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Abstract. Given the ability to directly manipulate image pixels in the
digital input space, an adversary can easily generate imperceptible per-
turbations to fool a Deep Neural Network (DNN) image classifier, as
demonstrated in prior work. In this work, we propose ShapeShifter , an
attack that tackles the more challenging problem of crafting physical
adversarial perturbations to fool image-based object detectors like Faster
R-CNN. Attacking an object detector is more difficult than attacking an
image classifier, as it needs to mislead the classification results in multi-
ple bounding boxes with different scales. Extending the digital attack to
the physical world adds another layer of difficulty, because it requires the
perturbation to be robust enough to survive real-world distortions due
to different viewing distances and angles, lighting conditions, and cam-
era limitations. We show that the Expectation over Transformation tech-
nique, which was originally proposed to enhance the robustness of adver-
sarial perturbations in image classification, can be successfully adapted
to the object detection setting. ShapeShifter can generate adversarially
perturbed stop signs that are consistently mis-detected by Faster R-CNN
as other objects, posing a potential threat to autonomous vehicles and
other safety-critical computer vision systems. Code related to this paper
is available at: https://github.com/shangtse/robust-physical-attack.
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1 Introduction

Adversarial examples are input instances that are intentionally designed to fool
a machine learning model into producing a chosen prediction. The success of
Deep Neural Network (DNN) in computer vision does not exempt it from this
threat. It is possible to bring the accuracy of a state-of-the-art DNN image
classifier down to near zero percent by adding imperceptible adversarial pertur-
bations [5,22]. The existence of adversarial examples not only reveals intriguing
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theoretical properties of DNN, but also raises serious practical concerns on its
deployment in security and safety critical systems. Autonomous vehicle is an
example application that cannot be fully trusted before guaranteeing the robust-
ness to adversarial attacks. The imperative need to understand the vulnerabil-
ities of DNNs attracts tremendous interest among machine learning, computer
vision, and security researchers.

Although many adversarial attack algorithms have been proposed, attacking
a real-world computer vision system is difficult. First of all, most of the existing
attack algorithms only focus on the image classification task, yet in many real-
world use cases there will be more than one object in an image. Object detection,
which recognizes and localizes multiple objects in an image, is a more suitable
model for many vision-based scenarios. Attacking an object detector is more
difficult than attacking an image classifier, as it needs to mislead the classification
results in multiple bounding boxes with different scales [14].

Fig. 1. Illustration motivating the need of physical adversarial attack, from attackers’
perspectives, as they typically do not have full control over the computer vision system
pipeline.

Further difficulty comes from the fact that DNN is usually only a component
in the whole computer vision system pipeline. For many applications, attackers
usually do not have the ability to directly manipulate data inside the pipeline.
Instead, they can only manipulate the things outside of the system, i.e., those
things in the physical environment. Figure 1 illustrates the intuition behind phys-
ical adversarial attacks. To be successful attacks, physical adversarial attacks
must be robust enough to survive real-world distortions due to different viewing
distances and angles, lighting conditions, and camera limitations.

There has been prior work that can either attack object detectors digi-
tally [23], or attack image classifiers physically [6,10,19]. However, so far the
existing attempts to physically attack object detectors remain unsatisfactory.
A perturbed stop sign is shown in [13] that cannot be detected by the Faster
R-CNN object detector [18]. However, the perturbation is very large and they
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tested it with poor texture contrast against the background, making the per-
turbed stop sign hard to see even by human. A recent short note [7] claims to
be able to generate some adversarial stickers that, when attaching to a stop
sign, can fool the YOLO object detector [17] and can be transferable to also
fool Faster R-CNN. However, they did not reveal the algorithm used to create
the sticker and only show a video of indoor experiment with short distance. For
other threat models and adversarial attacks in computer vision, we refer the
interested readers to the survey of [1].

