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Abstract—Design of rehabilitation and physical assistance
robots that work safely and efficiently despite uncertain op-
erational conditions remains an important challenge. Current
methods for the design of energy efficient series elastic actuators
use an optimization formulation that typically assumes known
operational requirements. This approach could lead to actuators
that cannot satisfy elongation, speed, or torque requirements
when the operation deviates from nominal conditions. Address-
ing this gap, we propose a convex optimization formulation
to design the stiffness of series elastic actuators to minimize
energy consumption and satisfy actuator constraints despite
uncertainty due to manufacturing of the spring, unmodeled
dynamics, efficiency of the transmission, and the kinematics and
kinetics of the load. To achieve convexity, we write energy con-
sumption as a scalar convex-quadratic function of compliance.
As actuator constraints, we consider peak motor torque, peak
motor velocity, limitations due to the speed-torque relationship
of DC motors, and peak elongation of the spring. We apply our
formulation to the robust design of a series elastic actuator for
a powered prosthetic ankle. Our simulation results indicate that
a small trade-off between energy efficiency and robustness is
justified to design actuators that can operate with uncertainty.

I. INTRODUCTION

Series elastic actuators (SEAs) [1] have the potential to

be a safe, energy efficient, and easy to control actuation

scheme for human-robot interaction in rehabilitation and

physical assistance robots. SEAs are well suited for force

control and impedance control in human-robot interaction,

as the elastic element behaves as a soft load cell [2], [3].

SEAs encourage safety in robots by potentially reducing the

mass of the actuator [4] and its associated kinetic energy

during impacts. Additionally, SEAs enable elastic collisions

for greater safety where impacts might occur [5]. Elastic

collisions can also improve energy efficiency in applications

subject to periodic impacts such as bipedal locomotion [6],

[7]. In addition, compared to rigid actuators, SEAs can reduce

energy dissipated by the actuator for periodic tasks [8], [9].

The SEA torque and speed bandwidths, reachable virtual

and mechanical impedance, stored elastic energy, tolerance to
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impact loads, peak power output, and energy efficiency [3],

[10] depend on the selection of the SEA’s spring stiffness.

The requirements of the application ultimately determine

which of these criteria should be used for the stiffness design.

In this paper, we focus on reducing energy consumption

of the SEA, which has the potential to reduce mass and

increase battery life of robots for rehabilitation and physical

assistance.

Existing methods to design the stiffness that minimizes

energy consumption of SEAs, such as natural dynamics [11]

and optimization formulations [9], [12], assume nominal

reference kinematic and kinetic trajectories of the load.

These nominal trajectories easily change during operation

in human-robot interaction. For example, in the design of

an SEA for a powered prosthetic leg, the reference kine-

matic and kinetic trajectories change as the subject walks

with different speeds or wears different accessories, such

as a backpack. When the load conditions deviate from their

nominal values, the energy consumption and peak power of

SEAs may not be optimal [13]. Additionally, the speed and

torque requirements for the motor may be outside the motor’s

specifications, i.e., the task becomes infeasible. For instances

when changing stiffness of the SEA makes the task feasible

again, a possible solution is to replace SEAs with variable

stiffness actuators (VSAs) [8]. However, VSAs require ad-

ditional mechanisms to operate, increasing the mechanical

complexity and potentially the mass of the actuator. Thus, we

are interested to know if a fixed-stiffness SEA could satisfy

the actuator constraints despite uncertainty, and what trade-

off a robust design would have with energy consumption.

Acknowledging uncertainty in the reference trajectories

leads to more realistic and robust designs. For example,

in [13], the optimal design of series stiffness considered

deviation from the nominal trajectories for the application of

powered prosthetic legs. The SEA was optimized over both

walking and running reference trajectories, but the design

did not consider the wide range of other possible tasks and

did not analyze the feasibility of the actuator. Uncertainty

in the initial conditions, e.g., position and velocity of the

load, during robot-environment interaction motivated a robust

optimization design of compliance [14]. The optimal compli-

ance minimized interaction forces between two manipulators

accomplishing a handover task. Brown and Ulsoy [15] con-

sidered task uncertainty by defining the reference trajectory



as a sample from a probability distribution of reference

trajectories. Their stochastic approach to designing linear par-

allel elastic elements provided energy savings and constraint

satisfaction for 90% of the reference trajectories, but worst-

case scenarios would violate the strict safety requirements

of a co-robot. More arbitrary reference motions resulted in

stiffer optimal solutions, converging to a rigid actuator for

totally arbitrary motion [15]. However, increasing stiffness

may not be the solution when actuator constraints must be

satisfied despite uncertainty, as demonstrated in Section V.

