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Abstract— Energy shaping methods can be used to design
task-invariant feedback control laws for the powered exoskele-
tons (i.e., orthoses). In order to achieve a desired closed-loop
energy, certain matching conditions must be satisfied, which are
sets of nonlinear partial differential equations. In this paper, we
solve the matching conditions and come up with a new solution
for under-actuated systems by using Auckly’s method. We find a
unified feedback control law that is task-invariant with respect
to human inputs and different contact conditions. We propose
assistive and resistive shaping strategies to alter the mass/inertia
matrix and simulate on a powered knee-ankle exoskeleton. The
simulation results show the reduction and increment of the
human model’s metabolic cost of generating muscular forces
in human walking. The interchange between the kinetic and
potential energy and the changes in acceleration of the center
of mass are also investigated in the simulation.

I. INTRODUCTION

Powered exoskeletons have been developed to serve as
rehabilitation devices and provide gait assistance to human
users. For example, the robot suit Hybrid Assistive Limb
[1] enhances a healthy person’s abilities and supports a
physically challenged person’s daily life. The control method
utilized estimates a patient’s intentions based on the ground
reaction force. ReWalk [2] and Ekso Bionics [3] provide
powered hip and knee motion to assist individuals with
spinal cord injury (SCI) based on control technology with
pre-defined reference trajectories determined by a finite-state
machine. The bilateral Wandercraft exoskeleton [4] stabilizes
walking gaits for users with SCI with control based on virtual
constraints, hybrid zero dynamics, and gait optimization.

Although these exoskeletons show promising results in
gait rehabilitation, significant challenges remain in their
control strategies. The exoskeletons mentioned above use
trajectory-based control methods, where the pre-defined tra-
jectories cannot adjust to continuously varying activities and
thus limit their overall adaptability. In contrast, task-invariant
control for powered exoskeletons provides more flexibility
in assisting humans in a continuum of activities despite the
specific tasks and environment changes. For example, Lv
et al. [5], [6], [7] proposed task-invariant controllers for the
powered exoskeletons using energy shaping methods. Energy
shaping methods [8] alter the dynamic characteristics of a
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mechanical system via the Euler-Lagrange equations and
have already seen success in applications of bipedal loco-
motion. Bloch et al. [9] proposed the controlled Lagrangians
method where the Lagrangian defined by the difference of
the kinetic energy and potential energy of the system is
mapped to a suitable closed-loop Euler-Lagrange system.
Spong [10] proposed the method of controlled symmetries
that reproduces passive limit cycles on arbitrary slopes.

The application of the energy shaping method must satisfy
a set of nonlinear partial differential equations (PDEs called
the matching conditions), which are generally difficult to
solve. However, Auckley et al. [11] proposed a method which
converts the nonlinear PDEs to a set of linear PDEs, which
are easier to solve. Blankenstein et al. [12] summarized
the discussion of the matching conditions and applied these
methods to the general class of under-actuated mechanical
systems. Holm et al. [13] solved the matching conditions
and achieved walking speed regulation through the under-
actuated control law arising from shaping the kinetic energy
of a bipedal robot. However, the model used in [13] was a
compass-gait bipedal robot with only 2 degrees of freedom
(DOFs) and actuators at the ankles. Environmental interac-
tion or more complex human-exoskeleton dynamics were not
considered.

In this paper, we consider the matching condition with
a higher DOF system compared to the system in [13]. By
using the conversion method in [11], we find a new solution
of the matching conditions. This new solution includes the
particular solutions derived in [6], [13] and specifies the
feasible shaping structure of dynamic terms in the closed-
loop system. Prior work [6], [7] only shaped the mass
and lower-limb inertias in the actuated part of the mass
matrix. Moreover, the control law in [6] was derived from
equivalent constrained dynamics and changed with different
contact conditions. In this paper, we propose a unified control
law across contact conditions that shapes both actuated and
unactuated parts of the inertia matrix. This unified control
law does not depend on particular tasks or subjects. We
investigate the change of metabolic cost, the interchange
of kinetic and potential energy, and the acceleration of the
center of mass (COM) based on the mass/inertia matrix in
the closed-loop system.