In this work, we propose ShapeShifter , the first robust targeted attack that
can fool a state-of-the-art Faster R-CNN object detector. To make the attack
robust, we adopt the Expectation over Transformation technique [3,4], and adapt
it from the image classification task to the object detection setting. As a case
study, we generate some adversarially perturbed stop signs that can consistently
be mis-detected by Faster R-CNN as the target objects in real drive-by tests.
Our contributions are summarized below.

1.1 Our Contributions

– To the best of knowledge, our work presents the first reproducible and robust
targeted attack against Faster R-CNN [14]. Recent attempts either can only
do untargeted attack and requires perturbations with “extreme patterns” (in
the researchers’ words) to work consistently [13], or has not revealed the
details of the method [7]. We have open-sourced our code on GitHub1.

– We show that the Expectation over Transformation technique, originally pro-
posed for image classification, can be applied in the object detection task and
significantly enhance robustness of the resulting perturbation.

– By carefully studying the Faster R-CNN object detector algorithm, we
overcome non-differentiability in the model, and successfully perform
optimization-based attacks using gradient descent and backpropogation.

– We generate perturbed stop signs that can consistently fool Faster R-CNN
in real drive-by tests (videos available on the GitHub repository), calling for
imperative need to improve and fortify vision-based object detectors.

2 Background

This section provides background information of adversarial attacks and briefly
describes the Faster R-CNN object detector that we try to attack in this work.

2.1 Adversarial Attack

Given a trained machine learning model C and a benign instance x ∈ X that
is correctly classified by C, the goal of the untargeted adversarial attack is to
find another instance x′ ∈ X , such that C(x′) ̸= C(x) and d(x, x′) ≤ ϵ for some

1 https://github.com/shangtse/robust-physical-attack.
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distance metric d(·, ·) and perturbation budget ϵ > 0. For targeted attack, we
further require C(x′) = y′ where y′ ̸= C(x) is the target class. Common distance
metrics d(·, ·) in the computer vision domain are ℓ2 distance d(x, x′) = ||x−x′||22
and ℓ∞ distance d(x, x′) = ||x − x′||∞.

The work of [22] was the first to discover the existence of adversarial examples
for DNNs. Several subsequent works have improved the computational cost and
made the perturbation highly imperceptible to human [8,15]. Most adversarial
attack algorithms against DNNs assume that the model is differentiable, and
use the gradient information of the model to tweak the input instance to achieve
the desired model output [5]. Sharif et al. [19] first demonstrated a physically
realizable attack to fool a face recognition model by wearing an adversarially
crafted pair of glasses.

2.2 Faster R-CNN

Faster R-CNN [18] is one of the state-of-the-art general object detectors. It
adopts a 2-stage detection strategy. In the first state, a region proposal network
is used to generate several class-agnostic bounding boxes called region proposals
that may contain objects. In the second stage, a classifier and a regressor are
used to output the classification results and refined bounding box coordinates for
each region proposal, respectively. The computation cost is significantly reduced
by sharing the convolutional layers in the two stages. Faster R-CNN is much
harder to attack, as a single object can be covered by multiple region proposals
of different sizes and aspect ratios, and one needs to mislead the classification
results in all the region proposals to fool the detection.

3 Threat Model

Existing methods that generate adversarial examples typically yield impercep-
tible perturbations that fool a given machine learning model. Our work, fol-
lowing [19], generates perturbations that are perceptible but constrained such
that a human would not be easily fooled by such a perturbation. We examine
this kind of perturbation in the context of object detection (e.g., stop sign). We
chose this use case because of object detector’s possible uses in security-related
and safety-related settings (e.g., autonomous vehicles). For example, attacks on
traffic sign recognition could cause a car to miss a stop sign or travel faster than
legally allowed.

