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 
Abstract— Objective: Adaptive beamformer methods, which 

have been extensively used for functional brain imaging using 
EEG/MEG signals, are sensitive to model mismatches. We propose 
a robust minimum variance beamformer (RMVB) technique, 
which explicitly incorporates the uncertainty of the lead field 
matrix into estimation of spatial-filter weights that are 
subsequently used to perform the imaging. Methods: The 
uncertainty of the lead field is modeled by ellipsoids in the RMVB 
method; these hyper-ellipsoids (ellipsoids in higher dimensions) 
define regions of uncertainty for a given nominal lead field vector. 
These ellipsoids are estimated empirically by sampling lead field 
vectors surrounding each point of the source space, or more 
generally by building several forward models for the source space. 
Once these uncertainty regions (ellipsoids) are estimated, they are 
used to perform the source-imaging task. Computer simulations 
are conducted to evaluate the performance of the proposed RMVB 
technique. Results: Our results show that robust beamformers can 
outperform conventional beamformers in terms of localization 
error, recovering source dynamics and estimation of the 
underlying source extents, when uncertainty in the lead field 
matrix is properly determined and modeled. Conclusion: RMVB 
can substitute conventional beamformers, especially in 
applications, where source imaging is performed off-line, and 
computational speed and complexity are not of major concern. 
Significance: A high-quality source imaging can be utilized in 
various applications such as determining the epileptogenic zone in 
medically intractable epilepsy patients or estimating the time-
course of activity, which is a required step for computing 
functional connectivity of brain networks.  
 

Index Terms— Adaptive beamformer, EEG, Electromagnetic 
source imaging, Inverse problem, Linearly constrained minimum 
variance beamformer, MEG, Robust beamformer, Robust 
minimum variance beamformer.  
 

I. INTRODUCTION 

lectromagnetic source imaging (ESI) [1]–[3] using 
electroencephalography (EEG) [4], [5] or 

magnetoencephalography (MEG) [6], [7] measurements is an 
effective tool for mapping and imaging dynamic brain electrical 
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activities. This functional imaging modality, which is typically 
non-invasive (see [8]–[10] for ESI using intracranial 
recordings), has been utilized by many researchers in clinical  
environments to study the brain function or dysfunction in 
various physiological or pathological (e.g., in epilepsy patients) 
conditions. Due to the ill-posed nature of the EEG/MEG 
source-imaging problem, many techniques have been proposed 
in the literature to regularize the problem. See [11] for review 
of ESI techniques. Adaptive beamformers [12], [13], which are 
the focus of this study, design spatial filters to selectively pass 
the signals associated with desired locations while suppressing 
the activities coming from the rest of the brain. The word 
adaptive corresponds to a feature by which the ultimate model 
used to solve the inverse problem depends on the measurements 
as well as the head volume conductor properties. In adaptive 
beamformers, adaptation is achieved by incorporating the 
measurements and noise covariance matrices into the problem 
formulation.   

Since first introduced to the brain source imaging 
community, adaptive beamformers have been more often used 
for MEG source imaging rather than EEG source imaging [2], 
[14]. This may in part be due to the fact that sources of 
uncertainty in the forward modeling of EEG is usually 
considered to be more extensive compared to MEG. In practice, 
electrical activities of the brain can be situated anywhere in the 
brain tissue, while current dipoles are assumed in fixed and pre-
discretized locations (in a distributed model). In addition, there 
are levels of uncertainty in the electrical properties of the head 
volume conductor, such as the relative conductivity ratios of 
different tissues (the scalp, the skull and the brain, in boundary 
element model) and their inhomogeneity profiles. Furthermore, 
realistic head volume model of the subject may be unavailable 
in some cases. Unreliable estimation of the covariance matrices 
because of insufficient or noisy data is another source of error 
in practice. Consequently, availability of the true lead field is 
almost impossible in many cases. On the other hand, 
beamformers are generally sensitive to the errors in the forward 
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models. More specifically, linearly constrained minimum 
variance (LCMV) beamformer, which is the base of all adaptive 
beamformers, is known to be highly sensitive even to slight 
mismatches between the true and estimated models [15], [16]. 
See e.g., [14] for a detailed beamformer analysis of sensitivity 
to the forward modeling mismatches.  

