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Abstract— Objective: Adaptive beamformer methods, which
have been extensively used for functional brain imaging using
EEG/MEG signals, are sensitive to model mismatches. We propose
a robust minimum variance beamformer (RMVB) technique,
which explicitly incorporates the uncertainty of the lead field
matrix into estimation of spatial-filter weights that are
subsequently used to perform the imaging. Methods: The
uncertainty of the lead field is modeled by ellipsoids in the RMVB
method; these hyper-ellipsoids (ellipsoids in higher dimensions)
define regions of uncertainty for a given nominal lead field vector.
These ellipsoids are estimated empirically by sampling lead field
vectors surrounding each point of the source space, or more
generally by building several forward models for the source space.
Once these uncertainty regions (ellipsoids) are estimated, they are
used to perform the source-imaging task. Computer simulations
are conducted to evaluate the performance of the proposed RMVB
technique. Results: Our results show that robust beamformers can
outperform conventional beamformers in terms of localization
error, recovering source dynamics and estimation of the
underlying source extents, when uncertainty in the lead field
matrix is properly determined and modeled. Conclusion: RMVB
can substitute conventional beamformers, especially in
applications, where source imaging is performed off-line, and
computational speed and complexity are not of major concern.
Significance: A high-quality source imaging can be utilized in
various applications such as determining the epileptogenic zone in
medically intractable epilepsy patients or estimating the time-
course of activity, which is a required step for computing
functional connectivity of brain networks.

Index Terms— Adaptive beamformer, EEG, Electromagnetic
source imaging, Inverse problem, Linearly constrained minimum

variance beamformer, MEG, Robust beamformer, Robust
minimum variance beamformer.

I. INTRODUCTION
lectromagnetic source imaging (ESI) [1]-[3] wusing

Eelectroencephalography (EEG) [4], [5] or
magnetoencephalography (MEG) [6], [7] measurements is an
effective tool for mapping and imaging dynamic brain electrical
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activities. This functional imaging modality, which is typically
non-invasive (see [8]-[10] for ESI wusing intracranial
recordings), has been utilized by many researchers in clinical
environments to study the brain function or dysfunction in
various physiological or pathological (e.g., in epilepsy patients)
conditions. Due to the ill-posed nature of the EEG/MEG
source-imaging problem, many techniques have been proposed
in the literature to regularize the problem. See [11] for review
of ESI techniques. Adaptive beamformers [12], [13], which are
the focus of this study, design spatial filters to selectively pass
the signals associated with desired locations while suppressing
the activities coming from the rest of the brain. The word
adaptive corresponds to a feature by which the ultimate model
used to solve the inverse problem depends on the measurements
as well as the head volume conductor properties. In adaptive
beamformers, adaptation is achieved by incorporating the
measurements and noise covariance matrices into the problem
formulation.

Since first introduced to the brain source imaging
community, adaptive beamformers have been more often used
for MEG source imaging rather than EEG source imaging [2],
[14]. This may in part be due to the fact that sources of
uncertainty in the forward modeling of EEG is usually
considered to be more extensive compared to MEG. In practice,
electrical activities of the brain can be situated anywhere in the
brain tissue, while current dipoles are assumed in fixed and pre-
discretized locations (in a distributed model). In addition, there
are levels of uncertainty in the electrical properties of the head
volume conductor, such as the relative conductivity ratios of
different tissues (the scalp, the skull and the brain, in boundary
element model) and their inhomogeneity profiles. Furthermore,
realistic head volume model of the subject may be unavailable
in some cases. Unreliable estimation of the covariance matrices
because of insufficient or noisy data is another source of error
in practice. Consequently, availability of the true lead field is
almost impossible in many cases. On the other hand,
beamformers are generally sensitive to the errors in the forward
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models. More specifically, linearly constrained minimum
variance (LCMV) beamformer, which is the base of all adaptive
beamformers, is known to be highly sensitive even to slight
mismatches between the true and estimated models [15], [16].
See e.g., [14] for a detailed beamformer analysis of sensitivity
to the forward modeling mismatches.