The rest of this paper is organized as follows. In Section
I, we review the concepts of the controlled Lagrangians
method [9] and the techniques of Auckly et al. [11]. Based
on these techniques, we find a new solution of the matching
conditions. The dynamics of a human-like biped are shown in
Section III with consideration of contact conditions. We then



design the unified control law across contact conditions and
show two types of total energy shaping strategies. Simulation
results are given in Section IV. Finally, Section V presents
the conclusion.

II. THE MATCHING CONDITION

In this section, we review the definition of energy shaping
and the converting method of Auckly et al. [11] for the
matching conditions. After that, we derive a new solution
of the matching conditions, which is a generalization of the
solutions in [6], [13].

A. Review of General Matching Conditions

Considering a forced Euler-Lagrange system with n-
dimensional configuration space (Q, the corresponding La-
grangian L(q,q) : TQ — R has the form

Llg:) = K(4:4) ~V(a) = 54" (@)~ V(0)

where K(g,q) is the kinetic energy based on the generalized
mass/inertia matrix M(q), and V(q) is the potential energy.
The dynamics of L(g,q) are given as

d
%4 9) — 9gLlg.4) = Bg)u, (1)

where u € R” is the control input and B € R"*" maps the
inputs u to the Euler-Lagrange system with rank(B) = r. We
can factor equation (1) into the common form as

M(q)§+C(q,9)g+N(q) = B(q)u, (2)

where C(g, ) is the Coriolis matrix, and N(g) is the gradient
of the potential energy V(q) along the generalized coordi-
nates.

Consider the closed-loop Lagrangian system

do o
31 %L(a:4) = 94L(q,4) =0,

which can be represented as
M(q)§+C(g,9)4+N(g) =0 (3)

with the modified dynamic terms M(q), C(q,¢), and N(q).
The suitable control law u relating the closed-loop system to
the open-loop system must satisfy

d d .. .
=MG+Cg+N—-Mi—Cq—N,

where we omit the arguments ¢ and ¢ of the dynamic terms
to abbreviate notation. Substituting § = —M~!(Cq+N) in
equation (4), we have

Bu=M[M"'(C4+N)—M ' (Cq+N)].

According to [12], systems (2) and (3) match if and only
if there exists a full rank left annihilator of B(g), i.e.,
BY(q)B(q) =0, for all g € Q such that

B*MM~(C4+N)—M ' (C4+N)| =0 (5)

holds true, where the corresponding state feedback control
law is explicitly given by

u=(B"B)'B"MM ' (C4+N) - M (Cq+N)].

Utilizing the fact that Cg = Dy(Mq)g— 5V (¢"Mg) and N =
V,V [14], we can rewrite equation (5) as

_ . ] Ty

BMM™(Dg(M)g — 5V (4" Md) +VgV) —

- R T Xy ~

M~ (Dy(Mg)g— 594 (q"Mg)+V4V)] =0, (©)
where N = V,V. The matching condition is a complicated
nonlinear PDE in two unknowns M and V, which is difficult
to solve [9]. To simplify solving for the matching condition,
Auckly et al. proposed a method to solve equation (6) by
recursively solving a set of three linear PDEs in [11]. As
summarized in [12] and [13], we have the first equation, for
all vector fields X € T,Q at some points g € Q,

0= X"MB*-A"[9,(MB*MX) — 9,(B-MX)M
+2M9,(B*MX)) — X" MB*[9,(MAB*MX) (7)
— 0y(AB*MX)M +2M o, (AB+MX)],

where A = M~!'M and matrix B denotes the left annihilator
of B in the orthogonal projection form, i.e., (B+)” = B* and
(B+)? = B*. The second equation is given as

_ 1 .5 - -
0= MB-A"[94(34" Mg) — 0,(Mq)q] ©
_ 1
+MB[=9,(54" M4) +9,(Md)d]. ¥(¢.4) € TQ.