We assume the adversary has white-box level access to the machine learning
model. This means the adversary has access to the model structure and weights
to the degree that the adversary can both compute outputs (i.e., the forward
pass) and gradients (i.e., the backward pass). It also means that the adversary
does not have to construct a perturbation in real-time. Rather, the adversary can
study the model and craft an attack for that model using methods like Carlini-
Wagner attack [5]. This kind of adversary is distinguished from a black-box
adversary who is defined as having no such access to the model architecture or
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weights. While our choice of adversary is the most powerful one, existing research
has shown it is possible to construct imperceptible perturbations without white-
box level access [16]. However, whether our method is capable of generating
perceptible perturbations with only black-box access remains an open question.
Results from Liu et al. [12] suggest that iterative attacks (like ours) tend not to
transfer as well as non-iterative attacks.

Unlike previous work, we restrict the adversary such that they cannot manip-
ulate the digital values of pixels gathered from the camera that each use case
uses to sense the world. This is an important distinction from existing imper-
ceptible perturbation methods. Because those methods create imperceptible per-
turbations, there is a high likelihood such perturbations would not fool our use
cases when physically realized. That is, when printed and then presented to the
systems in our use cases, those perturbations would have to survive both the
printing process and sensing pipeline in order to fool the system. This is not
an insurmountable task as Kurakin et al. [10] have constructed such impercep-
tible yet physically realizable adversarial perturbations for image classification
systems.

Finally, we also restrict our adversary by limiting the shape of the perturba-
tion the adversary can generate. This is important distinction for our use cases
because one could easily craft an odd-shaped “stop sign” that does not exist in
the real world. We also do not give the adversary the latitude of modifying all
pixels in an image like Kurakin et al. [10], but rather restrict them to certain
pixels that we believe are both inconspicuous and physically realistic.

4 Attack Method

Our attack method, ShapeShifter , is inspired by the iterative, change-of-variable
attack described in [5] and the Expectation over Transformation technique [3,4].
Both methods were originally proposed for the task of image classification. We
describe these two methods in the image classification setting before showing
how to extend them to attack the Faster R-CNN object detector.

4.1 Attacking an Image Classifier

Let F : [−1, 1]h×w×3 → RK be an image classifier that takes an image of height
h and width w as input, and outputs a probability distribution over K classes.
The goal of the attacker is to create an image x′ that looks like an object x of
class y, but will be classified as another target class y′.

Change-of-variable Attack. Denote LF (x, y) = L(F (x), y) as the loss func-
tion that calculates the distance between the model output F (x) and the target
label y. Given an original input image x and a target class y′, the change-of-
variable attack [5] propose the following optimization formulation.

arg min
x′∈Rh×w×3

LF (tanh(x′), y′) + c · || tanh(x′) − x||22. (1)
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The use of tanh ensures that each pixel is between [−1, 1]. The constant c con-
trols the similarity between the modified object x′ and the original image x. In
practice, c can be determined by binary search [5].

Expectation over Transformation. The Expectation over Transforma-
tion [3,4] idea is simple: adding random distortions in each iteration of the
optimization to make the resulting perturbation more robust. Given a transfor-
mation t that can be translation, rotation, and scaling,Mt(xb, xo) is an operation
that transforms an object image xo using t and then overlays it onto a back-
ground image xb. Mt(xb, xo) can also include a masking operation that only
keeps a certain area of xo. This will be helpful when one wants to restrict the
shape of the perturbation. After incorporating the random distortions, Eq. (1)
becomes

arg min
x′∈Rh×w×3

Ex∼X,t∼T [LF (Mt(x, tanh(x′)), y′)] + c · || tanh(x′) − xo||22, (2)

where X is the training set of background images. When the model F is dif-
ferentiable, this optimization problem can be solved by gradient descent and
back-propagation. The expectation can be approximated by the empirical mean.

4.2 Extension to Attacking Faster R-CNN

An object detector F : [−1, 1]h×w×3 → (RN×K ,RN×4) takes an image as input
and outputs N detected objects. Each detection includes a probability distri-
bution over K pre-defined classification classes as well as the location of the
detected object, represented by its 4 coordinates. Note that it is possible for an
object detector to output more or fewer detected objects, depending on the input
image, but for simplicity we select top-N detected objects ranked by confidence.