To deal with these issues, the authors of [17], [18] have
applied a technique called diagonal loading (DL) to the MEG
source localization problem. DL replaces the covariance matrix
of the measurements with a regularized version, by adding a
constant factor of the unity matrix to the measurement
covariance matrix. Although DL can reduce the sensitivity to
some extent, it is understood that such regularizations lead to a
trade-off between the output signal-to-noise ratio (SNR) and the
spatial resolution of the LCMV [15]. More importantly, it is not
clear how to determine the optimal value of the DL factor based
on known levels of uncertainty in the lead field matrix [16].
Besides DL, eigenspace beamformer [15], [19] is another
technique that can yield robustness against modeling errors as
well as measurement noise. We sought to show that the
performance of this method may be further improved if the
uncertainty in the forward modeling is taken into consideration
in the model. While modeling lead field uncertainty has already
been investigated in the signal processing community through
a technique called robust minimum variance beamformer
(RMVB) [16], [20], [21], this study, to the best of our
knowledge, is the first to adapt the RMVB to functional brain
imaging and source imaging. Besides output SNR, which was
originally used to compare the RMVB to its peers, we used
three other criteria to investigate the merits and limitations of
the RMVB and to compare its accuracy to the conventional
adaptive beamformers for the purpose of ESI. To this end, we
conducted comprehensive computer simulations to show the
merits of a robust modeling.

II. METHODS

Brain electrical activities can be modeled by current dipoles
[1], [22]. Since Maxwell’s equations are solved in a quasi-static
regime, it can be assumed that the relation between these
dipoles and the EEG/MEG potentials generated at the sensors
is instantaneous and linear [23]. More specifically,

® =KJ] + Ny, ¢))

where @ is the matrix of EEG/MEG potentials generated
/recorded at the sensors at different time points, K is the lead
field matrix defining the linear relation between the current
dipoles and the potentials, J is the matrix of current dipoles over
time and N, models the noise at the sensors over time.
Assuming M sensors, N current dipoles and T time points, @
and N, are the matrices of size M X T, J is a matrix of size N X
T and K is a matrix of size M X N, which encompasses the
geometrical and electrical properties of the medium through
which brain signals propagate to reach to the sensors.

A. Linearly Constrained Minimum Variance (LCMYV)

The goal of ESI techniques is to recover the underlying source
activity (current dipole matrix J) using a set of electromagnetic
recordings (the measurements matrix ®). Scanning techniques
(LCMV, (RAP)-MUSIC, FINES, etc.) [13], [24], [25] use all
the measurements to estimate only a single element of the
current dipole vector located in a specific voxel, so in order to
estimate the full current dipole vector, all predefined source
space locations have to be scanned; hence the name scanning.
LCMV, which lies in this category, performs the task by
designing a spatial filter for each voxel. This spatial filter is a
linear operator, which once applied to the measurement matrix
@, back-projects the activities of a desired voxel from the scalp
measurements, while attempting to suppress the activities of all
other voxels besides noise. This procedure is repeated until all
current dipoles (at every voxel in the source space) are
estimated. Speaking more mathematically, LCMV solves the
following optimization problem:

* . T
w; = argminw, Cw;

S.t. WiTki =1, Vi € {1, ...,N}, (2)

where C is the measurements covariance matrix of size M X M
(see Practical Considerations section in the Supplementary
materials for estimation details), k; is the i® column of the lead
field matrix K corresponding to the current dipole at the it"
voxel and w; is a vector of size M X 1, which yields the
estimation of dipole i through the following equation:

Ji=wTo, vie{l,.., N} 3)

Using Lagrange multipliers method, the optimal solution of
this optimization problem can be shown to be

wi = (kTC k)™ C %k, Vie{d,..,N}. (4

To provide an intuitive interpretation of this procedure, one
should notice that the objective function in the optimization
problem (2) is in fact the output power of the linear filter (or the
variance of the estimated current dipole at voxeli). By
minimizing the filter output power (minimum variance (MV))
under the constraint w]k; = 1 (linearly constrained (LC)),
LCMYV ensures that to the best of its ability, the filter removes
the contribution of all irrelevant activities to the measurements
while keeping the desired signal intact.