Finally, the third equation, which gives the solution of the
closed-loop potential energy, is given as

0=MB" 9,V —MB*A"9,V. 9)

It is shown in [11], [15] that the solution of the matching
condition (6) can be obtained by solving these three linear
PDEs, ie., (7) to (9). We first solve (7) for the unknown
AB*M and plug it back into (8), which now is a linear PDE
in M. Finally, with a feasible solution of M, solving (9) will
thus give the solution for the potential energy V.

B. Solving PDEs with Specific B(q)

Consider the mapping matrix B(q) = [0, (s—r),1rx/]". the
corresponding orthogonal projection matrix is given as

BJ_: I(n—r)x(n—r) O(n—r)xr

rx(n—r) O0rxr

Based on the orthogonal projection matrix B, we find a new
solution to the linear PDEs (7) to (9) by setting

_ 1 _
AB*M = kaiM, (10)

1

which is multiplied by a constant value ﬁ The fact that

matching condition (7) holds true can be easily verified by



plugging (10) into it. In order for matching condition (8) to
hold true, we need to have

0= MB*f(q,q) =M [fldwr)] ’ (11)

rx1

where £(q,q) := 1-[04(54" Mq) — 9, (Mq)q] — 9, (54" Mq) +

al](Mq)q e R™! and we denote f]:(nfr) = [f17"' 7fn—r]T to

be the first n —r rows of vector f for simplicity. The k-th
row of vector f is given as

n n . . ..

fie Z Zqi(aMk} _i&MkJ _laM,]

dgi ki dqi 2 dgx

i=1j=1

1 81\71,-j
2](1 8qk

)CIJ~

Since M is positive definite, (11) is equivalent to fi.(,_, =0
holding true along all trajectories (¢,q) € TQ. As a result,
forke{l,...,(n—r)} and (i, j)€{1,...,(n—r)}, we have
8Mkj 1 81\7ij 18M,‘j 1 BMi.,-
dgi ki dgqi 2 dgx 2k dgx

The new solution of M is then given by

Mij :klM,'j, V(l, ]) (S {17...,(1’1—7‘)}.

For ke {l,...,(n—r)} and (i, j) € {(n—r+1),...,n}, we
can simplify f; =0 as

10M;; 10M;; 10M;;
28qk 2(9qk _2 8qk B
where oMij _ 0 due to the recursively cyclic property of g

gy -
as shown in [6]. The new solution of M must satisfy that

Mij :Mij(Q(nfrqtl):n)v V(l, ]) € {(n_r+ 1)7“')”}7

ie., Mij is independent of gy.(,_,). By plugging (10) into (9),
we have

_ 1. _ 1
0= MB*[0,V — —09,V] = MB*[N — —N|
ky ky
-
- M Nl:(nfr) - HNI:(nfr)
0r><1

As a consequence, the closed-loop gravitational force vector
is given as N = [klNlT;(n—r)aN&—rH):n]T'

Additionally, because A = MM, we must have
_ 1 - - _
AB*M = k—BlM =M 'MB*M. (12)

1

To show this additional condition (12) is also satisfied
with the new solution, we can decompose the mass/inertia
matrix M into M;, M>, and M4 and define M based on the
decomposition of M as

M, Mz} - |:k1M1 (13)

|

k1M,
MI My ’

k1M2T My
where M; € RO=1x(1=r) A ¢ RO=DXr and M, M, € R
with gy.(,_) being cyclic in My and My [16]. As a result,
we can calculate M~'M as

1
. L1y
M M=k

[0 zz]’

Fig. 1. Kinematic model of the human body. COP denotes the Center of
Pressure. The solid links denote the stance leg, the dashed links denote the
swing leg. This figure is reproduced from [17].

where

A=k (M —kiMoM; ' ME), 1 = A TMy (1 — ko My~ ' M),
Yo = kM ' MI AT My (ki My "My — 1) + M, M.