To deal with these issues, the authors of [17], [18] have 
applied a technique called diagonal loading (DL) to the MEG 
source localization problem. DL replaces the covariance matrix 
of the measurements with a regularized version, by adding a 
constant factor of the unity matrix to the measurement 
covariance matrix. Although DL can reduce the sensitivity to 
some extent, it is understood that such regularizations lead to a 
trade-off between the output signal-to-noise ratio (SNR) and the 
spatial resolution of the LCMV [15]. More importantly, it is not 
clear how to determine the optimal value of the DL factor based 
on known levels of uncertainty in the lead field matrix [16]. 
Besides DL, eigenspace beamformer [15], [19] is another 
technique that can yield robustness against modeling errors as 
well as measurement noise. We sought to show that the 
performance of this method may be further improved if the 
uncertainty in the forward modeling is taken into consideration 
in the model. While modeling lead field uncertainty has already 
been investigated in the signal processing community through 
a technique called robust minimum variance beamformer 
(RMVB) [16], [20], [21], this study, to the best of our 
knowledge, is the first to adapt the RMVB to functional brain 
imaging and source imaging. Besides output SNR, which was 
originally used to compare the RMVB to its peers, we used 
three other criteria to investigate the merits and limitations of 
the RMVB and to compare its accuracy to the conventional 
adaptive beamformers for the purpose of ESI. To this end, we 
conducted comprehensive computer simulations to show the 
merits of a robust modeling.  

II. METHODS 

Brain electrical activities can be modeled by current dipoles 
[1], [22]. Since Maxwell’s equations are solved in a quasi-static 
regime, it can be assumed that the relation between these 
dipoles and the EEG/MEG potentials generated at the sensors 
is instantaneous and linear [23]. More specifically,  

 
𝛷 = 𝐾𝐽 + 𝑁଴, (1)

  
where 𝛷 is the matrix of EEG/MEG potentials generated 
/recorded at the sensors at different time points, 𝐾 is the lead 
field matrix defining the linear relation between the current 
dipoles and the potentials, 𝐽 is the matrix of current dipoles over 
time and 𝑁଴ models the noise at the sensors over time. 
Assuming  𝑀 sensors, 𝑁 current dipoles and 𝑇 time points, 𝛷 
and 𝑁଴ are the matrices of size 𝑀 × 𝑇, 𝐽 is a matrix of size 𝑁 ×
𝑇 and 𝐾 is a matrix of size 𝑀 × 𝑁, which encompasses the 
geometrical and electrical properties of the medium through 
which brain signals propagate to reach to the sensors.  
 

A. Linearly Constrained Minimum Variance (LCMV)  

The goal of ESI techniques is to recover the underlying source 
activity (current dipole matrix J) using a set of electromagnetic 
recordings (the measurements matrix Φ). Scanning techniques 
(LCMV, (RAP)-MUSIC, FINES, etc.) [13], [24], [25] use all 
the measurements to estimate only a single element of the 
current dipole vector located in a specific voxel, so in order to 
estimate the full current dipole vector, all predefined source 
space locations have to be scanned; hence the name scanning. 
LCMV, which lies in this category, performs the task by 
designing a spatial filter for each voxel. This spatial filter is a 
linear operator, which once applied to the measurement matrix 
Φ, back-projects the activities of a desired voxel from the scalp 
measurements, while attempting to suppress the activities of all 
other voxels besides noise. This procedure is repeated until all 
current dipoles (at every voxel in the source space) are 
estimated. Speaking more mathematically, LCMV solves the 
following optimization problem: 

 
𝑤௜

∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
௪೔

𝑤௜
்𝐶𝑤௜   

 𝑠. 𝑡.    𝑤௜
்𝑘௜ = 1,    ∀𝑖 ∈ {1, … , 𝑁}, (2) 

 
where 𝐶 is the measurements covariance matrix of size 𝑀 × 𝑀 
(see Practical Considerations section in the Supplementary 
materials for estimation details), 𝑘௜ is the 𝑖௧௛ column of the lead 
field matrix 𝐾 corresponding to the current dipole at the 𝑖௧௛ 
voxel and 𝑤௜  is a vector of size 𝑀 × 1, which yields the 
estimation of dipole 𝑖 through the following equation: 
 

𝐽መ௜ = 𝑤௜
∗்

𝛷,    ∀ 𝑖 ∈ {1, … , 𝑁}. (3) 
 
Using Lagrange multipliers method, the optimal solution of 

this optimization problem can be shown to be 
 

𝑤௜
∗ = (𝑘௜

்𝐶ିଵ𝑘௜)ିଵ𝐶ିଵ𝑘௜ ,    ∀ 𝑖 ∈ {1, … , 𝑁}. (4) 
       

To provide an intuitive interpretation of this procedure, one 
should notice that the objective function in the optimization 
problem (2) is in fact the output power of the linear filter (or the 
variance of the estimated current dipole at voxel 𝑖). By 
minimizing the filter output power (minimum variance (MV)) 
under the constraint 𝑤௜

்𝑘௜ = 1 (linearly constrained (LC)), 
LCMV ensures that to the best of its ability, the filter removes 
the contribution of all irrelevant activities to the measurements 
while keeping the desired signal intact.   

