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Presented is a scaling approach for understanding features, such as power laws and crossover points, of
the light scattered in the m — 1, p =2kRyeq|m — 1| < 1, Rayleigh-Debye-Gans diffraction limit. The scaling
approach is based on comparison of the length scale of the scattering, which is the inverse of the scatter-
ing wave vector, and the various length scales of the scattering entity. It will be shown that the scaling

approach correctly predicts the exponents of the power law regions and the locations of the first and sec-
ond Guinier regimes which define the boundaries of the power laws. Furthermore, the scaling approach
yields a semi-quantitative prediction of the coefficients of the power laws. These Guinier boundaries and
power law coefficients are described by a single parameter, the aspect ratio of the scattering object.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

An immense amount of work has been done over the last cen-
tury in the area of scattering. There are typically two main ques-
tions researchers seek to discover. How does a particular particle or
collection of particles scatter electromagnetic waves, and can infor-
mation about the particle or particles be extracted from the scat-
tered intensity? This work will focus on the former in the m— 1,
0 =2KkRveq|m — 1| < 1, Rayleigh-Debye-Gans diffraction (RDG) limit
[1], where m is the relative index of refraction, p is the phase
shift parameter, k is magnitude of the incident wave vector, and
Ryeq is the radius of a sphere with equivalent volume. Much of the
previous work on diffractive scattering has been done in the area
of small angle X-ray scattering to which the anomalous diffraction
approximation is applicable. A focus of past work has been to un-
derstand how to calculate the structure factor of a given particle
or collection of particles. The structure factor describes the angular
behavior of scattering in the RDG limit, and is solely dependent on
the particles shape, and relative orientations of the particles being
considered [2].

The structure factor is given by the Fourier transform of real
space structure of the particle squared [3]. For simpler particle
shapes, such as a sphere, the Fourier transform can be calculated
analytically [1]. As the geometry of the particle becomes more
complex, the integrals that need to be evaluated become increas-
ingly more complicated, and in many cases must be computed
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numerically [3]. Guinier and Fournet put forth a semi-quantitative
approach for calculating the average behavior of the structure fac-
tor for an arbitrary, three-dimensional, homogeneous particle [4].
For any shape of a particle, Guinier and Fournet give that the struc-
ture factor in the large scattering wave vector limit as

27 N2S
S@==74a" (1)

where N is the number of point scatterers within the particle, S
without an argument of g is the surface area, not to be confused
with the structure factor which will always be presented as S(q), V
is the volume and q is the magnitude of the scattering wave vector
and has units of inverse length. The g~ dependence in Eq. (1) is
known as Porod’s law [4]. Subsequent work has been done with
the light scattered by fractal aggregates [5] and Porod’s law has
been generalized to

S(@) ocq- @) @)

where Dy, is the mass scaling dimension and Ds is the surface scal-
ing dimension. Note that for a non-fractal three-dimensional ob-
ject, D=3 and Ds =2 yield an exponent of —4 in Eq. (2) consis-
tent with Eq. (1).

The scaling approach to be presented here is also a semi-
quantitative approach for calculating the structure factor. The scal-
ing approach can be applied to particles of any dimension includ-
ing fractal aggregates, which have non-integer scaling dimensions,
and is applicable to both homogeneous and non-homogeneous par-
ticles [6,7]. In this work we extend the treatment first presented
in [6]. While the main focus of Oh and Sorensen [6] was on frac-
tal aggregates, the focus of this work will be on three-dimensional
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homogeneous particles, with results nearly identical to the work of
Guinier and Fournet.

Some favorable attributes of the scaling approach are that it
relies on a comparison of the length scale of the scattering mea-
surement g~ ! to length scales of the scattering object. These com-
parisons give physical insight to the scattering measurement. Also,
when a particle has an aspect ratio much greater than or much less
than unity, the scattering pattern will exhibit two distinct power
law regions. The large q power law behavior is given by Porod’s
law as presented in Eq. (2). There will also be an intermediate ¢
power law region where Porod’s law is not applicable [8]. Guinier
and Fournet only come by this intermediate g power law region by
using a different method for approximating the Fourier transform
that resulted in Eq. (1). Beaucage has put forth a unified expo-
nential approach for calculating both the intermediate and large g
power law regions [8]. In the unified exponential approach, a sum
of exponential terms is used for the approximation, requiring nine
parameters to calculate the structure factor. The scaling approach
on the other hand only requires the geometric parameters of the
particle. It will be shown here that the scaling approach captures
the correct power laws in both the intermediate and high g power
law regions, as well as the coefficients to these power laws, and
can be expressed solely in terms of the aspect ratio. The scaling
approach is also able to predict the crossover points between these
distinct power law regions and express them in terms of the aspect
ratio.