By plugging M~'M into (12) and with the specific B,
the additional condition (12) is also satisfied with the new
solution.

III. BIPED CONTROL APPLICATION

In this section, we first review the dynamics of the
biped that will be used for simulating the proposed control
approach. We then design a unified control law that is
task-invariant with respect to human inputs and different
contact conditions. Finally, we propose two types of shaping
strategies to alter the structure of dynamic terms.

A. Review of Dynamics of the Biped

The biped model with coupled dynamics of the two legs
is shown in Fig. 1. We combine the masses of the human
limb and the exoskeleton together in the model. We assume
that we have identical powered knee-ankle exoskeletons
on both human legs with no connection between them to
avoid asymmetric gaits in simulation [7], [18]. For deriving
controllers that only require local feedback, we separate the
dynamical models of the stance and swing legs, which are
coupled through interaction forces.

Consider the generalized Lagrangian dynamics of the
biped with contact constraints as

MG+Cg+N+ATA =1. (14)

We denote the human and exoskeleton torques as T = Ty, +
Tpum = Bu+ Bv+J'F where B € R™" maps the human
and exoskeleton inputs into the dynamics and we assume
B = [0, (4—r); Irxr]". The control input u € R™! consists of
the torques provided by exoskeleton and v € R™! represents
the human input. The interaction forces between the hip
and the swing thigh are represented by F and mapped to
the system by the body Jacobian matrix J. The Lagrange
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Fig. 2. Heel contact (left), flat foot (center), and toe contact conditions

(right) during the single-support period of human locomotion. The biped is
assumed to be walking on a slope with angle y. This figure is reproduced
from [7].

multiplier A € R°*! represents the ground reaction forces
and can be calculated as [14], [19]

A =AM AN AM T (t—C4—N)+Aq].

The holonomic contact constraints of the biped can be
expressed as a;(q) = O.x; where ¢ denotes the number of
constraints. The constraint matrix A; = V,a; € R satisfies
A;(q)¢g =0 and can be represented by A; = [A| A;] with the
invertible matrix A; € R*¢ and A, € R*("=¢) The subscript
I € {heel, flat,toe} indicates the contact configurations as
shown in Fig. 2.

B. Unified Control Law with Contact Constraints

Our goal is to design a task-invariant feedback control law
for the powered exoskeleton where the control law does not
depend on different contact conditions or the human input.
Given the open-loop dynamics (14), based on Section II-B,
we wish to achieve the closed-loop dynamics as

Mi+Cq+N+ATA =Bv+J'F,
where M is given in (13), C is based on M, and N =

[klNE(n7r>, N&7r+l):n]T. The corresponding control law is

u= (B"B)'B"MM ' (CG+N+A] A —Bv—J"F)
~M Y Cqg+N+ATAL—Bv—J'F)).

In general, the human joint input v and the interaction
forces F are difficult to measure in practice. As a result, we
set B=MM~'B and JT = MM~'JT, so that the human input
and the interaction forces disappear in the matching condition
(5) and the control law is invariant with respect to the human
inputs. We also treat the ground reaction forces AIT), as the
external forces and assume that AT = MM ~'AT which makes
the corresponding control law independent of the ground
reaction forces. Therefore, the control law is unified with

respect to different contact conditions. The corresponding
control law is then

u= (BTB)"'BT[(C4g—MM'Cq)+ (N —MM'N)]. (15)

C. Shaping Strategies

Based on the way we define M and N, we propose two
types of different shaping strategies as case studies, where
the first one scales the mass/inertia matrix with proper factors
to ensure the positive definiteness of the mass/inertia matrix,

and the second one adds an additional component to the
scaled mass/inertia matrix.

