie simulations that use kon and koff.
For clathrin trimer simulations, when association occurs,

molecules are translated to contact and then rotated into a
predefined planar orientation. This new structure is then tested
to check if the association has produced overlap between
clathrin trimers in a lattice, which can happen if larger
structures bind. If so, the event is rejected and both complexes
are returned to their position prior to association. When
dissociation occurs, two complexes are created and a tree
search is used to maintain the bonded structure within each
new complex. Reactive sites stay at contact following
dissociation. If a “bond” dissociates within a closed hexagon,
the complex remains as a single unit, with the reactive sites
now “freed” to rebind. We note that for these simulations,
when reactive sites are in a bound state, they do not enforce
excluded volume. While maintaining excluded volume of both
free and bound sites is straightforward, we chose not to do it
here simply to speed up the simulations. To simulate 30 s of
real time took ∼14 h on one CPU. For further details on the
FPR method, the BD simulations, and the Gillespie
simulations; see Supporting Information.

4. RESULTS
4.1. Reaction Probabilities and GFs for Rotating Sites

Approximated through the Use of Deff. The correct
reaction probability for association for our model of Figure 1 is
given by eq 10b, which is not analytically soluble. We find that
using Dtot = Deff in the solutions to the model of eq 2 does an
excellent job of describing the orientationally averaged
solutions from the full model. We illustrate the results with a
diffusion-controlled reaction (ka = 166.9 nm3/μs = 1.01 × 108

M−1 s−1), to maximize the sensitivity of the model to changes
in diffusion. In Figure 4 we plot the survival probabilities of
association for the full model (eq 10a) as a function of initial
separation of the pairs rσ0, and initial orientation of the legs, Ω0

Figure 3. (a) Mean squared displacement (MSD) of a translating and rotating molecular site (pink) described by Deff (black). Simulations of a
point p1 located l = 10 nm from the center of mass have no reactions occur (pink). The expected MSD from the Einstein relation, ⟨|p1(t) −
p1(0)|2⟩ = 6Dt, is shown for D = Dt in dashed green, and in dark green the intercept is offset by the maximum rotational distance of 2l2. We
calculate Deff(t) using eq 15, where ⟨ω2(t)⟩1/2 is given by 4DRt up to 1 rad, and otherwise is calculated via eq 18. Percent error between the
simulated results and the theoretical prediction using Deff(t) is shown for (a) as well as for a simulation with the same leg length but faster diffusion.
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= [θA0, θB0, ψ0]. Although there is clearly a dependence on the
initial orientation of the legs, it is relatively small. This is
because, while orientation affects the path swept out by the
rotation of the particles, reactions occur upon any collision,
independently of the molecules’ orientation. Critically, once
initial orientations have been averaged over, we confirm that
the resulting survival probabilities are well described by S(t|
r0,Deff) of eq 3a. In contrast, the agreement is clearly worse for
S(t|r0,Dt). In Figure 5 we show that, similarly, the orientation-
ally averaged GF solutions to eq 9 are also well described by
the solutions to eq 2 when Dtot = Deff. Here again, if we ignore
the effect of rotation and use Dtot = Dt, the agreement is much
worse. The trend is the same whether we solve for the full
model including RBC (Figure 5a), or we solve for free
diffusion (no reactions) (Figure 5b). Interestingly, the ratio of
these two GFs (Figure 5c) is rather insensitive to the value of
Dtot used. This ratio is used for reweighting in the FPR
simulations (see Methods).
4.2. Time-Dependent Rates of Association Captured

by Deff. The macroscopic rates of association (kon, koff)
produced by our microscopic models are necessary to facilitate
quantitative comparisons with experiment and with simula-
tions across all resolutions. We show here that the time-
dependent rates for the full model (Figure 1) are well-
approximated by the analytical solutions when we use Dtot =
Deff, in both 3D and 2D (Figure 6). These results further
highlight the impact that rotational diffusion can have on the
kinetics of association for diffusion-controlled reactions such as
the one studied here (ka = 166.9 nm3/μs = 1.01 × 108 M−1

