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a b s t r a c t 

This paper addresses how well and under what conditions the Rayleigh-Debye-Gans (RDG) approximation 

describes scattering and absorption of light by fractal aggregates (FA) including soot. The RDGFA theory, 

which is the prevailing, first order description of this problem, has two assumptions: the monomers, or 

primary particles, of the aggregate scatter and absorb in the Rayleigh regime, and the aggregate scat- 

ters in the diffraction limit weighted by this Rayleigh scattering and absorbs as a system of independent 

monomer particles. The aggregates studied here are formed via Diffusion Limited Cluster Aggregation 

(DLCA) and have a fractal dimension D = 1.78 ±0.04 and prefactor of k 0 = 1.35 ±0.10. The aggregates are a 

collection of monodisperse spherical monomers with point contacts. Optical calculations were performed 

with the multiple sphere T-matrix (MSTM) and DDSCAT codes for incident light polarized perpendicular 

to the scattering plane. The scattering considered is the forward scattering intensity and the angular scat- 

tering as parameterized by the scattering wave vector. The total absorption cross section for aggregates is 

also calculated. This work stresses the systematic study of the effects of the variables of monomers per 

aggregate, which ranged from one to 502, two monomer size parameters of 0.157 and 0.314, and a wide 

range of refractive index real and imaginary parts. It also considers soot refractive indices with three 

representative dispersions. A summary of results for both scattering and absorption includes deviations 

from RDGFA theory ranging as large as 35% with positive deviations increasing with the real part of the 

refractive index and negative deviations growing with the imaginary part. These deviation from the RDG 

limit are shown to be similar to deviations for spheres. 

Crown Copyright © 2018 Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

The problem of how fractal aggregates, and in particular soot

ractal aggregates, scatter and absorb light is important in many

pplications ranging from in situ diagnostics of soot formation

n flames to the effects of soot and other aggregates on the

lobal environment. The conventional description for fractal aggre-

ate absorption and scattering is a combination of the Rayleigh

nd Rayleigh-Debye-Gans (RDG) approximation. The Rayleigh ap-

roximation assumes that a monomer in the aggregate is suffi-

iently small that the incident field may be treated as static across

he monomer. Meanwhile, the RDG assumes that the light inter-

cts with the aggregate so weakly that scattering from any given

onomer does not affect another monomer. Thus, there is no in-

ernal coupling within the aggregate in the RDG approximation,
∗ Corresponding author. 
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r equivalently, there is no internal multiple scattering. A conse-

uence of this is that the aggregate’s internal field is equal to the

ncident field modified by the Lorentz-Lorenz factor as shown in

he appendix. A review of the RDG fractal aggregate (RDGFA) the-

ry was given in [1] , and the appendix here demonstrates how it

merges as a formal solution to the Maxwell equations under two

pproximations. 

As with any theoretical description, the question arises how

ell and under what conditions does RDGFA work? This has been

ddressed extensively in the past. In general, the findings are that

DGFA can yield errors on the order of 10% or more depending,

f course, on the various properties of the aggregate such as ag-

regate size, primary particle (or monomer) size, refractive index,

nd the fractal parameters. However, the variety of properties and

onditions and the lack of extensive systematic studies have not

ed to a quantitative consensus description of the deviations. It is

he purpose of this paper to provide such a description. Here the

cattering of light with a polarization perpendicular to the scatter-

https://doi.org/10.1016/j.jqsrt.2018.05.016
http://www.ScienceDirect.com
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ing plane will be calculated and compared to the RDGFA theory.

The scattering considered will be the forward scattering intensity

and the angular scattering as parameterized by the scattering wave

vector. The total absorption cross section for aggregates will also be

calculated and compared to RDGFA theory. 

2. Fractal aggregates 

The scaling relation between the number of monomers in the

aggregate N and the linear size as specified by the radius of gyra-

tion R g of the aggregate is [1] 

N = k 0 ( R g /a ) 
D (1)

where D is the fractal dimension, k 0 is the scaling prefactor and a

is the primary particle or monomer radius. 

In this work we study aggregates created by diffusion limited

cluster aggregation (DLCA) [2,3] . DLCA involves aggregates diffus-

ing randomly through space, and then, if any two collide, they stick

together irreversibly. This is perhaps the most common type of

aggregation and represents well what happens in nature. The re-

sulting DLCA aggregates have a fractal dimension of D = 1.78 ±0.04

with a prefactor of k 0 = 1.35 ±0.10 for a spatial dimension of d = 3

[4–6] . This DLCA morphology describes well the morphology of

pristine soot. 

3. Review 

Sorensen [1] reviewed work up to 2001 that tested the RDGFA

theory. Here we quote, “In summary, it appears that for DLCA ( D

� 1.8) aggregates multiple scattering can affect the scattering and

absorption cross sections by 10 to 20%. For small ka there is an

enhancement which can cross over to a reduction if the refractive

index has a significant imaginary part, as does soot. Fractal dimen-

sion > 2 can also see an eventual diminution of cross section as

size increases.” With this foundation, we now review more recent

work. 

A considerable amount of recent work supports these conclu-

sions. Typically, aggregates have been created numerically using

either DLCA simulations or tunable codes to tailor make the ag-

gregates. Their exact radiative properties are then determined by

using T-Matrix [7,8] , GMM [9] , and DDA methods [10,11] . 

Much of this work considered a wide range of variables in-

cluding monomer size and size distribution [12,13] , monomer size

parameter [14,15] , the number of monomers (from 1 to 10 0 0)

and incident wavelength (from 266 nm to 1064 nm) which caused

the refractive index to vary via dispersion [16] , refractive index

[17] necking and overlap between monomers [18] and added coat-

ings [19,20] . Here our goal is to return to the simple situation of

one morphology, the DLCA morphology, and determine the func-

tionalities with monomer size, aggregate size and refractive index

by systematically varying these parameters. 

4. Light scattering 

4.1. Diffraction 

A useful point of view to understand and describe light scatter-

ing by particles is to apply light’s wave nature first and then add

its electromagnetic character slowly. With minimal electromagnetic

character, achieved by having a refractive index such that | m −1| �
1, diffraction describes the scattering pattern. With increasing elec-

tromagnetic character, the scattering pattern systematically evolves

away from the diffraction limit. 

We represent the wave amplitude E ( r ) at position vector r in

the customary, complex notation 

E ( r ) = e i k·r (2)
here k is the wave vector with amplitude k = 2 π / λ and λ is the

avelength of light. The diffracted wave at the detector is 

 ( q ) ∼
∫ 

n ( r ) e i q ·r dr (3)

In Eq. (3) n( r ) is the matter density profile of the scattering ob-

ect, and q is the scattering wave vector given by 

 = k inc − k sca (4)

here k inc and k sca are the incident and scattering wave vectors,

espectively. The magnitude of the scattering wave vector is 

 = ( 4 π/λ) sin (θ/ 2 ) (5)

In Eq. (5) θ is the angle between the incident and scattering

ave vectors; it is the scattering angle. Note that Eq. (3) has the

orm of a Fourier transform with the physically inspired q as the

ourier variable. 