Based on (4), it is clear that w; is inversely proportional to the
norm of the i*"* lead field column associated with the i*" voxel.
Since the norm of the lead field vector is generally smaller for
the voxels that are located further away from the electrodes, the
filter coefficients become larger for deeper locations. This
generates some bias towards deeper activities. Additionally,
depending on the location and orientation of the dipoles, noise
may affect the sources differently. To compensate for the depth
and asymmetric spatial distribution of the noise, LCMV is
usually followed by a normalization step of the filter
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coefficients [13], [18], [19], [26]. To this end, the filter
coefficients are normalized either by their [, norm [19] or by a
factor, which is a function of noise covariance matrix. This
factor can be calculated in different ways [18], for example by
finding the power of each voxel, if the filter coefficients are
applied to pure noise data. In other words, the filter coefficients
can be normalized according to

Wi

—l
*T *
,/Wi Cyw;

where Cp is the noise covariance matrix estimated using
baseline (see Practical Considerations section in the
Supplementary materials for estimation details). The authors of
[13] employed a slightly different strategy; they first
customized the filter coefficients by solving the optimization
problem (2) for noise-only segments and then followed the
same strategy, i.e.,

vie{l,.., N}, (5)

w; =

W= ——— Vie{l,.., N} (6)

where W;" is the solution of the optimization problem (2) with
the measurements covariance matrix C replaced with noise
covariance matrix Cy. This strategy was adopted for
normalization throughout this study. It should be mentioned
that in some applications such as resting state analysis, the
estimation of noise covariance matrix is not straightforward. In
such situations, Cy can be replaced with a unity matrix of
appropriate size, which is equivalent to assuming pure white
and identically distributed noise across all sensors.

Besides the normalization, LCMV can also benefit
significantly from a denoising procedure in the end. This
method, which is called the eigenspace beamformer, was first
introduced by [15], [19] to the source imaging community. The
eigenspace beamformer assumes that the number of sources is
known a priori. It then exploits this information to separate the
signal and noise subspace and project the filter coefficients
vector w; onto the signal subspace as follows:

Wi = ESE_;TWI', Vie {1, ...,N}, (7)

where E; is the truncated covariance matrix of the
measurements C. E is calculated by keeping the principal
components (associated with dominant singular values)
obtained from singular-value decomposition (SVD) of matrix C
and setting the rest to zero (the small values are assumed to be
due to noise). In practice, there are different approaches to
determine the number of principal components. The number of
components can be estimated by keeping the components that
explain a preset level of variation starting from components
with higher singular values, or those components that lie above
the knee of the curve showing the sorted singular values. In this
study, Kaiser’s rule [27] was used to select the number of

principal components. More specifically, we kept the
components associated with the singular values, which were
greater than the average of all singular values.

Based on our simulations, while both the normalization and
denoising steps play an important role in the quality of the
LCMV solutions, the role of denoising is more crucial.
Furthermore, applying both steps in series improves the
accuracy of solutions only slightly, compared to the denoising
alone. Nonetheless, we decided to implement both steps in this
study, since it was quite straightforward to apply the
normalization step as well. This method will be referred to as
“LCMV-ND-DN” (LCMV-normalized-denoised) in the rest of
this paper.

B. Robust Minimum Variance Beamforemer (RMVB)

In order to more explicitly consider the uncertainty in the
forward modeling, let R, ={z|(z—k)"P/*(z—k;) <
1} ={A;u+k; | |lull <1} be an M-dimensional ellipsoid
centered at k;, with M X M matrices P; and A; determining its
size and shape (P; = A;AT). This ellipsoid is assumed to cover
all possible values for the lead field column of the i*" voxel,
namely the uncertainty region (spanned by z and u M X 1
vectors). To consider the uncertainty of the lead field, one idea
is to enforce the spatial filter to pass the activities associated
with not only k;, but also all values in the uncertainty region R;.
Hence, the LCMV optimization problem (2) can be
reformulated as

* . T
wi = arg minw; Cw;
12

s.t. wy'z>1, Vz€ER,. (8)

The constraint in (8), which includes infinite number of
linear equations, is equivalent to:

wi(Au+k)=>1, Vus.t ||lul<1. 9

Inequality (9) holds if and only if it holds for u* that
minimizes the term w] A;u. Cauchy-Schwartz inequality and
the constraint |[u|| < 1 lead to u* = —ATw;/ ||ATw;|| [16],
[21]. By substituting this value and some manipulations, the
optimization problem (8) can be expressed as