1) Scaling Mass/Inertia Matrix: Based on the matching
condition, we can define the mass/inertia matrix and the
potential energy as

M= laM, N=[kN{, ,, N, )" C=hkC.

By plugging M, C, and N into the control law (15), we
obtain a control law that is equivalent to the potential energy
(PE) shaping in [5] as u = (B"B)~'BT (N — éﬂl) The scaling
factor k; modifies the gravitational forces along g, 1)
With k; > 1 or k; < 1, we can have assistive or resistive
torques from the exoskeleton, respectively.

2) Modified Mass/Inertia Matrix: Based on [13], we can
add an additional term to the fully-actuated part of the
mass/inertia matrix to alter the biped’s gait characteristics
where
NT ]T7

n—r)’ “Y(n—r+1l)n

M=k [Ml My

AT T
MZ M4+H]’ N = [kiNiy

~ 0 0
Cq=kCq+k v Tpra | s

1 D |:OT H%—%V;(‘]ZH%)
where ge = q(y—r11)m> and H € R™" does not depend on
q1:(n—r)- The matchilzg conditions (7) to (9) can be easily
verified, while for M to be positive definite, we need to
have ki[(Ms + H) —MZTMI’IMZ] > 0 by using the Schur
complement [20]. To satisfy this, we set H to be

0 0
H— (r—1)x(r—1) (rl)><l:| ,
[ O1x(r—1) h

where 1 € R! and will be specified in Section IV. By setting
Q=M/My =My — M} M;'M> with M/M, representing the
Schur complement of M, we can decompose Q into four

submatrices as
Q1
a=lab o

where Q; € RU-Dx(=1) and Q4 e R!. For H+Q = H +
My — MIM;'M, to be positive definite, we must have
Q/Q+h>0, where Q/Q; = Qs — QT Q~1Q; represents the
Schur complement of Q. To ensure the positive definiteness
of M, we need to have h > |—Q/Q, | with || representing
the lower-bound.

IV. SIMULATIONS AND RESULTS

In this section, we demonstrate simulation results on an
8-DOF human-like biped to investigate the assistive and
resistive effects of the proposed control strategies. The
coupled dynamics of the two legs are shown in Fig. 1.
The configuration space of the full biped model is given
as ¢ = (Px; Py, 9, 0a, Ok, O, O, 05)T € R, where (py, py)
are the Cartesian coordinates of the heel with respect to the
inertial reference frame (IRF), ¢ is the angle of the heel with
respect to the vertical axis, 6, and 6; are the stance ankle
and knee angles, respectively, 0), represents the hip angle
between the stance and swing thighs, O and 6Oy, are the
swing knee and ankle angles, respectively.



A. Simulation Model and Hybrid Dynamics

As mentioned in Section III, we assume that we have
identical powered knee-ankle exoskeletons on both human
legs. As a result, the corresponding controllers (15) for both
legs only require local feedback.

For the dynamical model of the stance leg, the config-
uration vector is given as gy = (px, Py, 9,04, 6;)7 € R>*L.
As shown in Fig. 2, the stance period can be divided into
three phases [5]. The IRF is defined at the heel during the
heel contact and the flat foot conditions. For the heel contact
phase, the heel is fixed to the ground and the stance leg
rotates around the heel. The holonomic contact constraint is
aheel(‘]st) = (px»py)T =0 and the matrix Apeer = ngaheel =
[hx2,02x3]7. At the flat foot phase, the foot is flat on the
ground slope and ¢ is equal to the slope angle y. The
constraint is afiq (gs) = (px, py,® — )" =0 and the matrix
Afia = [l 3,03x2]7. During the toe contact phase, the stance
leg rotates around the toe and the IRF shifts instantly from
the heel to the toe as described in [5]. The corresponding
constraint is dree(qs ) = (px — Ipcos(9), py — Irsin(¢))” =0
and the matrix A, is given as

1 0

0 0
Ame(er): 0 1

0 of

Ipsin(¢)
—lcos(9)

For the dynamical model of the swing leg, the configu-
ration vector is given as gy, = (fiy, hy, O, Osk, 0sa) T € ROX1,
where (hy, hy) are the positions of the hip with respect to the
IRF, and 6, is the angle between the vertical axis and the
swing thigh. We do not have contact constraints in the swing
leg dynamics, i.e., A(gsy) =0.