Thus, a robust formulation is required to guarantee feasibility

of the actuator even in the worst case conditions that could

manifest during operation.

Our Contribution

We present a convex optimization formulation to design

the stiffness of an SEA to minimize energy consumption

and satisfy actuator constraints despite uncertainty due to

manufacturing of the spring, unmodeled dynamics, efficiency

of the transmission, and the kinematics and kinetics of the

load. As actuator constraints we consider: 1) peak motor

torque, 2) peak motor velocity, 3) limitations due to the

speed-torque relationship of DC motors, and 4) maximum

elongation of the spring. We use existing robust optimization

techniques to design robust feasible stiffness values, i.e.,

satisfy the constraints despite uncertainty [16]. Our previous

work [9], [17] also describes a convex optimization program

for series spring design, but it considers nonlinear series

springs without uncertainty. In here, we consider uncertainty

for the design of linear series springs. Although the two

approaches lead to a convex-quadratic program, the optimiza-

tion variables, cost function, and constraints are different.

In general, any optimization program has a robust feasible

solution, but only a few are computationally tractable, e.g.,

when the optimization program is convex with a specific

definition of the uncertainty sets [16]. Therefore, our goal is

to find a convex formulation with adequate definition of the

uncertainty sets to guarantee the computation of a solution.

Part of our contribution is to write energy consumption of

an SEA’s electric motor as a convex-quadratic function of

compliance, the inverse of stiffness. This convex-quadratic

formulation is not only useful for a robust feasible design, but

it also provides an analytical solution for the optimal stiffness

in the unconstrained case. Another analytical solution was

presented in [18], but it does not guarantee convexity with

and without constraints, and assumes that the motor con-

sumes energy from the power source even when the product

of motor torque and velocity is negative, i.e., when the motor

acts in generator mode. Although common in the literature,

this assumption is not accurate in practice [19]. In contrast,

we assume the motor, in generator mode, provides energy

into the power source.

Our formulation applies to any application with periodic

motion. We apply our methods to the actuator design of

powered prosthetic legs. Battery life and device mass influ-

ence the performance of these devices. Reducing prosthesis

mass is paramount [20], especially because mass attached

to distal parts of the human body increases the metabolic

energy consumed by the user. For example, in [21], a 2 kg

load placed on each foot increased the rate of oxygen uptake

30%, which is an indirect measure of metabolic energy

consumption. SEAs have the potential to reduce mass in

two ways: 1) extending battery life by reducing the energy

dissipated by the actuator will allow the use of smaller

batteries, and 2) reducing the speed-torque requirements for

the motor will allow the use of smaller, lighter motors. As

discussed in [9], an elastic element connected in series is

passive and cannot reduce the energy required by the load,

but it has the potential to reduce the energy dissipated for

a given task. Reduction of dissipated energy is important,

especially in tasks that are mainly dissipative such as level-

ground walking. For example, the ankle of a 75 kg human

provides about 17 J per stride during normal walking, but

a rigidly actuated prosthetic ankle consumes 33 J [9]. The

same motor connected in series with an elastic element

requires about 25 J per stride, i.e., a 50% reduction in the

energy dissipated [9]. Thus, SEAs represent a viable actuator

alternative for the design of powered prosthetic legs, with

some examples reported in [12], [22], [23].

The explanation of our formulation starts in Section II with

an introduction to the modeling of SEAs with an emphasis

on their energy consumption. Section III describes energy

consumption as a convex-quadratic function of compliance.

This quadratic expression is the cost function of our formu-

lation. Section IV describes our robust design methodology

along with the actuator constraints. This section illustrates

how to reformulate the optimization problem in order to find

a solution that satisfies the constraints despite uncertainty.

Section V applies our methodology to the robust feasible

design of SEAs for a powered prosthetic ankle. Section VI

includes the discussion and conclusion of our work.