s−1). As the motion changes from Dt = 6 to Deff = 12.66 nm2/
μs due to rotational diffusion, the steady-state rate increases
from 51.9 to a predicted value of 81.5 nm3/μs (Figure 6a). The
true rate (Figure 6a black diamonds) approaches an
asymptotic value in 3D of 78.7 nm3/μs, quite close to the
predicted value.
In 2D, we again see that the kinetics for this diffusion-

controlled reaction is clearly impacted significantly by
rotational diffusion. The predicted rate using Deff = 6 nm2/

μs is in excellent agreement with the numerical solution for t <
100 μs, after which the true rate decays more rapidly (Figure
6b). This is not particularly surprising, given that, for diffusion-
controlled reactions in 2D, reactions remain sensitive to spatial
distributions over all times.51 At longer times, particles are
broadly distributed in space and their ability to find each other
to produce a reactive collision will be limited by their
translational diffusion, which in this case is 6 times slower than
Deff. Finally, it is worth noting that if the binding is rate-limited
(e.g., ka/D < 0.5 in 2D),51 the kinetics in 3D or 2D will be
insensitive to any changes to diffusion constants, including the
addition of rotational diffusion.

4.3. Many-Body Equilibrium for Rotating Sites. Thus
far, we have only studied reaction dynamics between a single
pair of reactive molecules. Here, we simulate a pseudo-first-
order reversible reaction, A + B ⇌ C, to carefully quantify the
equilibrium values produced by our structure-resolved RD
model (Figure 7). We simulate our dynamics using the FPR

Figure 4. Survival probabilities of association for two rotating and
translating reactive particles are accurately approximated by use of
Deff. Each colorful curve is the survival probability (calculated
numerically from BD simulations (Supporting Information)) between
p1 and p2 over time Δt = 0.01 μs given an initial separation rσ = r0 in
nm, and an initial orientation Ω0 = [θA0, θB0, ψ0] (eq 10a). The black
diamonds are the average over all initial orientations. Error bars are
standard deviations across all angles. Both theory curves show the
survival probability predicted from the simpler analytical model (eq
3a), which depends only on the initial separations of the particles, r0.
Both particles rotate with DR = 0.05 rad2/μs and with l = 10 nm. One
molecule has D1 = 0, the other has D2 = 6 nm2/μs, thus Dt = D2. We
calculate Deff from eq 15 with the time step Δt = 0.01 μs, giving Deff =
12.66 nm2/μs. The rate is ka = 166.9 nm3/μs and σ = 1 nm.

Figure 5. Green’s Function (GFs) solutions for two rotating and
translating reactive sites well approximated by use of Deff. GFs are
plotted here as a function of the final separation r at time Δt = 0.01
μs. All final orientations are averaged over. The initial separation is
fixed at r0 = rσ = 1 nm for all curves, and each colorful curve
corresponds to a distinct initial orientation Ω0 = [θA0, θB0, ψ0]. The
average over all initial orientations is shown in black × marks. Both
theory curves show the GF predicted from the simpler analytical
model of eq 2. (a) The GF with RBC. (b) GF for free diffusion with
excluded volume enforced (r ≥ σ) and the GF renormalized to one
over r ≥ σ. (c) Ratio of the GF in (a) relative to (b) used for
reweighting in the FPR algorithm (Supporting Information).
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algorithm,50,51 where particle positions are updated according
to both translational and rotational Brownian motion
(Supporting Information). We stress that the dynamics is
always properly updated using Dt for translational updates to
positions, and DR for rotational updates to sites. We use Deff

only to evaluate reaction probabilities and their reweighting
factors (Supporting Information). Simulations here used Δt =
0.1 μs, with nearly identical results produced for Δt = 0.5 μs.
The equilibrium behavior is, as usual, independent of the
dynamics or transport properties of the system, and the correct
probability of the central A particle being bound to a B particle
is given by

