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Abstract

Context Urbanization can affect the density of hosts,

altering patterns of infection risk inwildlife.Most studies

examining associations between urbanization and host-

parasite interactions have focused on vertebrate wildlife

that carry zoonotic pathogens, and less is known about

responses of other host taxa, including insects.

Objectives Here we ask whether urban development

predicts infection by a protozoan, Ophyrocystis elek-

troscirrha, in three populations of monarchs (Danaus

plexippus): migratory monarchs in northeastern U.S.,

non-migratory monarchs in southeastern coastal U.S.,

and non-migratory monarchs in Hawaii.

Methods We used impervious surface and developed

land cover classes from the National Land Cover

Database to derive proportional measures of urban

development and an index of land cover aggregation at

two spatial scales. Parasite data were from previous

field sampling (Hawaii) and a citizen science project

focused on monarch infection in North America.

Results Proportional measures of urban develop-

ment predicted greater infection prevalence for non-

migratory monarchs sampled in the southern coastal

U.S. and Hawaii, but not in the northern U.S.

Aggregations of low intensity development, domi-

nated by single-family housing, predicted greater

infection prevalence in monarchs from the northern

and southern coastal U.S. populations, but predicted

lower infection prevalence in Hawaii.

Conclusions Because natural habitats have been

reduced by land-use change, plantings for monarchs

in residential areas and urban gardens has become

popular among the public. Mechanisms that underlie

higher infection prevalence in urban landscapes

remain unknown. Further monitoring and experimen-

tal studies are needed to inform strategies for habitat

management to lower infection risk for monarchs.

Keywords Danaus plexippus � Ophryocystis
elektroscirrha � Host–parasite interaction � Gardens �
Tropical milkweed � Pollinator
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Introduction

Habitat changes associated with urbanization can

influence wildlife–pathogen interactions through mul-

tiple mechanisms, including changes in host density,

altered host resistance or tolerance to infection, and

shifts in host community composition (Prange et al.

2003; Bradley and Altizer 2007). While numerous

studies have examined how urbanization predicts

pathogen changes in vertebrate wildlife (especially

birds, mammals, and reptiles; Giraudeau et al. 2014;

Dugarov et al. 2018; Páez et al. 2018), more attention

is needed for pathogens of urban invertebrates.

Understanding how urbanization modifies infection

patterns could be particularly important for insect

pollinators, given the evidence of pollinators’ frequent

use of urban habitats (including parks, gardens, and

vacant lots; Baldock et al. 2015) and the extensive

dependence on pollination services for agriculture and

food production (Gallai et al. 2009; Potts et al. 2010).

Further, pollinators are facing widespread declines

(Potts et al. 2010; Goulson et al. 2015), and parasites

and infectious diseases are major contributors to

pollinator losses, with substantial evidence coming

from populations of honeybees and bumblebees (Fürst

et al. 2014). Urbanization might intensify infection

risks to pollinators if they experience crowding that

increases contact rates (Goulson et al. 2012; Theo-

dorou et al. 2016), or changes in the quantity and

quality of forage and reproductive resources that alter

pollinator susceptibility or tolerance to infection

(Alaux et al. 2010; Dolezal and Toth 2018). Pollina-

tors could also experience restricted movements in a

fragmented landscape with isolated habitat patches,

remaining in locations for longer durations. This might

support the build-up of infectious stages of pathogens

in the environment.

Evidence of how urbanization impacts pollinators

and their pathogens originates primarily from bees

(Hymenoptera), with past work showing positive

association with pathogen prevalence due to higher

local host abundance. Urban parks, gardens, and

vacant lots can offer shelter, forage and reproductive

resources for pollinators (Bhattacharya et al. 2003;

Harrison and Winfree 2015); however, green spaces

tend to be isolated within the urban landscape (Wen

et al. 2013; de la Barrera et al. 2016) and offer limited

diversity of useful and attractive plants (Garbuzov

et al. 2015). Fragmentation, small patch sizes, and

limited resources provided by urban green spaces

likely concentrate pollinators into small habitat

patches and increase the risk for pathogen transmis-

sion. For example, increased infection rates by several

intestinal parasites in the buff-tailed bumblebee

(Bombus terrestris) in urban parks and gardens, as

compared to rural gardens, was attributed to higher

local host abundance in urban sites (Goulson et al.

2012). Similarly, urbanization increased pathogen

loads and transmission in honeybees (Apis mellifera;

Youngsteadt et al. 2015) and several bumblebee

species (Bombus spp.; Theodorou et al. 2016) due to

the sharing of flowers which can act as vectors for

numerous pathogens (Singh et al. 2010; McArt et al.

