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Abstract—Powered knee and ankle prostheses can perform a
limited number of discrete ambulation tasks. This is largely due
to their control architecture, which uses a finite-state machine to
select among a set of task-specific controllers. A non-switching
controller that supports a continuum of tasks is expected to
better facilitate normative biomechanics. This paper introduces
a predictive model that represents gait kinematics as a contin-
uous function of gait cycle percentage, speed, and incline. The
basis model consists of two parts: basis functions that produce
kinematic trajectories over the gait cycle, and task functions
that smoothly alter the weight of basis functions in response
to task. Kinematic data from ten able-bodied subjects walking
at twenty-seven combinations of speed and incline generate
training and validation data for this data-driven model. Convex
optimization accurately fits the model to experimental data.
Automated model order reduction improves predictive abilities
by capturing only the most important kinematic changes due to
walking tasks. Constraints on range of motion and jerk ensure
the safety and comfort of the user. This model produces a
smooth continuum of trajectories over task, an impossibility for
finite-state control algorithms. Random sub-sampling validation
indicates basis modeling predicts untrained kinematics more
accurately than linear interpolation.

Index Terms—Human locomotion, optimization, predictive
models, prosthetic limbs, robot control.

I. INTRODUCTION

B IOLOGICAL biped locomotion is capable of a diverse
array of tasks and feats of agility unmatched by modern

prosthetic legs. The goal of powered knee and ankle prostheses
is to improve transfemoral amputee quality of life by restoring
normative biomechanics for as many locomotion tasks as
possible. One example is the Vanderbilt Generation 3 powered
knee and ankle prosthesis. This device has been shown to allow
amputees to walk with gait kinematics that are similar to the
normal gait kinematics of subjects with healthy limbs, and is
showing promising results in terms of metabolic performance

This work was supported by the National Institute of Child Health &
Human Development of the NIH under Award Numbers DP2HD080349
and R01HD094772. This work was also supported by NSF Award CMMI-
1652514. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the NIH or NSF. Robert D. Gregg,
IV, Ph.D., holds a Career Award at the Scientific Interface from the Burroughs
Wellcome Fund.

1K. Embry is with the Department of Mechanical Engineering, R. Macaluso
is with the Department of Bioengineering, and 2R. Gregg is with the Depart-
ments of Bioengineering and Mechanical Engineering, University of Texas at
Dallas, Richardson, TX 75080, USA. D. Villarreal is with the Department of
Electrical Engineering at Southern Methodist University, Dallas, TX 75205,
USA. 1kyle.embry@utdallas.edu, 2rgregg@ieee.org

and minimizing back muscle activation related to the risk of
low back pain [1].

Modern powered knee and ankle prostheses require complex
control algorithms to provide amputees with intuitive control
over their prostheses. A common control strategy, borrowed
from gait analysis [2], is to create separate controllers for dis-
crete locomotion activities [3]–[6] and phases of the gait cycle
[7]–[9]. A high level controller selects among these controllers
using classifier algorithms, which generally depend on input
from inertial measurement units (IMU) or electromyography
(EMG) sensors [10]–[13]. This finite-state machine (FSM)
paradigm requires many controllers to approximate the con-
tinuum of all tasks and phases. As the number of controllers
increases, so does the time and expertise needed to tune the
system to a subject [7]. Therefore a new method capable
of supporting a wide range of tasks and gait phases with a
single controller is expected to reduce tuning time and promote
normative biomechanics.

A different approach to restoring normative biomechanics
without the drawbacks inherent to the FSM method is using
normative kinematic trajectories as a virtual constraint [14].
Virtual constraints enslave the progression of actuated joints to
the progression of a mechanical signal called a phase variable
[15]–[18]. Our lab has used healthy human subject kinematic
trajectories as the desired trajectories of prosthetic joints and a
phase variable derived from the motion of the intact hip joint.
This method was shown to improve amputee subjects’ walking
performance at discrete speed and incline combinations from
0.67 to 1.21 m/s and -2.5 to 9.0 deg, while reducing the
necessary number of tuning parameters and therefore the
configuration time [19]. We have also shown promising results
that tracking normative trajectories can reduce compensations
associated with passive prostheses, including vaulting and hip
circumduction [20]. However, this approach is still limited by
the use of an FSM to switch between locomotion tasks.