p
K B

K B1bound
eq 0

eq 0
= + (19)

where Keq = ka/kb = 1.669 × 108 nm3. The error of our
simulations relative to the exact values is <1% for all system
sizes (Figure 7). Each trajectory (Ntraj = 20) produces at least
3000 binding events to converge the value of pbound.
FPR simulations that simply used Dt to evaluate reaction

probabilities and reweighting factors were less accurate,
particularly for NB = 1 (Figure 7). To recover exact association
rates in FPR, reaction probabilities must be reweighted by the
GFs (Figure 5c), and without reweighting applied, the error
further increases. For all cases, the error does decrease as NB ≫
NA. This suggests that a large field of binding partners could
help cancel out the dependence of binding equilibrium on the
shape of the reaction probability functions (e.g., Figure 4), as
results using Dt only were still relatively accurate. However, as
we will see below, the kinetics of association are also sensitive
to the D used for evaluating reaction probabilities.

4.4. Many-Body Kinetics of Reversibly Binding,
Rotating Sites. The kinetics of many-body association are

Figure 6. Kinetic rates of association are predicted by the translational model with Deff. The time-dependent rate for the full model (black
diamonds) can be calculated from BD simulations via the survival probabilities using, similar to eq 5, k(t) = ka∫ ∫ ∫ d cos(θA) d cos-
(θB) dψ S(t|σ,θA,θB,ψ). Theory shows k(t) calculated from eq 5 where Dtot = Dt (cyan) or Dtot = Deff (blue). (a) In 3D, at t = 1 ms, the theoretical
rate has nearly reached its steady state (81.6 versus kon = 81.5 nm3/μs), and the observed rate is 78.7. (b) In 2D, the rate decays logarithmically
toward zero. One molecule translates with Dt = 1 nm2/μs, and both molecules rotate around the z-axis with DR = 0.05 rad2/μs. ka = 83.45 nm2/μs.

Figure 7. Equilibrium is correctly produced by our rotational FPR
simulations for A + B ⇌ C. A central rotating A molecule binds
reversibly to NB rotating B molecules in a volume of V = (400 nm)3.
All particles have a center of mass site located l = 10 nm from the
reactive sites. Error bars indicating standard error of mean (SEM) are
smaller than the marker size. The exact solution is in black (eq 19).
FPR simulations that evaluate reaction probabilities using Deff (red)
have percent errors of 0.69% for N = 1, 0.38% for N = 5, 0.15% for N
= 10, and 0.14% for N = 15. The error increases about 3-fold if Dt is
used instead (blue): 3.8% for N = 1, 0.89% for N = 5, 0.44% for N =
10, and 0.33% for N = 15. If Dt is used without any reweighting
applied (green), errors increase to 5.4% for N = 1, 1.3% for N = 5,
0.65% for N = 10, and 0.5% for N = 15.

Figure 8. Rotational diffusion accelerates the kinetics of many-body association A + A ⇌ C for the diffusion-controlled rate of ka = 166.9 nm3/μs
(1.01 × 108 M−1 s−1). (a), (b) For each A molecule, Dt = 3 nm2/μs and l = 10 nm. kb = 1/s. Atotal = 200 legs. Theoretical comparisons use the MRE
(eq 20). (c) In 2D, Dt = 0.5 nm2/μs.
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also accurately captured by our rotational FPR simulations
(Figure 8). We have simulated reversible association of 200 A
molecules that rotate and translate, in both 3D (Figure 8a,b)
and 2D (Figure 8c). For comparison, we solved for the time
dependence of this reaction (A + A ⇌ C) using a very good
theoretical solution provided via the modified rate equation
(MRE):79

A t
t

k t A t K k t C td ( )
d

( ) ( ) ( ) ( )2
D= − +

(20)