* . T
wi = arg minw; Cw;

st wiTkg 2 1+ |Afwill, vie{1,..,N},  (10)
which is a second order cone programming (SOCP) problem
[28], [29]. After solving this problem, the solution can be
normalized such that w; Tkl- = 1. Henceforth, we refer to this
problem as the robust minimum variance beamformer
(RMVB). While the RMVB does not enjoy a closed-form
solution as the conventional LCMV, it can still be solved
efficiently using any convex optimization solver such as CVX
[30], [31] (See Supplementary materials for more details on
convex optimization). Additionally, the normalization and
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Fig. 1. The Monte Carlo simulation statistics for the single-node source scenario. (A) The median DLE results for SNRs of 5dB and 20dB and for
four types of beamformers namely, LCMV, RMVB, LCMV-ND-DN and RMVB-ND-DN. The error bars mark the first and third quartiles (of DLE
distribution). (B) The median output SNR results along with the first and third quartile error bars for the same configuration.

denoising steps can also be applied to the solution of RMVB as
before. This will be referred to as the RMVB-ND-DN in the rest
of the paper.

C. Uncertainty Region Estimation

Multiple sources of uncertainty have to be considered in
order to find the uncertainty region, e.g., uncertainty in the
location (due to discretization) and orientation of the current
dipoles or uncertainty in the forward model parameters (due to
insufficient information about the head volume geometry,
conductivities, inhomogeneity, etc.). In any case, it is possible
to estimate the uncertainty region empirically by sampling the
surrounding source space for each voxel [8] or by using several
forward models, for instance, constructed for -electrical
conductivities in a given range [32]. More specifically,
assuming S; neighbors and F forward models, the first and
second order statistics of the uncertainty for the i*" voxel can
be estimated as

_ 1 ;
Ri=z > K, (11)
f=1.F
and
o=— Z(k.(s' D k) (k& P -k) a2
‘TS xF l AN 0

where klf is the lead field column of the i*" voxel in the ft"

P is the lead field column of the st
sampled neighbor in the f** forward model, k; is the average

forward model, k*®

lead field (of all ki(s' f )) to be used in the inverse problem and
Q; is the covariance matrix of the uncertainty. The authors of

[8] proposed to apply a projection on each ki(s' ) before using

them in (12). This projection in a fixed-orientation model,
which is the case for this study, translates to flipping the sign of

kl.(s' n (or equivalently the orientation of dipoles), wherever
this reduces the distance between k™ 7 and k;. This is helpful
in avoiding overestimation of the uncertainty region size. P;,
which defines the shape and size of the uncertainty ellipsoid, is
indeed an inflated version of Q; (P; = aQ;). The inflation factor
a; can be found such that the uncertainty region R; contain all

the points ki(s' 2 [21], which mathematically translates to

= s (65 0 1) 07 (k5 7~ R).

(13)

See Practical Considerations section in the Supplementary
materials for further details of tuning uncertainty ellipsoids
sizes.

D. Computer Simulation Protocol

In order to investigate the performance of robust beamformer
and compare its merits and limitations to the conventional
beamformer, a series of computer simulations were conducted.
To this end, a realistic head volume model was built upon the
Montreal Neurological Institute Colin brain [33] consisting of
three layers i.e., the scalp, the skull and the brain. To solve the
forward problem and to simulate the EEG recordings, a
standard 128-cahnnel BioSemi cap was fitted to the Colin
brain, and a boundary element method (BEM) model [4], [34]
was then derived to find the lead field matrix, which linearly
projects the current dipoles to the electrical potentials at the
electrodes.