Other researchers in the fields of biped robotics and pros-
thetics have demonstrated the potential of replacing FSM
algorithms with continuous parameterizations. Holgate et al.
[21] proposed a mapping from percent gait and stride length
to desired actuator position for an ankle prosthesis. This
model represents a continuum of phase and walking speed,
as stride length is related to walking speed. A more recent
approach for controlling powered ankle prostheses modeled a
surface representing the time evolution of selected locomotion
variables, and regressed that surface over a velocity range to
create a manifold [22]. This method creates realistic gait at
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many speeds in simulation, and provided more power at higher
speeds in experiments with an ankle prosthesis. Some biped
robots depend on a finite set of optimal gaits, each designed
for a specific task, and either define non-periodic transitional
gaits to guide the robot back to a preprogrammed periodic
gait [23] or interpolate the optimal kinematics for all other
tasks in between [24]–[26]. This results in robust gait and
the ability to handle a variety of terrains, but requires a large
and well-structured set of optimal gaits to interpolate between.
The required density of training data is infeasible for human
subject experiments.

This paper introduces a method to unify phase and task via
a reduced-order data-driven model which will be referred to
as the basis model (BM). The joint kinematics over many
combinations of speed and incline are parameterized as a
function of a phase variable and a novel addition, task vari-
ables. This model uses normative data from healthy human
subjects performing a variety of walking speeds and inclines
to determine optimal model parameters. The goal is to predict
kinematic gait patterns for a range of walking speeds and
inclines given relatively little training data. Our contributions
over prior work [27] include an automated method to select a
minimal set of bases (Section II-D3). This step helps to create
a simpler model that provides greater model generalization by
avoiding overfitting to noisy data [28]. Other new contributions
are range of motion constraints on the output, (Section II-D4),
minimum jerk regularization of the kinematic surface (Section
II-D5), a comparison of this method to another interpolative
modeling method, and a more thorough cross-validation pro-
cess (Section III-B).

The data used to train this model was collected via the
procedure given in Section II-A. The model format and
training method are described in detail in Section II-C. The
predictive accuracy of the basis method, compared to linear
interpolation, is discussed in Section II-F, and the numerical
results are shown in Section III. Finally, the significance of this
work and future plans to utilize the basis model to generate
reference trajectories for a transfemoral powered prosthetic leg
are discussed in Section V.

II. METHODS

A. Experimental Protocol

The experimental protocol was approved by the Institutional
Review Board at the University of Texas at Dallas (UTD). All
10 subjects (5 female) were able-bodied and provided written
informed consent. The subject were mean age 23 years (σ =
2.8 years), mean height 170 cm (σ = 8.2 cm), and mean weight
64 kg (σ = 7.7 kg). This selection of subjects represents a
population of young, active, and healthy walkers. This should
produce the desired kinematics of otherwise healthy amputee
community ambulators who can fully utilize the potential
capabilities of an advanced powered knee and ankle prosthesis
like the 2nd generation UTD LEG [29]. However, it should be
noted that the emphasis of this paper is on the solution method,
not the specific kinematic data. The only assumptions made
about the training data kinematics is that they are periodic and
continuously adapt to changes in speed and incline (within the

bounds tested). Researchers with different patient populations
of interest are encouraged to replicate this optimization method
with different training data.

All tests consisted of subjects walking at a steady speed and
incline on a Bertec instrumented split-belt treadmill for one
minute. For each test the subject walked at a constant speed
of 0.8 m/s, 1.0 m/s, or 1.2 m/s and a constant ground slope
ranging from -10 degrees to +10 degrees at 2.5 degree incre-
ments. All subjects walked at every combination of speed and
incline, resulting in 27 different tasks with unique identifiers,
χj with j = 1, 2, ..., 27. A 10-camera Vicon motion capture
system recorded the subjects’ kinematics at 100 Hz. The order
of trials was randomized and subjects took breaks to prevent
fatigue. A supplementary data set from these experiments is
available for download [30].