We solve this ODE numerically in MATLAB where the rate
k(t|ka,σ,Dtot) (eq 5) is solved either for rotation using Dtot =
Deff or with no rotation, Dtot = 2Dt.
In Figure 8a,c one can clearly see that the introduction of

rotational diffusion has accelerated the kinetics of association,
while producing the same equilibrium. We verify that the size
of the time step (0.01 or 0.1 μs) does not alter the kinetics or
equilibrium of our simulations (Figure 8b red and purple).
Changing the time step offers a stringent test for the method,
as it changes the magnitude and shape of the reaction
probabilities and the GFs in a nonlinear way. Figure 8b also
shows how FPR simulations that evaluate reaction probabilities
using only Dt instead of Deff does produce error in the
kineticsit agrees with neither the proper rotational diffusion
simulations nor the translational-only simulations.
4.5. Gillespie Simulations of Clathrin Trimer Self-

Assembly. As a comparison to our structure-resolved RD
simulations of clathrin trimer self-assembly (Figure 9), we used

another rate-based approach, the nonspatial Gillespie algo-
rithm with rule-based interactions, where each clathrin
molecule has three sites (Supporting Information). As
expected, the Gillespie simulations recover the precise
equilibrium and kinetics of an A + A ⇌ C reaction for all
simulations, as structure and geometry do not influence
interactions. Importantly, we define the macroscopic rates for
Gillespie simulations on the basis of the microscopic
parameters of the RD model (Methods, with Dtot = Deff) to
ensure maximal similarity. With 100 trimers, there are 300 legs
or A molecules, and for KD = 100, 1, and 0.2 μM, the

equilibrium number of bound leg pairs (Ceq) are thus 10.7,
106.1, and 128.4 respectively, as shown in Figure 10.

4.6. Structure-Resolved RD Simulations of Clathrin
Trimer Self-Assembly. A powerful aspect of our new
approach is that it can be applied to studying self-assembly
of rotating sites that are part of a rigid complex, such as a
model of a clathrin trimer (Figure 9). While still simulating an
A + A ⇌ C reaction, we can quantify how rigid structure,
space, and diffusion affect complex formation and assembly,
with direct comparison to the Gillespie simulations of the same
systems. In this simplified model of a clathrin trimer, the three
reactive sites are arranged in a plane with 120° between them,
10 nm from the center. Each bound pair are “snapped” into
place in a plane (Figure 9) to mimic the experimental
structures of clathrin lattices that form plaques on the
membrane.80

For weak binding (KD = 100 μM), we find that the structure-
resolved RD simulations produce the same equilibrium and
kinetics as the Gillespie simulations (Figure 10a). This is
expected, because when limited numbers of complexes form,
hexagons will not form and structure does not impact kinetics.
We also verify that the RD results are the same for two
different time steps (0.1 and 0.01 μs), producing equilibrium
bound pairs of 10.9 ± 0.65 (SEM) for 0.1 μs and 10.6 ± 0.5
for 0.01 μs, in good agreement with the exact value of 10.7.
For stronger binding, however, the structure-resolved RD

simulations differ even at equilibrium for two main reasons.
One reason is that, as large complexes form, the spatial
geometry prevents specific pairs of legs from being able to
bind, even if they are free. For a perfect tiling of the 100
trimers we simulate here, the global optimum has 38 closed
hexagons, 137 bound pairs, and 26 legs unbound (Supporting
Information). This feature cannot be captured in Gillespie
simulations, as the rules apply to pairs of molecules and any
extension to specific complex geometries (e.g., 6-mers forming
hexagons) becomes combinatorially prohibitive. However,
even with KD = 0.2 μM, the equilibrium bound legs of 128.4
is below this maximum threshold of 137, so it is not the largest
source of deviations between the two simulations.
The second and more significant reason that the RD