2014). It remains unknown whether urbanization has

similar consequences for pathogen pressure in other

pollinator guilds. Because pollinator mobility may be

impacted by roads and buildings, examining the

spatial scale at which urban development influences

infection risk is crucially needed.

Here we examine whether urbanization at two

spatial scales predicts parasite infection in three

populations of monarch butterflies (Danaus plexippus)

that differ in migratory behavior and breeding phe-

nology. Monarchs are commonly found in rural

agricultural and natural landscapes, and also occur in

urban and suburban environments (Oberhauser et al.

2001; Shapiro 2002). In eastern North America,

monarchs migrate annually from breeding sites as far

north as southern Canada to overwintering sites in

central Mexico (Urquhart and Urquhart 1978). Monar-

chs also form non-migratory populations that breed

year-round in tropical and sub-tropical locations,

including Hawaii (Ackery and Vane-Wright 1984;

Zalucki and Clarke 2004), and in the southeastern

U.S., particularly along the gulf coast, at latitudes

below approximately 32�Nwhere a humid subtropical

climate dominates and winter freezes are infrequent

(Howard et al. 2010; Satterfield et al. 2015). Monarchs

are commonly infected by a specialist protozoan,

Ophryocystis elektroscirrha (hereafter, OE), which

occurs in all monarch populations examined to date,

and is transmitted from adults to caterpillars via spores

scattered onto eggs and larval milkweed host plants

(McLaughlin and Myers 1970). Infections decrease

monarch lifespan, reproductive success, size, flight

performance and migratory success (Altizer and

Oberhauser 1999; Bradley and Altizer 2005; De

Roode et al. 2006; Altizer et al. 2015) and likely
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reduce monarch population sizes, although quantita-

tive estimates of population-level impacts are lacking.

Previous work comparing OE infections within and

across populations showed that OE prevalence

increases with both larval density and the duration of

occupancy of breeding habitats (Bartel et al. 2011),

and decreases with migratory distance travelled (Al-

tizer et al. 2000, 2015). In particular, continuous use of

the same habitats allows for the accumulation of

parasite spores, which can persist on monarch larval

host plants for extended periods of time (Satterfield

et al. 2016, 2017). Both migratory and non-migratory

monarch populations demonstrate temporal and spa-

tial variation in OE infection prevalence, suggesting

additional environmental factors are influencing infec-

tion risk.

Like many other pollinators, monarchs have expe-

rienced population declines coincident with habitat

loss and other factors (Brower et al. 2012; Flockhart

et al. 2015). As a result, the general public is interested

in providing monarch habitat by planting nectar

sources (i.e., flowering plant species) and larval host

plants. One particularly attractive and easy to grow

larval host plant sold by nurseries is an exotic species,

tropical milkweed (Asclepias curassavica) (Satterfield

et al. 2015). Unlike most native milkweeds in U.S. that

enter dormancy in the fall, tropical milkweed persists,

even growing year-round in mild climates (Batalden

and Oberhauser 2015; Satterfield et al. 2015). High

concentrations of cardenolides (secondary com-

pounds) in tropical milkweed and several other

milkweed species are attractive to ovipositing monar-

chs (Oyeyele and Zalucki 1990; Zalucki et al. 1990)

and can reduce the virulence of OE infections,

potentially allowing infected monarchs to live longer

and transmit more parasites (De Roode et al. 2008;

Sternberg et al. 2012). In the southern coastal U.S.,

recently-formed sedentary populations now com-

monly appear, likely in response to the year-round

availability of tropical milkweed in residential areas;

OE prevalence can reach high levels at these sites

(Satterfield et al. 2015).

In this study, we pair citizen science and field data

on parasite infection in monarchs with land cover data

to ask whether the amount, type and aggregation of

urban development in the landscape predicts OE

infection prevalence in (i) migratory monarchs sam-

pled in the northern U.S., and non-migratory monarchs

sampled in (ii) the southern coastal U.S. and (ii)

Hawaii. We expected that monarchs from sites

surrounded bymore urbanization andmore aggregated

developed areas would experience a greater risk of OE

infection, as might occur if monarchs are crowded in

small resources patches (primarily garden habitats).

We further expected that infection risk would be

highest in areas dominated by low intensity developed

land cover (i.e., residential areas). Residential areas

tend to contain landscape enhancements including

gardens with flowering plants that attract monarchs

and other butterflies. Additionally, the public has been

encouraged to plant milkweed habitat for monarchs in

residential areas (e.g., Monarch Watch Waystation

Program; Oberhauser et al. 2008; Taylor 2018),

rendering this land cover particularly important to

examine in the context of OE infection. Because

monarchs can move both within and between habitat

patches during the breeding season (Zalucki and

Kitching 1982; Miller et al. 2012; Zalucki et al.

