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1 INTRODUCTION
Schizophrenia and autism are examples of polygenic diseases caused
by amultitude of genetic variants. Recently, both diseases have been
associated with disrupted neuron motility and migration patterns,
suggesting that aberrant cell motility is a phenotype for these neu-
rological diseases [2, 8]. Abnormal neuronal development is central
to both schizophrenia and autism, which critically implicates these
cell motility perturbations in the disease mechanisms. However,
despite the genetic characterization of these diseases by large-scale
genome-wide association studies, extracting causality for symp-
toms and pathophysiology from these data remains challenging
due to the large number of genes implicated and the additive effect
the mutations have on the cellular processes [7].

We present a network-based machine learning approach to iden-
tify genes implicated in both a disease of interest (e.g., schizophrenia
or autism) and a disease phenotype (e.g., aberrant cell motility). We
use a brain-specific functional interaction network to identify which
genes are most centrally implicated in a polygenic disease based on
functional similarity. Our algorithm identifies genes that are near
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known disease genes and cell motility genes in the network. Top
schizophrenia candidates include many Protein Phosphatase 1 sub-
units and Lysyl Oxidase, which are promising genes for follow-up
experimental validation. Candidate genes predicted by our method
suggest testable hypotheses about these genes’ role in cell motil-
ity regulation, offering a framework for generating predictions for
experimental validation.

2 METHODS
Given a functional interaction network represented as a weighted,
undirected graphG = (V ,E), a set of curated positive nodes C ⊆ V ,
and a set of curated negative nodes C ⊆ V , we model a random
Gaussian field on G given the labeled nodes [9]. Let f : V 7→ [0, 1]
be a function where f (v) = 1 if v ∈ C , f (v) = 0 if u ∈ C , and f (v)
over unlabeled nodes is “smooth” with respect to the topology of
G. That is, we wish to choose values for the unlabeled nodes that
minimizes

min
f

1
2

∑
(u,v)∈E

wuv (f (u) − f (v))2,

where wuv is the weight of edge (u,v). This equation can be cal-
culated efficiently using an iterative method that is known to con-
verge, and has been implemented in a method called SinkSource
that has been applied to molecular interaction networks [6]. Be-
cause diseases like schizophrenia and autism are based on multiple
mutations rather than a single mutation, our method builds on
SinkSource and corrects for low-degree genes connected to labeled
nodes that are scored disproportionately high or low. Our method
(a) adds a user-defined λ-weighted edge to all nodes that connects
to a global negatively-labeled “sink” and (b) partitions the positives
and negatives across k “layers,” where each layer contributes to the
node’s final score. We use cross validation to compare our method
with different values of k and λ.

Our problem formulation involves two sets of positively-labeled
nodes (disease genes and cell motility genes). We run the machine
learning method twice: once for the disease D (e.g., schizophrenia
or autism) to get fD and once for the biological process P (e.g., cell
motility) to get fP . In both cases, we use the disease negatives. We
rescale the functions so the largest value is 1 and define a combined
score д(v) = fD (v)fP (v). Prioritizing nodes based on this score
implies that high-scoring nodesv must have large fD (v) and fP (v).

ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USAThe 5th Int'l Workshop on Computational Network 
Biology: Modeling, Analysis, & Control

610

https://doi.org/10.1145/3233547.3233697
https://doi.org/10.1145/3233547.3233697


Figure 1: (a) One-layer and (b) two-layer node rankings
(x-axis) by node degree (y-axis) for schizophrenia posi-
tives. Nodes are colored as unlabeled (gray), positives (blue),
or negatives (red). Black line denotes moving average (15
nodes), and bottom panel shows first 1,000 nodes.

3 RESULTS AND DISCUSSION
We used a brain-specific functional interaction network from Hu-
manBase [4], compiled three sets of positive genes from existing lit-
erature (702 schizophrenia-associated genes, 594 autism-associated
genes, and 542 cell motility-associated genes) and compiled one set
of 1,189 genes that were likely associated with non-neurological
diseases (the negative set from [5]). We show that our method im-
proves over SinkSource and a positive-only version of SinkSource
in k-fold cross validation (data not shown).

We found that the top unlabeled nodes ranked by the one-layer
version of our method had very low degree in the network (Fig-
ure 1(a)). The first 1,000 nodes show a stark drop in degree when the
first unlabeled nodes are ranked (bottom row). These top-ranked,
low-degree unlabeled nodes tended to be connected to positives.
The multi-layer version of our method corrects for this effect; the
top unlabeled nodes in the two-layer version have larger degree
(Figure 1(b)).

We compared the accuracy of the multi-layer version for dif-
ferent numbers of layers. For each layer and each positive set, we
selected the value of λ that achieved the highest accuracy in terms
of area under the curve (AUC, Figure 2). The two-layer method
for schizophrenia positives had an average AUC of 0.698 com-
pared to the one-layer average AUC of 0.605 (p = 7.07 × 10−18,
Wilcoxon rank-sum test) and the three-layer average AUC of 0.663
(p = 1.27×10−12). This trend is consistent for the two-layer method
for autism positives (p = 7.07×10−18 vs. one-layer, p = 1.55×10−15
vs. three-layer) and cell motility positives (p = 2.07× 10−17 vs. one-
layer, p = 4.42 × 10−13 vs. three-layer). In terms of AUC, using two
layers with λ = 10 did the best job ranking the hidden positives in
the k-fold cross validation across different positive sets.

Figure 2: Five-fold cross validation performance (AUC
across 50 iterations) of our method for different numbers of
layers across three positive sets (schizophrenia, autism, and
cell motility).

We investigated the top-ranking genes for schizophrenia in the
two-layer method. Many protein phosphatases appear in the list, in-
cluding Protein Phosphatase 1 subunits (PPP1R12C, PPP1R12A, and
PPP1CB), and a Protein Phosphatase 2 subunit (PPP2R2A); these are
all labeled as cell motility positives. Protein Phosphatase 1 is a pro-
tein necessary for cell division and regulates muscle contractility
among many other functions. Interestingly, inhibition of PPI pro-
longs memory after a learning scenario, suggesting a link between
PPI and learning and memory [3]. Predicted genes that are known
schizophrenia positives but are not cell motility positives are also
valuable candidates for follow-up experimental validation using
cell motility assays. The first gene that appears as a cell motility
unlabeled node is Lysyl Oxidase (LOX) at rank 30. LOX has been
associated with metastasis in certain cancers due to its role in hy-
poxic conditions [1], and cell motility is one component of invasive
cell migration. Our work provides a methodology for investigat-
ing biological processes that may be disrupted in polygenic diseases.
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