B. Data Processing

Kinematic data were filtered using Vicon’s Plug-In Gait
pipeline [31] which fills gaps and smooths trajectories with a
Woltring filter (smoothing factor of ten). The Dynamic Plug-in
Gait Model was applied to calculate joint angles [31]. Positive
joint angles represent hip flexion, knee flexion, and ankle
dorsiflexion throughout this paper.

Kinematic data for each subject were separated into gait
cycles and interpolated to contain 150 points per stride. The
number of data points was chosen to slightly exceed the
number of recorded frames for any stride. All gait cycles
begin at heel strike (1) and end just before the next heel
strike (150). Heel strike was defined as when the force plate
measurement crossed 10% of the subject’s weight, or as the
time of maximal anterior position of the heel marker if the
subject stepped on the wrong force plate. For each speed and
incline combination, the intra-subject mean of each joint angle
was calculated across the phase dimension using MATLAB.
Outliers, defined as a trajectory that is more than three standard
deviations away from the mean trajectory at any point in the
stride, were removed. After outlier rejection, the inter-subject
mean and standard deviation were calculated across the phase
dimension.

C. Gait Model

The basis model represents joint kinematics as a function
of phase and task. Phase is measured by a phase variable,
ϕ ∈ {R|0 ≤ ϕ < 1, ϕ̇ > 0}, which is a cyclic and monotonic
scalar that increases from 0 to 1 once per stride. Each
independent dimension of the ambulation task is measured by
a task variable, which are concatenated into a task vector χ. In
our case, χ = (ν, α), where ν is the subject’s forward speed
linearly mapped from a range of 0.6 m/s to 1.4 m/s to a range
of 0 to 1, and α is the ground slope, linearly mapped from
-10 degrees to 10 degrees to a range of 0 to 1. The methods
in this paper can be expanded to include more dimensions of
χ, like a sit/stand variable or a flat/stairs variable, but those
transitions are out of the scope of this paper.

Gait kinematics are modeled as the weighted summation
of N basis functions of phase, bk(ϕ). The weight of each
basis function changes for each unique task, as determined by
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the task functions ck(χ). This yields the following separable
expression for the joint angle q of the hip, knee, or ankle:

q(ϕ, χ) =
N∑
k=1

bk(ϕ)ck(χ), (1)

where the total number of basis functions is N , indexed by k.
The basis functions bk are finite Fourier series of degree F :

bk(ϕ) = β00k +
F∑
i=1

(
β1ik cos(iϕ) + β2ik sin(iϕ)

)
, (2)

where the βtik ∈ R terms are coefficients that will be solved
for with convex optimization. The t index denotes the type of
function (constant, cosine, or sine) that the coefficient pairs
with, i indexes the order of the terms, and the k index shows
what basis function bk the terms belong to. This general form
is widely used in the interpolation of periodic functions. The
order F = 10 is selected to ensure our model can match the
significant frequency content of human kinematics, as in [32].

The scalar task functions ck describe how the basis func-
tion’s weight continuously changes with respect to changing
tasks variables. We use Bernstein basis polynomials as task
functions because of their frequent use to parameterize geo-
metric shapes on finite intervals [33]. This also means that our
resulting model is a Bezier curve, which will produce closed-
form solution for derivatives and guaranteed boundedness. All
task functions have the format:

ck(χ) =
(γ
κ

)
f(χ)κ(1− f(χ))γ−κ, (3)

where (γκ) is a binomial coefficient. The f(χ), γ and κ terms
will vary depending on whether a given task function is
meant to model changes due to speed, incline, or constant
components, as shown by the following sets:

K0 = {1}, K1 = {2, 3, 4}, K2 = {5, . . . , 8}, (4)

where all task functions ck with k ∈ K0 are constant functions,
k ∈ K1 are speed functions, and k ∈ K2 are incline functions.
There are three speed terms because we elected to use a
2nd order Bernstein function for speed, the highest order
appropriate for only three recorded speeds. A third order
Bernstein basis (four terms) was selected for inclines due to
the relative complexity of kinematic changes due to incline.
The other parameters of (3) take the following values:

k ∈ K0 =⇒ f(χ) = 0, γ = 0, κ = 0,

k ∈ K1 =⇒ f(χ) = ν, γ = 2, κ = 0, 1, 2,

k ∈ K2 =⇒ f(χ) = α, γ = 3, κ = 0, 1, 2, 3.