simulations differ from the Gillespie is because the trimeric
clathrin molecules form closed hexagonal loops (Figure 10b
inset). A closed hexagon has six bound pairs, but once the fifth
pair is bound, the final two free sites are at contact and are part
of the same complex. This means that they are no longer
diffusing relative to one another. The reaction probability (eq
3) approaches 1 as D → 0 if particles are at contact (r = σ),
and approaches 0 otherwise, independently of the rate. We
therefore define the probability of this hexagon (or loop)
closure in two ways. In one case, we set the probability of
hexagon closure to 1, which means the hexagon formation is
irreversible and the simulations remain nonequilibrium. In the
other case, we defined a probability of hexagon closure that
would preserve detailed balance (DB) and allow for dynamic
remodeling of the hexagons at equilibrium (Supporting
Information).
As seen in Figure 10b,c, in the irreversible hexagon closure

simulations (magenta), we see a slow but steady growth in legs
bound as lattices anneal and become locked into place. A
snapshot from one of these simulation trajectories is shown in
Figure 11c, where the lattice shown formed after 10.5 s at KD =
0.2 μM and is effectively frozen in this configuration. For the
DB simulations, the time when the first hexagons form agrees

Figure 9. Model of clathrin trimer geometry and bound structure.
Each rigid trimer has three reactive sites indicated in blue, located 10
nm from the center site shown in orange. If two reactive sites are
within collision distance for the time step, r < Rmax (Supporting
Information), they associate if the reaction probability is greater than
a uniform random number (URN), regardless of the orientation.
Once association occurs, however, the trimers are “snapped” into
place to impose a planar complex geometry. Each binding site has
excluded volume relative to all other open sites (e.g., they either react
or reflect off of each other), and the “legs” and the center of mass
particles have no volume.
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with the irreversible hexagon simulations, and prior to these
events, the kinetics of both these RD simulations agree
relatively closely with the Gillespie simulations (Figure 10b,c).
However, the subsequent kinetics diverge as hexagon
formation increases. The frequency of these hexagon closure
events is ultimately lower in the DB simulations than that
produced by free association, driving down the total number of
bound legs at equilibrium relative to what is seen from
Gillespie simulations. These results illustrate how the
definition of hexagon closure probability has quantitative and
qualitative impact on the equilibrium and dynamics of the
lattice assembly (Figure 11, Movie S1). Loop closure was also
found to be a critical parameter controlling the self-assembly of
receptors on the cell surface.61 From our DB simulations, we
calculated the average number of hexagons closed at
equilibrium to be 0 for 100 μM, 2.5 ± 1.6 for 1 μM (±here
is standard deviation), and 8.5 ± 3.3 for 0.2 μM. In contrast,
for the irreversible hexagon simulations, the average numbers
of closed hexagons are 0.05 ± 0.2 for 100 μM, 33 ± 2.4 for 1
μM, and 31 ± 2 for 0.2 μM, as calculated at the end of the
simulations.
Finally, we note that the early kinetics of the RD simulations

is very similar to the Gillespie simulation kinetics (Figure 10),
in large part because the systems start out well-mixed and the
binding is not diffusion controlled for monomer and small
oligomer binding events. In particular, even for KD = 0.2 μM,
the macroscopic rate in the Gillespie simulations is kon = 5 ×
106 M−1 s−1. For the corresponding RD simulations, this
macroscopic rate results from both the diffusional search time

and the rate of binding once at contact (eq 6), and the
diffusional rate is ∼10 times faster than the binding rate at
contact, thus minimally impacting the overall kinetics. Once
larger structures attempt to bind, however, diffusion can slow
down rates of association, as larger complexes have smaller
diffusion constants (Methods). Binding of larger complexes
(e.g., Figure 11) can also produce steric overlap, and these
moves must be rejected, further contributing to slower kinetics.
The RD kinetics is accelerated only in the event of hexagon
closure. This reaction is instantaneous for the irreversible
model, due to the spatial localization of the sites.