Based on (4), it is clear that 𝑤௜
∗ is inversely proportional to the 

norm of the 𝑖௧௛ lead field column associated with the 𝑖௧௛ voxel. 
Since the norm of the lead field vector is generally smaller for 
the voxels that are located further away from the electrodes, the 
filter coefficients become larger for deeper locations. This 
generates some bias towards deeper activities. Additionally, 
depending on the location and orientation of the dipoles, noise 
may affect the sources differently. To compensate for the depth 
and asymmetric spatial distribution of the noise, LCMV is 
usually followed by a normalization step of the filter 
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coefficients [13], [18], [19], [26]. To this end, the filter 
coefficients are normalized either by their 𝑙ଶ norm [19] or by a 
factor, which is a function of noise covariance matrix. This 
factor can be calculated in different ways [18], for example by 
finding the power of each voxel, if the filter coefficients are 
applied to pure noise data. In other words, the filter coefficients 
can be normalized according to 

 

𝑤௜ =  
𝑤௜

∗

ට𝑤௜
∗்𝐶ே𝑤௜

∗

,    ∀ 𝑖 ∈ {1, … , 𝑁}, (5)
 

 
where 𝐶ே is the noise covariance matrix estimated using 
baseline (see Practical Considerations section in the 
Supplementary materials for estimation details). The authors of 
[13] employed a slightly different strategy; they first 
customized the filter coefficients by solving the optimization 
problem (2) for noise-only segments and then followed the 
same strategy, i.e., 

 

𝑤௜ =  
𝑤௜

∗

ට𝑤෥௜
∗்𝐶ே𝑤෥௜

∗

,    ∀ 𝑖 ∈ {1, … , 𝑁}, (6)
 

 
where 𝑤෥௜

∗ is the solution of the optimization problem (2) with 
the measurements covariance matrix 𝐶 replaced with noise 
covariance matrix 𝐶ே. This strategy was adopted for 
normalization throughout this study. It should be mentioned 
that in some applications such as resting state analysis, the 
estimation of noise covariance matrix is not straightforward. In 
such situations, 𝐶ே can be replaced with a unity matrix of 
appropriate size, which is equivalent to assuming pure white 
and identically distributed noise across all sensors.  

Besides the normalization, LCMV can also benefit 
significantly from a denoising procedure in the end. This 
method, which is called the eigenspace beamformer, was first 
introduced by [15], [19] to the source imaging community. The 
eigenspace beamformer assumes that the number of sources is 
known a priori. It then exploits this information to separate the 
signal and noise subspace and project the filter coefficients 
vector 𝑤௜  onto the signal subspace as follows: 

 
𝑤ഥ௜ = 𝐸௦𝐸௦

்𝑤௜ ,    ∀ 𝑖 ∈ {1, … , 𝑁}, (7) 
 

where 𝐸௦ is the truncated covariance matrix of the 
measurements 𝐶. 𝐸௦ is calculated by keeping the principal 
components (associated with dominant singular values) 
obtained from singular-value decomposition (SVD) of matrix 𝐶 
and setting the rest to zero (the small values are assumed to be 
due to noise). In practice, there are different approaches to 
determine the number of principal components. The number of 
components can be estimated by keeping the components that 
explain a preset level of variation starting from components 
with higher singular values, or those components that lie above 
the knee of the curve showing the sorted singular values. In this 
study, Kaiser’s rule [27] was used to select the number of 

principal components. More specifically, we kept the 
components associated with the singular values, which were 
greater than the average of all singular values.  

Based on our simulations, while both the normalization and 
denoising steps play an important role in the quality of the 
LCMV solutions, the role of denoising is more crucial. 
Furthermore, applying both steps in series improves the 
accuracy of solutions only slightly, compared to the denoising 
alone. Nonetheless, we decided to implement both steps in this 
study, since it was quite straightforward to apply the 
normalization step as well. This method will be referred to as 
“LCMV-ND-DN” (LCMV-normalized-denoised) in the rest of 
this paper. 