D. Objectives and Constraints of the Basis Model

Convex optimization is used to solve for the parameters
β that determine the shape of the basis functions. The basis
model has several objectives and constraints, and each will be
discussed separately.

1) Fitting to Training Data: Our main goal is that the basis
model (1) can approximate average human kinematics for a

range of tasks. To do this we solve for β in bk that satisfy:

d̄ϕiχj
≈

N∑
k=1

bk(ϕi)ck(χj), (5)

where d̄ϕiχj
is the inter-subject mean of recorded kinematics

of a given joint at discrete phase point ϕi and discrete task
vector χj .

To write a standard form convex optimization problem that
will satisfy (5), we define the column vector x:

xk = [ β00k β11k β21k ... β1Fk β2Fk ]
T ∈ R1+2F ,

x = [ x1 x2 ... xN ]
T ∈ RN(1+2F ).

A matrix Ai stores the phase dependent terms from (2):

ai = [ 1 cos(ϕi) sin(ϕi) ... cos(Fϕi) sin(Fϕi) ] ∈ R1×(1+2F ),

Ai =

 ai 0 ... 0
0 ai ... 0

...
...

. . .
...

0 0 ... ai

 ∈ RN×N(1+2F ),

which yields Aixk = bk(ϕi) from (2). Similarly the task
functions from (3) are stored in a row vector:

yj = [ c1(χj) c2(χj) ... cN (χj) ] ∈ R1×N ,

which gives the equivalent statements:

yjAix =

N∑
k=1

bk(ϕi)ck(χj).

This matrix format makes it explicit that the basis model is lin-
ear with respect to x. Minimizing any norm of d̄ϕiχj

−yjAix
will constitute a convex objective function, guaranteeing the
existence of a global minimum. However, one degree of error
has different effects at different points in the gait cycle. To
represent this, our objective function will divide the norm of
d̄ϕiχj

− yjAix by the standard error of the data at that phase
point and task, SE(dϕiχj

). This follows the assumption that
points in the gait cycle with high variance do not need to be
followed as accurately.

2) Testing against Validation Data: To avoid overfitting to
the specific tasks recorded in our experiment, and to test the
feasibility of recording fewer trials in future experiments, we
employed a form of repeated random sub-sampling validation
called Monte Carlo cross-validation [34]. Cross validation, in
general, consists of breaking a data set into two groups, a
training set and a validation set. The model parameters are
solved in order to approximate the training set, and the model’s
performance is tested on the remaining data in the validation
set. Monte Carlo cross-validation starts with the data being
randomly divided into training and validation sets in z unique
ways. Each random instance of cross-validation will be called
a test split. In our case, the model parameters are optimized
with respect to the training data from tasks χj with j ∈ Hh,
where Hh is a subset of the tasks recorded in experiments,
and h = 1, 2, . . . , z indexes through the unique randomized
sets of all test splits. The performance of the model is tested
against the validation set H{

h.
A risk with data-driven models is the potential need for

exorbitant amounts of data to produce accurate results. For
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example, if we added other task variables to our task vector
(stairs, running, transitions between) it would become a com-
binatorial problem to measure a fine grid of every combination
of tasks as was done for this experiment. Because of this, it
is important that our model can be trained using sparse data
in the task space. To test this ability, we created the random
training sets Hh using Latin Hypercube Sampling (LHS), a
common technique for the design of sparse experiments [35].
LHS discretizes the independent variables of an experiment
into n bins, and chooses n points to sample such that each
bin of each independent variable is sampled exactly once. To
simulate LHS for our current experiment, we take nine unique
samples from the available 27 as training data for each test
split, such that each incline is represented once and each speed
is represented exactly three times. We will generate z = 250
unique test splits with the LHS method to test if our modeling
method can make predictions from sparse data.