As described in Subsect. 2.2, Faster R-CNN adopts a 2-stage approach. The
region proposal network in the first stage outputs several region proposals, and
the second stage classifier performs classification within each of the region pro-
posals. Let rpn(x) = {r1, . . . , rm}, where each ri is a region proposal represented
as its four coordinates, and let xr be a sub-image covered by region r. Denote
LFi(x, y) = L(F (xri), y), i.e., the loss of the classification in the i-th region pro-
posal. We can simultaneously attack all the classifications in each region proposal
by doing the following optimization.

arg min
x′∈Rh×w×3

Ex∼X,t∼T

⎡

⎣ 1
m

∑

ri∈rpn(Mt(x′))

LFi(Mt(x′), y′)

⎤

⎦+ c · || tanh(x′) − xo||22,

(3)
where we abuse the notation Mt(x′) = Mt(x, tanh(x′)) for simplicity. How-
ever, for computational issues, most models prune the region proposals by using
heuristics like non-maximum suppression [18]. The pruning operations are usu-
ally non-differentiable, making it hard to optimize equation (3) end to end.
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Therefore, we approximately solve this optimization problem by first run a for-
ward pass of the region proposal network, and fixed the pruned region proposals
as fixed constants to the second stage classification problem in each iteration.
We empirically find this approximation sufficient to find a good solution.

5 Evaluation

We evaluate our method by fooling a pre-trained Faster R-CNN model with
Inception-v2 [21] convolutional feature extraction component. The model was
trained on the Microsoft Common Objects in Context (MS-COCO) dataset [11]
and is publicly available in the Tensorflow Object Detection API [9] model zoo
repository2.

The MS-COCO dataset contains 80 general object classes ranging from peo-
ple and animals to trucks and cars and other common objects. Although our
method can potentially be used to attack any classes, we choose to focus on
attacking the stop sign class due to its importance and relevance to self-driving
cars, where a vision-based object detector may be used to help make decisions.
An additional benefit of choosing the stop sign is its flat shape that can easily
be printed on a paper. Other classes, like dogs, are less likely to be perceived as
real objects by human when printed on a paper. While 3D printing adversarial
examples for image recognition is possible [3], we leave 3D-printed adversarial
examples against object detectors as future work.

5.1 Digitally Perturbed Stop Sign

We generate adversarial stop signs by performing the optimization process
described in Eq. 3. The hyperparameter c is crucial in determining the perturba-
tion strength. A smaller value of c will result in a more conspicuous perturbation,
but the perturbation will also be more robust to real-world distortions when we
do the physical attack later.

However, it is hard to choose an appropriate c when naively using the ℓ2
distance to a real stop sign as regularization. To obtain a robust enough pertur-
bation, a very small c needs to be used, which has the consequence of creating
stop signs that are difficult for humans to recognize. The ℓ2 distance is not a
perfect metric for human perception, which tends to be more sensitive to color
changes on lighter-colored objects. Due to this observation, we only allow the
perturbation to change the red part of the stop sign, leaving the white text intact.
This allows us to generate larger and more robust perturbation, while providing
enough contrast between the lettering and red parts so that a human can easily
recognize the perturbation as a stop sign. The adversarial stop sign generated
in [13] does not consider this and is visually more conspicuous. Automating this
procedure for other objects we leave as future work.

2 http://download.tensorflow.org/models/object detection/
faster rcnn inception v2 coco 2017 11 08.tar.gz.

http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_v2_coco_2017_11_08.tar.gz
http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_v2_coco_2017_11_08.tar.gz
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We performed two targeted attacks and one untargeted attack. We choose
person and sports ball as the two target classes because they are relatively similar
in size and shape to stop signs. Our method allows attackers to use any target
classes, however the perturbation needs to achieve its means and fool the object
detector. For some target classes, this may mean creating perturbations so large
in deviation that they may appear radically different from the victim class. We
also noticed that some classes are easier to be detected at small scales, such as
kite, while other classes (e.g., truck) could not be detected when the object was
too small. This may be an artifact of the MS-COCO dataset that the object
detector was trained on. Nevertheless, ultimately the attacker has a choice in
target class and, given ample time, can find the target class that best fools the
object detector according to their means.

