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a b s t r a c t 

Presented is a scaling approach for understanding features, such as power laws and crossover points, of 

the light scattered in the m → 1, ρ = 2 kR veq | m −1| < 1, Rayleigh–Debye–Gans diffraction limit. The scaling 

approach is based on comparison of the length scale of the scattering, which is the inverse of the scatter- 

ing wave vector, and the various length scales of the scattering entity. It will be shown that the scaling 

approach correctly predicts the exponents of the power law regions and the locations of the first and sec- 

ond Guinier regimes which define the boundaries of the power laws. Furthermore, the scaling approach 

yields a semi-quantitative prediction of the coefficients of the power laws. These Guinier boundaries and 

power law coefficients are described by a single parameter, the aspect ratio of the scattering object. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

An immense amount of work has been done over the last cen-

tury in the area of scattering. There are typically two main ques-

tions researchers seek to discover. How does a particular particle or

collection of particles scatter electromagnetic waves, and can infor-

mation about the particle or particles be extracted from the scat-

tered intensity? This work will focus on the former in the m → 1,

ρ = 2 kR veq | m −1| < 1, Rayleigh–Debye–Gans diffraction (RDG) limit

[1] , where m is the relative index of refraction, ρ is the phase

shift parameter, k is magnitude of the incident wave vector, and

R veq is the radius of a sphere with equivalent volume. Much of the

previous work on diffractive scattering has been done in the area

of small angle X-ray scattering to which the anomalous diffraction

approximation is applicable. A focus of past work has been to un-

derstand how to calculate the structure factor of a given particle

or collection of particles. The structure factor describes the angular

behavior of scattering in the RDG limit, and is solely dependent on

the particles shape, and relative orientations of the particles being

considered [2] . 

The structure factor is given by the Fourier transform of real

space structure of the particle squared [3] . For simpler particle

shapes, such as a sphere, the Fourier transform can be calculated

analytically [1] . As the geometry of the particle becomes more

complex, the integrals that need to be evaluated become increas-

ingly more complicated, and in many cases must be computed
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umerically [3] . Guinier and Fournet put forth a semi-quantitative

pproach for calculating the average behavior of the structure fac-

or for an arbitrary, three-dimensional, homogeneous particle [4] .

or any shape of a particle, Guinier and Fournet give that the struc-

ure factor in the large scattering wave vector limit as 

 ( q ) = 

2 πN 
2 S 

V 2 
q −4 (1)

here N is the number of point scatterers within the particle, S

ithout an argument of q is the surface area, not to be confused

ith the structure factor which will always be presented as S ( q ), V

s the volume and q is the magnitude of the scattering wave vector

nd has units of inverse length. The q −4 dependence in Eq. (1) is

nown as Porod’s law [4] . Subsequent work has been done with

he light scattered by fractal aggregates [5] and Porod’s law has

een generalized to 

 ( q ) ∝ q −( 2 D m −D s ) (2)

here D m is the mass scaling dimension and D s is the surface scal-

ng dimension. Note that for a non-fractal three-dimensional ob-

ect, D m = 3 and D s = 2 yield an exponent of −4 in Eq. (2) consis-

ent with Eq. (1) . 

The scaling approach to be presented here is also a semi-

uantitative approach for calculating the structure factor. The scal-

ng approach can be applied to particles of any dimension includ-

ng fractal aggregates, which have non-integer scaling dimensions,

nd is applicable to both homogeneous and non-homogeneous par-

icles [ 6 , 7 ]. In this work we extend the treatment first presented

n [6] . While the main focus of Oh and Sorensen [6] was on frac-

al aggregates, the focus of this work will be on three-dimensional
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omogeneous particles, with results nearly identical to the work of

uinier and Fournet. 