II. MODELING OF SERIES ELASTIC ACTUATORS

In this work, we assume that the SEA uses an electric DC

motor, and energy can flow from the load to the energy source

and vice versa. In other words, suitable electronics allow

energy to flow to and from the battery. The corresponding

energy flow and main components of an SEA are illustrated

in Fig. 1. We also assume that the energy consumption of

the SEA refers to the energy consumption of the motor and

energy lost at the transmission. The energy dissipated by

viscous friction at the transmission can be lumped with the

viscous friction of the motor’s shaft. Energy losses in the

power electronics and battery exist in practice, but we do

not include them in our formulation. This is because they

are either proportional to the energy losses of the motor (and

hence can be lumped with winding losses) or are independent

of the system’s dynamics and hence are not affected by the

spring stiffness. In addition, most of the losses occur at the

motor’s winding and transmission. For example, in the MIT

Cheetah robot [24], 76% of the total energy consumption is

attributed to heat loss from the motor; the remaining energy

is dissipated by friction losses and impacts [24]. Under

these assumptions, the energy consumption of the SEA is
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Fig. 1. Energy flow of an SEA. Dashed lines indicate that the energy path
may or may not exist depending on the construction of the device. For
instance, energy flowing from the load to the battery requires that the load
is high enough to backdrive the motor-transmission system.

equivalent to the energy consumption of the motor including

losses at the transmission, Em, which is given by [25]

Em =

∫ tf

t0

( τ2m
k2m
︸︷︷︸

Winding
Joule

heating

+ τmq̇m
︸ ︷︷ ︸

Rotor
mechanical

power

)

dt, (1)

where t0 and tf are the initial and final times of the reference

trajectory respectively, km is the motor constant, τm the

torque produced by the motor, and q̇m the motor’s angular

velocity. Notice that energy associated with Joule heating can

also be written as i2mR, since τm = imkt and km = kt/
√
R,

where im is the electric current flowing through the motor,

R the motor terminal resistance, and kt the motor torque

constant [19].

Using the Newton-Euler method, the corresponding bal-

ance of torques at the motor and load side provides the

following equations of motion [19], [26]:

Imq̈m = −bmq̇m + τm +
τl
ηr

+ τu, (2)

τl = g(ql, q̇l, q̈l, τext), (3)

where Im is the inertia of the motor; bm its viscous fric-

tion coefficient; r the transmission ratio; η the efficiency

of the transmission; τu is the unmodeled dynamics torque

that lumps unmodeled effects at the motor and load side,

e.g., cogging torque and friction; ql, q̇l, q̈l, τl represent

the position, velocity, acceleration and torque of the load

respectively; and g(ql, q̇l, q̈l, τext) defines the torque of the

load based on the load dynamics and external torque, τext.

For instance, in the case of an inertial load with viscous

friction and an external torque, the load dynamics are defined

by g(ql, q̇l, q̈l, τext) = −Ilq̈l − blq̇l + τext, where Il is the

inertia of the load, and bl its corresponding viscous friction

coefficient. Because of the connection in series, the torque

of the spring, τs, is equal to the torque of the load, τs = τl.
For a linear spring, the torque of the spring is proportional

to its elongation, τs = kδ, where elongation is defined as

δ = ql −
qm
r
. (4)

As seen in (2)-(3), the elastic element cannot modify the

torque required to perform the motion, τs, but it can modify

the position of the motor such that Imq̈m + bmq̇m reduces

the torque of the motor, τm.

III. ENERGY CONSUMPTION AS A CONVEX-QUADRATIC

FUNCTION OF COMPLIANCE

In the case of a linear spring, elongation and torque are

related by τs = k(ql − qm/r), where k is the stiffness

constant. Using this relationship, the position of the motor

and corresponding time derivatives can be expressed as a

function of the given load position and the load torque τl
as follows: qm = (ql − τl/k)r, q̇m = (q̇l − τ̇l/k)r, and

q̈m = (q̈l − τ̈l/k)r. Replacing these expressions into (2) and

defining compliance as the inverse of stiffness, α := 1/k,

the expression of motor torque can be written as an affine

function of compliance as follows:

τm = γ1α+ γ2, (5)

where

γ1 = − (Imτ̈lr + bmτ̇lr) , (6)

γ2 = Imq̈lr + bmq̇lr −
τs
ηr

− τu, (7)

are known constants that depend on the reference trajectory.