For each attack, we generated a high confidence perturbation and a low level
perturbation. The high confidence perturbations were generated using a smaller
value of c, thus making them more conspicuous but also more robust. Depending
upon the target class, it may be difficult to generate an effective perturbation.
We manually chose c for each target class so that the digital attack achieves high
success rate while keeping the perturbation not too conspicuous, i.e., we tried
to keep the color as red as possible. We used c = 0.002 for the high confidence
perturbations and c = 0.005 for the low confidence perturbations in the “sports
ball” targeted attack and the untargeted attack. We used c = 0.005 and c = 0.01
for the high and low confidence perturbations in the “person” targeted attack,
respectively. The 6 perturbations we created are shown in Fig. 2.

5.2 Physical Attack

We performed physical attacks on the object detector by printing out the per-
turbed stop signs shown in Fig. 2. We then took photos from a variety of distances
and angles in a controlled indoor setting. We also conducted drive-by tests by
recording videos from a moving vehicle that approached the signs from a dis-
tance. The lightning conditions varied from recording to recording depending
upon the weather at the time.

Equipment. We used a Canon Pixma Pro-100 photo printer to print out signs
with high-confidence perturbations, and an HP DesignJet to print out those with
low-confidence perturbations3. For static images, we used a Canon EOS Rebel
T7i DSLR camera, equipped with a EF-S 18-55mm IS STM lens. The videos in
our drive-by tests are shot using an iPhone 8 Plus mounted on the windshield
of a car.

Indoor Experiments. Following the experimental setup of [6], we took photos
of the printed adversarial stop sign, at a variety of distances (5′ to 40′) and

3 We used two printers to speed up our sign production, since a sign can take more
than 30min to produce.
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Fig. 2. Digital perturbations we created using our method. Low confidence perturba-
tions on the top and high confidence perturbations on the bottom.

Fig. 3. Indoor experiment setup. We take photos of the printed adversarial sign,
from multiple angles (0◦, 15◦, 30◦, 45◦, 60◦, from the sign’s tangent), and distances
(5′ to 40′). The camera locations are indicated by the red dots, and the camera always
points at the sign. (Color figure online)
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Table 1. Our high-confidence perturbations succeed at attacking at a variety of
distances and angles. For each distance-angle combination, we show the detected class
and the confidence score. If more than one bounding boxes are detected, we report the
highest-scoring one. Confidence values lower than 30% is considered undetected.

Distance Angle Person (Conf.) Sports ball (Conf.) Untargeted (Conf.)

5′ 0◦ person (.77) sports ball (.61) clock (.35)

5′ 15◦ person (.91) cake (.73) clock (.41)

5′ 30◦ person (.93) cake (.66) cake (.39)

5′ 45◦ person (.69) cake (.61) stop sign (.62)

5′ 60◦ stop sign (.93) stop sign (.70) stop sign (.88)

10′ 0◦ person (.55) cake (.34) clock (.99)

10′ 15◦ person (.63) cake (.33) clock (.99)

10′ 30◦ person (.51) cake (.55) clock (.99)

15′ 0◦ undetected — cake (.49) clock (.99)

15′ 15◦ person (.57) cake (.53) clock (.99)

20′ 0◦ person (.49) sports ball (.98) clock (.99)

20′ 15◦ person (.41) sports ball (.96) clock (.99)

25′ 0◦ person (.47) sports ball (.99) stop sign (.91)

30′ 0◦ person (.49) sports ball (.92) undetected —

40′ 0◦ person (.56) sports ball (.30) stop sign (.30)

Targeted success rate 87% 40% N/A

Untargeted success rate 93% 93% 73%

Table 2. As expected, low-confidence perturbations achieve lower success rates.