 

B. Robust Minimum Variance Beamforemer (RMVB) 

In order to more explicitly consider the uncertainty in the 
forward modeling, let 𝑅௜ = {𝑧 | (𝑧 − 𝑘௜)்𝑃௜

ିଵ (𝑧 − 𝑘௜  ) ≤
1} = {𝐴௜𝑢 + 𝑘௜  | ‖𝑢‖ ≤ 1} be an 𝑀-dimensional ellipsoid 
centered at 𝑘௜, with 𝑀 × 𝑀 matrices 𝑃௜  and 𝐴௜  determining its 
size and shape (𝑃௜ = 𝐴௜𝐴௜

்). This ellipsoid is assumed to cover 
all possible values for the lead field column of the 𝑖௧௛ voxel, 
namely the uncertainty region (spanned by 𝑧 and 𝑢 𝑀 × 1 
vectors). To consider the uncertainty of the lead field, one idea 
is to enforce the spatial filter to pass the activities associated 
with not only 𝑘௜, but also all values in the uncertainty region 𝑅௜. 
Hence, the LCMV optimization problem (2) can be 
reformulated as  

 
𝑤௜

∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
௪೔

𝑤௜
்𝐶𝑤௜  

𝑠. 𝑡.     𝑤௜
்𝑧 ≥ 1,    ∀ 𝑧 ∈ 𝑅௜ . (8) 

 
The constraint in (8), which includes infinite number of 

linear equations, is equivalent to: 
 

𝑤௜
்(𝐴௜𝑢 + 𝑘௜) ≥ 1,    ∀ 𝑢  𝑠. 𝑡.  ‖𝑢‖ ≤ 1. (9) 

 
Inequality (9) holds if and only if it holds for  𝑢∗ that 

minimizes the term 𝑤௜
்𝐴௜𝑢. Cauchy-Schwartz inequality and 

the constraint ‖𝑢‖ ≤ 1 lead to 𝑢∗ = −𝐴௜
்𝑤௜/ ‖𝐴௜

்𝑤௜‖ [16], 
[21]. By substituting this value and some manipulations, the 
optimization problem (8) can be expressed as 

 
𝑤௜

∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
௪೔

𝑤௜
்𝐶𝑤௜  

     𝑠. 𝑡.     𝑤௜
்𝑘௜ ≥ 1 + ‖𝐴௜

்𝑤௜‖,    ∀ 𝑖 ∈ {1, … , 𝑁}, (10) 
 

which is a second order cone programming (SOCP) problem 
[28], [29]. After solving this problem, the solution can be 

normalized such that 𝑤௜
∗்

𝑘௜ = 1. Henceforth, we refer to this 
problem as the robust minimum variance beamformer 
(RMVB). While the RMVB does not enjoy a closed-form 
solution as the conventional LCMV, it can still be solved 
efficiently using any convex optimization solver such as CVX 
[30], [31] (See Supplementary materials for more details on 
convex optimization). Additionally, the normalization and 



TBME-00554-2018.R1 
 

4

denoising steps can also be applied to the solution of RMVB as 
before. This will be referred to as the RMVB-ND-DN in the rest 
of the paper. 
 

C.  Uncertainty Region Estimation 

Multiple sources of uncertainty have to be considered in 
order to find the uncertainty region, e.g., uncertainty in the 
location (due to discretization) and orientation of the current 
dipoles or uncertainty in the forward model parameters (due to 
insufficient information about the head volume geometry, 
conductivities, inhomogeneity, etc.). In any case, it is possible 
to estimate the uncertainty region empirically by sampling the 
surrounding source space for each voxel [8] or by using several 
forward models, for instance, constructed for electrical 
conductivities in a given range [32]. More specifically, 
assuming 𝑆௜ neighbors and 𝐹 forward models, the first and 
second order statistics of the uncertainty for the 𝑖௧௛ voxel can 
be estimated as 
 

𝑘ത௜ =
1

𝐹
෍ 𝑘௜

௙

௙ୀଵ:ி

, (11) 

 
and 
 

𝑄௜ =
1

𝑆௜ × 𝐹
෍ ෍ ቀ𝑘௜

(௦,   ௙)
− 𝑘ത௜ቁ ቀ𝑘௜

(௦,   ௙)
− 𝑘ത௜ቁ

்

,

௙ୀଵ:ி௦ୀଵ:ௌ೔

(12) 