Using the definition of τm in (5), assuming periodic motion,

and neglecting the uncertain torque, τu = 0, we write

the expression of energy consumption of the motor as the

following convex-quadratic function of compliance:

Em =

∫ tf

t0

(
τ2m
k2m

+ τmq̇m

)

dt,

=

∫ tf

t0

(
τ2m
k2m

+ bmq̇2m − τsq̇m
ηr

)

dt+

∫ tf

t0

Imq̇mdq̇m,

= aα2 + bα+ c, (8)

where

a =

∫ tf

t0

(
γ2

1

k2m
+ bmr2τ̇2s

)

dt,

b =

∫ tf

t0

(
2γ1γ2
k2m

− 2bmr2q̇lτ̇s

)

dt,

c =

∫ tf

t0

(
γ2

2

k2m
+ bmq̇2l r

2 − q̇lτs
η

)

dt.

Properties of the Convex-Quadratic Function of Compliance:

1) d2Em/dα2 = 2a ≥ 0, which follows from the definition

of a. Therefore (8) is a convex function of compliance

[27, p. 71].

2) Parameter c is the energy consumed by a rigid actuator

performing the same task without an elastic element, i.e.,

lim
k→∞

Em = c.

3) The optimal value of compliance that minimizes energy

consumption for any periodic trajectory is α = −b/(2a),
neglecting actuator constraints. This optimal value can

be computed in polynomial time. Note that the integrals

in the definition of a and b can be approximated with

discrete-time summations.
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Fig. 2. Left: Energy consumption as a function of compliance, α, where the
energy savings (E.S.) region 0 ≤ α ≤ −b/a provides Em below the rigid
level c. Right: Case of motor and load that would not benefit energetically
from series elasticity.

4) The sign of b determines if the reference trajectories

and motor configuration will benefit from series elasticity

in order to reduce energy consumption. The quadratic

cost function (8) leads to two possible scenarios for the

effect of compliance α on motor energy (Fig. 2). In the

first case, dEm/dα is negative at α = 0, thus series

elasticity improves actuator efficiency over some range

of compliance. In the second case, this slope is positive

at α = 0, so energy increases with compliance, i.e., there

is no energetic benefit to linear series elasticity for the

given task. Thus, the necessary condition for an SEA to

be energetically beneficial is b < 0 in (8), i.e.,
∫ tf

t0

(
2γ1γ2

k2
m

− 2bmr2q̇lτ̇s

)

dt < 0. (9)

IV. ROBUST STIFFNESS DESIGN

This section presents our convex optimization formulation

for the robust feasible design of the SEA’s linear spring. The

convex-quadratic function in (8) is the cost function of our

optimization problem. The constraints in our formulation are:

1) peak motor torque, 2) peak motor velocity, 3) limitations

due to speed-torque relationship of DC motors, and 4) peak

elongation of the spring. Below we discuss the definition,

convexity, and uncertainty of the constraints.

A. Actuator Constraints

1) Elongation Constraint: Limited elongation of the elas-

tic element is typical in SEA applications. An elastic element

reaching its maximum elongation could be dangerous for co-

robots. When the spring bottoms out, the elastic collisions

with the environment become inelastic which may be harmful

for the user and the robot itself. We express the elongation

constraint as ‖τsα‖∞ ≤ δs, where δs is the maximum

elongation of the spring. This results in the constraint
∥
∥m(τl/m)α

∥
∥
∞

≤ δs,
[
m(τl/m)
−m(τl/m)

]T

α ≤ 1δs,

d1α ≤ e1, (10)

where

d1 =

[
τl/m
−τl/m

]

, e1 = 1
δs
m
,

m is a scalar factor, and τl/m is a normalized expression of

the load torque per unit of m, i.e., τl = mτl/m.

2) Torque Constraint: In our formulation, we express the

limitations in peak torque of the motor as ‖τm‖∞ ≤ τmax,

where τmax is the maximum peak value of torque. Recall that

the torque of the motor can be written as an affine function

of compliance (5), τm = γ1α + γ2. Thus, constraining the

peak torque is equivalent to the following affine constraint:

‖γ1α+ γ2‖∞ ≤ τmax,
[
γ1

−γ1

]

α ≤ 1τmax +

[
−γ2

γ2

]

,

d2α ≤ e2, (11)

where

d2 =

[
Imτ̈l/mr + bmτ̇l/mr
−Imτ̈l/mr − bmτ̇l/mr

]

,

e2 =






τl/m

ηr
−τl/m

ηr




+

[
−Imrq̈l − bmrq̇l + 1(τmax + τu)
Imrq̈l + bmrq̇l + 1(τmax − τu)

]
1

m
.