2016), we tested our predictions at two spatial scales to

explore possible relationships between infection and

urbanization.

Methods

Study sites and infection data

Monarchs in the southern coastal U.S. (non-migratory

winter breeders) and the northern U.S. (migratory

summer breeders) were sampled for parasites during

2011–2013 as part of the ongoing citizen science

program Project Monarch Health (monarchpara-

sites.org). Sites were sampled by volunteer partici-

pants during periods of monarch breeding, which in

the northern U.S. occurred during spring and summer

(Jun–Sep), and in the southern U.S. occurred year-

round (although southern samples were restricted to

Dec–Feb to avoid sampling migratory monarchs

passing through these areas in spring and early fall).

The winter timing of sampling in the southern coastal

U.S. coincided with the general absence of native

milkweeds, such that monarchs sampled during this

time predominantly used exotic tropical milkweed,

which is known to sustain non-migratory winter-

breeding monarchs (Satterfield et al.

2015, 2016, 2018). A total of 68 sampling locations

fromU.S. (Fig. 1a) were included in the analyses, with

2807 individual monarchs sampled across both years.
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Butterflies were tested for OE infection non-destruc-

tively by pressing clear tape (approximately 1 cm2)

against adult abdomens; samples were scored for

infection status at a laboratory at the University of

Georgia. Samples with[ 100 spores were scored as

infected (following Bartel et al. 2011; Satterfield et al.

2015), indicating an infection was acquired as a larva.

Samples with\ 100 spores were scored as uninfected

and include monarchs with no spores, and those with

low numbers of spores that can result from passive

spore transfer between adult monarchs or transfer

during the capture and sampling process. The full data

set for the northern and the southern coastal U.S. is

provided in Supplementary materials in Satterfield

et al. (2015).

Monarchs sampled in Hawaii (non-migratory year-

round breeders) were captured by researchers as adults

at 17 sites across four islands in 2007, 2009, 2010

(Fig. 1a). A total of 885 monarchs were scored for

infection status in Hawaii using methods described

above. Hawaii infection data were previously ana-

lyzed in Pierce et al. (2014), and are made available in

main text and supporting information of the study. In

both continental U.S. and Hawaii data sets, sites with

fewer than five samples were excluded from analyses

due to low probability of detecting infected individ-

uals if fewer than five monarchs were sampled per site.

Data from the three regions (northern U.S., southern

coastal U.S., and Hawaii) were aggregated per site and

year, and sample sizes ranged from 5 to 148 monarchs.

Data from each region were analyzed separately

owing to differences in monarch migratory behavior

and average OE prevalence. We calculated infection

prevalence as the number of infected individuals

divided by the total number of individuals sampled per

site or region.

Land cover data and urbanization metrics

To quantify urbanization at each sampling location,

we used ArcGIS 10.2.2 (ESRI 2011) to examine land

cover and impervious surface data for the mainland

U.S. from the most recently available, 2011, National

Land Cover Database, at a scale of 30 m 9 30 m

(hereafter, NLCD; Homer et al. 2015; Xian et al.

2011), and for Hawaii from the 2001 NLCD, at a scale

of 30 m 9 30 m (Homer et al. 2007). While a more

recent NLCD (i.e., closer to the years of OE sampling)

for Hawaii would be ideal for this study, the 2001

edition was the only one available for all four islands

examined here. We calculated two metrics of urban-

ization. First, we quantified the proportion of land area

with impervious surface (e.g., human-made structures

through which water cannot infiltrate, such as roads,

parking lots, rooftops) around each sampling location.

Second, we calculated proportion of land area with

four distinct developed land cover intensities around

sampling sites as classified in the NLCD (Xian et al.