In order to avoid any form of inverse crime and to evaluate
the capabilities of robust beamformer in dealing with model
violations, different models were derived for the forward and
inverse problems. While cortex was meshed very finely with a
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Fig. 2. An example of a 3-node network with focal activity. The source imaging results for a single 3-node source with focal
activity using four types of beamformers namely, LCMV, RMVB, LCMV-ND-DN and RMVB-ND-DN. SNR in this
example is set to 20dB and the solution is thresholded with a cut-off value of 0.01. The blue rings of the plots mark the

positions of the true source.

grid of 1 mm (~131,000 elements on the cortex, in total) in the
forward problem, a coarser grid of 5 mm (~9,000 elements on
the cortex, in total) was used for the inverse problem. In the
forward model, the electrical conductivity of the scalp, the skull
and the brain (0scaip, Tsiun and Oprqin) Were set to 0.33 S/m,
0.022 S/m and 0.33 S/m, respectively, while an average model
based on what follows was built to solve the inverse problem.
For estimation of uncertainty regions only the conductivity and
discretization uncertainties were considered. To this end, 11
different models were built. The electrical conductivities of the
scalp and the brain were fixed to 0.33 S/m in all the models,
while for the skull it was set such that the conductivity ratio
(Oprain/Oskun) picked values incrementally with the steps of 1
in the physiological range of 15 — 25 [35]-[37]. The brain in
each model was meshed with two different choices of grid
sizes; a same coarser grid of Smm for the center of uncertainty
regions as in the inverse problem and a very fine grid of 1.1 mm
to estimate the variations for the nearest neighbor in the coarser
mesh according to (12). In this setting, each point of the fine
mesh was considered as a neighbor of one and only one point
in the coarser mesh. Note that different fine meshes were used
in the forward problem and estimation of uncertainty regions
(grid of 1 mm versus 1.1 mm); as also in real situations the true
source space is unavailable beforehand.

In this study, four different scenarios were simulated. The
first scenario consisted of 100 point dipoles placed randomly
on the cortex with a fixed orientation normal to the cortex
surface. To mimic a realistic inter-ictal spike, each dipole was
assigned a time course of activity sampled at the rate of 1 kHz

(see Fig. S1 in the Supplementary materials). In order to
investigate the effect of number of active nodes on the imaging
accuracy, in the second scenario, each configuration had three
nodes of activity. The time-courses, in this scenario, were such
to yield a minimal correlation between the nodes (see Fig. S2.
(A and B) in the Supplementary materials). In the third
scenario, the time-courses had high correlation factors to
consider the effect of correlation between nodes in 3-node
networks (see Fig. S2 (C and D) in the Supplementary
materials). Please refer to the Supplementary materials to
review the results of this scenario. The last scenario was
designed to evaluate the performance of robust and
conventional beamformers in situations, where sources are not
focal. The general criteria in this scenario remained the same as
the second scenario with the exception that each node had an
extent with a radius size roughly ranging from 10 mm to 30
mm (randomly selected for each node of the network). In this
study, all the voxels within the extent of each node had the same
amplitude and the same time-course. After solving the forward
problem, the generated potentials at the electrodes were
contaminated by additive white Gaussian noise (AWGN) to
simulate a more realistic condition. The effect of noise was
further assessed by considering two different SNRs (calculated
based on power) i.e., 5 and 20 dB representing low and high
levels of noise. Finally, a fixed-orientation (normal to the cortex
surface) model was used to solve the inverse problem. This
choice can be justified by the fact that EEG signals are
generated by pyramidal cells, which project their dendrites
orthogonally to the cortex surface [38]. The simulation protocol
in this study is similar to our previous works [9], [39].
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Fig. 3. The Monte Carlo simulation statistics for the three-node uncorrelated source scenario. (A) The median DLE results for SNRs of 5dB and
20dB and for four types of beamformers namely, LCMV, RMVB, LCMV-ND-DN and RMVB-ND-DN. The error bars mark the first and third
quartiles (of DLE distribution). (B) The median output SNR results along with the first and third quartile error bars for the same configuration.