Some favorable attributes of the scaling approach are that it

elies on a comparison of the length scale of the scattering mea-

urement q −1 to length scales of the scattering object. These com-

arisons give physical insight to the scattering measurement. Also,

hen a particle has an aspect ratio much greater than or much less

han unity, the scattering pattern will exhibit two distinct power

aw regions. The large q power law behavior is given by Porod’s

aw as presented in Eq. (2) . There will also be an intermediate q

ower law region where Porod’s law is not applicable [8] . Guinier

nd Fournet only come by this intermediate q power law region by

sing a different method for approximating the Fourier transform

hat resulted in Eq. (1) . Beaucage has put forth a unified expo-

ential approach for calculating both the intermediate and large q

ower law regions [8] . In the unified exponential approach, a sum

f exponential terms is used for the approximation, requiring nine

arameters to calculate the structure factor. The scaling approach

n the other hand only requires the geometric parameters of the

article. It will be shown here that the scaling approach captures

he correct power laws in both the intermediate and high q power

aw regions, as well as the coefficients to these power laws, and

an be expressed solely in terms of the aspect ratio. The scaling

pproach is also able to predict the crossover points between these

istinct power law regions and express them in terms of the aspect

atio. 

. The scaling approach 

In the scaling approach the scattering volume or particle is con-

idered to be made up of N identical point scatterers. The dis-

retization of the volume is used as opposed to a continuous inte-

ral to allow for more arbitrarily shaped particles, and those with

uctuations in density, to be considered [6] . While the structure

actor for particles with simple geometric shapes such as spheres

nd cylinders can be calculated by taking the continuous integral

f the volume, the integration of the volume becomes increasingly

ifficult for more complex particles, or systems of particles such as

he fractal aggregates considered in [ 6 , 9 ]. By discretizing the vol-

me of the particles, it allows for a more robust and universal ap-

roach. 

The structure factor provides information about the structure of

he system and the angular behavior of the scattering from the N

oint scatterers. The structure factor can be calculated as a double

um over the positions of the N point scatterers and is given by

10] 

 ( � q ) = 

N ∑ 

l, j 

e i � q ·( � r l −� r j ) (3) 

here i is the complex value 
√ −1 . The � r l and � r j are the positions

f the l th and j th scatterers. The scattering wave vector � q is given

y 

  = 
� k sca − � k inc (4) 

here � k sca is the scattered wave vector, and � k inc is the incident

ave vector. Only elastic scattering will be considered in which

ase | � k sca | = | � k sca | = k = 2 π/λ and λ is the wavelength. The mag-

itude of � q is given by 

 = 2 k sin ( θ/ 2 ) (5) 

here θ is the scattering angle. 

The application of the scaling approach considers an ensem-

le of particles randomly oriented, or a single particle orientation-

lly averaged, thus S( � q ) = S(q ) . Also, polarization effects are ig-

ored, treating the waves as scalars. This is on par with treating
he waves as having a polarization perpendicular to the scattering

lane defined by � k sca and � k inc and considering multiple scattering

ot to be significant [6] . It can be seen from Eq. (5) that the scat-

ering wave vector q has units of inverse length, thus q −1 is the

nherent length scale of the scattering. By comparing the length

cales of the system of point scatterers and q −1 , the double sum

an be determined to either add up in phase coherently or ran-

omly. For a system of N scatterers there are two limiting cases

6,7] : 

1. If the N point scatterers are within q −1 of each other, the

phases of the N scattered waves will be essentially the same,

hence the waves will add constructively. Then the total scat-

tered amplitude will be proportional to N . The intensity, which

is proportional to the structure factor, goes as the square of the

amplitude and hence will be proportional to N 
2 . 

2. If the N point scatterers have all possible pairs separated by a

distance greater than q −1 , the waves will add up randomly. The

total scattered amplitude in this case will be proportional to√ 

N , and the total scattered intensity will be proportional to N . 

3. Only when there are fluctuations in the density will there be a

nonzero contribution to the scattering at scattering angles other

then θ = 0. This is a consequence of the Ewald–Oseen extinc-

tion theorem [11,12] . This means, for example, that for an in-

homogeneous particle the scattering will come from both the

discontinuity at the surface of the particle and from any inho-

mogeneities in the bulk. For a homogeneous particle the scat-

tering comes purely from the discontinuity at the surface of the

particle. 