3) Automated Model Order Reduction: The basis model
has a total of N = 8 basis functions and task functions (4).
It would be advantageous to reduce this number if possible.
Low rank models which select only the most important model
features to explain the response are more likely to provide
predictive accuracy by avoiding fitting to model noise, and
are simpler to interpret [36]. To facilitate the use of sparsity
inducing norms to create lower order models, we introduce a
selector function g(K) which returns a vector similar to yj

where only task functions with k ∈ K are nonzero:

gk(K) =

{
ck(χj) if k ∈ K,
0 otherwise,

(6)

∀k = 1, 2, ..., N.

It is important to note that making ck = 0 also eliminates
the contribution of bk towards the full model (1). During the
optimization process, it is safe to assume bk = 0 if k /∈ K.
The g function is used to calculate the constant terms of lower-
order basis models, denoted as:

ΛKij = g(K)Ai ∈ RN(1+2F ),

which leads to the lower order model:

ΛKijx =
∑
k∈K

bk(ϕi)ck(χj). (7)

We will use convex, sparsity-inducing norms on ΛKijx to
reduce the model and use only the most important bases, a
set that is defined as K∗ ⊆ {K0 ∪K1 ∪K2}.

4) Range of Motion Limits: The basis model will calculate
desired joint trajectories for a prosthetic leg, so bounding the
model’s output is a matter of safety for the user and machine.
The magnitude of each task function is known before solving
for β, and we can rely on this fact to bound the range of motion
of each type of task variable (constant, speed, or incline) over

a grid of input values indexed by m:

Rmax
i = Λ1

imx+ max
m

∑
k∈K∗

1

Λkimx+ max
m

∑
k∈K∗

2

Λkimx,

Rmin
i = Λ1

imx+ min
m

∑
k∈K∗

1

Λkimx+ min
m

∑
k∈K∗

2

Λkimx,

∀ i = 1, 2, ..., 150 and ∀ m = 1, 2, ..., 100,

where K∗i = Ki ∩ K∗ is the set of each type of task
function that was determined to be significant, and i indexes
over all discrete points of phase. The grid of checkpoints
are combinations of 100 speeds and 100 inclines uniformly
spanning the domain. The goal is to build a dense enough
grid that it is unlikely for the function to leave the range of
motion bounds between grid points. Rmaxi gives the maximum
position of the model at discrete phase ϕi while Rmini gives
the minimum. Both can be constrained over the range of i to
limit the range of motion at all phase points.

5) Jerk Minimization: It is important that the output of the
basis model resembles natural human motion, and minimizing
the jerk of the kinematic trajectories is an effective way to do
so [37], [38]. Jerk-minimization will smooth the model output,
and is very simple to implement as a convex objective. The
jerk at each point in the model can be written as:

JKij =
∂3

∂ϕ3
ΛKij ,

vec(JKx) = [ JK
11x ... J

K
L1x ... J

K
1Mx ... JK

LMx ].

Minimizing a norm of vec(JKx) will reduce joint jerk.

E. Solving for Optimal Model Parameters

Our optimization is a two-step process. Step 1 uses all basis
functions and reduces the model dimensionality using group
L1 regularization [39], as follows:

minimize
x,ρ

ρ+ λΩ(x), (8)

such that − ρSE(dϕiχj
) ≤ d̄ϕiχj

− yjAix ≤ ρSE(dϕiχj
),

Ω(x) :=

N∑
k=1

max
i,j |Λ

k
ijx|,

∀ i = 1, 2, ..., 150 and ∀j = 1, 2, ..., 27,

where ρ is a bound on the absolute error between the ex-
perimental data d̄ϕiχj

and the model’s prediction yjAix,
divided by SE(dϕiχj ). The function Ω penalizes the number of
nonzero basis functions used. The L∞ norm (max of absolute
values) is taken of each low order model Λkijx to determine its
size and the L1 norm (summation of strictly positive elements
inside the Ω function) is taken across these groups. Minimizing
the L1 norm encourages sparsity in the residual [40]. In our
case, this will encourage a sparse set of basis functions/task
functions. The scalar λ is a weighting term, which weights
the relative importance of our two objectives: fitting the data
accurately (ρ), and using a minimal set of bases (Ω).