2011; Homer et al. 2015). The four distinct land cover

classes reflect the degree to which the landscape is

Fig. 1 a Sampling locations for three monarch populations

examined in this study. The summer breeding range of eastern

North American migratory monarchs is highlighted in yellow,

and locations where migratory monarchs were sampled appear

as blue circles (N = 47 sites). Winter-breeding non-migratory

monarchs were sampled in southern coastal U.S. (red circles;

N = 21 sites), and year-round breeding monarchs were sampled

in Hawaii (gray circles; N = 17 sites). b Example site with four

developed land cover classes surrounding a sampling location in

Hawaii at two buffer sizes (1 and 2.5 km; two innermost

circles). (Color figure online)
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dominated by residential areas and modified by

urbanization (NLCD values 21–24; Fig. 1b; for

detailed description of each class see Table 1 and

Supplementary material). Finally, we calculated a

metric termed ‘‘clumpiness index’’ (CLUMPY),

which estimates the degree of aggregation of land

cover classes around each sampling site using

FRAGSTATS (McGarigal et al. 2012). Specifically,

the clumpiness index measures clustering of a given

land cover class relative to a spatially random

distribution, ranges from - 1 (maximal disaggrega-

tion) to 1 (maximal aggregation), and is independent

of the class area (Neel et al. 2004).

Because the transmission of OE infection occurs at

the plant level, it is unclear at what scale urban

development could influence infection risk. However,

previous work suggests that monarchs are a highly

mobile species, with moderate site fidelity to larval

host plant (milkweed) patches, and that adults can

move on the order of 12 km during the breeding

season in fragmented landscapes (Zalucki 1983;

Zalucki et al. 2016). For this reason, we calculated

urbanization metrics within two circular buffers

around each sampling site with radii of 1 and

2.5 km, capturing a circumference of 6 and 16 km,

respectively (Fig. 1b). The areas encompassed by

these two circular buffers around sampling sites likely

capture the short-term movements of a breeding

monarch. Preliminary analysis revealed that low-,

medium- and high-intensity developed land covers

tended to be highly correlated at the two spatial scales

(see Supplementary material for correlation matrices);

therefore we focused on low intensity developed land

cover in our final analyses to avoid multicollinearity

(Zuur et al. 2009).

Statistical analysis

We used R programming software (version 3.4.4) for

statistical analyses (R Core Team 2018). To account

for spatial autocorrelation in infection prevalence,

latitude and longitude were included as covariates in

all statistical models. We ran separate analyses for

each of the three monarch populations (i.e., regions)

and tested for relationships between OE prevalence

and (1) proportion of impervious surface, (2) propor-

tion of two land covers (open and low intensity

developed) and (3) aggregation (clumpiness index) of

land cover types. We used generalized linear mixed

models (GLMM) with binomial error distribution,

weights as sample size, with year and site as random

factors (package lme4; Bates et al. 2017). We rescaled

the explanatory variables to have a mean of 0 and a

standard deviation of 1, to facilitate coefficient

comparisons (Zuur et al. 2009).

Because impervious surface was correlated with the

two land cover intensities, we ran separate models for

impervious surface and for land covers at each scale.

Similarly, because aggregation index was correlated

with the proportion of land cover for one of the

Table 1 Urbanization variables along with descriptions used in the study

Variable Description

Impervious surface Landscape that is impervious to water and mainly consists of human-made structures, such as rooftops and

pavement

Open space The lowest intensity of urbanization, dominated by vegetation planted for recreation including lawn

grasses, parks, and golf courses, with impervious surface accounting for less than 20% of total cover.

NLCD class 21

Low intensity

developed

A mix of single-family housing units and vegetation, with impervious surface accounting for 20–49% of

total cover. NLCD class 22

Medium intensity

developed

Single-family housing units, with 50–79% of the total cover consisting of impervious surface. NLCD class

23

High intensity

developed

Highly urbanized areas dominated by buildings, with 80–100% of the land cover as impervious surface.

NLCD class 24

Clumpiness index Spatial clustering of land cover classes relative to a spatially random distribution; ranges from - 1

(maximal disaggregation) to 1 (maximal aggregation)

Variables are as defined in National Land Cover Data (NLCD) by Homer et al. (2007) and Xian et al. (2011), and in McGarigal et al.

(2012)
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regions, we ran separate models for aggregation index.

Next, to test which of the two scales best explain

patterns between urbanization and monarch infection,

we compared the models using Akaike’s information

criteria corrected for small sample size (AICc).

Models with the lowest AIC value were accepted as

the most parsimonious model. Models within two

AICc of the top model were considered to have

equivalent levels of support and therefore competitive

(Burnham and Anderson 2003). We used quantile

comparison plots and Grubbs tests to identify outliers

in infection prevalence (i.e., sites; Grubbs 1950; Zuur

et al. 2010). Three outliers were identified in the

northern U.S. (prevalence = 0.40, 0.49 and 0.63).

Outlier removal improved quantile comparison plots,

and Grubbs test detected no further outliers. We

present results of statistical analyses without outliers,

but include the outliers in figures of raw data (Figs. 2,

3; Zuur et al. 2010).