The scattered intensity is the square of the scattered field,

hus 

 ( q ) ∼
∣∣∣
∫ 

n ( r ) e i q ·r dr 
∣∣∣2 (6)

Eq. (6) yields an intensity that has been averaged over all ori-

ntations of the object. With this, one can define a structure factor

(q) with any of a few different normalizations. If one imagines the

cattering object as divided into N infinitesimal sub-volumes, S(q)

an be defined as 

 ( q ) = N 
−2 

∣∣∣
∫ 

n ( r ) e i q ·r dr 
∣∣∣2 (7)

Note that S(0) = 1. Application of the convolution theorem

ields 

 ( q ) = 

∫ 
g ( r ) e i q ·r dr (8)

here 

 ( r ) = N 
−2 ∫ n ( u ) n ( r − u ) du (9)

s a convolution of n ( r ) with itself, better known as the density

utocorrelation function. 

One can then summarize and say that the structure factor is the

ormalized diffraction pattern scattered from the object. Further-

ore, the structure factor and the density autocorrelation func-

ions are Fourier transform pairs and hence carry the same struc-

ural information. However, their view points are in reciprocal

paces: real space and q-space. 

.2. The RDG limit 

In the section above diffraction was derived using the situa-

ion where incident waves scattered from the sub-volumes of the

cattering object went directly to the detector and did not inter-

ct with other sub-volumes of the scattering object. This is clearly

n idealization. The situation in which there is scattering from one

ub-volume to another has internal coupling and, equivalently, is

aid to have internal multiple scattering. This situation typically

ccurs when the refractive index m of the object is significantly

reater than one (see Section 4.3 ). In the RDG limit the refrac-

ive index is small hence there is no multiple scattering between

onomers, and consequently, the internal field is related to, but

s shown below, is nevertheless not equal to the incident field.

hen, the angular scattering pattern is approximately described by

he diffracted structure factor. However, the magnitude of the scat-

ering is not specified until light’s electromagnetic character is in-

luded in the formulation. The weakest way to include electromag-

etism is to multiply the structure factor by the Rayleigh scattering

ross section for the object (regardless of the size of the object).

hen this is done, the scattering is in the RDG limit. Then the

cattered intensity in the RDG limit can be written conceptually as
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ayleigh - Debye - Gans ( RDG ) = S ( q ) x Rayleigh Scattering (10)

A derivation of this result for the forward scattering direction is

iven in Section 9 . 

.2.1. The RDG limit for spheres 

As an example that will be useful below, consider scattering by

 sphere. The structure factor for a sphere of radius a is 

 ( q ) = 

[ 
3 

u 3 
( sin u − u cos u ) 

] 2 
(11) 

here u = qa, a dimensionless variable. The differential scattering

ross section in the Rayleigh limit, ka < < 1, for incident light po-

arized perpendicular to the scattering plane is 

dCsca 

d�
= k 4 a 6 F ( m ) (12) 

here 

 ( m ) = 

∣∣∣∣m 
2 − 1 

m 
2 + 2 

∣∣∣∣
2 

(13) 

s the square of the Lorentz-Lorenz factor and m = n + i κ is the

omplex index of refraction. Thus by Eq. (10) scattering by a sphere

n the RDG limit is 

d C sca 

d�
= k 4 a 6 F ( m ) 

[ 
3 

u 3 
( sinu − ucosu ) 

] 2 
(14) 

The scattered intensity at a given angle is proportional to the

ifferential cross section. We will use the term “I Ray ” for the scat-

ering that would come from a particle in the Rayleigh limit, pro-

ortional to Eq. (12) . Then, for simplicity we will write 

 ( u ) RDG = I Ray 
[
(3 / u 3 ) ( sinu − ucosu ) 

]2 
(15) 

It is important to recognize that Eq. (15) can apply for any size

phere even though the Rayleigh portion of it, Eq. (12) , holds only

hen the size parameter ka < < 1 when used by itself. Application

f Eq. (15) to spherical particle scattering is called the RDG approx-

mation. 

Eq. (15) holds for light scattering when the combination of size

nd refractive index is small. The parameter that describes this

ombination will be explained below. 

.2.2. The RDG limit for aggregates 

For many fractal aggregates, and especially soot, the condi-

ion | m −1| � 1 is not satisfied by the primary particles, the

onomers, of the aggregate. However, the monomers are typically

mall so that they scatter in the Rayleigh limit. Given this the RDG

pproximation for fractal aggregates is that each monomer sees

nly the incident wave. Simulations of the internal wave within

n aggregate’s monomers show deviations 25% and larger rela-

ive to the incident wave [21] . Despite this deviation, that work

lso shows that the scattering pattern does agree well with RDG

ue to averaging over random aggregate-orientations. Moreover,

DG agrees with the scattering patterns observed in the labora-

ory, where randomly oriented aggregates are involved. These rea-

ons motivate the use of the RDG here. Application of the RDG

imit to aggregates is called RDG fractal aggregate (RDGFA) theory.

ormally, the RDG limit holds when | m −1| � 1 and 2 ka | m −1|

1. The theory predicts the scattering at a given angle θ is

roportional to the monomer differential scattering cross section.

owever, it is usually assumed that the monomers are small so

hat this cross section is angle independent when the polariza-

ion is perpendicular to the scattering plane. The aggregate scat-

ered waves in the forward direction, defined by q < R g 
−1 , from

ll N monomers add in phase to yield a scattered intensity pro-

ortional to N 
2 . In non-forward directions, the relative phases of
he monomer scattered waves are accounted for by the aggregate

tructure factor, S(q). Thus the RDG differential scattering cross

ection for an aggregate is [1] 

dC agg sca 

d�
( q ) = N 

2 dC 
m 

sca 

d�
S ( q ) (16) 

here 
dC m sca 
d�

is the monomer differential scattering cross section.

ote that S (0) = 1. If the monomers are in the Rayleigh regime,

q. (12) applies. Combining Eqs. (12) and (16) yields 

 ( q ) = 

dC agg sca 

d�
( q ) = N 

2 k 4 a 6 F ( m ) S ( q ) (17)

The first equality in Eq. (17) holds for incident light of unit in-

ensity scattering one unit of distance from the aggregate to the

etector. We include this so that we can use the simple nota-

ion of scattered intensity. It is possible to arrive at Eqs. (16) and

17) through the rigorous formalism of the Maxwell volume inte-

ral equation as shown in the appendix. Doing so is useful because

t illustrates how the internal field in each monomer is connected

o the aggregate’s scattered intensity and highlights the role of the

wo approximations that are required to arrive at Eq. (16) . 

In this work we are concerned with rotationally averaged DLCA

ggregates which have a monomer-monomer pair correlation func-

ion that is well described by a Gaussian cutoff [6,22,23] . This leads

o, via the Fourier transformation, the structure factor 

 ( q ) = exp 
[

−
(
(q R g ) 

2 
/D 

)]
F 1 , 1 

[
3 − D 

2 
, 

3 

2 
;− ( q R g ) 

2 

D 

]
(18) 

here F 1,1 is the Kummer or Hypergeometric function. This equa-

ion expands to yield 

 ( q ) � 1 − ( q R g ) 
2 
/ 3 when q R g < 1 (19)

 ( q ) = C ( q R g ) 
−D when q R g > 1 (20)

Eq. (19) is the Guinier result. The coefficient C in Eq. (20) is

elated to the prefactor by C = 1.35/ k 0 and the prefactor is related

o the stretching exponent of the monomer-monomer pair corre-

ation function. This exponent is 2 for the Gaussian cutoff to yield

 0 = 1.35 ± 0.05. Thus, C = 1.0 ± 0.04 for the Gaussian cutoff struc-

ure factor. 