E. Performance Measures

Performance in this study was assessed by different metrics,
namely dipole localization error (DLE), signal to noise ratio
(SNR), receiver operator characteristics (ROC) curve and
Matthew’s correlation coefficient (MCC). The former two
metrics were used for focal activity scenarios, while the latter
two evaluated the conventional and robust beamformers in the
extended source scenario. DLE measures the Euclidean
distance between the simulated and recovered source locations,
which are determined by estimating the foci of activity
employing a PCA-based technique (dominant local maxima of
the principal components as the foci of activity) [9], [39]. The
SNR characterizes how well the temporal profile of the
underlying sources can be recovered by ESI. Noise in this
metric is defined as the difference between the simulated and
recovered time courses. The power of the simulated signal over
the power of noise in logarithmic scale yields the SNR in dB.
In order to evaluate the concordance between temporal patterns,
both the simulated and recovered signals were normalized by
their power before SNR was calculated. The time course of the
estimated locations, and not the true source locations, were
considered in calculating the SNR. In order to compare the
simulated and estimated source distributions in the extended
source scenario, ROC curve was used to evaluate the trade-off
between sensitivity and specificity of the estimation by plotting
the true positive rate (TPR) versus false positive rate (FPR) [40]
of the estimation. Any location in the solution beyond a
threshold is considered a source and active, while any location
with an amplitude below the threshold is inactive and not a
source. Thresholds are varied, and the FPR and TPR are
calculated accordingly (each point of curve is at a different
threshold). Area under the curve (AUC) is the area under the
ROC curve; a metric for comparing different ROC curves. The
closer the AUC of a ROC curve is to 1, the more accurate the
estimation is [41]. MCC, which in essence measures the

correlation between the simulated and estimated distributions,
is another metric used in this study to assess the estimation
quality [42]. MCC calculates the predictability of an observed
and estimated classification, which in this case is the source
extent, and is formulated as follows:

TP X TN — FP X FN
McCC = (14)
J (TP +FP)(TP + FN)(TN + FP)(TN + FN)

where, TP, TN, FP and FN represent the true positive, true
negative, false positive and false negative rates of the
estimation, respectively. Since MCC works in a binary mode, it
requires a thresholding mechanism to turn the estimated
distribution into active and inactive regions. In this study, the
threshold was swept and determined in such a way to yield the
maximum MCC. We note that MCC takes values from —1
to +1, from the most disparate case to the most concordant
case, respectively.

III. RESULTS

The results presented in this section are to evaluate the effect
of normalization and denoising procedures in addition to
modeling the lead field uncertainty on the ultimate performance
of beamformers. To this end, four types of beamformers
namely, LCMV [13], RMVB [16], [21], LCMV-ND-DN [15],
[19] and RMVB-ND-DN were tested.

A. Focal Sources

Fig. 1 depicts the performance of the mentioned
beamformers in situations, where the underlying source activity
can be modeled with a single dominant current dipole. In order
to find the effect of noisy measurements on the performance,
the simulations were repeated for high and low noise levels
associated with the SNRs of 5 dB and 20 dB, respectively. Fig.
1 (A) depicts the median DLE for the 100 dipoles as simulated
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Fig. 4. An example of a three-node network with extended activity. The simulated three-node patches of activity as well as the source imaging
results using four types of beamformers namely, LCMV, RMVB, LCMV-ND-DN and RMVB-ND-DN. SNR in this example is set to 20dB and
the solution of each technique is thresholded separately such that MCC is maximized for that technique. The blue regions and boundaries of the

plots mark the true source extents.

in the first scenario. To present the uncertainties in the results,
the first and third quartiles of data are reported with error bars.
These results indicate that the robust adaptive beamformers,
ie.,, the RMVB and RMVB-ND-DN, outperform their
conventional counterparts i.e., the LCMV and LCMV-ND-DN,
respectively. Additionally, including the normalization and
denoising procedures plays an important role in the quality of
the results. Fig. 1 (B) yields the evaluation in terms of output
SNR. According to this plot, while both the LCMV-ND-DN
and RMVB-ND-DN outperform the LCMV and RMVB, they
both perform equally well in recovering the temporal profile of
the simulated activity. It can also be observed that including the
post-processing steps can considerably decrease the sensitivity
to noise levels. In fact, the gap between the RM VB performance
in low and high levels of noise compared to the methods with
post-processing of the solution, can be justified with regard to
its lack of appropriate measures or mechanisms to remove or
counteract the effect of noise. Furthermore, since the LCMV
does not take into consideration the depth and asymmetric
spatial distribution of the noise on one hand and is not designed
to be robust against modeling errors on the other hand, its
performance is especially poor when estimating output SNRs.