The full biped is modeled as a hybrid dynamical system
similar in [7], [18], where impacts happen at the change
of contact conditions. The orbital stability of the hybrid
dynamics are checked by Poincaré section methods as shown
in [7]. We simulate the effect of different shaping strategies
on a passive, downslope walking gait, which we generate
using joint impedance control for the human inputs [21]. The
simulated human inputs are assumed to be v = —K,e — K;¢,
where e = g, — g, represents the difference between the
actuated coordinates ¢, and the fixed equilibria vector g,.
The human impedance parameters K, and K; are chosen
from Table I in [7] and kept constant with respect to each
phase of stance to achieve the stable limit cycle of the biped.

B. Simulation Methods

We plug in different parameters of k; and k> into the
control law (15) and simulate them accordingly to study
their possible benefits on biped walking. The number of
actuators r = 2 consists of the ankle and knee joints from
the exoskeleton. Considering the case of total energy shaping
with a scaling mass/inertia matrix, we found that the scaling
factor k; should be within [0.87,1.18] so that the biped
can walk downslope without falling due to excessive or
insufficient energy in the simulation.

For the total energy shaping with a modified mass/inertia
matrix, as mentioned in [22], the kinetic energy and poten-
tial energy interchange during biped walking. Convergence

toward the limit cycle on a given slope requires dissipating
energy upon ground impact at the end of each step [17].
Motivated by this fact, the additive term h is set to be
h(6,) <0 for any 6, # 0, and h(6;) =0 with 6, =0, so that
the closed-loop system dissipates energy near the beginning
and the end of each step. We choose h(6,) = k- (6;,)? in
the simulation with the assumption that 6, € [-7, 7], so that
ky > —0.15~ —4%7?” > —% ensures the positive def-
initeness of M. With the help of the additional term / in the
knee actuator, the range of the scaling factor k; is enlarged to
[0.8,1.33]. As a result, the change of the gravitational forces
along the actuated joints can be enhanced. For the swing leg,
we only simulate the shaping strategy with scaling factor k.

In this paper, we propose two types of shaping strategies
to provide assistance and resistance during walking. Strate-
gies 1y and lg.s are based on the shaping method with
the scaling mass/inertia matrix (i.e., PE shaping), whereas,
strategies 24, and 2g,, are based on the shaping method with
the modified mass/inertia matrix. The choices of ki and k;
are summarized in Table I.

TABLE I
CHOICES OF k; AND k, FOR DIFFERENT SHAPING STRATEGIES.

1Asx 1Rex 2Ax.v 2Res
ki 1.18 0.87 1.33 0.8
ky -0.05 | -0.05

C. Results and Discussion

The exoskeleton torques during one steady step are shown
in Fig. 3. The type of shaping strategies with the modified
mass/inertia matrix provides larger torques than the type of
shaping strategies with the scaling mass/inertia matrix. In
late stance, the scaling mass/inertia matrix generates knee
flexion torque that lifts the lower-limb for the upcoming
swing phase. The modified mass/inertia matrix changes the
signs of the torques for the knee joint and generates knee
extension torques to propel the body upwards and forwards
which matches with the real human knee torque [23].