3) Speed-Torque Relationship Constraint: As an actuator,

a DC motor simultaneously operates as an electric generator

producing a back-emf voltage. This back-emf voltage, which

is proportional to the motor’s speed of rotation, limits the

current that can flow through the motor’s winding, which is

proportional to the torque produced by the motor. As a con-

sequence, the torque that a DC motor generates is a function

of the rotational speed [28, p. 536]. This phenomenon is

summarized by the equation τm(R/kt) = vin−ktq̇m, where

vin is the input voltage to the electric motor. Then for a

DC motor to be feasible τm(R/kt) ≤ vin − ktq̇m [25]. The

same inequality applies for positive and negative values of

speed and torque, therefore in total there are four inequalities

to express the torque-velocity relationship constraints. The

following affine constraint represents these inequalities:

τm ≤ 1vin
kt
R

− k2t
R

q̇m,

γ1α+ γ2 ≤ 1vin
kt
R

− k2t
R

(q̇l − τ̇lα)r,

d3aα ≤ e3a, (12)

where

d3a = Imτ̈l/mr + bmτ̇l/mr − k2t r

R
τ̇l/m,

e3a =
τl/m

ηr
+

(

1

(

vin
kt
R

+ τu

)

− Imrq̈l−

bmrq̇l −
k2t r

R
q̇l

)
1

m
.

Using positive and negative values of torque and speed

we can define three similar versions of the inequality (12),

which we will denote using the vectors d3b,c,d
and e3b,c,d .



Summarizing, the torque and velocity relationship constraints

can be lumped into the single vector inequality constraint

d3α ≤ e3, (13)

where

d3 = [dT
3a,d

T
3b,d

T
3c,d

T
3d]

T , e3 = [eT
3a, e

T
3b, e

T
3c, e

T
3d]

T .

4) RMS Torque and Maximum Speed: Long-term opera-

tion of an electric motor can generate excessive heat and can

be harmful for the actuator. Constraining the RMS torque

is a typical method to guarantee that long-term operation is

safe for the device. In our formulation, the square of the

RMS torque can be written as a convex-quadratic function

of compliance, and therefore can be included as a constraint.

However, RMS torque also appears in our cost function

(8). Therefore, it is redundant to include it as a constraint.

The constraint (13) already considers the maximum speed of

rotation of the motor, which is equivalent to τm(R/kt) ≤
vin − ktq̇m when the motor torque, τm, is zero.

5) Lumping the Constraints: Peak motor torque, peak

motor velocity, speed-torque relationship constraints, and

maximum elongation of the spring can be represented as the

following vector inequalities:

dα ≤ e (14)

where

d = [dT
1
,dT

2
,dT

3
]T , e = [eT

1
, eT

2
, eT

3
]T . (15)

B. System Uncertainty

Feasibility of the constraints is subject to the selection

of the spring compliance and uncertainty in the definition

of the constraints. Uncertainty in our formulation means

that the reference kinematics and kinetics of the load, the

manufacturing accuracy of the spring, the efficiency of the

transmission, and the unmodeled dynamics are not precisely

known but are restricted to belong to an uncertainty set, U .

In our formulation, U is defined as the Cartesian product

U = Uql × Uq̇l × Uq̈l × Um × Uη × Uτu × Ud,

where the uncertainty sets Uql ,Uq̇l ,Uq̈l ,Um,Uη,Uτu , and Ud

express all the possible realizations for the load position,

velocity, and acceleration; the multiplicative factor of the

load torque; the efficiency of the transmission; the unmodeled

dynamics; and the manufacturing accuracy of the spring

respectively.

For the position of the load, the uncertainty set is defined

as follows:

Uql = {ql ∈ R
n : q̄l − 1εql ≤ ql ≤ q̄l + 1εql},

where q̄l ∈ R
n and εql ∈ R represent the nomi-

nal load trajectory and uncertainty of the load position,

respectively. Inequalities for vectors are element-wise. In

other words, the position of the load, ql, is within q̄l ±
1εql . Using the respective nominal and uncertainty values

( ˙̄ql, ¨̄ql, η̄, τ̄u, εq̇l , εq̈l , εη, ετu ), we use the same definition for

Uq̇l ,Uq̈l ,Uη, and Uτu . Uncertainty in the manufacturing of

the spring is defined as the factor (1 ± εd) that multiplies

the spring compliance. Because it is a multiplicative factor,

uncertainty in the manufacturing of the spring is equivalent

to uncertainty in the coefficient vector d, as seen in (14).