2. The scaling approach

In the scaling approach the scattering volume or particle is con-
sidered to be made up of N identical point scatterers. The dis-
cretization of the volume is used as opposed to a continuous inte-
gral to allow for more arbitrarily shaped particles, and those with
fluctuations in density, to be considered [6]. While the structure
factor for particles with simple geometric shapes such as spheres
and cylinders can be calculated by taking the continuous integral
of the volume, the integration of the volume becomes increasingly
difficult for more complex particles, or systems of particles such as
the fractal aggregates considered in [6,9]. By discretizing the vol-
ume of the particles, it allows for a more robust and universal ap-
proach.

The structure factor provides information about the structure of
the system and the angular behavior of the scattering from the N
point scatterers. The structure factor can be calculated as a double
sum over the positions of the N point scatterers and is given by
[10]

N
S(@) = Y el (i) (3)
Lj

where i is the complex value +/—1. The 7} and 7 are the positions
of the Ith and jth scatterers. The scattering wave vector { is given
by

d: I_ésca - Einc (4)

where K is the scattered wave vector, and l?mC is the incident
wave vector. Only elastic scattering will be considered in which
case |Ksca| = |Ksca| = k = 27t /A and A is the wavelength. The mag-
nitude of ¢ is given by

q = 2ksin (60/2) (5)

where 0 is the scattering angle.

The application of the scaling approach considers an ensem-
ble of particles randomly oriented, or a single particle orientation-
ally averaged, thus S(q) = S(q). Also, polarization effects are ig-
nored, treating the waves as scalars. This is on par with treating

the waves as having a polarization perpendicular to the scattering
plane defined by ks, and Einc and considering multiple scattering
not to be significant [6]. It can be seen from Eq. (5) that the scat-
tering wave vector q has units of inverse length, thus g~ is the
inherent length scale of the scattering. By comparing the length
scales of the system of point scatterers and q~!, the double sum
can be determined to either add up in phase coherently or ran-
domly. For a system of N scatterers there are two limiting cases
[6,7]:

1. If the N point scatterers are within g1 of each other, the
phases of the N scattered waves will be essentially the same,
hence the waves will add constructively. Then the total scat-
tered amplitude will be proportional to N. The intensity, which
is proportional to the structure factor, goes as the square of the
amplitude and hence will be proportional to N2.

2. If the N point scatterers have all possible pairs separated by a
distance greater than g~ !, the waves will add up randomly. The
total scattered amplitude in this case will be proportional to
VN, and the total scattered intensity will be proportional to N.

3. Only when there are fluctuations in the density will there be a
nonzero contribution to the scattering at scattering angles other
then 0 =0. This is a consequence of the Ewald-Oseen extinc-
tion theorem [11,12]. This means, for example, that for an in-
homogeneous particle the scattering will come from both the
discontinuity at the surface of the particle and from any inho-
mogeneities in the bulk. For a homogeneous particle the scat-
tering comes purely from the discontinuity at the surface of the
particle.

3. Application of the scaling approach

We will determine the rotationally averaged structure factor for
a variety of particles. To do this we consider that instead of the
particle taking on many different orientations, the g-vector is ro-
tated through all possible orientations forming spherical g-regions
of radius g~ 1. As ¢~ has units of length, when q is small these
spherical g-regions will be large, and the entire particle will lie
within a single g-region as in Fig. 1a. As q increases, the g-regions
will become smaller, and the particle will be covered by multiple
g-regions as in Fig. 1b. The Ny point scatterers within a g-region
will be within g~1 of each other, and the sum of their scattered
waves squared will be Né (situation 1 above). The nq g-regions will
be separated from each other by more than q~' and the sum of
their scattered waves squared from the g-regions will be ng (sit-
uation 2 above). The total structure factor will then be given by

S(q) = Ngng. (6)

When considering only homogeneous particles, the scattering
will come purely from the discontinuity at the surface (statement
3 above), so only the ng g-regions that contain part of the particles
surface need to be considered in Eq. (6).

When the aspect ratio is close to unity and g~! is larger than
D/2 where D is the dimension describing the size of the particle,
the entire particle will lie within a single g-region and S(gq)=N2.
For example, D would be 2R the diameter of a cylinder where R is
the radius or the length L as both are equal when the aspect ratio
€= ﬁ =1. As g~ ! decreases and becomes less than D/2 the par-
ticle will have g-regions that contain part of the particle’s surface
as in Fig. 1b. In this case nq will be given by

o surface area of the particle S 7)
9™ cross section of a q — region  wq-2’
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Fig. 1. A particle discretized into Npoint scatterers. (a) The entire particle fits within a single g-region. (b) Several g-regions cover the surface of the particle.
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Fig. 2. The structure factor for a cylinder. The solid black curve shows the Fourier
transform numerically calculated using Eq. (1). The dashed line is computed using
the scaling approach.