B. The Effect of Number of Active Nodes

In the second scenario, 100 source configurations each
containing three active nodes were considered. Fig. 2 shows an
example, where the three simulated current dipoles are placed
at the right temporal, left frontal and left occipital lobes,

respectively (the center of the blue rings on the plots mark the
exact positions). SNR in this example is set to 20 dB. Following
the localization procedure discussed in the Computer
Simulation Protocol section, it can be found that all versions
except the LCMYV are able to pinpoint the true location of the
simulated dipoles in this example. However, the solution of
RMVB-ND-DN is more focal and thus more consistent with the
underlying dipole source, while the LCMYV yields the smoothest
solution, which is not as focal as the RMVB. It should be
mentioned that, for display purposes, the threshold was set to
1% in this figure. This implies that e.g., in the solution of
RMVB-ND-DN almost all falsely recovered dipoles are at least
100 times weaker than the strongest activity.

Fig. 3 (A) and Fig. 3 (B) plot the median DLE and SNR along
with the corresponding first and third quartile error bars for two
noise levels. The LCMV is sensitive to the number of sources
in terms of DLE, while the other three techniques show less
sensitivity. As in the earlier scenarios, normalization and
denoising play a crucial role in the performance of both
conventional and robust beamformers. However, robust
beamformers are successful in modeling the uncertainty, even
without these normalization and denoising steps. When such
processing is applied, the results indicate that it is still better to
use the robust version instead of the conventional beamformer,
if computational resources are available. Furthermore, it can be
seen that the RMVB is sensitive to input noise level especially
when evaluating the output SNR. Please refer to the
Supplementary materials to review the role of normalization in
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Fig. 5. An example of a three-node network with extended activity. The simulated three-node patches of activity as well as the source imaging
results using four types of beamformers namely, LCMV, RMVB, LCMV-ND-DN and RMVB-ND-DN. SNR in this example is set to 20dB and
the solution is thresholded with a preset cut-off value of 0.01. The blue regions and boundaries of the plots mark the true source extents.

removing the inherent bias of adaptive beamformers toward
deeper locations as well as the effect of correlated activities on
beamformers performance.

C. Extended Sources

The fourth scenario was designed to evaluate the
aforementioned beamformers in determining the distribution
and shape of the underlying activities. To this end, Figs. 4 and
5 are to simulate three patches of extended sources rather than
point dipoles. The blue boundaries in these plots mark the true
source extents. The area of each patch is roughly 750 mm? and
again SNR is 20 dB. In Fig. 4, the threshold of display is
optimized for each technique separately such that MCC is
maximized, while in Fig. 5, it is preset to an arbitrary small
value of 1%. The main observation is that in both cases, the
RMVB-ND-DN captures the extent of the underlying activity
while keeping number of falsely recovered dipoles small.
Whereas, regular beamformers either underestimate the true
source extent (Fig. 4) or have high false positive rates (Fig. 5).
Since the optimal value of the threshold to detect the source
extent is unknown a priori, robustness to threshold is highly
valuable in practice.

Fig. 6 plots the average ROC curve for 100 source
configurations each containing three extended nodes of activity
for SNRs of 5 and 20 dB in the left and right panels,
respectively. Each point on a ROC curve (TPR versus FPR) is
associated with a cut-off threshold, the values below which
were set to 0. The corresponding AUC of all the curves are

reported in the legend of this figure. Obviously, the RMVB-
ND-DN better estimates the extent of the underlying source
compared to other versions of beamformers according to this
metric. Moreover, the results of the RMVB and LCMV-ND-
DN are close to each other (the RMVB is slightly superior to
the LCMV-ND-DN). Fig. 7 reports the median MCC for the
same data. The threshold for each source is determined such
that MCC is maximized for that specific configuration. As it
can be seen, the trend of this figure is the same as Fig. 6, with
the RMVB-ND-DN at the top followed by the RMVB, LCMV-
ND-DN and LCMYV, respectively. It should also be noted that
the absolute values of MCC in this figure do not provide much
information about the quality of the estimation, and that the goal
of this figure is to provide only a benchmark to compare
different beamformers’ performance. Finally, interested readers
are referred to Fig. S7 and Fig. S8 in Supplementary materials
for the results of beamformers with diagonal loading.