Distance Angle Person (Conf.) Sports ball (Conf.) Untargeted (Conf.)

5′ 0◦ stop sign (.87) cake (.90) cake (.41)

5′ 15◦ stop sign (.63) cake (.93) cake (.34)

5′ 30◦ person (.83) cake (.84) stop sign (.48)

5′ 45◦ stop sign (.97) stop sign (.94) stop sign (.82)

5′ 60◦ stop sign (.99) stop sign (.99) stop sign (.89)

10′ 0◦ stop sign (.83) stop sign (.99) undetected —

10′ 15◦ stop sign (.79) stop sign (.94) undetected —

10′ 30◦ stop sign (.60) stop sign (.98) stop sign (.78)

15′ 0◦ stop sign (.52) stop sign (.94) stop sign (.31)

15′ 15◦ stop sign (.33) stop sign (.93) undetected —

20′ 0◦ stop sign (.42) sports ball (.73) undetected —

20′ 15◦ person (.51) sports ball (.83) cell phone (.62)

25′ 0◦ stop sign (.94) sports ball (.87) undetected —

30′ 0◦ stop sign (.94) sports ball (.95) stop sign (.79)

40′ 0◦ stop sign (.95) undetected — stop sign (.52)

Targeted success rate 13% 27% N/A

Untargeted success rate 13% 53% 53%
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angles (0◦, 15◦, 30◦, 45◦, 60◦, from the sign’s tangent). This setup is depicted
in Fig. 3 where camera locations are indicated by red dots. The camera always
pointed at the sign. We intended these distance-angle combinations to mimic
a vehicle’s points of view as it would approach the sign from a distance [13].
Tables 1 and 2 summarize the results for our high-confidence and low-confidence
perturbations, respectively. For each distance-angle combination, we show the
detected class and the detection’s confidence score. If more than one bounding
boxes are detected, we report the highest-scoring one. Confidence values lower
than 30% were considered undetected; we decided to use the threshold of 30%,
instead of the default 50% in the Tensorflow Object Detection API [9], to impose
a stricter requirement on ourselves (the “attacker”). Since an object can be
detected as a stop sign and the target class simultaneously, we consider our
attack to be successful only when the confidence score of the target class is the
highest among all of the detected classes.

Table 1 shows that our high-confidence perturbations achieve a high attack
success rate at a variety of distances and angles. For example, we achieved a
targeted success rate 87% in misleading the object detector into detecting the
stop sign as a person, and an even higher untargeted success rate of 93% when
our attack goal is to cause the detector to either fail to detect the stop sign
(e.g., at 15′ 0◦) or to detect it as a class that is not a stop sign. The sports ball
targeted attack has a lower targeted success rate but achieves the same untar-
geted success rate. Our untargeted attack consistently misleads the detection
into the clock class in medium distances, but is less robust for longer distances.
Overall, the perturbation is less robust to very high viewing angle (60◦ from the
sign’s tangent), because we did not simulate the viewing angle distortion in the
optimization.

The low-confidence perturbations (Table 2), as expected, achieve a much
lower attack success rate, suggesting the need to use higher-confidence perturba-
tions when we conduct the more challenging drive-by tests (as we shall describe
in the next section). Table 3 shows some sample high-confidence perturbations
from our indoor experiments.

Drive-By Tests. We performed drive-by tests at a parking lot so as not to
disrupt other vehicles with our stop signs. We put a purchased real stop sign as a
control and our printed perturbed stop sign side by side. Starting from about 200
feet away, we slowly drove (between 5 mph to 15 mph) towards the signs while
simultaneously recording video from the vehicle’s dashboard at 4K resolution
and 24 FPS using an iPhone 8 Plus. We extracted all video frames, and for each
frame, we obtained the detection results from Faster R-CNN object detection
model. Because our low confidence attacks showed relatively little robustness
indoors, we only include the results from our high-confidence attack. Similar to
our indoor experiments, we only consider detections that had a confidence score
of at least 30%.