  

where 𝑘௜
௙ is the lead field column of the 𝑖௧௛ voxel in the 𝑓௧௛ 

forward model, 𝑘௜
(௦,   ௙) is the lead field column of the 𝑠௧௛ 

sampled neighbor in the 𝑓௧௛ forward model, 𝑘ത௜ is the average 

lead field (of all 𝑘௜
(௦,   ௙)) to be used in the inverse problem and 

𝑄௜  is the covariance matrix of the uncertainty. The authors of 

[8] proposed to apply a projection on each 𝑘௜
(௦,   ௙) before using 

them in (12). This projection in a fixed-orientation model, 
which is the case for this study, translates to flipping the sign of 

𝑘௜
(௦,   ௙) (or equivalently the orientation of dipoles), wherever 

this reduces the distance between 𝑘௜
(௦,   ௙) and  𝑘ഥ ௜. This is helpful 

in avoiding overestimation of the uncertainty region size. 𝑃௜ , 
which defines the shape and size of the uncertainty ellipsoid, is 
indeed an inflated version of 𝑄௜(𝑃௜ = 𝛼𝑄௜). The inflation factor 
α௜ can be found such that the uncertainty region 𝑅௜  contain all 

the points 𝑘௜
(௦,   ௙)

 [21], which  mathematically translates to  
 

𝛼 = 𝑠𝑢𝑝
(௦,   ௙)

ቀ𝑘௜
(௦,   ௙)

−  𝑘ത௜ቁ
்

𝑄௜
ିଵ ቀ𝑘௜

(௦,   ௙)
−  𝑘ത௜ቁ . (13) 

 
See Practical Considerations section in the Supplementary 
materials for further details of tuning uncertainty ellipsoids 
sizes.  
 

D. Computer Simulation Protocol 

In order to investigate the performance of robust beamformer 
and compare its merits and limitations to the conventional 
beamformer, a series of computer simulations were conducted.  
To this end, a realistic head volume model was built upon the 
Montreal Neurological Institute Colin brain [33] consisting of 
three layers i.e., the scalp, the skull and the brain. To solve the 
forward problem and to simulate the EEG recordings, a 
standard 128-cahnnel BioSemi cap was fitted to the Colin 
brain, and a boundary element method (BEM) model [4], [34] 
was then derived to find the lead field matrix, which linearly 
projects the current dipoles to the electrical potentials at the 
electrodes. 

In order to avoid any form of inverse crime and to evaluate 
the capabilities of robust beamformer in dealing with model 
violations, different models were derived for the forward and 
inverse problems. While cortex was meshed very finely with a 

Fig. 1. The Monte Carlo simulation statistics for the single-node source scenario. (A) The median DLE results for SNRs of 5dB and 20dB and for 
four types of beamformers namely, LCMV, RMVB, LCMV-ND-DN and RMVB-ND-DN. The error bars mark the first and third quartiles (of DLE 
distribution). (B) The median output SNR results along with the first and third quartile error bars for the same configuration. 

 

A. B. 
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grid of 1 mm (~131,000 elements on the cortex, in total) in the 
forward problem, a coarser grid of 5 mm (~9,000 elements on 
the cortex, in total) was used for the inverse problem. In the 
forward model, the electrical conductivity of the scalp, the skull 
and the brain (𝜎௦௖௔௟௣ , 𝜎௦௞௨௟௟  and 𝜎௕௥௔௜௡) were set to 0.33 S/m, 
0.022 S/m and 0.33 S/m, respectively, while an average model 
based on what follows was built to solve the inverse problem. 
For estimation of uncertainty regions only the conductivity and 
discretization uncertainties were considered. To this end, 11 
different models were built. The electrical conductivities of the 
scalp and the brain were fixed to 0.33 S/m in all the models, 
while for the skull it was set such that the conductivity ratio 
(𝜎௕௥௔௜௡/𝜎௦௞௨௟௟) picked values incrementally with the steps of 1 
in the physiological range of 15 −  25 [35]–[37]. The brain in 
each model was meshed with two different choices of grid 
sizes; a same coarser grid of 5mm for the center of uncertainty 
regions as in the inverse problem and a very fine grid of 1.1 mm 
to estimate the variations for the nearest neighbor in the coarser 
mesh according to (12). In this setting, each point of the fine 
mesh was considered as a neighbor of one and only one point 
in the coarser mesh. Note that different fine meshes were used 
in the forward problem and estimation of uncertainty regions 
(grid of 1 mm versus 1.1 mm); as also in real situations the true 
source space is unavailable beforehand.   