Therefore the corresponding uncertainty set is defined by

Ud = {d ∈ R
p : d− εd|d| ≤ d ≤ d+ εd|d|},

where p is the number of constraints. Inequalities and abso-

lute values for vectors are element-wise. This uncertainty in

the manufacturing of the spring implies that its stiffness is

in the set

k ∈ {k ∈ R : [(1 + εd)α]
−1 ≤ k ≤ [(1− εd)α]

−1}.

Uncertainty in the kinetic reference trajectories is defined

by a nominal value and a uncertain multiplicative factor.

Precisely, the reference torque of the load τl is considered

to be τl = m(τl/m), where τl/m is a nominal value of τl
per unit of m. Our uncertain multiplicative factor, m, could

be any element within the set

Um = {m ∈ R : 0 < m̄− εm ≤ m ≤ m̄+ εm},

where m̄ ∈ R is the nominal value of m and εm ∈ R is

its corresponding uncertainty. In other words, τl = (m̄ ±
εm)τl/m.

C. The Robust Formulation of the Constraints

A robust feasible design should satisfy the constraints (14)

for all possible realizations of the uncertainty within the un-

certainty set. Note that the uncertainty in the manufacturing

of the spring manifests as uncertainty in the vector d in (14).

Thus, a robust feasible design results in an optimal selection

of α that satisfies

dα ≤ e, ∀ql, q̇l, q̈l,m, η, τu,d ∈ U . (16)

Because α > 0, a robust feasible solution is equivalent to

d̄α ≤ e, (17)

where d̄ and e are the vectors that represent the worst case

representation of the uncertainty. These vectors are defined

as follows:

d̄ = d+ εd|d|, e = [eT
1
, eT

2
, eT

3
]T , (18)

where

e
1
= 1

δs
m̄+ εm

,

e
2
=

[
τl/m
−τl/m

]
1

(η̄ ± εη)
r + f

1

m̄± εm
,

f =

[
−Imr(q̈l + εq̈l)− bmr(q̇l + εq̇l) + 1(τu + τmax)
Imr(q̈l − εq̈l) + bmr(q̇l − εq̇l) + 1(τu + τmax)

]

,

e
3
= [eT

3a, e
T
3b, e

T
3c, e

T
3d]

T ,

e
3a =

τl/m

(η̄ ± εη)r
+ (−Im(q̈l + εq̈l)r − bm(q̇l + εq̇l)r+

1

(

vin
kt
R

+ τu

)

− k2t r

R
(q̇l + εq̇l))

1

(m̄± εm)
,
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Fig. 3. Schematic SEA for powered prosthetic ankle.

and the values for e
3b, e3c , and e

3d are defined using positive

and negative values of torque and speed in the definition

of the torque-speed constraints. The sign of 1/(m̄± εm)
depends on the elements of the vector that it multiplies, as

the multiplication applies element-wise. When the element of

the vector is positive, then the multiplication factor becomes

1/(m̄+ εm); when the element is negative, 1/(m̄− εm).
The same idea applies to 1/(m̄± εη), which describes the

worst possible scenario to satisfy the inequality (17).

D. The Optimization Problem

Combining the definition of the cost function in (8), and

the constraints in (17), the optimization problem becomes

minimize
α

aα2 + bα+ c,

subject to d̄α ≤ e,
(19)

also known as a convex-quadratic program with affine in-

equality constraints. This is a convex-optimization problem;

the cost function is convex as shown in Section III and the

constraints represent a closed interval which is a convex

set described by the affine inequality (17). The solution of

this optimization problem is a value of compliance that is

robust feasible, i.e., it satisfies the actuator constraints despite

uncertainty in the load.

V. CASE STUDY: SIMULATION OF A POWERED

PROSTHETIC ANKLE

In this section, we apply our methods to the design of

an SEA for a powered prosthetic ankle to minimize energy

consumption while satisfying actuator constraints despite

uncertainty. Figure 3 illustrates a schematic of the prosthesis.