The optimization problem (8) has a guaranteed global
minimum because it is a convex optimization problem. Each
element of d̄ϕiχj

− yjAix is affine with respect to vector x.
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This means the upper bound ρSE(dϕiχj
) and lower bound

−ρSE(dϕiχj ) form affine constraints. The regularizing func-
tion Ω is convex, because Λkijx is affine with respect to x,
the L∞ norm of an affine expression is always convex, and
the sum of convex functions is convex [40]. Similarly, the
objective function ρ+γΩ(x) is the sum of an affine expression
and a convex function, making it a convex function. As (8)
has a convex objective and affine constraints, it is a standard
convex optimization problem.

To determine the desired order of the model, we perform a
Principle Component Analysis (PCA) of the complete data set.
We define the desired order of the data to be the number of
eigenvalues greater than three (a threshold that separated the
very large and very small eigenvalues) plus one to account for
a constant offset (PCA is based on zero mean data, in contrast
to our method). This results in a desired order of four for the
hip and five for the knee and ankle. We then iteratively weight
λ with the bisection method until only the desired number of
terms are sufficiently large (> 1).

The second optimization step is smoothly fitting the model
to data, using only the basis functions deemed significant by
the previous step, denoted K∗. This problem is formulated as
follows:

minimize
x

ρ+ δ||vec(JK
∗
x)||2, (9)

such that − ρSE(dϕiχj
) ≤ d̄ϕiχj

− ΛK
∗

ij x ≤ ρSE(dϕiχj
),

R1 < Rmin
i ,

R2 > Rmax
i ,

∀ i = 1, 2, ..., 150 and ∀j ∈ Hh,

where the term δ is the relative weight between our two
objectives, fitting the data accurately (ρ) and smoothing the
model (||vec(JK∗

x)||2). After some iterations we settled on a
value of δ = 1e− 5, but the solution is not highly sensitive to
differences in this value. The lower and upper range of motion
bounds of each joint, R1 and R2 respectively, are based on
values from [41].

The convexity analysis of (9) is similar to (8). We drop
the basis regularization objective in favor of a smoothing
regularization term ||vec(JK∗

x)||2. The L2 norm of linear
JK

∗
x is convex, so the objective function ρ+δ||vec(JK∗

x)||2
is convex. The minimization across multiple linear functions
is convex, and the positive sum of convex functions is convex,
so the lower bound constraint R1 < Rmin

i is valid. Similarly,
the maximization of multiple linear functions is concave, and
the positive sum of concave functions is concave, making the
upper bound R2 > Rmax

i likewise a valid constraint.

F. Determining Predictive Accuracy

It is important to test if the basis model is capable of
predicting kinematics for completely new tasks. To quantify
predictive accuracy, we calculate the error between the pre-
dicted kinematic value, q(ϕi, χj), and the real value found

via experiments, d̄ϕi,χj , defined as:

Ghj =
max
i

{
d̄ϕiχj

− q(ϕi, χj)
SE(dϕiχj

)

}
, (10)

∀i = 1, 2, ..., 150, ∀j ∈ H{
h, and ∀h = 1, 2, ...z.

where taking the maximum over i gives the value of the largest
error encountered in a gait cycle. This evaluation is repeated
for all validation test splits j ∈ H{

h and stored in a vector of
mean errors, eµ, and a vector of maximum errors em:

(eµ)h = mean
j Ghj , (em)h = max

j Ghj .

We will compare the mean, max, and distribution of eµ and
em between the two methods compared in this paper: basis
modeling (BM) as described in (1) and linear interpolation
(LN) of kinematics with respect to phase, speed, and incline.
Due to the extreme inaccuracy of linear extrapolation of gaits,
our linear interpolation model uses linear interpolation for task
vectors in the interior of the convex hull of the training data,
and an FSM for task vectors on the boundary or outside the
convex hull. The FSM uses the nearest training data to predict
extrapolated data, as defined by Delaunay Triangulation [42].

The distributions of each test split vector, eµ and em,
are compared between the basis modeling method and linear
interpolation method using the Wilcoxon signed-rank test. A
non-parametric test was used because the Anderson-Darling
test rejected the null hypotheses that eµ or em came from
normal distributions [43].