Results

General results

Infection prevalence differed among regions

(ANOVA, F2,110 = 50.67, p\ 0.001; Tukey’s HSD,

p\ 0.001): at seasonal breeding sites the northern

U.S., average infection prevalence was lowest at

0.10 ± 0.01 (mean ± SE; N = 2032 monarchs;

excluding outliers). At year-round breeding sites in

the southern coastal U.S., infection prevalence aver-

aged 0.59 ± 0.06 (N = 635 monarchs). Average

infection prevalence in Hawaii was intermediate at

0.34 ± 0.04 (N = 885 monarchs).

When examining infection data, Moran’s I-tests of

spatial autocorrelation in OE prevalence suggested

significant autocorrelation within Hawaii (I = 0.174,

p = 0.026), marginally significant autocorrelation

within the southern coastal U.S. sites (I = 0.185,

p = 0.087) and no autocorrelation in the northern U.S.

(I = 0.022, p = 0.530). Spatial autocorrelation was not

detected in residuals of the models, suggesting that

including latitude and longitude in each model

adequately corrected for spatial correlations.

Sites sampled for this study ranged in development

from rural to highly urban. Specifically, the proportion

of impervious surface surrounding sampling sites

ranged from 0.01 to 0.90 (Figs. 2a, S1). Rural sites,

where the proportion of impervious surface is low

(\ 10%) comprised approximately one-third of the

data. The proportion of impervious surface was, on

average, lower within the northern U.S. than Hawaii

and the southern coastal U.S. at both 1 km and 2.5 km

scales (ANOVA, 1 km: F2,82 = 10.39, p\ 0.001;

2.5 km: F2,82 = 12.26, p\ 0.001; Tukey’s HSD,

p\ 0.05; Fig. S2a). The proportion of open land

cover per site varied between 0 and 0.53 and was

similar across regions and scales (1 km: F2,82 = 0.91,

p = 0.41; 2.5 km: F2,82 = 1.95, p = 0.15; Tukey’s

HSD, p[ 0.05; Fig. S2b). The proportion of low

developed land cover per site varied between 0 and

0.72 (Fig. S2b) and was similar across regions at the

1 km scale (F2,82 = 2.45, p = 0.09; Tukey’s HSD,

p[ 0.05). At the 2.5 km scale, the southern coastal

U.S. and the northern U.S. had similar proportions of

Fig. 2 Proportion of infected monarchs at each sampling

location for Hawaii (gray), northern U.S. (blue) and southern

coastal U.S. (red) in relation to the proportion of a impervious

surface at 1 km scale, and of low intensity developed land cover

(NLCD class 22) at b 1 km scale, and at c 2.5 km scale. Data

points represent individual sites and lines show predictions of

the best-supported GLM models. (Color figure online)
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low intensity land cover, which was, on average,

higher than the proportion of low intensity land cover

in Hawaii (F2,82 = 4.82, p = 0.011; Tukey’s HSD,

p\ 0.05; Fig. S2b). Aggregation indices of open land

cover per site varied between 0.14 and 0.80 and were

lower in Hawaii than in the northern and southern

coastal U.S. (1 km: F2,76 = 6.55, p\ 0.01; 2.5 km:

F2,76 = 10.55, p\ 0.001; Tukey’s HSD, p\ 0.05;

Fig. S2c). Aggregation of low developed land cover

per site varied between 0.38 and 0.81 across the two

scales (Fig. S2c), with Hawaii showing the lowest

average values at both scales scale (1 km:

F2,76 = 7.03, p\ 0.01; 2.5 km: F2,76 = 6.76,

p\ 0.01; Tukey’s HSD, p\ 0.05).

Associations between infection and urban land use

Analyses for all three regions and at both spatial scales

showed positive relationships between OE prevalence

and the proportion of impervious surface, although

this pattern was significant only for the southern

coastal U.S. (at 1 km scale; Table 2). The most

parsimonious model (i.e., lowest AIC) showed that

within the southern U.S., infection prevalence was

best predicted by the proportion of impervious surface

at the 1 km scale, and this positive relationship was

moderately strong (z = 2.26, p = 0.02; Table 2;

Fig. 2a). For the northern U.S., the most parsimonious

model indicated that infection prevalence was again

best predicted by impervious surface at the 1 km scale,

although the relationship was not significant

(p[ 0.05; Table 2; Fig. 2a). For Hawaii, the most

parsimonious model showed a non-significant but

positive relationship at the 2.5 km scale between

infection prevalence and the proportion of impervious

surface (Table 2).