In this study, four different scenarios were simulated. The 
first scenario consisted of 100 point dipoles placed randomly 
on the cortex with a fixed orientation normal to the cortex 
surface. To mimic a realistic inter-ictal spike, each dipole was 
assigned a time course of activity sampled at the rate of 1 kHz 

(see Fig. S1 in the Supplementary materials). In order to 
investigate the effect of number of active nodes on the imaging 
accuracy, in the second scenario, each configuration had three 
nodes of activity. The time-courses, in this scenario, were such 
to yield a minimal correlation between the nodes (see Fig. S2. 
(A and B) in the Supplementary materials). In the third 
scenario, the time-courses had high correlation factors to 
consider the effect of correlation between nodes in 3-node 
networks (see Fig. S2 (C and D) in the Supplementary 
materials). Please refer to the Supplementary materials to 
review the results of this scenario. The last scenario was 
designed to evaluate the performance of robust and 
conventional beamformers in situations, where sources are not 
focal. The general criteria in this scenario remained the same as 
the second scenario with the exception that each node had an 
extent with a radius size roughly ranging from 10 mm to 30 
mm (randomly selected for each node of the network). In this 
study, all the voxels within the extent of each node had the same 
amplitude and the same time-course. After solving the forward 
problem, the generated potentials at the electrodes were 
contaminated by additive white Gaussian noise (AWGN) to 
simulate a more realistic condition. The effect of noise was 
further assessed by considering two different SNRs (calculated 
based on power) i.e., 5 and 20 dB representing low and high 
levels of noise. Finally, a fixed-orientation (normal to the cortex 
surface) model was used to solve the inverse problem. This 
choice can be justified by the fact that EEG signals are 
generated by pyramidal cells, which project their dendrites 
orthogonally to the cortex surface [38]. The simulation protocol 
in this study is similar to our previous works [9], [39].  

Fig. 2. An example of a 3-node network with focal activity. The source imaging results for a single 3-node source with focal 
activity using four types of beamformers namely, LCMV, RMVB, LCMV-ND-DN and RMVB-ND-DN. SNR in this 
example is set to 20dB and the solution is thresholded with a cut-off value of 0.01. The blue rings of the plots mark the 
positions of the true source.  
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E. Performance Measures 

Performance in this study was assessed by different metrics, 
namely dipole localization error (DLE), signal to noise ratio 
(SNR), receiver operator characteristics (ROC) curve and 
Matthew’s correlation coefficient (MCC). The former two 
metrics were used for focal activity scenarios, while the latter 
two evaluated the conventional and robust beamformers in the 
extended source scenario. DLE measures the Euclidean 
distance between the simulated and recovered source locations, 
which are determined by estimating the foci of activity 
employing a PCA-based technique (dominant local maxima of 
the principal components as the foci of activity) [9], [39]. The 
SNR characterizes how well the temporal profile of the 
underlying sources can be recovered by ESI. Noise in this 
metric is defined as the difference between the simulated and 
recovered time courses. The power of the simulated signal over 
the power of noise in logarithmic scale yields the SNR in dB. 
In order to evaluate the concordance between temporal patterns, 
both the simulated and recovered signals were normalized by 
their power before SNR was calculated. The time course of the 
estimated locations, and not the true source locations, were 
considered in calculating the SNR. In order to compare the 
simulated and estimated source distributions in the extended 
source scenario, ROC curve was used to evaluate the trade-off 
between sensitivity and specificity of the estimation by plotting 
the true positive rate (TPR) versus false positive rate (FPR) [40] 
of the estimation. Any location in the solution beyond a 
threshold is considered a source and active, while any location 
with an amplitude below the threshold is inactive and not a 
source. Thresholds are varied, and the FPR and TPR are 
calculated accordingly (each point of curve is at a different 
threshold). Area under the curve (AUC) is the area under the 
ROC curve; a metric for comparing different ROC curves. The 
closer the AUC of a ROC curve is to 1, the more accurate the 
estimation is [41]. MCC, which in essence measures the 

correlation between the simulated and estimated distributions, 
is another metric used in this study to assess the estimation 
quality [42]. MCC calculates the predictability of an observed 
and estimated classification, which in this case is the source 
extent, and is formulated as follows: 

 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

ඥ(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
(14) 

 
where, TP, TN, FP and FN represent the true positive, true 
negative, false positive and false negative rates of the 
estimation, respectively. Since MCC works in a binary mode, it 
requires a thresholding mechanism to turn the estimated 
distribution into active and inactive regions. In this study, the 
threshold was swept and determined in such a way to yield the 
maximum MCC. We note that MCC takes values from −1 
to +1, from the most disparate case to the most concordant 
case, respectively.  