III. RESULTS

A. Parameterizing Experimental Data

In this section, we will model hip, knee, and ankle kine-
matics and evaluate the ability of the basis model to predict
untrained task kinematics. To solve this optimization problem,
we used CVX, a package for specifying and solving convex
programs [44], [45]. Percent gait acts as the phase variable of
(1), which will be defined:

ϕ =
t

T
, ϕi =

ti
T
,

where t and ti are continuous and discrete time, respectively,
from the beginning of a gait cycle, and T is the total time of
a gait cycle.

After order reduction, the most important task functions are
plotted in Fig. 1. The order of the legend gives the relative
importance of each function. Each of these task functions are
paired with a basis function, see Fig. 2.

B. Evaluating the Model of Experimental Data

Next, we compare the error in our prediction of all untrained
tasks to the errors that would result from the use of linear
interpolation. Table I shows the mean of the mean summary
statistic vector (ēµ) for all test splits, and the max of the max
summary statistic vector (∨em) for all test splits for both the
basis modeling method (1) and linear interpolation. Table I
shows that the basis model (BM) and the linear interpolation
(LN) method have similar hip error means, but the basis model
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Fig. 1. The most important task functions for each joint, determined by group
L1 regularization. The legend gives the order of importance.
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Fig. 2. The matching basis functions for each task function in Fig. 1.

has lower knee and ankle fitting in terms of ēµ and ∨em. A
one-sided Wilcoxon signed-rank test shows the eµ and em
distributions of test split results have lower medians for the
basis model on all three joints with the p-values given in
the third row of Table I. This shows that the basis model
is repeatedly outperforming linear interpolation in terms of
accurately predicting hip, knee, and ankle kinematics.

Fig. 3 and Fig. 4 show example kinematic surfaces made
from the basis method or linear interpolation, respectively.
Both use the same random test split for training. In both

TABLE I
SUMMARY STATISTIC DISTRIBUTION MEANS, MAXIMUMS, AND

WILCOXON SIGNED RANK RESULTS AMONG TEST SPLITS FOR ALL JOINTS

Hip Knee Ankle
ēµ ∨em ēµ ∨em ēµ ∨em

BM 0.492 2.10 0.881 3.41 0.856 2.62
LN 0.518 1.59 1.09 5.83 0.994 3.14
p �0.05 �0.05 �0.05 �0.05 �0.05 �0.05
p is the p-value test result of a one sided Wilcoxon signed rank
test that the median of a given summary statistic distribution
resulting from the BM method is less than the median of the
same distribution resulting from the LN method.

figures, model outputs are represented as a blue-green surface,
and the data used to train the model is shown in dashed
blue lines. Solid red lines show the untrained data, which
is what was used to calculate validation error. Note that the
basis model is C∞ smooth, while the linear interpolation
surface has derivative discontinuities at training points and
when extrapolating using an FSM.

IV. DISCUSSION

A. Advantages of Basis Modeling

Any powered prosthesis with a position tracking controller
will require reference trajectories to follow. There are two
basic data-driven approaches to providing those trajectories:
an FSM that provides one trajectory for each supported task,
or continuous prediction of gait based on the proximity of the
current task to known data. The latter has several advantages
that we believe are beneficial for emulating natural gait with
a prosthesis. Continuous prediction provides a continuum of
possible gaits, providing the user with fine control of their
gait. Previous work showed continuous prediction over the gait
cycle reduces configuration time of a powered leg to individual
users [19], and we expect doing the same for both phase and
task will have even greater benefits. We have also shown that
continuous prediction of gait is more accurate than an FSM
at predicting untrained kinematics, even when the FSM is
emulated with perfect classification accuracy [27].