. Application of the scaling approach 

We will determine the rotationally averaged structure factor for

 variety of particles. To do this we consider that instead of the

article taking on many different orientations, the q -vector is ro-

ated through all possible orientations forming spherical q -regions

f radius q −1 . As q −1 has units of length, when q is small these

pherical q -regions will be large, and the entire particle will lie

ithin a single q -region as in Fig. 1 a. As q increases, the q -regions

ill become smaller, and the particle will be covered by multiple

 -regions as in Fig. 1 b. The N q point scatterers within a q-region

ill be within q −1 of each other, and the sum of their scattered

aves squared will be N 
2 
q (situation 1 above). The n q q -regions will

e separated from each other by more than q −1 and the sum of

heir scattered waves squared from the q -regions will be n q (sit-

ation 2 above). The total structure factor will then be given by

 ( q ) = N 
2 
q n q . (6) 

When considering only homogeneous particles, the scattering

ill come purely from the discontinuity at the surface (statement

 above), so only the n q q -regions that contain part of the particles

urface need to be considered in Eq. (6) . 

When the aspect ratio is close to unity and q −1 is larger than

 /2 where D is the dimension describing the size of the particle,

he entire particle will lie within a single q -region and S ( q ) = N 
2 .

or example, D would be 2 R the diameter of a cylinder where R is

he radius or the length L as both are equal when the aspect ratio

 = 
L 
2 R = 1 . As q −1 decreases and becomes less than D /2 the par-

icle will have q -regions that contain part of the particle’s surface

s in Fig. 1 b. In this case n q will be given by 

 q = 

surface area of the particle 

cross section of a q − region 
= 

S 

πq −2 
. (7) 
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Fig. 1. A particle discretized into N point scatterers. (a) The entire particle fits within a single q -region. (b) Several q -regions cover the surface of the particle. 

Fig. 2. The structure factor for a cylinder. The solid black curve shows the Fourier 

transform numerically calculated using Eq. (1) . The dashed line is computed using 

the scaling approach. 
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The number of point scatterers within a q -region will be given

by 

N q = density of points × volume of a q − region = 

(
N 

V 

)
4 

3 
πq −3

(8)

Putting together Eqs. (6 )–(8) we get that the structure factor

when q −1 is smaller than D /2 will go as 

S ( q ) = 

16 πN 
2 S 

9 V 2 
q −4 . (9)

This compares well to the semi-quantitative result of Eq. (1) . 

To demonstrate that Eq. (9) describes the normalized structure

factor, Fig. 2 shows the structure factor of a cylinder calculated us-

ing Eq. (3) plotted vs. q . From Fig. 2 a picture of the scattering can

now be put together. In the forward scattering lobe, q is small and

thus q −1 is large, the scattering is constant in q and goes as N 
2 . As

q increases and approaches 2/ D ( D = L = 2 R ), the scattering begins

to fall off and crosses over into the power law regime described by

Eq. (9) . This crossover regime is known as the Guinier regime, from

which particle size can be retrieved [13] . Eq. (9) has three exten-

sive quantities, N, V , and S . However, N 
2 / V 2 is the density squared,
hich is an intensive quantity. Hence, the only remaining exten-

ive dependence lies with the surface area S. This fact emphasizes

hat the scattering intensity in the large q regime is a consequence

f the inhomogeneity of the scatterer at the surface S . 

Typically, it is more advantageous to plot the structure factor

s. a dimensionless parameter. To do this, Eq. (9) can be multiplied

nd divided by R 4 veq . The structure factor for the power law region

an then be expressed as 

 ( q ) = 

16 πN 
2 SR 4 veq 

9 V 2 
( q R veq ) 

−4 
. (10)

Not only does this provide a dimensionless parameter to plot

gainst but also a dimensionless coefficient. Eq. (10) can also be

xpressed as 

 ( q ) = 

4 N 
2 S 

S veq 
( q R veq ) 

−4 (11)

here S veq is the surface area of a sphere with the same volume.

he coefficient in Eq. (11) again demonstrates the structure factor’s

ependence on the surface of the particle in the large q regime. 