Analysis of absorption in the RDG limit uses the facts that each

f the N monomers sees only the incident light independent of

ll the other monomers in the aggregate and that absorption is a

calar process hence is not affected by phase. Thus, the total ab-

orption cross section is simply N times the monomer absorption

ross section 

 

agg 

abs 
= NC m 

abs (21) 

If the monomers are in the Rayleigh regime, 

 
m 

abs = 4 πk a 3 E ( m ) (22)

here 

 ( m ) = Im 

[
m 

2 − 1 

m 
2 + 2 

]
(23) 

.3. The internal coupling parameter 

In past work we have shown for variety of particle shapes in-

luding spheres that the evolution of scattering away from the

DG limit is controlled by the internal coupling parameter [24–27] .

he general expression for the internal coupling parameter for any

hape is [28] 
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Fig. 1. Rayleigh normalized forward scattered intensity versus the number of 

monomers in the aggregate N for DLCA aggregates composed of monomers with 

size parameters of ka = 0.157 (top) and 0.314 (bottom). The monomers have a vari- 

ety of refractive indices as indicated in the legend. Arrows to the far right indicate 

functionality trends with the real and imaginary parts of the refractive index, n and 

κ , respectively. 
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ρ ′ = 2 πk 
V 

A proj 
| α( m ) | (24)

In the equation above V is the volume of the particle, α( m ) is

the average volume polarizability which is dependent on the both

m and the shape or the particle, and A proj is the orientationally av-

eraged projected area. A favorable attribute of the internal coupling

parameter is that it combines size parameter and refractive index

into one parameter. 

For spheres [29] 

| α( m ) | sphere = 

3 

4 π

∣∣∣∣∣
(
m 

2 − 1 
)

(
m 

2 + 2 
)
∣∣∣∣∣. (25)

Then Eq. (24) leads to the internal coupling parameter for scat-

tering by a sphere as 

ρ ′ = 2 ka 

∣∣∣∣m 
2 − 1 

m 
2 + 2 

∣∣∣∣ (26)

This parameter is similar to the well-known phase shift param-

eter, which for spheres is ρ = 2 ka | m −1|, [29,30] , but is more effec-

tive in its parameterization powers. 

For an aggregate with N spherical monomers of radius a we

now propose 

 = N 

(
4 π

3 

)
a 3 (27)

A proj = N 
0 . 92 πa 2 for large N (28)

Eq. (28) is an empirical result found in many situations from

TEM observations [31–33] to mobility considerations for DLCA ag-

gregates [34,35] . Substitution of (27) and (28) into (24) leads to an

expression for the internal coupling parameter for scattering by a

DLCA aggregate (the exponent 0.92 is specific to DLCA aggregates)

ρagg 
′ = N 

0 . 08 ρ ′ 
mon (29)

Given the success of ρ ’ in parameterizing scattering by other

objects, we will test Eq. (29) for fractal aggregates below. 

5. Calculation methods 

In this work we created fractal aggregates by two different

methods: the classic DLCA simulation algorithm described above

and an algorithm [36,37] that can tailor-make aggregates with spec-

ified D and k 0 . 

The DLCA simulation algorithm used in this paper to create

fractal aggregates was an off-lattice simulation with 10 6 monomers

that were randomly placed in a three dimensional box. The box

size was set so that the desired monomer volume fraction of

f v = 0.001 was obtained. At the beginning of each time step, the

number of aggregates ( N c ) was counted (note that the number of

monomers was included in N c ). A random aggregate was chosen

and time was incremented by N 
−1 
c . The probability that the aggre-

gate is moved was inversely proportional to that aggregate’s ra-

dius of gyration ( p ∝ R −1 
g ) and was normalized so that monomers

have p = 1. Results are applicable in the continuum limit where the

frictional drag is given by the Stokes–Einstein expression with a

drag proportional to the radius of gyration. The resulting DLCA ag-

gregates have a fractal dimension of D = 1.78 ±0.04 with a prefac-

tor of k 0 = 1.35 ±0.10 for a spatial dimension of d = 3 [4–6] . 

The tailor made fractal aggregates were generated using a two-

step algorithm described in [36,8,37] . In the first step, a large num-

ber of different-sized small aggregates containing up to 31 primary

particles were created using the tunable particle-cluster aggrega-

tion (PCA) algorithm. In the second step, larger fractal aggregates

were built by using the tunable cluster-cluster aggregation (CCA)
lgorithm that merges two small aggregates generated in the first

tep by PCA at a time. Repeated application of CCA to two smaller

ggregates produces even larger aggregates and this process con-

inues until the desired number and size of fractal aggregates were

btained. 

All orientationally averaged light scattering calculations for the

ggregates were performed using a well-known and widely used

ultiple sphere T-matrix code (MSTM) developed by Mackowski

nd Mishchenko [38] . The MSTM calculates the electromagnetic

roperties of a group of spheres which may be located externally

r internally to one another if the surfaces do not overlap. As ag-

regates are often modeled as a collection of spherical monomers,

he MSTM code is ideally suited for calculating the light scattering

roperties of aggregates. Results presented in Section 8 have been

etermined by DDA approach (DDSCAT code version 7.3.2) [39] .

or this purpose, particles are discretized polarizable elementary

ipoles. In the present case, the dipolar density (mean number of

ipoles per primary sphere diameter) is fixed to 10, ensuring a reli-

ble determination of the radiative properties. The Maxwell equa-

ions are solved by considering the dipole coupling. The calcula-

ions were performed in the visible spectrum with a variety of re-

ractive indices, respecting the accuracy criterion | m | kd < 0.5. The

ross sections are averaged over one thousand orientations. 
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Fig. 2. Rayleigh normalized forward scattered intensity versus the aggregate internal coupling parameter ρ ′ 
agg for DLCA aggregates composed of monomers with size param- 

eters of ka = 0.157 (circles) and 0.314 (triangles). The monomers have a variety of refractive indices as indicated in the legend. The number of monomers per aggregate N 

ranges from 1 to 502. The dashed line indicates the trend when the imaginary part of the refractive index is κ = 0. 
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. Comparisons to RDG 

Our purpose here is to compare light scattering and absorption

y aggregates of arbitrary size and refractive index to the RDGFA

escription. Deviations are expected with increasing refractive in-

ex (as we “turn on” the electromagnetic character of the light),

onomer size parameter ka, and the overall size of the aggregate,

hich we will designate by the number of monomers per aggre-

ate N. The structural parameters of fractal dimension and prefac-

or are also likely to be important, but in this work we limit the

ggregates to be DLCA thus these two parameters are fixed. 

The deviations of scattering and absorption from RDGFA theory

ill be represented by the ratios 

 ( 0 ) Rayleigh Normalized = I ( 0 ) / N 
2 k 4 a 6 F ( m ) , (30)

 ( q ) Rayleigh Normalized /S ( q ) (31) 

nd 

 abs Rayleigh Normalized = C abs /N4 πk a 3 E ( m ) (32) 

Relations (30) and (31) compare the light scattering to the RDG

imit in the forward direction and the entire q-range (hence angu-

ar range) to the RDG limit, respectively, whereas Eq. (32) com-

ares the light absorption to the RDG limit. The denominators

f Eqs. (30) and (32) are the RDGFA theory as obtained from

qs. (17) , with S (0) = 1, and (21) and (22) , respectively. The ratios

n Eqs. (30) and (32) were designated as A and h, respectively, by

on, Liu and coworkers [12,16,18,20] . 