5. DISCUSSION
5.1. Application to Other Single-Particle RD Methods.

Single-particle RD approaches50−56 typically use simple
Brownian updates to particle positions based on free diffusion,
and rotation can be straightforwardly added in by performing
Euler rotations. Whether the method is KMC or GF based, the
reaction probabilities of association can be evaluated using
their existing functional forms but parametrized by Deff rather
than Dt. The ability of these rigid-body simulations to create
large assemblies, however, does introduce new demands on RD
software. Additional bookkeeping is needed to ensure that
protein complexes move as a rigid unit and that dissociation
events only separate the two molecules that unbind. This issue
is computational rather than algorithmic and must be
confronted in any rule-based method that tracks multiprotein
complex formation (e.g., BioNetGen38). Association events

Figure 10. Kinetics of clathrin trimer self-assembly changes with structural constraints for stronger binding interactions. For Gillespie simulations
(blue) the kinetics is simply given by A + A ⇌ C where total NA = 3Ntrimers, and koff = 1 s−1 for all simulations. C(t) is plotted versus time.
Rotational FPR simulations (black, Δt = 0.01 μs; green, 0.1 μs; magenta, 0.1 μs) shown with error bars indicating SEM over 20 trajectories. The
three distinct models (blue vs magenta vs black/green) begin to diverge from each other after hexagons start forming, as indicated by the green
arrow.

Figure 11. Clathrin lattice formation in solution remodels dynamically with reversible hexagon closure. (a), (b) Snapshots from a single trajectory
with KD = 0.2 μM and Δt = 0.1 μs, where we enforce detailed balance (DB) for closure of the hexagons and the lattice dynamically remodels. (c)
Here again KD = 0.2 μM, but the hexagon closure is irreversible. Once the structure shown has formed at 10.5 s, all 100 trimers are incorporated
and no dissociation event will allow a trimer to diffuse away (Movie S2).
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between multiprotein structures, such as the clathrin lattices
simulated here, can also produce steric overlap which should
be prevented. In our software, we evaluate possible overlap in
all newly formed complexes, rejecting events that produce
nonphysical, overlapping sites, similar to previous work
studying receptor binding on surfaces.61 Additionally, the
specific geometry of a multisite molecule could lead to a
reduced macroscopic rate relative to the predicted value
(Supporting Information). If repeated reactive sites are densely
packed on a molecule, they can partially occlude access to
binding, as previous work on cell surface receptors has
shown.81 For our clathrin molecule this is not an issue, but
it is an important consideration for comparing kinetics across
macroscopic and microscopic models.
The addition of multiple sites to a single rigid molecule also

produces correlated motion, which is physically reasonable for
a protein with multiple binding interfaces. However, in most
single-particle RD methods, the evaluation of reaction
probabilities and of diffusional position updates for each
reaction site is assumed to be independent of all other sites
except (at most) a single reaction partner within a time step.
Once a rigid molecule has to avoid overlap due to one of its
sites, this position update for the other sites deviates from the
exact propagator. Ultimately, this coupling cannot be totally
eliminated. However, it is minimized by taking smaller time
steps. With smaller steps, each site will have fewer possible
partners to react with, and the assumption that only one
collision could occur for each rigid molecule (not each reactive
site) will be better maintained. Verifying that observed kinetics
are preserved at smaller time steps, as we did above, is thus an
important test of method and model accuracy. We have found
that these errors in the expected positional distributions of
reactive pairs has a rather small impact on kinetics of many-
body association. This is likely because in many-body diffusing
systems, random positional errors occur in all directions and
tend to even out.
5.2. Limitations and Future Directions. An important