Analyses of OE prevalence and land cover classes

(open and low intensity, NLCD classes 21 and 22

respectively) showed a significant positive influence

of the proportion of low intensity land cover in the

southern U.S. and Hawaii. The proportion of open land

cover had no association with infection prevalence in

any region (p[ 0.05; Table 3). Higher OE prevalence

was associated with more low intensity development

in the southern coastal U.S. at both scales (1 km:

Fig. 3 Proportion of infected monarchs at each sampling

location for Hawaii (gray), northern U.S. (blue) and southern

coastal U.S. (red) in relation to clumpiness index (as defined in

Table 1) of low intensity developed land cover (NLCD class 22)

at a 1 km scale, and at b 2.5 km scale. Data points represent

individual sites and lines show predictions of the results of the

GLM models. (Color figure online)

Table 2 Summary of GLMMs for predicting monarch infec-

tion prevalence based on impervious surface land cover in the

northern U.S., southern coastal U.S., and Hawaii at two spatial

scales

Region Proportion impervious surface AIC Weight

Estimate (SE) Z P

Hawaii

1 km 0.45 (0.47) 0.96 0.34 189.1 0.49

2.5 km 0.49 (0.48) 1.02 0.31 189 0.51

Northern U.S.

1 km 0.31 (0.24) 1.29 0.20 249.1 0.67

2.5 km 0.11 (0.27) 0.39 0.69 250.5 0.33

Southern coastal U.S.

1 km 1.89 (0.84) 2.26 0.02 200.2 0.75

2.5 km 1.51 (0.89) 1.70 0.09 202.4 0.25

Significant terms are presented in bold, p\ 0.05. Full model

outputs are available in Supplementary material (Tables S4–

S6)
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z = 4.02, p\ 0.001; 2.5 km: z = 2.32, p = 0.02) and

in Hawaii at the 2.5 km scale (z = 2.20, p = 0.03;

Table 3; Fig. 2b, c). The relationship was not signif-

icant for the northern U.S. (p = 0.1, Table 3). Model

selection indicated that OE is best predicted by land

cover classes at the 1 km scale in the northern and the

southern U.S., and at the 2.5 km scale in Hawaii

(Table 3; Fig. 2b, c).

Analyses of land cover aggregation indices showed

that OE prevalence increased with aggregation of low

intensity development in the southern coastal U.S. at

both spatial scales (1 km: z = 2.53, p = 0.01; 2.5 km:

z = 2.19, p = 0.03) and in the northern US at the 1 km

scale only (z = 2.03, p = 0.04; Table 4; Fig. 3a). In

Hawaii, aggregation of low intensity developed land

cover at the 1 km scale predicted lower OE preva-

lence, although the relationship was marginally

significant (z = - 1.92, p = 0.06; Fig. 3a). Model

selection indicated that OE is best predicted by

aggregation of land cover classes at the1 km scale.

Full model outputs are reported in Supplementary

material (Tables S4–12).

Discussion

This study provides the first evidence that urbanization

predicts higher prevalence of the protozoan O. elek-

troscirrha in non-migratory monarch butterflies

inhabiting the southern coastal U.S., and adds to the

growing body of literature suggesting that pollinators

can experience increased pathogen pressure in urban

environments (e.g., honeybees and bumblebees; Goul-

son et al. 2012; Youngsteadt et al. 2015; Theodorou

Table 3 Summary of

GLMMs for predicting

monarch infection

prevalence in the northern

U.S., southern coastal U.S.,

and Hawaii at two spatial

scales

Significant terms are

presented in bold, p\ 0.05.

Full model outputs are

available in Supplementary

material (Tables S7–S9)

Region Proportion open Proportion low intensity AIC Weight

Estimate (SE) Z P Estimate (SE) Z P

Hawaii

1 km 0.37 (0.45) 0.83 0.41 0.81 (0.44) 1.82 0.07 188.3 0.32

2.5 km 0.20 (0.44) 0.46 0.65 0.87 (0.40) 2.20 0.03 186.7 0.68

Northern U.S.

1 km - 0.10 (0.23) - 0.42 0.68 0.38 (0.23) 1.65 0.10 250.2 0.70

2.5 km - 0.17 (0.30) - 0.57 0.57 0.24 (0.28) 0.86 0.39 251.9 0.30

Southern coastal U.S.