For the four different particle shapes that will be considered

n this work (cylinders, hexagonal columns, square columns, and

pheroids), the dimensionless coefficient can be expressed solely

n terms of ε. The crossover point in the Guinier regime can also

e expressed solely in terms of ε, thus allowing the scattering to

e described by a single parameter. Fig. 3 shows the structure fac-

or plotted vs. qR veq for the four particle shapes being considered.

he crossover point as well as the dimensionless coefficients have

ll been expressed in terms of ε. Although in Fig. 3 , ε = 1, the ex-

ressions for the coefficients hold for all values of ε in the large

 regime. The expressions for the crossover points will hold for val-

es close to unity. Once the aspect ratio begins to move away from

nity, either larger or smaller, the crossover points will begin to

eparate as the intermediate power law regime emerges. 

If the aspect ratio is much greater than, or much less than unity,

here will be two Guinier regimes and two power law regimes. The

rst Guinier regime will occur when q −1 crosses through half the

argest dimension describing the particle D 1 /2. The second will oc-

ur when q −1 crosses through half the second dimension describ-

ng the particle D 2 /2. Continuing to use a cylinder as an example,

hen = L /2 R � 1, D 1 = L and D 2 = 2 R as shown in Fig. 4 . As with

ny particle, when q −1 is larger than D 1 /2, i.e. L /2 for a long cylin-

er, the scattering will go as N 
2 . 

As q −1 becomes smaller with increasing q , it first passes

hrough D /2, i.e. L /2 for a long cylinder, but remains larger than
1 
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Fig. 3. The structure factor for a cylinder, (a), hexagonal prism (b), rectangular prism (c), and a spheroid (d) all with ε = 1. The solid black curve shows the Fourier transform 

numerically calculated using Eq. (3) . The dashed lines are computed using the scaling approach. The formulas including the parameter ε are calculated using Eq. (10) . 

Fig. 4. A cylinder with ε = L /2 R = 10. A finite number of q -regions fit within L , while 

all the q -regions overlap in R . The volume of a q -region can be approximated as 

smaller cylinders, as drawn below. 
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 2 /2, i.e. R for a long cylinder. In this range of q the q -regions will

verlap the particle in the D 2 /2, i.e. R for a long cylinder, direction,

ut there will be a finite number that lie within the D 1 /2, i.e. L /2

or a long cylinder, direction as shown in Fig. 4 . The number of

 -regions will therefore be set by how many can fit within the

argest dimension of the particle D 1 , i.e. L for a long cylinder. Tak-

ng D 1 divided by the diameter of a q -region leads to n q which can

e expressed as 

 q = 

D 1 

2 q −1 
ε � 1 

D 2 

2 
< q −1 < 

D 1 

2 
. (12)
The number of point scatterers in each q -region will be deter-

ined by D 2 , i.e. R for a long cylinder. As shown in Fig. 4 , the sec-

ion of each q -region that lies within the particle can be approxi-

ated as a small cylinder with a length given by the diameter of a

 -region 2 q −1 . The number of scatters in the q -region will then be

iven by the product of the density of point scatterers, diameter of

 q -region, and the cross-sectional area of the cylinder described

y D 2 , i.e. R for a long cylinder, and is expressed as 

 q = 

N 

V 
C D 2 2 q 

−1 ε � 1 
D 2 

2 
< q −1 < 

D 1 

2 
. (13)

here C D 2 is the cross-sectional area described by D 2 . For example,

n the case of a circular cylinder this would be πR 2 . 

Putting together Eqs. (6) , (12) and (13) we arrive at an expres-

ion for the structure factor in this intermediate regime 

 ( q ) = 2 
N 

2 

V 2 
C 2 D 2 D 1 q 

−1 ε � 1 
D 2 

2 
< q −1 < 

D 1 

2 
. (14)

In Eq. (14) we see that there is a power law of −1. Finally, as

he radius of q -regions become smaller than D 2 /2, i.e. R for a long

ylinder, there is a second Guinier regime and the scattering is

gain described by Eq. (9) . Plotting vs. the dimensionless param-

ter qR veq and expressing all coefficients and crossover points in

erms of ε is shown in Fig. 5 for a long cylinder, long hexagonal

olumns, long square columns, and prolate spheroids. 