. Aggregates with systematic variation of the refractive index 

.1. Forward scattering functionality vs N 

Fig. 1 shows the Rayleigh normalized forward scattered inten-

ity (the ratio of the forward scattered intensity to the RDGFA the-

ry) Eq. (30) , for DLCA aggregates versus the number of monomers

er aggregate, N, for monomer radii of a = 15 and 30 nm scattering

= 600 nm light, hence monomer size parameters ka = 0.157 and

.314, respectively. If the ratio is not equal to one, the scattering
eviates from the RDGFA theory. These plots show a weak func-

ionality of the deviation with N as well as functionalities on re-

ractive index and size parameter. In general the larger monomer

ize parameter shows larger variations of the normalized intensi-

ies of approximately + 30% to –20% than the smaller size param-

ter with deviations of approximately + 20% to –5%. The plots also

how that the real part of the refractive index tends to cause pos-

tive deviations from unity whereas the imaginary part tends to

ause negative deviations and these two can counteract each other.

ote that the random fluctuations here and in similar figures be-

ow are due to the statistical nature of the aggregates. 

.2. Scattering functionality vs ρ ’ 

The results in Fig. 1 are replotted in Fig. 2 versus ρ′ 
agg to dis-

ern whether or not this parameter can provide a universal de-

cription for the deviations of the forward scattering from the RDG

imit. Recognize that for fixed refractive index m and size parame-

er ka the variation in ρ′ 
agg is due to the change in N, and because

he functionality is N 
0.08 , the resulting range is small, a factor of

02 0.08 = 1.64. 

Fig. 2 shows that when the imaginary part of the refractive in-

ex is κ = 0, the data for all real parts n and size parameters ka

oughly line up to indicate some success for ρ ′ 
agg as a universal pa-

ameter. However, inclusion of finite κ shows systematic trends to

ecrease the Rayleigh normalized forward intensity and the trends

re not unified by ρ′ 
agg . 

Fig. 2 leads us to question the behavior of the deviations for

 very broad range of ρ′ . Such a broad range would be very dif-

cult to achieve by variation of N because the functionality is so

eak. Thus to explore the functionality further and over a broader

ange more calculations were performed by varying the monomer

ize over the range 4 ≤ a ≤153 nm hence the size parameter of the

onomers over the range 0.042 ≤ka ≤1.60 when λ= 600 nm. 

Fig. 3 (bottom) shows the deviations for N = 37, 104 and 205 ag-

regates vs ρ′ 
agg which ranges over two orders of magnitude from

.03 to 3. A distinctive pattern, hinted at in Fig. 2 , appears. For

mall ρ′ 
agg the ratios approach one. Then, with increasing ρ ′ 

agg , the

eviations increase and disperse with different refractive indices.

he deviations are greater than one increasing with the refractive
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Fig. 3. Rayleigh normalized forward scattered intensity for: top, spheres, and bot- 

tom, DLCA aggregates, versus the internal coupling parameter ρ ′ . The DLCA ag- 
gregates were composed of N = 37, 104 and 205 monomers per aggregate with a 

monomer size parameter range of 0.042 ≤ ka ≤1.60. The aggregates and spheres 

have the same set of refractive indices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Structure factors, S(q), for DLCA fractal aggregates of various number of 

monomers, N, versus qR g . The monomer radii are a = 15 nm (upper) and 30 nm 

(lower). The marked black, dashed line in each plot shows the functionality 

C(qR g ) 
−D of Eq. (20) with C = 1.0 and fractal dimension D = 1.8. 
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index real part n but decreasing with the refractive index imagi-

nary part κ . When ρ′ 
agg 

> ∼ 1 , the deviations begin a precipitous de-

crease which is limiting to a ρ
′ −2 
agg functionality. 

Fig. 3 compares the behaviors with ρ′ of aggregates and spheres
to find very similar behavior; they are semi-quantitatively the

same. There one sees the same approach to one at small ρ ′ , sub-
stantial functionality with refractive index when 0 . 3 ≤ ρ ′ ≤ 3 , and

then a precipitous decrease, independent of refractive index for

each shape, when ρ′ ≥ 1 with a power law of ρ
′ −2 . The similar-

ity suggests the same cause. Of course, when ρ ′ is small, the in-

ternal coupling, i.e., the internal multiple scattering, is negligible,

so the internal field is equal to the incident field screened by the

Lorentz-Lorenz factor and the RDG limit holds for both aggregates

and spheres. As ρ′ increases, the internal field is initially enhanced
beyond the incident field so the scattered intensity is larger. This

enhancement should be larger for larger refractive index real part

and smaller with larger internal absorption which is dependent

on the imaginary part of the refractive index. These dependencies

are, in fact, seen. Ultimately, as ρ ′ grows past three, the internal

coupling becomes so strong that the phase relationships between

waves from different parts of the scatterer become complex so that

destructive interference ensues to cause the drastic decrease in the

forward scattering intensity. A similar behavior has been observed

for scattering by a wide variety of ice crystal shapes [25] . 
.3. Scattering functionality vs q 

The RDG limit for the q-functionality (hence angular function-

lity) is the normalized structure factor S(q) of Eq. (10) with a par-

icular functional form given in Eq. (18) valid for a Gaussian cutoff

pair correlation function. Here we did not assume Eq. (18) is cor-

ect but instead calculated S(q) by Fourier transforming the real

pace structure of the DLCA aggregates formed in our simulations

sing Eq. (7) . These Fourier transforms were orientationally aver-

ged. The results are shown in Fig. 4 . 

The results in Fig. 4 show the classic behavior with a Guinier

egime near qR g � 1 followed by a power law with slope

qual to the fractal dimension. Note that the coefficient of the

ower law C, Eq. (20) , is slightly larger than 1.0 for the smaller

onomers. This occurs because individual aggregates will have dif-

erent anisotropies hence different values of C than the ensemble

verage [6] . 

Figs. 5 and 6 show the Rayleigh normalized light scattering q-

unctionality across the entire angular range, from near zero to

80 °. These figures also compare the light scattering to the struc-

ure factor via their ratio as described in relation (31) . The differ-

nce between these two figures is that the monomer refractive in-

ex in Fig. 5 has no imaginary part while that in Fig. 6 has a signif-

cant value of κ = 0.8. Note that the ratio of relation (31) is a test

f the applicability of the RDG limit for describing light scattering

y these aggregates; it is a test of the RDGFA theory. 

Inspection of these figures shows that light scattering does

ot significantly affect the shape of the plots. Furthermore, to a

ood approximation the Rayleigh normalized scattering ratio to the
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Fig. 5. Upper graphs: Rayleigh normalized scattered intensity for DLCA fractal aggregates of various number of monomers, N, versus qR g . The monomer index of refraction 

is m = 1.5 + i0.0 and the size parameters are ka = 0.157 (left plot) and 0.314 (right). The marked, black, dot-dashed line in each plot shows the functionality C(qR g ) 
−D of 

Eq. (20) with C = 1.0 and fractal dimension D = 1.8. The insets show the behavior for very small qR g , hence essentially I(0), Rayleigh normalized, the same information given 

in Fig. 1 . Lower graphs: Rayleigh normalized scattered intensity divided by the structure factor, ratio (31) , calculated using Eq. (7) . 