III. RESULTS 

The results presented in this section are to evaluate the effect 
of normalization and denoising procedures in addition to 
modeling the lead field uncertainty on the ultimate performance 
of beamformers. To this end, four types of beamformers 
namely, LCMV [13], RMVB [16], [21], LCMV-ND-DN [15], 
[19] and RMVB-ND-DN were tested.  

 

A. Focal Sources 

Fig. 1 depicts the performance of the mentioned 
beamformers in situations, where the underlying source activity 
can be modeled with a single dominant current dipole. In order 
to find the effect of noisy measurements on the performance, 
the simulations were repeated for high and low noise levels 
associated with the SNRs of 5 dB and 20 dB, respectively. Fig. 
1 (A) depicts the median DLE for the 100 dipoles as simulated 

Fig. 3. The Monte Carlo simulation statistics for the three-node uncorrelated source scenario. (A) The median DLE results for SNRs of 5dB and 
20dB and for four types of beamformers namely, LCMV, RMVB, LCMV-ND-DN and RMVB-ND-DN. The error bars mark the first and third 
quartiles (of DLE distribution). (B) The median output SNR results along with the first and third quartile error bars for the same configuration. 

 

A. B. 
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in the first scenario. To present the uncertainties in the results, 
the first and third quartiles of data are reported with error bars. 
These results indicate that the robust adaptive beamformers, 
i.e., the RMVB and RMVB-ND-DN, outperform their 
conventional counterparts i.e., the LCMV and LCMV-ND-DN, 
respectively. Additionally, including the normalization and 
denoising procedures plays an important role in the quality of 
the results. Fig. 1 (B) yields the evaluation in terms of output 
SNR. According to this plot, while both the LCMV-ND-DN 
and RMVB-ND-DN outperform the LCMV and RMVB, they 
both perform equally well in recovering the temporal profile of 
the simulated activity. It can also be observed that including the 
post-processing steps can considerably decrease the sensitivity 
to noise levels. In fact, the gap between the RMVB performance 
in low and high levels of noise compared to the methods with 
post-processing of the solution, can be justified with regard to 
its lack of appropriate measures or mechanisms to remove or 
counteract the effect of noise. Furthermore, since the LCMV 
does not take into consideration the depth and asymmetric 
spatial distribution of the noise on one hand and is not designed 
to be robust against modeling errors on the other hand, its 
performance is especially poor when estimating output SNRs. 

 

B. The Effect of Number of Active Nodes 

In the second scenario, 100 source configurations each 
containing three active nodes were considered. Fig. 2 shows an 
example, where the three simulated current dipoles are placed 
at the right temporal, left frontal and left occipital lobes, 

respectively (the center of the blue rings on the plots mark the 
exact positions). SNR in this example is set to 20 dB. Following 
the localization procedure discussed in the Computer 
Simulation Protocol section, it can be found that all versions 
except the LCMV are able to pinpoint the true location of the 
simulated dipoles in this example. However, the solution of 
RMVB-ND-DN is more focal and thus more consistent with the 
underlying dipole source, while the LCMV yields the smoothest 
solution, which is not as focal as the RMVB. It should be 
mentioned that, for display purposes, the threshold was set to 
1% in this figure. This implies that e.g., in the solution of 
RMVB-ND-DN almost all falsely recovered dipoles are at least 
100 times weaker than the strongest activity.   

Fig. 3 (A) and Fig. 3 (B) plot the median DLE and SNR along 
with the corresponding first and third quartile error bars for two 
noise levels. The LCMV is sensitive to the number of sources 
in terms of DLE, while the other three techniques show less 
sensitivity. As in the earlier scenarios, normalization and 
denoising play a crucial role in the performance of both 
conventional and robust beamformers. However, robust 
beamformers are successful in modeling the uncertainty, even 
without these normalization and denoising steps. When such 
processing is applied, the results indicate that it is still better to 
use the robust version instead of the conventional beamformer, 
if computational resources are available. Furthermore, it can be 
seen that the RMVB is sensitive to input noise level especially 
when evaluating the output SNR. Please refer to the 
Supplementary materials to review the role of normalization in 

Fig. 4. An example of a three-node network with extended activity. The simulated three-node patches of activity as well as the source imaging 
results using four types of beamformers namely, LCMV, RMVB, LCMV-ND-DN and RMVB-ND-DN. SNR in this example is set to 20dB and 
the solution of each technique is thresholded separately such that MCC is maximized for that technique. The blue regions and boundaries of the 
plots mark the true source extents. 