Now to consider the other extreme, with ε � 1 as shown in

ig. 6 and continuing with the use of a circular cylinder as an ex-

mple which we now transform to a disk. In this case D 1 = 2 R and

 2 = L . The concepts laid out for when ε � 1 are similar, except

hat as q −1 grows smaller with increasing q it will pass through
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Fig. 5. The structure factor for a circular cylinder (a), hexagonal prism (b), rectangular prism (c), and a prolate spheroid (d) all with ε =10. The solid black curve shows the 

Fourier transform numerically calculated using Eq. (3) . The dashed lines are computed using the scaling approach. The formulas including the parameter ε in the intermediate 

q regime are calculated using Eq. (14) , and in the large q regime using Eq. (10) . 

Fig. 6. A circular disk with ε = L /2 R = 0.1. A finite number of q -regions fit within R , 

while all the q -regions overlap in L . The volume of a q -region can be approximated 

as smaller disks. 
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the larger R first instead of L /2. This leads to spherical q -spaces ex-

tending beyond the particle in the smaller L direction while a finite

number fit within the area of the R direction as shown in Fig. 6 .

The number of q -regions will therefore be set by the ratio of the

cross-sectional area described by D = 2 R , and the cross-sectional
1 
rea of a q -region, πq −2 , expressed as 

 q = 

C D 1 
πq −2 

ε � 1 
D 2 

2 
< q −1 < 

D 1 

2 
. (15)

The number of point scatterers within a q -region will again be

iven by the product of the density of point scatterers and the vol-

me of a q -region that lies within the particle. In the ε � 1 limit

e can again approximate the section of each q -region that lies

ithin the particle as a disk, also shown in Fig. 6 . The thickness of

he disk will be given by L and the radius of the disk will be given

y q −1 . This leads to the number of point scatterers in a q -region

 q = 

N 

V 
D 2 πq −2 ε � 1 

D 2 

2 
< q −1 < 

D 1 

2 
. (16)

Putting together Eqs. (6) , (15) , and (16) we arrive at an expres-

ion for the structure factor in this intermediate regime 

 ( q ) = π
N 

2 

V 2 
C D 1 D 

2 
2 q 

−2 ε � 1 
D 2 

2 
< q −1 < 

D 1 

2 
. (17)

In equation Eq. (17) we see that there is a power law of −2.

inally, as the radius of q -regions become smaller than D 2 /2, i.e.

 /2 for disks, with increasing q, there is a second Guinier regime

nd the scattering is again described by Eq. (9) . Plotting vs. the

imensionless parameter qR veq and expressing all coefficients and

rossover points in terms of ε is shown in Fig. 7 for a disk, flat

exagonal column, flat square column, and an oblate spheroid. 
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Fig. 7. The structure factor for a disk (a), a flat hexagonal prism (b), a flat rectangular prism (c), and a spheroid (d) all with ε = 0.1. The solid black curve shows the Fourier 

transform numerically calculated using Eq. (3) . The dashed lines are computed using the scaling approach. The formulas including the parameter ε in the intermediate q 

regime are calculated using Eq. (17) , and in the large q regime using Eq. (10) . 
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. Conclusion 

Figs. 3, 5 , and 7 demonstrate that the scaling approach is an

ffective semi-quantitative approach to describe scattering in the

DG limit. The scaling approach correctly predicts the exponents

nd the locations of the first and second Guinier regimes. It also

ields a semi-quantitative prediction of the coefficients of the

ower laws. The positions of the Guinier regimes, and the coef-

cients of the power laws are solely dependent on one param-

ter, the aspect ratio of the scattering object ε, when the struc-

ure factor is plotted versus the dimensionless qR veq . However, the

caling approach is not capable of capturing the ripple structure

f the structure factor and only predicts the average. Finally, the

caling approach lends physical insight into the scattering pro-

ess by application of q −1 as the length scale of the scatter-

ng process, and the concept that only changes in density scatter

aves. 
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