Traditionally, actuator designs for powered prostheses use

average kinetic and kinematic trajectories [12], [20], [22],

[29]. However, load conditions during human locomotion

vary significantly even for a single subject [30]. Robust

design is important in this application as human locomotion

and manufacturing methods are inherently uncertain. For

instance, the ankle joint position during human locomotion

varies with a standard deviation of ±5◦ [31], and the stiffness

of a manufactured spring has a standard deviation of about

±10% from the desired stiffness value [23].

In our formulation, we take advantage of the connection

between uncertainty in the kinematics and kinetics of the

TABLE I
MOTOR PARAMETERS (EC-30 FROM MAXON MOTOR).

Parameter EC30 Units

Motor torque constant, kt 13.6 mN·m/A

Motor terminal resistance, R 102 mΩ

Motor inertia, Im 33.3 g·cm2

Gear ratio, r 600

Efficiency transmission, η 0.8

Motor viscous friction, bm 1.665 µN·m·s/rad

Max. motor torque, τmax 337.5 mN·m

Max. motor velocity, q̇max 21065 rpm

Voltage, vin 30 V

TABLE II
UNCERTAINTY BASED ON THE STANDARD DEVIATION IN [23], [31].

Uncertainty in Units

Mass, εm ±8.8 kg

Reference position, εql ±5◦

Reference velocity, εq̇l ±30 % rms average trajectory

Reference acceleration, εq̈l ±30 % rms average trajectory

Transmission efficiency, εη ±20 %

Unmodeled dynamics, ετu ±13.5 mN·m

Manufacturing of spring, εd ±20 %

load and our definition of uncertainty sets to obtain a ro-

bust feasible design. The parameters εql , εq̇l , εq̈l define the

uncertainty in the kinematics U{ql,q̇l,q̈l}. In this simulation

case study, we define these parameters to be equal to the

reported standard deviation of the joint kinematics in [31].

Our formulation of uncertainty in the kinetics has a practical

meaning in biomechanics. The reference torque of the ankle

joint is traditionally normalized by the mass of the user

[32]. Because our definition of uncertainty in the kinetics

is multiplicative, it is equivalent to uncertainty in the user’s

mass. As a result, it becomes relevant to rehabilitation and

physical assistance robots where users can vary or a single

user can wear additional accessories, such as backpacks. We

select the uncertainty in the mass, εm, to be equal to the

reported standard deviation of the subjects’ mass in [31].

Figure 4 illustrates the reference trajectories and correspond-

ing bounds of uncertainty. Uncertainty in the manufacturing

of the spring, εd, is equal to twice the standard deviation of

the SEA spring stiffness of the open-source prosthetic leg

at University of Michigan [23]. The uncertain torque, ετu ,

is equal to 10 % of the maximum continuous motor torque.

Uncertainty in the efficiency of the transmission is based on

our experience aiming for a realistic simulation case. Table I

illustrates the parameters of the actuator and Table II the

parameters of uncertainty. The parameters of the actuator

are inspired by the design of the first-generation powered

prosthetic leg at the University of Texas at Dallas [33], [34].

Using the actuator parameters and reference trajectories, we

used CVX, a package for specifying and solving convex

programs [35], [36], to solve the optimization problem (19).
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Fig. 4. Position (top) and torque (bottom) of the human ankle during
level ground walking [31]. The solid line indicates the mean values for a
69.1 kg subject. The shaded region around the nominal trajectory illustrates
the uncertainty in the position εql = ±5◦ and the mass of the subject
εm = ±8.8 kg (uncertainty based on the standard deviation in [31]).

Results

To contextualize our results, we analyze three possible ac-

tuator designs: (a) a rigid actuator Maxon EC-30 without se-

ries elasticity, (b) an SEA using the same motor with optimal

stiffness that satisfies constraints only for the nominal data,

and (c) an SEA with the same motor that satisfies actuator

constraints despite uncertainty using our robust formulation.