In Fig. 4, we show sample video frames (rectangular images) to give the
readers a sense of the size of the signs relative to the full video frame; we also
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Table 3. Sample high-confidence perturbations from indoor experiments. For complete
experiment results, please refer to Table 1.

show zoomed-in views (square images) that more clearly show the Faster R-CNN
detection results.

The person-perturbation in Fig. 4a drive-by totaled 405 frames as partially
shown in the figure. The real stop sign in the video was correctly detected in
every frame with high confidence. On the other hand, the perturbed stop sign
was only correctly detected once, while 190 of the frames identified the perturbed
stop sign as a person with medium confidence. For the rest of the 214 frames
the object detector failed to detect anything around the perturbed stop sign.

The video we took with the sports-ball-perturbation shown in Fig. 4b had
445 frames. The real stop sign was correctly identified all of the time, while
the perturbed stop sign was never detected as a stop sign. As the vehicle (video
camera) moved closer to the perturbed stop sign, 160 of the frames were detected
as a sports ball with medium confidence. One frame was detected as apple and
sports ball and the remaining 284 frames had no detection around the perturbed
stop sign.

Finally, the video of the untargeted perturbation (Fig. 4c) totaled 367 frames.
While the unperturbed stop sign was correctly detected all of the time, the
perturbed stop sign was detected as bird 6 times and never detected for the
remaining 361 frames.
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Fig. 4. Snapshots of the drive-by test results. In (a), the person perturbation was
detected 47% of the frames as a person and only once as a stop sign. The perturbation
in (b) was detected 36% of the time as a sports ball and never as a stop sign. The
untargeted perturbation in (c) was detected as bird 6 times and never detected as a
stop sign or anything else for the remaining frames.

Exploring Black-Box Transferability. We also sought to understand how
well our high-confidence perturbations could fool other object detection models.
For image recognition, it is known that high-confidence targeted attacks fail to
transfer [12].
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To this end, we fed our high-confidence perturbations into 8 other MS-COCO-
trained models from the Tensorflow detection model zoo4. Table 4 shows how
well our perturbation generated from the Faster R-CNN Inception-V2 transfer
to other models. To better understand transferability, we examined the worse
case. That is, if a model successfully detects a stop sign in the image, we say the
perturbation has failed to transfer or attack that model. We report the number
of images (of the 15 angle-distance images in our indoor experiments) where a
model successfully detected a stop sign with at least 30% confidence. We also
report the maximum confidence of all of those detected stop sign.

Table 4. Black-box transferability of our 3 perturbations. We report the number of
images (of the 15 angle-distance images) that failed to transfer to the specified model.
We consider the detection of any stop sign a “failure to transfer.” Our perturbations
fail to transfer for most models, most likely due to the iterative nature of our attack.

Model Person (Conf.) Sports ball (Conf.) Untargeted (Conf.)

Faster R-CNN Inception-V2 3 (.93) 1 (.70) 5 (0.91)

SSD MobileNet-V2 2 (.69) 8 (.96) 15 (1.00)

SSD Inception-V2 11 (1.00) 14 (.99) 15 (1.00)

R-FCN ResNet-101 4 (.82) 10 (.85) 15 (1.00)

Faster R-CNN ResNet-50 13 (.00) 15 (1.00) 15 (1.00)

Faster R-CNN ResNet-101 15 (.99) 13 (.97) 15 (1.00)

Faster R-CNN Inc-Res-V2 1 (.70) 0 (.00) 12 (1.00)

Faster R-CNN NASNet 14 (1.00) 15 (1.00) 15 (1.00)

Table 4 shows the lack of transferability of our generated perturbations. The
untargeted perturbation fails to transfer most of the time, followed by the sports
ball perturbation, and finally the person perturbation. The models most suscep-
tible to transferability were the Faster R-CNN Inception-ResNet-V2 model, fol-
lowed by the SSD MobileNet-V2 model. Iterative attacks on image recognition
also usually fail to transfer [12], so it is not surprising that our attacks fail to
transfer as well. We leave the thorough exploration of transferability as future
work.