1 km - 0.98 (0.55) - 1.79 0.07 2.72 (0.68) 4.02 < 0.001 187.3 1

2.5 km - 1.13 (0.72) - 1.60 0.12 1.76 (0.76) 2.32 0.02 198 0

Table 4 Summary of GLMMs for aggregation (clumpiness index) of developed land covers describing monarch infection preva-

lence in northern U.S., southern U.S., and Hawaii at two spatial scales

Region Aggregation of open Aggregation of low intensity AIC Weight

Estimate (SE) Z P Estimate (SE) Z P

Hawaii

1 km 0.52 (0.42) 1.23 0.22 - 1.01 (0.53) - 1.92 0.06 187.3 0.89

2.5 km 0.35 (0.54) 0.66 0.51 - 0.07 (0.5) - 0.14 0.89 191.4 0.11

Northern U.S.

1 km - 0.10 (0.30) - 0.34 0.73 0.45 (0.22) 2.03 0.04 242.2 0.99

2.5 km - 0.09 (0.24) - 0.37 0.71 0.27 (0.24) 1.16 0.25 251.3 0.01

Southern U.S.

1 km - 0.91 (0.71) - 1.28 0.20 2.25 (0.89) 2.53 0.01 180.6 1

2.5 km - 0.28 (0.67) - 0.42 0.67 1.55 (0.71) 2.19 0.03 201.5 0

Significant terms are presented in bold, p\ 0.05. Full model outputs are available in Supplementary material (Tables S10–S12)
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et al. 2016; Cohen et al. 2017; McArt et al. 2017). The

positive association between urbanization metrics and

parasitism in non-migratory monarchs could be due to

two related factors. First, monarchs could aggregate in

garden habitats in residential landscapes. Naturally

occurring larval host plants, which are necessary for

reproduction and larval development, tend to be scarce

during the winter months (when sampling was

conducted for this study), because native milkweed

plants enter dormancy during the fall. During winter

months, larval host plants in the southern U.S. might

be more commonly associated with garden habitats

that are relatively isolated in the landscape. Thus, non-

migratory monarchs breeding during cooler winter

months (rather than migrating to Mexico to overwin-

ter) might be forced to concentrate in available

habitats, resulting in crowding of adult and immature

stages. Indeed, densities of eggs at southern U.S. sites

can reach an average of 1.49 eggs/plant, which is at

least 30 times higher than egg densities in the northern

U.S. (Nail et al. 2015; Majewska et al. 2018). Such

immature stage crowding could increase the probabil-

ity of acquiring OE infection (Lindsey et al. 2009;

Bartel et al. 2011) leading to the pattern we observed

here with higher infection prevalence in more urban-

ized habitats (with isolated patches of larval host

plants).

Second, the presence of an exotic larval host plant,

tropical milkweed (Asclepias curassavica) at most of

the winter sampling locations in the southern U.S.

could contribute, in part, to the relationship between

higher infection prevalence and urbanization metrics.

Tropical milkweed is associated with human-domi-

nated landscapes because it primarily exists where it is

planted in urban parks and gardens. Tropical milk-

weed may exacerbate host densities because it is

highly attractive to monarch butterflies (Majewska

et al. 2018), likely for its high concentration and

diversity of cardenolide secondary compounds, which

provide monarchs with some protection from natural

enemies (Brower et al. 1968; Lefèvre et al. 2010).

Monarchs that feed on high-cardenolide milkweeds as

larvae emerge with lower spore loads and live longer

as adults, which might explain why adult female

monarchs infected with OE preferentially lay eggs on

tropical milkweed versus other milkweeds (an exam-

ple of trans-generational medication; Lefèvre et al.

2010). Cardenolides from tropical milkweed, how-

ever, do not cure monarchs of infection, and could

increase opportunities for parasite transmission by

lengthening infected individuals’ lifespans (De Roode

et al. 2008; Lefèvre et al. 2010). As an additional

factor, prolonged breeding phenology of monarchs in

tropical milkweed patches in the southern U.S. allows

the long-lived OE spores to accumulate on milkweeds

and cause high infection rates (Satterfield et al.

2015, 2016). Altogether, the attractiveness of tropical

milkweed to monarchs and its association with

parasite accumulation could intensify the positive

relationship between infection and urbanization in

non-migratory monarchs.

Relationships between infection and urbanization

showed different patterns in Hawaii, where monarchs

breed year-round. At Hawaiian sites, OE infection

increased with the proportion of low intensity devel-

oped land cover, but decreased with an aggregation

index of low intensity developed land cover. It is

important to note that the absence of a relationship

between infection and the proportion of impervious

surface in Hawaii might be due to the high occurrence

of lava surfaces in Hawaii. Thus, impervious surface

in Hawaii might represent a less accurate measure of

urbanization than developed land cover classes

(Homer et al. 2015).