IV. DISCUSSION

In this study, we proposed a new technique named robust
minimum variance beamformer (RMVB), which unlike
traditional adaptive beamformers, explicitly takes into
consideration the uncertainty of the forward models. In order to
compare the performance of RMVB with the well-known
LCMV adaptive beamformer, we performed Monte Carlo
simulations in various scenarios representing different
conditions for underlying source activity. We also simulated the
modified versions of each technique by applying the post-hoc
normalization/denoising step (i.e., LCMV-ND-DN and
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Fig. 6. The Monte Carlo simulation statistics for the extended source scenario. The Average ROC curves for four types of beamformers namely,
LCMV, RMVB, LCMV-ND-DN and RMVB-ND-DN and for SNRs of 5 and 20 dB in the left and right panels, respectively. The corresponding

AUC of all the curves are reported in the legend.

RMVB-ND-DN techniques). Based on simulation results,
RMVB and RMVB-ND-DN can better estimate the underlying
source activities compared to LCMV and LCMV-ND-DN
respectively; although, LCMV-ND-DN yields favorable results
in certain cases as well. As a general observation, both post-
processing of the solutions (normalization and/or denoising
steps) and modeling the uncertainty (the robust versions)
enhance the performance. By combining both procedures in
RMVB-ND-DN, our technique outperformed other versions
based on all metrics that were used in this study. It was also
observed that there is especially a clear benefit in using robust
beamformers to estimate extended sources (as depicted in Fig.
6 and Fig. 7).

Although the optimization problem (10) can be solved easily
using general-purpose convex solvers such as CVX [30], [31],
RMYVB can be much slower than the conventional LCMYV, since
the optimization problem has to be solved for many voxels.
While CVX was used in this study, RMVB can be significantly
accelerated by employing a specifically tailored algorithm for
the optimization module. Fortunately, this algorithm, which is
based on Lagrange multipliers method, exists and can solve the
problem much more efficiently and faster than the CVX
package [21]. Furthermore, parallel computing can also be
exploited by virtue of the scanning scheme of the beamformers,
yielding further acceleration (by estimating the weights for
different voxels in parallel). Overall, it takes about 7 seconds to
find the solution of RMVB using parallel computing (in
MATLAB and on a server computer with 8x32 GB of RAM and
a 2x Intel Xeon E5-2697v2 2.7GHz processor) which is
approximately 20 times slower than the conventional LCMV.
This amount of time is reasonably short for applications where
source imaging is performed off-line. Besides optimization,
estimation of uncertainty regions can be computationally
demanding as well, since it requires building several forward
models depending on the source of uncertainty in the actual
problem. However, these regions are computed only once
before source imaging is performed. Furthermore, the
uncertainty region estimation at each location is independent

from other locations. Thus, these can be computed in a parallel
fashion (as in solving the optimization problem), resulting in
efficient implementations of beamformer approaches. Such
reduction in computation times due to parallel computing
makes robust beamformer approaches desirable and practically
achievable.

Finally, a fixed-orientation model was used to solve the
inverse problem in this study. Although this choice can be
justified through the anatomical location and orientation of
pyramidal neuron cells generating EEG/MEG signals,
estimating the orientations through solving the inverse problem
rather than assuming the orientation a priori may be beneficial.
For instance, segmentation of the cortex may not be accurate
enough, and the normal orientations estimated from such
segmentation results may be inaccurate, especially if the
segmentation is coarse. Estimating the orientation of dipoles
while solving the inverse problem may be achieved by
considering free orientations for the current dipoles along
different axis e.g., X,y and Z in a Cartesian coordinate. The
extension of this work to a vector robust beamformer, which is
based on rotational models, will be the topic of a future study.

V. CONCLUSION

In this work, we have proposed and investigated robust
beamformers for the purpose of electromagnetic source
imaging. The main advantage of robust beamformers over
conventional adaptive beamformers, is that the RMVB and
RMVB-ND-DN are more robust to mismatches between the
forward and inverse modeling, which are inevitable in practice.
The robust beamformers presented in this paper outperformed
the conventional beamformers in terms of localization error,
recovering source dynamics and estimation of the underlying
source extents, when uncertainty in the lead field matrix is
properly determined and modeled. This can justify the robust
implementation of beamformers for applications, where source
imaging is performed to study pathological and normal brain
networks.
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Fig. 7. The Monte Carlo simulation statistics for the extended source
scenario. The median MCC results along with the first and third quartile
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LCMV-ND-DN and RMVB-ND-DN and for SNR of 20 dB.
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