Fig. 5. Example stop signs from the MS-COCO dataset. Stop signs can vary by lan-
guage, by degree of occlusion by stickers or modification by graffiti, or just elements of
the weather. Each stop sign in the images is correctly detected by the object detector
with high confidence (99%, 99%, 99%, and 64%, respectively).

4 https://github.com/tensorflow/models/blob/master/research/object detection/
g3doc/detection model zoo.md.

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md


66 S.-T. Chen et al.

6 Discussion and Future Work

There is considerable variation in the physical world that real systems will have
to deal with. Figure 5 shows a curated set of non-standard examples of stop
signs from the MS-COCO dataset5. The examples show stop signs in a different
language, or that have graffiti or stickers applied to them, or that have been
occluded by the elements. In each of these cases, it is very unlikely a human
would misinterpret the sign as anything else but a stop sign. They each have
the characteristic octagonal shape and are predominantly red in color. Yet, the
object detector sees something else.

Unlike previous work on adversarial examples for image recognition, our
adversarial perturbations are overt. They, like the examples in Fig. 5, exhibit
large deviations from the standard stop sign. A human would probably notice
these large deviations, and a trained human might even guess they were con-
structed to be adversarial. But they probably would not be fooled by our per-
turbations. However an automated-system using an off-the-shelf object detector
would be fooled, as our results show. Our digital perturbation shown in Fig. 2e
does look like a baseball or tennis ball has been painted on the upper right hand
corner. Figure 4b shows how the object detector detects this part of the image
as a sports ball with high confidence. This might seem unfair, but attackers have
much latitude when these kind of models are deployed in automated systems.
Even in non-automated systems a human might not think anything of Fig. 2d
because it does not exhibit any recognizable person-like features.

Attackers might also generate perturbations without restricting the shape
and color, and attach them to some arbitrary objects, like a street light or
a trash bin. An untrained eye might see these perturbations as some kind of
artwork, but the autonomous system might see something completely different.
This attack, as described in [20], could be extended to object detectors using
our method.

Defending against these adversarial examples has proven difficult. Many
defenses fall prey to the so-called “gradient masking” or “gradient obfuscat-
ing” problem [2]. The most promising defense, adversarial training, has yet to
scale up to models with good performance on the ImageNet dataset. Whether
adversarial training can mitigate our style of overt, large-deviation (e.g., large
ℓp distance) perturbations is also unclear.

7 Conclusion

We show that the state-of-the-art Faster R-CNN object detector, while previ-
ously considered more robust to physical adversarial attacks, can actually be

5 Full resolution images of the examples in Fig. 5 can be found at: http://cocodataset.
org/#explore?id=315605, http://cocodataset.org/#explore?id=214450, http://
cocodataset.org/#explore?id=547465, and http://cocodataset.org/#explore?
id=559484.

http://cocodataset.org/#explore?id=315605
http://cocodataset.org/#explore?id=315605
http://cocodataset.org/#explore?id=214450
http://cocodataset.org/#explore?id=547465
http://cocodataset.org/#explore?id=547465
http://cocodataset.org/#explore?id=559484
http://cocodataset.org/#explore?id=559484
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attacked with high confidence. Our work demonstrates vulnerability in MS-
COCO-learned object detectors and posits that security and safety critical sys-
tems need to account for the potential threat of adversarial inputs to object
detection systems.

Many real-world systems probably do not use an off-the-shelf pre-trained
object detector as in our work. Why would a system with safety or security
implications care to detecting sports balls? Most probably do not. Although it
remains to be shown whether our style of attack can be applied to safety or
security critical systems that leverage object detectors, our attack provides the
means to test for this new class of vulnerability.
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