There are many options for how to construct a continuous
model of human kinematics. The simplest conceptually is
linear interpolation, and this has been used in some cases
for biped robot gait [46]. The basis modeling method has
several advantages over linear interpolation. Through convex
optimization, we can force the basis model to fit experimental
data while simultaneously minimizing jerk and constraining
range of motion. Jerk-minimized kinematic trajectories have
been shown to closely mimic natural human movements [37],
[38]. The form of the basis model is also C∞ smooth, regard-
less of solved parameters, see Fig. 3. The basis model also
benefits from automated order reduction and a simple closed
form expression. Our statistical analysis has shown that basis
modeling more accurately predicts untrained kinematics given
sparse irregular training data. Performance on sparse data is
important because it allows us to design future experiments
that will make better models with fewer gait experiments.
This aspect will be vital when recording data on impaired



7

Fig. 3. Basis model joint surfaces generated for a random test split. The blue
dashed mean kinematic trajectories were used for training, solid red is for
validation. The true surface is four dimensional, so this is the 3D projection
onto one speed, 1.0 m/s.

populations that cannot be expected to participate in lengthy
gait trials. Irregular data is also important as it allows us to
utilize experimental design techniques like LHS, or possibly
to combine several publicly available data sets of kinematics
sampled on different (or irregular) intervals. This second
possibility is of interest but is outside the scope of this paper.

B. Interpretation of Trends

Basis and task functions lend themselves well to an intuitive
understanding of how task affects gait. The basis function

Fig. 4. Linear interpolation model joint surfaces generated for a the same
test split as Fig. 3, projected onto one speed, 1.0 m/s. The dashed blue mean
kinematic trajectories were used for training, solid red is for validation.

bk(ϕ) shows what kinematic trend will become more apparent
as ck(χ) increases. For example, take the ankle basis b8(ϕ) in
Fig. 2, which contributes additional dorsiflexion around heel
strike. As c8(χ) = α3 increases (i.e., as the incline of walking
increases from -10 to +10 degrees), the contribution of b8(ϕ)
will increase. Keeping these two terms in mind, it can be
deduced that as incline increases, so will ankle dorsiflexion
at heel strike. The intuitive behavior of b8(ϕ)c8(χ) is a well
documented feature of inclined walking, also shown in [47,
Fig. 2]. A similar example can be seen on the knee joint b5(ϕ),
which will shrink as incline increases because it is paired with
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knee c5(χ) = −(α− 1)3, see Fig. 1 and 2. This would imply
that the knee angle during late stance will be shallower for high
inclines, matching again a discrete trend highlighted in [47,
Fig. 2]. Part of the power of basis modeling is how these well-
established trends emerge naturally from the solution process.
The researcher does not have to explicitly define what trends
in gait data are important and add terms intended to capture
those phenomena.

V. CONCLUSION

This paper develops a method to model human locomotion
as a function of phase, speed, and incline. This model will
be used as the reference trajectory generator of a virtually
constrained powered knee and ankle prosthesis to achieve a
continuum of possible gaits over a range of tasks. Various
convex optimization techniques are used to improve the ac-
curacy of the model and deliver several useful properties.
Model parameters are optimized to match a set of able-bodied
human kinematic data recorded at UTD. Structured sparsity
inducing optimization methods ensure that the order of the
model is minimized, which helps the model to match important
trends in the data while maintaining simplicity. Kinematic jerk
minimization helps the model output to mimic natural human
motion, and preserves the operational life of actuators. Range
of motion constraints respect anatomical constraints and will
promote safety in future prosthetics applications.

The most important conclusion of this paper is that it
is possible to accurately parameterize the human gait cycle
as a continuous function of only phase, speed, and incline.
This function is represented well by a separable model with
basis functions that parameterize kinematics as a function
of phase, and task functions that change the relative weight
of basis functions depending on the current task. The basis
modeling technique was shown to be more accurate than linear
interpolation on sparse training data by Monte Carlo cross
validation. This paper has shown that, when using the basis
modeling method, very fine grids of task data (as collected for
this paper) are unnecessary for producing satisfactory interpo-
lation accuracy. This is an important conclusion, because when
scaling the model up to a larger task space (e.g., stair climbing)
it will be infeasible to sample on the fine grid necessary for
accurate linear interpolation. The basis model also provides
direct intuition into how human gait is affected by changing
tasks.

The next step in this research is developing sensing al-
gorithms for powered prostheses to measure task in real
time. This will rely heavily on existing techniques for IMU
estimation of walking speed [48]–[50] and incline [51]–[55].
Given measurable tasks and phase variables [56], the following
step is to implement this algorithm on the second-generation
UTD leg [29].
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