Fig. 6. Upper graphs: Rayleigh normalized scattered intensity for DLCA fractal aggregates of various number of monomers, N, versus qR g . The monomer index of refraction 

is m = 1.5 + i0.8 and the size parameters are ka = 0.157 (left plot) and 0.314 (right). The marked, black, dot-dashed line in each plot shows the functionality C(qR g ) 
−D of 

Eq. (20) with C = 1.0 and fractal dimension D = 1.8. The insets show the behavior for very small qR g , hence essentially I(0), Rayleigh normalized, the same information given 

in Fig. 1 . Lower graphs: Rayleigh normalized scattered intensity divided by the structure factor, ratio (31) , calculated using Eq. (7) . 
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Fig. 7. Rayleigh normalized absorption cross section versus the number of 

monomers in the aggregate N for DLCA aggregates composed of monomers with 

size parameters of ka = 0.157 (top) and 0.314 (bottom). The monomers have a vari- 

ety of refractive indices as indicated in the legend. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Rayleigh normalized absorption cross sections versus the internal coupling 

parameter ρ ′ for: top, spheres, and bottom, DLCA aggregates. The DLCA aggregates 

were composed of N = 37, 104 and 205 monomers per aggregate with monomer 

size parameters in a range of 0.042 ≤ ka ≤1.60. The aggregates and spheres have 

the same set of refractive indices. 
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structure factor is fairly uniform as a function of q with values

near unity when κ = 0.8 to 10 to 20% larger when κ = 0.0. How-

ever, when κ = 0.8, the ratio in the power law regime shows a

small but uniform decrease with increasing qR g of about 10% or

20% for ka = 0.157 or 0.314, respectively. Because the ratio is de-

creasing with increasing qR g , the slope in the power law regime in

the upper plot will increase in magnitude and thereby cause the

inferred fractal dimension from a light scattering experiment to be

2.5% to 5% larger than the true value. This effect was first noticed

by Brasil et al. [40] and later by Liu et al. [41] and Yon et al. [16] for

soot and is discussed further in Section 8.1.3, below. 

7.4. Absorption functionality vs N 

Fig. 7 shows the Rayleigh normalized absorption cross sec-

tion (the ratio of the aggregate absorption cross section to the

RDG limit), Eq. (32) , for DLCA aggregates versus the number of

monomers per aggregate, N, for monomer radii of a = 15 and 30 nm

and λ= 600 nm light, hence monomer size parameters ka = 0.157

and 0.314, respectively. If the ratio is not equal to one, the aggre-

gate absorption deviates from the RDGFA theory. These plots show

a weak functionality of the Rayleigh normalized absorption cross

section with N as well as functionalities on refractive index and

size parameter similar to the Rayleigh normalized forward scatter-

ing behavior of Fig. 1 . In general the smaller size parameter dis-

plays smaller variations of the normalized absorbances of approxi-

mately + 5% to 25% than the larger size parameter of approximately

−8% to + 33%. The plots also show that the real part of the refrac-

tive index tends to cause positive deviations from unity whereas

the imaginary part tends to cause negative deviations and these
wo can counteract each other. This behavior is similar to that for

he Rayleigh normalized forward scattering. 

.5. Absorption functionality vs ρ ’ 

Detailed plots of the Rayleigh normalized absorption cross sec-

ion versus ρ′ 
agg similar to Fig. 2 did not show a conclusive uni-

cation. Nevertheless, Fig. 8 shows the Rayleigh normalized ab-

orption cross section versus ρ′ 
agg over the same broad range of

 . 03 ≤ ρ′ 
agg ≤ 3 used in our study of the scattering, Fig. 3 above,

or N = 37, 104 and 205 aggregates. A distinctive pattern similar

o Fig. 3 appears. For small ρ′ 
agg the ratios approach one, i.e., no

eviations from the RDGFA theory. Then, with increasing ρ ′ 
agg the

eviations disperse depending on the refractive index. The devia-

ion increases with the refractive index real part n and decreases

ith the refractive index imaginary part κ . When ρ ′ 
agg ≥ 1 , the de-

iations begin a precipitous decrease which is limiting to a ρ ′ −1 
agg 

unctionality. 

Fig. 8 shows that the behavior of the normalized absorption

ross section with ρ′ for aggregates and spheres is very simi-

ar. As for scattering, aggregate and sphere behaviors are semi-

uantitatively the same. Once again we argue that as the internal

eld evolves away from the incident field that occurs when ρ ′ �
, it first grows brighter with increasing ρ ′ and the real part of the
efractive index n when ρ′ ≥ 1 . Apparently, this enhanced internal

eld leads to an enhanced ability to absorb light. 

Next we suggest an explanation of the absorption cross sec-

ion for ρ′ ≥ 1 . The size parameter of the spheres ka, where a is
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Fig. 9. Rayleigh normalized forward scattering intensities normalized by the RDGFA 

prediction versus the number of monomers in the aggregate N for soot DLCA ag- 

gregates composed of monomers with size parameters of ka = 0.157 (top) and 0.314 

(bottom). The monomers have two representative refractive indices for soot as in- 

dicated in the key. 
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he radius of the sphere, is approximately half the value of ρ ′ for
he refractive indices used here. Thus when ρ ′ ≥ 1 , ka ≥ 0 . 5 . We

ave shown that a fundamental parameter to describe absorption

y a sphere is κka, which is the ratio of the sphere radius to the

enetration depth of the light [42] . Note that for κ = 0.4 and 0.8

ka ≥ 0 . 5 when ρ′ ≥ 1 . This means that absorption is just be-

inning to be significant at this point, and this is consistent with

ig. 7 . This argument can be made semi-quantitative by using the

esult that the absorption cross section is proportional to the vol-

me of the object in the Rayleigh limit for any shape. Also, if κka
 1, only the front part of the object will be illuminated. The ap-

roximate volume of this front part is the light penetration depth,

/ κk, times the cross sectional area, a 2 , to yield a 2 / κk. This ratioed
y the volume of the object, a 3 , yields 1/ κka ∼ ρ ’ −1 , which is the

unctionality observed for both the sphere and the aggregate. 

. Aggregates with soot-like constant refractive index 

.1. Light scattering 

The results above are a systematic study of scattering and ab-

orption by DLCA fractal aggregates with direct comparisons to the

DG limit. We now focus specifically on soot with DLCA fractal

orphology by using the refractive index of soot. 

The refractive index of soot has seen a great many measure-

ents by numerous workers in the previous decades. To start

e will use two values that have seen considerable use in the

iterature. The first is related to the Dalzell and Sarofim value

 = 1.57 + i0.56 [43] which is often rounded off to m = 1.6 + i0.6.

he second is the value given by Smith [44] and in the review by

ond and Bergstrom [45] that has become popular, m = 1.9 + i0.79,

hich we round off to 1.9 + i0.8. Note that we first consider fixed

avelength hence no refractive index dispersion. 

Fig. 9 shows the deviations of the light scattering from the

DGFA theory (i.e. the Rayleigh normalized forward scattered in-

ensity) Eq. (30) , for DLCA soot aggregates versus the number of

onomers per aggregate, N, for monomer radii of a = 15 and 30 nm

nd λ= 600 nm light, hence monomer size parameters ka = 0.157

nd 0.314, respectively. These plots show a weak functionality of

he deviation with N as well as functionalities on refractive index

nd size parameter. In general the smaller size parameter shows

maller deviations from RDGFA theory of approximately + 3% to

 15% than the larger size parameter of approximately + 20% to –

%. We remark that a soot monomer radius of 15 nm is typical,

hereas 30 nm is unusually large. 

.2. Light absorption 

Fig. 10 shows the deviations of the light absorption cross sec-

ion from the RDGFA theory (i.e. the Rayleigh normalized absorp-

ion cross section) Eq. (32) , for DLCA soot aggregates versus the

umber of monomers per aggregate, N, for monomer radii of a = 15

nd 30 nm and λ= 600 nm light, hence monomer size parame-

ers ka = 0.157 and 0.314, respectively. As for scattering, these plots

how a weak functionality of the deviation with N as well as func-

ionalities on refractive index and size parameter. In general the

maller size parameter shows smaller deviations from RDGFA the-

ry of approximately + 3% to + 23% than the larger size parameter

f approximately + 2% to 32%. 