limitation of our model is that binding reactions are not
dependent on molecular orientation. For small globular
proteins, where the hydrodynamic radius is ∼2 nm, this is a
minor concern, as rotational diffusion is fast (from Einstein−
Stokes DR = 21 rad2/μs) and, over the course of a 0.1 μs time
step, will have nearly uniformly sampled orientations (see, e.g.,
eq 11). However, for larger structures, slow rotation means
that orientational constraints can have more control on
aligning structures over these microsecond time scales. The
more artificial and practical side of this approximation is that
larger structures can bind from any orientation relative to one
another, as long as their binding sites are close together. These
association events that create large displacements could be
rejected, similar to events that create steric overlap. Our simple
model of association also neglects the effects of electrostatics82

or hydrodynamics83 on controlling association because of their
computational expense, although they are compatible with the
FPR algorithm.50 Protein flexibility is also important for
binding interactions involving multivalent intrinsically disor-
dered proteins, and integration of our model with the approach
of Spring SALAD75 would be a promising future method for
modeling these proteins.
5.3. RD Simulations of Clathrin Lattice Assembly.

Recent energy-function-based models have successfully studied
clathrin lattice and cage assembly, and while these models are
coarse-grained (CG) from the perspective of molecular

dynamics, they are higher resolution than our model because
of their ability to capture orientational effects15,20 and
flexibility.19 However, an RD model such as ours has
advantages for modeling CME in the cell. First, CG
interactions for large molecules such as clathrin are quite
specific for each system studied, as is the software, which
makes them difficult to transfer from one system to another.
Energy-function-based models each have a distinct definition
of clathrin interactions and geometry, whereas our rate-based
RD model is adaptable to various software tools. Second,
specifying and parametrizing additional CG interactions for
clathrin with the dozens of additional proteins that are known
to mediate CME in the cell is not practical. In contrast,
because binding constants and structures are known for many
of the CME protein−protein interactions, they can be directly
used in rate-based models.43,60 Finally, rate-based approaches
can readily be applied to studying nonequilibrium processes
such as CME. In a recent nonspatial rate-based model of
clathrin assembly involving eight different protein types, we
demonstrated that the stoichiometry of adaptor proteins and
the strength of their interactions with clathrin, as measured
experimentally, control the localization of clathrin to the
membrane and the speed and success of assembly into
vesicles.43

Our structurally resolved clathrin model simulated here
builds in the sterics and geometric constraints missing from
our nonspatial rate-based model of clathrin vesicle formation.43

We found here that dynamic remodeling of the clathrin lattice
was sensitive to not only the trimer−trimer binding constant
but also the rate of hexagonal loop closure in the lattice. As a
result, the kinetics and steady-state behavior of clathrin lattice
assembly differed from what was expected from a nonspatial
rate-based simulation once hexagons started to form.
Experimental estimates of clathrin-clathrin dimerization
indicate weak stability, with a KD of ∼115 μM.84 Using a
similar value of 100 μM (Figure 10a), our clathrin model does
not assemble lattices in solution, as is observed physiolog-
ically.85 Although we simulated flat lattices here, which are
only observed to form on membranes, in future work the
structure of the rigid clathrin can be “puckered” to assemble
into closed cages. As this paper focuses on the ability to
generally simulate structure-resolved RD, we will perform a
more thorough characterization of clathrin assembly kinetics,
including on the membrane (2D), in a future work.

6. CONCLUSIONS
Molecular modeling approaches are well-established for
simulating self-assembly but are not capable of reaching the
slow time scales of the cellular process or capturing their
frequent dependence on chemical reactions such as phosphor-
ylation. However, single-particle reaction diffusion is amenable
to simulating chemical reactions and reaching the long slow
time scales of cellular processes. Our structure-resolved RD
method presented here is a first approach for combining these
features to study self-assembly in the cell. The method was
demonstrated here on the clathrin lattice assembly but is
general enough to be used on a range of multicomponent self-
assembly problems in solution and on the membrane. The
method is simple enough to be incorporated into single-
particle RD software, and our code is freely available on github.
com/mjohn218/FPR_rot. We are developing user-friendly
software tools to facilitate the setup and simulation of rate-
based RD systems of self-assembly.
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