The number of point scatterers within a g-region will be given
by
-3

Ny = density of points x volume of a q — region = (g) gnq
(8)

Putting together Eqgs. (6)-(8) we get that the structure factor
when g~ is smaller than D/2 will go as

167N%S
7(] .

5@ = —gy (9)

This compares well to the semi-quantitative result of Eq. (1).

To demonstrate that Eq. (9) describes the normalized structure
factor, Fig. 2 shows the structure factor of a cylinder calculated us-
ing Eq. (3) plotted vs. g. From Fig. 2a picture of the scattering can
now be put together. In the forward scattering lobe, q is small and
thus g~ is large, the scattering is constant in q and goes as N2. As
q increases and approaches 2/D (D = L = 2R), the scattering begins
to fall off and crosses over into the power law regime described by
Eq. (9). This crossover regime is known as the Guinier regime, from
which particle size can be retrieved [13]. Eq. (9) has three exten-
sive quantities, N, V, and S. However, N2/V2 is the density squared,

which is an intensive quantity. Hence, the only remaining exten-
sive dependence lies with the surface area S. This fact emphasizes
that the scattering intensity in the large g regime is a consequence
of the inhomogeneity of the scatterer at the surface S.

Typically, it is more advantageous to plot the structure factor
vs. a dimensionless parameter. To do this, Eq. (9) can be multiplied
and divided by R(,‘eq. The structure factor for the power law region
can then be expressed as

167t N2SR?,
S@ = —gyz(@Rveq) ™" (10)

Not only does this provide a dimensionless parameter to plot
against but also a dimensionless coefficient. Eq. (10) can also be
expressed as

4N2S -
S(@) = < (Rveq) ™ (1)
veq

where Syeq is the surface area of a sphere with the same volume.
The coefficient in Eq. (11) again demonstrates the structure factor’s
dependence on the surface of the particle in the large g regime.

For the four different particle shapes that will be considered
in this work (cylinders, hexagonal columns, square columns, and
spheroids), the dimensionless coefficient can be expressed solely
in terms of ¢. The crossover point in the Guinier regime can also
be expressed solely in terms of ¢, thus allowing the scattering to
be described by a single parameter. Fig. 3 shows the structure fac-
tor plotted vs. qRyegfor the four particle shapes being considered.
The crossover point as well as the dimensionless coefficients have
all been expressed in terms of ¢. Although in Fig. 3, ¢ =1, the ex-
pressions for the coefficients hold for all values of & in the large
g regime. The expressions for the crossover points will hold for val-
ues close to unity. Once the aspect ratio begins to move away from
unity, either larger or smaller, the crossover points will begin to
separate as the intermediate power law regime emerges.

If the aspect ratio is much greater than, or much less than unity,
there will be two Guinier regimes and two power law regimes. The
first Guinier regime will occur when q~! crosses through half the
largest dimension describing the particle D;/2. The second will oc-
cur when g~ crosses through half the second dimension describ-
ing the particle D,/2. Continuing to use a cylinder as an example,
when=L/2R » 1, D;=L and D, =2R as shown in Fig. 4. As with
any particle, when g~ is larger than D/2, i.e. L/2 for a long cylin-
der, the scattering will go as N2.

As q~' becomes smaller with increasing g, it first passes
through D;/2,i.e.L/2 for a long cylinder, but remains larger than
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Fig. 3. The structure factor for a cylinder, (a), hexagonal prism (b), rectangular prism (c), and a spheroid (d) all with ¢ =1. The solid black curve shows the Fourier transform
numerically calculated using Eq. (3). The dashed lines are computed using the scaling approach. The formulas including the parameter ¢ are calculated using Eq. (10).
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Fig. 4. A cylinder with e =L/2R=10. A finite number of g-regions fit within L, while
all the g-regions overlap in R. The volume of a g-region can be approximated as
smaller cylinders, as drawn below.