. Aggregates with soot-like refractive index dispersion 

The results reported in Figs. 9 and 10 show the strong impact

f the refractive index on the degree of deviation from the RDG

imit, i.e., the internal multiple scattering effects. Although vari-

us effort s have been made to investigate the soot refractive in-
ex and its wavelength dependence in the visible and near infrared

pectrum, there are still relatively large uncertainties in the soot

efractive index and its wavelength dependence has been com-

only neglected in modeling studies or laser-based diagnostics of

oot. However, it must be noticed that the refractive index of soot

ndeed displays wavelength dependence (dispersion) in the near

V–visible spectral range. In a recent study [46] optical refrac-

ive indices and their spectral dependency in the near UV-visible

ave been determined for different sources of particles, and it was

ound that three main compositions of the particles could encom-

ass the observed broad range of the optical refractive indices

ound in the literature. The corresponding three compositions are

onsidered here, namely graphitic, amorphous and organic com-

osition for seven wavelengths covering the spectral domain 266–

064 nm. The organic soot exhibits the strongest spectral depen-

ence. The amorphous soot presents a weak spectral dependence

nd low E(m) and F(m) values. The graphitic soot, which corre-

ponds to mature soot, also presents a fairly weak spectral depen-

ence similar to that of the amorphous soot case, but the graphitic

oot presents larger values of E(m) and F(m). The corresponding

ptical refractive indices are reported in Table 1 as a function of

he wavelengths, the reader is invited to consult [46] for more in-

ormation concerning the determination of these refractive indices.

Three aggregates are considered for the calculations containing

espectively N = 200, 284 and 833 primary spheres. The first one

as tailor made (D f = 1.8, k 0 = 1.3), the last two were generated by

 DLCA code. 
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Fig. 10. Rayleigh normalized absorption cross section versus the number of 

monomers in the aggregate N for soot DLCA aggregates composed of monomers 

with size parameters of ka = 0.157 (top) and 0.314 (bottom). The monomers have 

two representative refractive indices for soot as indicated in the legend. 

Table 1 

Optical refractive indices for three different soot materials for a range of wave 

lengths, λ. 

Composition Graphitic Amorphous Organic 

m = n + i κ n κ n κ n κ

λ = 266 nm 1.02 0.64 1.06 0.46 0.94 0.96 

λ = 354 nm 1.21 0.75 1.22 0.48 1.54 1.01 

λ = 442 nm 1.35 0.80 1.32 0.46 1.83 0.75 

λ = 532 nm 1.45 0.82 1.37 0.44 1.89 0.55 

λ = 632 nm 1.53 0.84 1.41 0.42 1.89 0.42 

λ = 848 nm 1.64 0.90 1.45 0.42 1.86 0.30 

λ = 1064 nm 1.73 0.98 1.47 0.44 1.83 0.26 
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Fig. 11. Rayleigh normalized forward scattering intensities (i.e. normalized by the RDGFA 

84 and 833 monomers for three dispersion laws (Graphitic, Amorphous and Organic, 

ymbols corresponds to other primary sphere radii from 5 to 20 nm as indicated in the le
.1. Forward scattering functionality vs λ

Fig. 11 presents the Rayleigh normalized forward scattering

s a function of the wavelength for the three soot materials in

able 1 and three aggregate sizes N. Amorphous and graphitic

ompounds produce similar results, showing a significant overesti-

ation of the forward scattering by the RDGFA theory (hence I(0)

ayleigh normalized is less than 1.0) at shorter wavelengths be-

ow 500 nm and a quite good prediction for λ> 500 nm. On the

ther hand, even at longer wavelengths, RDGFA poorly predicted

he forward scattering by aggregates formed by the organic mate-

ial (overestimation up to 50% of at 266 nm and underestimation

p to 20% of at 532 nm). We observe that a physically acceptable

pectral variation of the optical refractive index can strongly af-

ect the internal multiple scattering effects hence deviations from

DGFA theory. In comparison to the observed variations caused by

he refractive indices dispersion, the impact of the primary sphere

iameter and number of primary particles in the aggregate appears

o be secondary. 

In our study of fractal aggregate scattering, Section 6.1 above,

e found that the real part of the refractive index caused positive

eviations form RDGFA theory whereas the imaginary part caused

egative deviations. With this perspective, the large negative devi-

tions for the soot materials here can be ascribed to the small real

efractive indices combined with the large imaginary parts that oc-

ur at small wavelengths, see Table 1 . 
prediction) versus the wavelength λ for three soot aggregates composed of N = 200, 

Table 1 ). The filled symbols correspond to primary sphere radii of 15 nm, empty 

gend. 
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Fig. 12. Rayleigh normalized scattered intensity divided by the structure factor, ratio (31) , for a DLCA soot aggregate composed of N = 833 monomers for three dispersion 

laws (Graphitic, Amorphous and Organic). The reported results corresponds to λ=266 and 1064 nm for a = 15 nm. 

Fig. 13. Rayleigh normalized absorption cross section (i.e. normalized by the RDGFA prediction) versus the wavelength λ for three soot aggregates composed of N = 200, 284 

and 833 monomers for three dispersion laws (Graphitic, Amorphous and Organic, Table 1 ). The filled symbols correspond to primary sphere radii of 15 nm, empty symbols 

corresponds to other primary sphere radii from 5 to 20 nm as indicated in the key. 
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We remark that attempts to use the internal coupling parame-

er ρ ’ to unify the description of the forward scattering by these

hree soots did not yield significant success. 

.2. Scattering functionality vs q 

Fig. 12 presents the angular dependence of the Rayleigh nor-

alized scattering divided by the structure factor, the ratio (31) ,

or two wavelengths λ= 26 6 and 10 64 nm. The structure factor was

etermined by performing DDA calculations for m = 1.001 + i0.001.

uch calculations are in excellent agreement with those obtained

y Fourier transformation of the pair autocorrelation functions. The

atio in Fig. 12 is the same ratio plotted in Figs. 5 and 6 . For the

onsidered aggregate (N = 833), at 1064 nm, except at largest q, the

ormalized scattered intensity is quite constant indicating that the
ngular dependency of the scattered light is represented well by

he structure factor. As a consequence, the determination of the

yration radius in the Guinier regime and the fractal dimension in

he power law regime will not suffer from the effects of internal

ultiple scattering at this wavelength. Only the amplitude of the

ignal is overestimated as discussed before. This is in accordance

ith conclusion made when commenting on Fig. 6 . On the con-

rary, Fig. 12 shows that when λ= 266 nm, for the same aggregate,

 progressive decrease of the curves for increasing q in the power

aw regime. That quite linear decrease in a log-log plot can af-

ect the power law regime and thus the determination of the frac-

al dimension. Indeed, the slope of the scattered intensity in the

egion 1.56 < qR g < 3.11 (not presented) is shown to be −1.76 for

=1064nm whereas it becomes at λ= 266 nm −1.81, −1.83 and

1.87, respectively, for amorphous, graphitic and organic materials.
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Fig. 14. Rayleigh normalized absorption cross section divided by F(m) versus Rayleigh normalized forward scattering cross section divided by F(m) for three soot aggregates 

composed of N = 200, 284 and 833 monomers and for three dispersion laws (Graphitic, Amorphous and Organic). The filled symbols correspond to primary sphere radii of 

15 nm, empty symbols corresponds to other primary sphere radii from 5 to 20 nm as indicated in the key. Red crosses corresponds to spherical evaluation (Mie theory) based 

on the same internal coupling parameters than for considered aggregates, wavelengths and optical indices. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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This corresponds to an overestimation of the fractal dimension up

to 6% at 266 nm for organic particles. 