Fig. 4 gives the simulated human metabolic costs for
different shaping strategies, where the metabolic cost defined
in [24] is given as

, Jo Vde N YT V(D) A (i)

T T(mgl)? © T(mgl)?
The term T is the step time period, Nr is the number of
time steps in the simulation, v; is the human joint moment,
m is the overall mass of the biped, and / is the length of
the biped’s leg. The metabolic costs compute the sum of the
costs of all human joints over one step, which can reflect
the energy consumption of muscles that generate forces. As
shown in Fig. 4, shaping strategies 145 and 244 reduce the
metabolic cost given k; > 1, and strategies lges and 2ge
increase the metabolic cost given k; < 1. Meanwhile, the
modification on the actuated part of the mass/inertia matrix
enlarges the range of the scaling factor, which results in an
enhancement of the change of the metabolic cost. Strategies
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Fig. 3. The exoskeleton torque with different shaping strategies during one
steady step. The cases with the modified mass/inertia matrix provide larger
assistive/resistive torques.
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Fig. 4. The estimated metabolic costs with different shaping strategies.

Strategies 245 and 2gs result in larger reduction and increase in the
metabolic cost, respectively.

24ss and 2pg.s create larger changes in metabolic cost than
strategies 144 and 1ge;.

Based on [25], the COM of the body is lowered during the
forward acceleration and raised during the forward decelera-
tion during level-ground walking. Consequently, the change
of kinetic energy is transformed into an increase of potential
energy, i.e., APE = mgSy with m representing the mass of
the body and Sy representing the vertical displacement of the
COM within each step. The mechanical energy is largely
conserved during walking by the interchange between the
kinetic energy and the gravitational potential energy [26].
Even with the work done by the control forces, the modi-
fication of the mechanical energy of the system is exactly
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Fig. 5. Kinetic and potential energy during one steady step. The instan-
taneous jump in the potential energy in late stance corresponds to the shift
of IRF from heel to toe during the toe contact configuration.

conserved by the closed-loop dynamics [27], [28]. Fig. 5
shows the interchange between the kinetic and potential
energy where the scaling factor affects the transfer of kinetic
energy to potential energy. With k; > 1, the variation of the
potential energy is decreased, which yields a smaller vertical
displacement of the COM and as a result, the metabolic cost
is reduced according to [29]. With the help of the additional
term on the actuated part of the mass/inertia matrix, we
can further affect the interchange between the kinetic and
potential energy.

As shown in [30], the force generated to support body
weight and the work performed to redirect and accelerate
the COM comprises a large part of metabolic cost during
normal walking. As a result, we investigate the acceleration
of the COM in the simulation. The acceleration of the COM
along horizontal (x) and vertical (y) directions are shown
in Fig. 6 and exhibit mostly negative/positive values for the
horizontal/vertical directions due to the passive, downslope
walking gait in the simulation. For the cases of total en-
ergy shaping with the scaling mass/inertia matrix, we have
more advantages on the acceleration of COM along vertical
direction, while the total energy shaping with the modified
mass/inertia matrix helps during the forward and backward
accelerations.

V. CONCLUSIONS

In this paper, we applied the energy shaping method to
design a feedback control law for the powered exoskeleton
that is invariant with respect to the human inputs and the
different contact conditions. The energy shaping method
maps the Euler-Lagrange dynamics to a desired closed-loop
form through the feedback control law. In order for this
feedback control law to exist, certain matching conditions
should be satisfied, which are described by a set of non-
linear PDEs. Based on Auckly’s method [11], we solved
the matching conditions and obtained a new solution for
under-actuated systems. We proposed two types of shaping
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Fig. 6. The acceleration of the center of mass (COM) along horizontal
and vertical directions during one steady step.

strategies, where the first type had the mass/inertia matrix
multiplied by the scaling factor. The second type included
additional term on the actuated part of the mass/inertia matrix
to dissipate energy near the beginning and at the end of
each step. Simulation results showed that the second type of
strategy was able to enlarge the feasible range of the scaling
factor to obtain a steady limit cycle. The second strategy
also enhanced the effect of the scaling factor and provided
greater assistance/resistance to the human model than the first
strategy. Future work will implement these control strategies
in exoskeleton hardware for pre-clinical testing with human
subjects.
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