Reasons why OE infection prevalence in Hawaii

tended to increase with the proportion of low intensity

developed land cover but decrease with aggregation of

low intensity land cover are not straightforward. Past

work showed that infection prevalence of OE in

Hawaii varies widely among sites and islands, ranging

from 0 to nearly 100%, and this variation is not

predicted by host population genetic structure (Pierce

et al. 2014). Monarchs themselves are also not native

to Hawaii, and colonized the islands in mid-1800s

following the introduction of their larval host plants

(Zalucki and Clarke 2004). In addition to tropical

milkweed, exotic giant milkweed (Calotropis gigan-

tea and C. procera) and exotic balloon-plant (Gom-

phocarpus physocarpus) are currently present in

Hawaii (Motooka et al. 2003). Each of these species

has high toxicity, produces foliage year-round, and is

associated with human habitation in Hawaii. Particu-

larly, because the larval host plant, giant milkweed, is

commonly found in residential areas of Hawaii and

associated managed landscapes (R. Harrison, pers.

obs.), monarch densities are likely highest near

residential areas, relative to rural sites. On the other

hand, if developed areas of the island are well-
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connected (greater aggregation index), monarchs

might be able to disperse further and spread more

evenly throughout the islands, thereby experiencing

lower infection risk.

Interestingly, OE infection in Hawaii was best

predicted by the proportion of developed land cover at

the 2.5 km scale (although the 1 km scale model had

equivalent support; Table 2), and by aggregation at the

1 km scale. One plausible explanation for this find-

ing is that different mechanisms are operating at

different spatial scales. Multiple non-native milkweed

species that are connected in the landscape might

dilute the risk of infection on smaller scales, although

more work is needed to elucidate the distribution and

connectivity of different host plant species in Hawaii.

Another possibility is that frequent colonization and

local extinction of monarch populations in patches of

larval host plants generates spatial variation in infec-

tion prevalence (McCallum and Dobson 2002). Future

work examining the patch dynamics of Hawaii

monarch sampling sites in the context of metapopu-

lation models could offer insights into mechanisms

affecting among-site variation in infection prevalence.

In contrast to areas with non-migratory monarchs,

we generally did not find significant relationships

between OE infection and urbanization metrics for

migratory monarchs in the northern U.S., although

aggregation of low intensity development was posi-

tively related to infection prevalence. Average OE

prevalence tended to be low (0.10) in the northern

U.S., which might limit the power of our analyses to

detect predictors of prevalence variation. Moreover,

the high abundance and diversity of wild native

milkweed plants (Pleasants 2017; Pocius et al. 2018)

that are commonly found in disturbed habitats, such as

roadsides and agricultural areas, might distribute

monarchs more evenly across the landscape mosaic,

away from urbanized areas.

In conclusion, we found positive associations

between urbanization metrics and parasite prevalence

in non-migratory monarch populations, where exotic

larval host plants commonly occur in proximity to

human-inhabited areas. Our results agree with recent

work on honeybees and bumblebees (Goulson et al.

2012; Youngsteadt et al. 2015; Theodorou et al. 2016;

Cohen et al. 2017; McArt et al. 2017) as well as

numerous vertebrate studies (reviewed in Bradley and

Altizer 2007), showing that wildlife can experience

higher pathogen pressure in urban landscapes. Our

study indicates that certain types of urbanized land-

scapes, particularly residential development, might

favor parasite transmission among monarchs in some

regions. Further, the results suggest that urban devel-

opment at the smaller 1 km scale, compared to the

2.5 km scale, better predicts infection risk in the

monarch-OE system.

Our study underscores the value of large-scale

milkweed restoration outside of urban areas for

lowering infection risk, and emphasizes the impor-

tance of monitoring OE infection across the rural–

urban gradient. We show that infection prevalence is

not universally high at developed sites, and continued

involvement of volunteer participants in monitoring

will be important in examining practices that could

influence variation in prevalence within sites. Detailed

studies that examine both rural and urban milkweed

patches will be key to providing recommendations for

how urban sites can be managed to limit infection risk.

For example, it is possible that recommendations

could be made regarding the patch size and distribu-

tion of milkweed plants at a site to limit aggregation.

Given that urban development is projected to increase

globally (Seto et al. 2011), we might expect that

monarch OE incidence will increase in regions altered

by expanding human development and the planting of

exotic larval host plant species. Understanding the

consequences of parasitism for monarch populations,

and strategies for lowering infection risk, may be

particularly important in the mainland U.S., given

recent declines in migratory monarch numbers in both

eastern and western North America (Schultz et al.

2017; Thogmartin et al. 2017).
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