We now refer back to Fig. 6 which indicated that when the

imaginary part of the refractive index was large, the apparent frac-

tal dimension would be larger than the true value. This is seen

again in Fig. 12 but augmented by the fact for these realistic soots

the real part is quite small when λ= 266 nm. Then recalling our

discussion of Fig. 11 we conclude that combination of small real

part and large imaginary parts of the refractive index yield the

greatest deviations from RDGFA theory. 

9.3. Light absorption 

Fig. 13 presents the Rayleigh normalized absorption cross sec-

tion as a function of the wavelength for the three considered dis-

persion laws and three aggregate sizes N. The trends seen for scat-

tering displayed in Fig. 11 are seen again for absorption and thus

similar conclusions can be made. 

A strong correlation between the correction to RDGFA for ab-

sorption and forward scattering, suggested by Figs. 11 and 13 , has

been observed for soot fractal aggregates by [12,16,18] who re-

ported that the RDG normalized Cabs (h) is ≈1.1times the RDG nor-

malized forward scattering (A). Fig. 14 illustrates that relationship

for the three soot aggregates considered here, with different pri-

mary sphere diameters, seven wavelengths, and the corresponding

optical refractive indices listed in Table 1 . In Fig. 14 the absorption

cross sections normalized by RDG and by F(m) is plotted as a func-

tion of forward scattering cross section also normalized by RDG

expression and by F(m). For all the wavelengths, primary sphere

radii and refractive indices considered, that figure demonstrates a

linear relationship. The previously reported relationship h = 1.11A

is also reported in filled blue boxes showing a good agreement

with the present new results. Finally, the red crosses represent the

same relationship determined for spheres (Mie theory) with iden-

tical wavelengths, optical indices and ρ ’ parameter (by adjusting

the diameter). It appears that the deviations from RDG to absorp-

tion and scattering caused by internal coupling are strongly cor-

related for both aggregates and for spheres and that the scatter-
ng efficiency F(m) plays an important role in the internal multiple

cattering. 

0. Conclusions 

We studied scattering and absorption by DLCA fractal aggre-

ates with monodisperse monomers having point contacts. De-

iations from the RDGFA theory for both scattering and absorp-

ion were found to be very similar, ranging as large as + 25% for

onomer size parameters of ka = 0.157 and + 35% for ka = 0.314.

ositive deviations increase with the real part of the refractive in-

ex and negative deviations grow with the imaginary part. Posi-

ive deviations dominate but these two parts tend to fight each

ther. The deviations increase with N in the first decade 1 ≤N ≤10

very little deviation at N = 1) and then roughly level off, although

he deviations decrease and can become negative with increasing

 when the imaginary refractive index is large. These deviations

rom the RDG limit are similar to deviations for spheres, and in

his context the internal coupling parameter provides some unify-

ng description. Minor angular deviations from the structure factor

hape also occur for large imaginary parts. 

We believe that it would be useful for future studies to con-

ider the effects of the fractal parameters, fractal dimension and

refactor, on the scattering and absorption relative to the RDGFA

heory. Another valuable topic would be scattering and absorption

y hybrid aggregate structures such as superaggregates formed in

ense systems near the gel point [47–49] . 
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ppendix. Theoretical basis of the RDG approximation for 

ractal aggregates 

This appendix demonstrates how the RDGFA is obtained as an

pproximate solution to the Maxwell equations for a soot fractal

ggregate and discusses several important limitations of that ap-

roximation. To begin, consider a single, spherical monomer of ra-

ius a and refractive index m . The monomer is located at the ori-

in and a plane wave travelling along the unit vector ˆ z illuminates

he monomer. To begin with, regard the polarization direction of

his incident wave as arbitrary given by the unit vector ˆ e o , where

ˆ  o ∈ C 
3 . This unit vector makes an angle φ with the positive x -axis.

hus, the incident electric field is given by 

 
inc ( r ) = ˆ e o E o e 

ik r ·ˆ z , (A1) 

here E o is the amplitude of the incident field. The Maxwell equa-

ions are solved for the scattered field in the monomer’s far-field

one by the volume integral equation (VIE) as 

 
sca 
m 

( r ) = 

k 2 

4 π

e ikr 

r 

(
m 

2 − 1 
)(↔ 

I − ˆ r � ˆ r 

)
·
∫ 
V m 

E int m 

(
r ′ 
)
e −ik r ′ ·ˆ r d v ′ , (A2) 

here E int m 
is the internal field inside the monomer, V m is the

spherical) monomer volume, r = r − r ′ , and 
↔ 

I is the identity dyad

50] . In general, the internal field is not known a priori although in

his case Mie theory could be used to find it because the monomer

s spherical. 

The RDGFA approximation begins with the recognition that the

onomer is much smaller than the wavelength λ of the inci-

ent light. This means that the field responsible for polarizing the

onomer material appears approximately uniform. Then, the in-

ernal field in Eq. (A2) can be approximated by the field inside a

pherical particle placed in a uniform external field as [51] . 

 
int 
m 

( r ) = ˆ e o 

(
3 

m 
2 + 2 

)
E o e 

ik r ·ˆ z , 

r because the monomer is centered at the origin and ka � 1, the

xponential here is e (ikr·ˆ z ) ∼= 1 throughout V m and thus, 

 
int 
m 

( r ) = ˆ e o 

(
3 

m 
2 + 2 

)
E o , (A3) 

hich is itself a uniform field. Meanwhile, the scattered field is

onveniently represented by a scattering amplitude E sca 
1 

as 

 
sca 
m 

( r ) = 

e ikr 

r 
E sca 1 

(
ˆ r 
)

(A4) 

uch that the amplitude only has dependence on the direction ˆ r to

he observation point. Then, combining Eqs. (A2) and ( A3 ) and tak-

ng r ∼= r in the far-field zone shows that the scattering amplitude

n Eq. (A4) is 

 
sca 
1 

(
ˆ r 
)

= 

3 k 2 

4 π

m 
2 − 1 

m 
2 + 2 

E o 

(↔ 
I − ˆ r � ˆ r 

)
· ˆ e o 

∫ 
V m 

e −ik r ′ ·ˆ r d v ′ . (A5) 

However, the same approximation used to arrive at

q. (A3) also means that e −ik r ′ ·ˆ r ∼= 1 here in which case the

ntegral is simply the monomer volume V m and Eq. (A5) simplifies

o 

 
sca 
1 

(
ˆ r 
)

= k 2 a 3 E o 
m 

2 − 1 

m 
2 + 2 

[
ˆ e o −

(
ˆ e o · ˆ r 

)
ˆ r 
]
. (A6) 
Eq. (A6) is the Rayleigh scattering amplitude for a single

onomer at the origin. From the transverse character of the far-

eld scattered wave, the scattered magnetic field is 

 
sca 
m 

( r ) = 

1 

c 

e ikr 

r 
ˆ r × E sca 1 

(
ˆ r 
)
, (A7) 

nd the Rayleigh scattered intensity for the monomer I m ( r ) can be

alculated as the magnitude of the time averaged Poynting vector

 S 〉 t = ( 1 / 2 μo ) Re { E sca m 
× [ B sca m 

] 
∗} giving 

 m ( r ) = 

k 4 a 6 | E o | 2 
2 μo c r 2 

F ( m ) 