Using (2) and (3) we compute the motor speed and torque

trajectories considering the ankle kinematics and kinetics as

the load. We used a Monte Carlo simulation with 10,000 trials

to evaluate the effect of uncertainty using actuators (a), (b),

and (c). Figure 5 illustrates the torque-speed plot for all the

trials. For the actuator (a), the required speed and torque do

not stay within the specifications of the motor and therefore

the rigid actuator is infeasible. Including series elasticity,

the design (b) makes the actuator feasible and dissipates

30.8% less energy compared to (a). This justifies the use

of series elasticity, not only for the reduction of energy

consumption, but also to maintain the requirements within

the actuator specifications. The optimal stiffness of design (b)

is 217.4 N·m/rad. However, this design becomes infeasible

when the reference trajectory deviates within the uncertainty

set, as shown in Fig. 5. Using our robust formulation, design

(c) satisfies the constraints despite uncertainty using a spring

stiffness of 243.4 N·m/rad. Design (c) reduces 30.45% of the

dissipated energy compared to a 30.8% reduction in the case

(b), where the reported energy savings are relative to the rigid

case. The small trade-off in performance using the robust

SEA is justified when feasibility of the constraints is satisfied.

Table III summarizes the results.

VI. DISCUSSION AND CONCLUSION

In this paper, we introduced a convex optimization for-

mulation to compute the stiffness of SEAs that minimizes
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Fig. 5. Speed and torque requirements of different actuators for a powered
prosthetic ankle. The region enclosed by the dotted line describes the speeds
and torques that satisfy the specifications of the motor, i.e., feasible region.
Figure shows three possible actuator designs: (a) rigid actuator Maxon EC-
30 without series elasticity, (b) SEA using the same motor with optimal
stiffness that satisfies constraints only for the nominal data, and (c) SEA
with the same motor that satisfies actuator constraints despite uncertainty
using our formulation. The robust design (c) is the only actuator that satisfies
the actuator constraints for all possible values of uncertainty.

TABLE III
OPTIMIZATION RESULTS THAT INDICATE WEAK TRADE-OFF BETWEEN

ROBUSTNESS AND ENERGY SAVINGS. ENERGY SAVINGS ARE RELATIVE

TO DISSIPATED ENERGY OF THE RIGID ACTUATOR, 11.7 J.

Design Optimal Stiffness Energy Savings

nominal (b) 217.4 N·m/rad 30.8%

robust feasible (c) 243.4 N·m/rad 30.45%

energy consumption and satisfies actuator constraints despite

uncertainty due to manufacturing of the spring, unmodeled

dynamics, efficiency of the transmission, and the kinematics

and kinetics of the load. The methodology relies on the

following two concepts: a scalar convex-quadratic function

of compliance to express motor energy consumption, and

defining uncertainty sets that represent tractable solutions of

the optimization problem. As shown in our simulation case

study, series elasticity can reduce energy consumption and

also modify the speed and torque of the motor so that it

becomes feasible.

Our simulation case study illustrated the robust feasible

SEA design for a powered prosthetic ankle. Uncertainty

from the recorded biomechanics naturally connected with our

definition of the uncertainty sets. The results illustrate that a

small trade off between robustness and energy consumption

justifies a robust feasible design. It is important to note that

the robust solution satisfies actuator constraints despite the

uncertainty described in Table II. Previous research [15] did

not consider a robust feasible solution of the optimization

problem, however, they analyzed the effect of uncertainty

in the energetic cost. Their results indicate that as the

required motion of an SEA becomes more arbitrary, the

optimal spring stiffness that minimizes power consumption

approaches infinity, showing that the best design for a com-

pletely arbitrary task is a system without spring. In general,

our results indicated a similar trend: the more arbitrary or



the bigger the uncertainty sets, the stiffer the optimal design.

However, when considering feasibility of the actuator, infinite

spring stiffness may lead to an infeasible actuator. Thus, a

robust feasible optimal solution cannot be obtained simply by

increasing stiffness. Instead, it requires proper treatment of

uncertainty as presented in our convex optimization method.

The convex-quadratic expression of compliance in (8) is

beneficial beyond our robust formulation. The convexity and

simplicity of the expression allow optimization algorithms to

find the optimal value of stiffness in polynomial time [37].

This could be exploited by VSAs to calculate their reference

stiffness values during operation. In the unconstrained case,

the proposed convex-quadratic expression has an analytical

solution, which is useful to study the principles of series

elasticity. For instance, (9) describes the necessary conditions

for periodic trajectories so that series elasticity can reduce

energy consumption. Future work will focus on experimental

applications and extend the presented robust formulation to

the robust design of SEAs that use nonlinear springs. The

design of nonlinear springs for SEAs can be formulated as

a discrete-time convex optimization problem [17], which is

desirable for a robust formulation.
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