D,[2, i.e. R for a long cylinder. In this range of q the g-regions will
overlap the particle in the D,/2, i.e. R for a long cylinder, direction,
but there will be a finite number that lie within the D;/2,i.e.L/2
for a long cylinder, direction as shown in Fig. 4. The number of
g-regions will therefore be set by how many can fit within the
largest dimension of the particle Dy, i.e. L for a long cylinder. Tak-
ing Dy divided by the diameter of a g-region leads to ny which can
be expressed as

Di 51Dy

_ -1
Mg = 2q1 2

by

5 (12)

The number of point scatterers in each g-region will be deter-
mined by D,, i.e. R for a long cylinder. As shown in Fig. 4, the sec-
tion of each g-region that lies within the particle can be approxi-
mated as a small cylinder with a length given by the diameter of a
g-region 2q 1. The number of scatters in the g-region will then be
given by the product of the density of point scatterers, diameter of
a g-region, and the cross-sectional area of the cylinder described
by D,, i.e. R for a long cylinder, and is expressed as
= QCDZqu e>1 % <q'< %
where Cp, is the cross-sectional area described by D,. For example,
in the case of a circular cylinder this would be 7w R2.

Putting together Eqs. (6), (12) and (13) we arrive at an expres-
sion for the structure factor in this intermediate regime

N? D,
S(q) = 2W 5

In Eq. (14) we see that there is a power law of —1. Finally, as
the radius of g-regions become smaller than D, /2, i.e. R for a long
cylinder, there is a second Guinier regime and the scattering is
again described by Eq. (9). Plotting vs. the dimensionless param-
eter qRyeq and expressing all coefficients and crossover points in
terms of & is shown in Fig. 5 for a long cylinder, long hexagonal
columns, long square columns, and prolate spheroids.

Now to consider the other extreme, with ¢ « 1 as shown in
Fig. 6 and continuing with the use of a circular cylinder as an ex-
ample which we now transform to a disk. In this case D; =2R and
D, =L. The concepts laid out for when & > 1 are similar, except
that as g~ ! grows smaller with increasing q it will pass through

A (13)

C5,Diq " &> 1 % <q'l< (14)
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Top down view

Fig. 6. A circular disk with ¢ =L/2R=0.1. A finite number of g-regions fit within R,
while all the g-regions overlap in L. The volume of a g-region can be approximated
as smaller disks.

the larger R first instead of L/2. This leads to spherical g-spaces ex-
tending beyond the particle in the smaller L direction while a finite
number fit within the area of the R direction as shown in Fig. 6.
The number of g-regions will therefore be set by the ratio of the
cross-sectional area described by D; =2R, and the cross-sectional

area of a g-region, 7q~2, expressed as

Co, 8<<‘1&

D
Tq2 2 '

: (15)

ng = < q’1 <

The number of point scatterers within a g-region will again be
given by the product of the density of point scatterers and the vol-
ume of a g-region that lies within the particle. In the ¢ « 1 limit
we can again approximate the section of each g-region that lies
within the particle as a disk, also shown in Fig. 6. The thickness of
the disk will be given by L and the radius of the disk will be given
by g~ 1. This leads to the number of point scatterers in a g-region

D,

Dby
: :

3 (16)

Ny = HDznq‘z ekl <ql<

%

Putting together Eqs. (6), (15), and (16) we arrive at an expres-
sion for the structure factor in this intermediate regime

Dy

N? 2,2 D, -1
S(q):nWCplqu s<<17<q <3

(17)
In equation Eq. (17) we see that there is a power law of —2.
Finally, as the radius of g-regions become smaller than D,/2, i.e.
L/2 for disks, with increasing q, there is a second Guinier regime
and the scattering is again described by Eq. (9). Plotting vs. the
dimensionless parameter qRveq and expressing all coefficients and
crossover points in terms of & is shown in Fig. 7 for a disk, flat
hexagonal column, flat square column, and an oblate spheroid.
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Fig. 7. The structure factor for a disk (a), a flat hexagonal prism (b), a flat rectangular prism (c), and a spheroid (d) all with &€ =0.1. The solid black curve shows the Fourier
transform numerically calculated using Eq. (3). The dashed lines are computed using the scaling approach. The formulas including the parameter ¢ in the intermediate g

regime are calculated using Eq. (17), and in the large g regime using Eq. (10).

4. Conclusion

Figs. 3, 5, and 7 demonstrate that the scaling approach is an
effective semi-quantitative approach to describe scattering in the
RDG limit. The scaling approach correctly predicts the exponents
and the locations of the first and second Guinier regimes. It also
yields a semi-quantitative prediction of the coefficients of the
power laws. The positions of the Guinier regimes, and the coef-
ficients of the power laws are solely dependent on one param-
eter, the aspect ratio of the scattering object ¢, when the struc-
ture factor is plotted versus the dimensionless qRveq. However, the
scaling approach is not capable of capturing the ripple structure
of the structure factor and only predicts the average. Finally, the
scaling approach lends physical insight into the scattering pro-
cess by application of g1 as the length scale of the scatter-
ing process, and the concept that only changes in density scatter
waves.
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