(
1 −

∣∣ˆ e o · ˆ r ∣∣2 ), (A8) 

here F ( m ) is the Lorentz-Lorenz factor of Eq. (13) , and the iden-

ity [ ̂ e o − ( ̂ e o · ˆ r ) ̂ r ] · [ ̂ e o − ( ̂ e o · ˆ r ) ̂ r ] ∗ = 1 − | ̂ e o · ˆ r | 2 is used where the

sterisk denotes complex conjugation. With Eq. (A8) , the Rayleigh

ifferential scattering cross section can be found as 

dC sca m 

d�

(
ˆ r 
)

= r 2 
I m ( r ) 

I inc 
= k 4 a 6 F ( m ) 

(
1 −

∣∣ˆ e o · ˆ r ∣∣2 ), (A9) 

here I inc is the intensity of the incident wave. This result is the

eneralization of Eq. (12) for arbitrary polarization. For an incident

ave linearly polarized along the x -axis, Eq. (A9) gives the scatter-

ng cross section for the monomer in the Rayleigh approximation

s 

 
sca 
m 

= 

∫ 
4 π

dC sca m 

d�

(
ˆ r 
)
d� = 

8 π

3 
k 4 a 6 F ( m ) (A10) 

here ˆ e o = ̂  x and ˆ x · ˆ r = sin θ cos φ is used. This result agrees with

hat in [1] . From the optical theorem [52] , the monomer’s extinc-

ion cross section is given by 

 
ext 
m 

= 

4 π

k | E o | 2 
Im 

{
E ∗o ̂  e 

∗
o · E sca 1 

(
ˆ z 
)}

. (A11) 

With Eq. (A6) in mind, one can see that Eq. (A11) gives a result

hat is not consistent with energy conservation. To see why, sup-

ose that the monomer is non-absorbing for a given λ. Then, m is

 pure real number and the imaginary filter in Eq. (A11) will re-

urn value of C ext m 
= 0 for a linearly polarized incident wave. Mean-

hile the absorption cross section C abs m 
is zero by definition as

 has no imaginary part. Conservation of energy requires that

 
ext 
m 

= C abs m 
+ C sca m 

, which shows that C sca m 
should also be zero in this

ase. However, this is contradicted by the Rayleigh scattering cross

ection, Eq. (A10) , and its relative, Eq. (12) , as those expressions

ould give a nonzero value for C sca m 
. The error here is not in the

ptical theorem, which is perfectly valid in the far-field zone [52] .

ather, it is the assumption in the Rayleigh approximation that the

onomer’s internal field can be treated electrostatically. 

A hallmark of the RDGFA approximation is that the differen-

ial scattering cross section for an aggregate of N identical spherical

onomers is given by S ( q ) times d C sca m 
/d �, i.e., Eq. (10) . To obtain

his simple result from the VIE formally requires two approxima-

ions. The first is the Rayleigh approximation at the monomer level

sed above, i.e., that for each spherical monomer, a � λ such that

he polarization of the monomer material can be described elec-

rostatically by the Lorentz-Lorenz factor. The second approxima-

ion applies at the aggregate level and relates to the interaction be-

ween monomers. If such interactions are neglected, i.e., multiple

cattering between monomers is ignored, then the internal field of

ny given monomer will be determined by the incident field eval-

ated at the location of that monomer. Together these approxima-

ions are the gist of the RDGFA. Because the aggregate may be on

he order of λ in size or greater, the phase of the incident field

ust now be accounted for. Thus, Eqs. (A1) and ( A3 ) combine to

ive the i th monomer’s internal field as 

 
int 
i ( r ) = ˆ e o 

(
3 

m 
2 + 2 

)
E o e 

ik r i ·ˆ z , (A12) 
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where r i is the location of the center of the i 
th monomer in the

aggregate. 

To simplify the following, take the incident wave to be linearly

polarized along the x -axis such that ˆ e o = ̂  x and focus specifically

on how the aggregate scatters into the forward direction. Then, us-

ing Eq. (A2) the aggregate’s forward-scattered field in the far-field

zone is 

E sca 
(
z ̂ z 

)
= 

k 2 

4 π

e ikr 

r 

(
m 

2 − 1 
)(↔ 

I − ˆ z � ˆ z 

)
·

N ∑ 

i =1 

∫ 
V m 

E int i 

(
r ′ 
)
e −ik r ′ ·ˆ z d v ′ ,

(A13)

Installing Eq. (A12) in Eq. (A13) and simplifying the dyadic

product gives 

E sca 
(
z ̂ z 

)
= 

3 k 2 

4 π

e ikr 

r 

(
m 

2 − 1 

m 
2 + 2 

)
E o 

N ∑ 

i =1 

∫ 
V m 

e ik r i ·ˆ z e −ik r ′ ·ˆ z d v ′ ˆ x . (A14)

Because the internal field is constant inside each monomer,

the substitution r ′ = r i can be made in the second exponential.

Next, the scattering wave vector q ( ̂ r ) = k ( ̂ z − ˆ r ) can be introduced,

which in the forward direction is simply q ( ̂ z ) = 0 . However, q ( ̂ z )

will continue to be shown to reveal Fourier-transform form of the

end result. With regard to the integral in Eq. (A14) , the small size

of each monomer ( ka � 1) means that the exponential approxi-

mately constant throughout V m and can be brought out of the in-

tegral, i.e., 

E sca 
(
z ̂ z 

)
= 

3 k 2 

4 π

e ikr 

r 

(
m 

2 − 1 

m 
2 + 2 

)
E o 

N ∑ 

i =1 

e i q ( ̂ z ) ·r i 
∫ 
V m 

d v ′ ˆ x . 

Finally, the integral can be evaluated to give 

E sca 
(
z ̂ z 

)
= 

3 k 2 

4 π

e ikr 

r 

(
m 

2 − 1 

m 
2 + 2 

)
E o V m 

N ∑ 

i =1 

e i q ( ̂ z ) ·r i ˆ x (A15)

In close analogy to Eq. (7) , define the aggregate structure factor

in the forward direction as 

S 
(
ˆ z 
)

= 

1 

N 
2 

∣∣∣∣∣
N ∑ 

i =1 

e i q ( ̂ z ) ·r i 

∣∣∣∣∣
2 

. (A16)

Again because the far-field scattered fields are transverse, the

scattered magnetic field can be found from Eqs. (A4) , ( A7 ), and

( A15 ) to get the time averaged scattered Poynting vector 〈 S 〉 t . From
〈 S 〉 t and Eq. (A9) , the differential scattering cross section for the
aggregate in the forward direction becomes 

dC sca agg 

d�

(
ˆ z 
)

= 

9 k 4 

16 π2 
V 2 m 

N 
2 F ( m ) S 

(
ˆ z 
)
. (A17)

However, from Eq. (A16) one can see that S( ̂ z ) = 1 because

q ( ̂ z ) = 0 so Eq. (A17) becomes 

dC sca agg 

d�

(
ˆ z 
)

= k 4 a 6 N 
2 F ( m ) (A18)

in agreement with Eq. (17) . Lastly, note that the aggregates scat-

tered intensity for any angle can also be expressed in terms of

the structure factor. To do so requires replacing ( 
↔ 

I − ˆ z � ˆ z ) in

Eq. (A13) by ( 
↔ 

I − ˆ r � ˆ r ) of Eq. (A5) while the simplifications of the

exponentials following Eq. (A14) may still be made. 
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