 



TBME-00554-2018.R1 
 

8

removing the inherent bias of adaptive beamformers toward 
deeper locations as well as the effect of correlated activities on 
beamformers performance.    

 

C. Extended Sources 

The fourth scenario was designed to evaluate the 
aforementioned beamformers in determining the distribution 
and shape of the underlying activities. To this end, Figs. 4 and 
5 are to simulate three patches of extended sources rather than 
point dipoles. The blue boundaries in these plots mark the true 
source extents. The area of each patch is roughly 750 𝑚𝑚ଶ and 
again SNR is 20 dB. In Fig. 4, the threshold of display is 
optimized for each technique separately such that MCC is 
maximized, while in Fig. 5, it is preset to an arbitrary small 
value of 1%. The main observation is that in both cases, the 
RMVB-ND-DN captures the extent of the underlying activity 
while keeping number of falsely recovered dipoles small. 
Whereas, regular beamformers either underestimate the true 
source extent (Fig. 4) or have high false positive rates (Fig. 5). 
Since the optimal value of the threshold to detect the source 
extent is unknown a priori, robustness to threshold is highly 
valuable in practice.  

Fig. 6 plots the average ROC curve for 100 source 
configurations each containing three extended nodes of activity 
for SNRs of 5 and 20 dB in the left and right panels, 
respectively. Each point on a ROC curve (TPR versus FPR) is 
associated with a cut-off threshold, the values below which 
were set to 0. The corresponding AUC of all the curves are 

reported in the legend of this figure. Obviously, the RMVB-
ND-DN better estimates the extent of the underlying source 
compared to other versions of beamformers according to this 
metric. Moreover, the results of the RMVB and LCMV-ND-
DN are close to each other (the RMVB is slightly superior to 
the LCMV-ND-DN). Fig. 7 reports the median MCC for the 
same data. The threshold for each source is determined such 
that MCC is maximized for that specific configuration. As it 
can be seen, the trend of this figure is the same as Fig. 6, with 
the RMVB-ND-DN at the top followed by the RMVB, LCMV-
ND-DN and LCMV, respectively. It should also be noted that 
the absolute values of MCC in this figure do not provide much 
information about the quality of the estimation, and that the goal 
of this figure is to provide only a benchmark to compare 
different beamformers’ performance. Finally, interested readers 
are referred to Fig. S7 and Fig. S8 in Supplementary materials 
for the results of beamformers with diagonal loading.  

IV. DISCUSSION 

In this study, we proposed a new technique named robust 
minimum variance beamformer (RMVB), which unlike 
traditional adaptive beamformers, explicitly takes into 
consideration the uncertainty of the forward models. In order to 
compare the performance of RMVB with the well-known 
LCMV adaptive beamformer, we performed Monte Carlo 
simulations in various scenarios representing different 
conditions for underlying source activity. We also simulated the 
modified versions of each technique by applying the post-hoc 
normalization/denoising step (i.e., LCMV-ND-DN and 

Fig. 5. An example of a three-node network with extended activity.  The simulated three-node patches of activity as well as the source imaging 
results using four types of beamformers namely, LCMV, RMVB, LCMV-ND-DN and RMVB-ND-DN. SNR in this example is set to 20dB and 
the solution is thresholded with a preset cut-off value of 0.01. The blue regions and boundaries of the plots mark the true source extents. 
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RMVB-ND-DN techniques). Based on simulation results, 
RMVB and RMVB-ND-DN can better estimate the underlying 
source activities compared to LCMV and LCMV-ND-DN 
respectively; although, LCMV-ND-DN yields favorable results 
in certain cases as well. As a general observation, both post-
processing of the solutions (normalization and/or denoising 
steps) and modeling the uncertainty (the robust versions) 
enhance the performance. By combining both procedures in 
RMVB-ND-DN, our technique outperformed other versions 
based on all metrics that were used in this study. It was also 
observed that there is especially a clear benefit in using robust 
beamformers to estimate extended sources (as depicted in Fig. 
6 and Fig. 7).  

Although the optimization problem (10) can be solved easily 
using general-purpose convex solvers such as CVX [30], [31], 
RMVB can be much slower than the conventional LCMV, since 
the optimization problem has to be solved for many voxels. 
While CVX was used in this study, RMVB can be significantly 
accelerated by employing a specifically tailored algorithm for 
the optimization module. Fortunately, this algorithm, which is 
based on Lagrange multipliers method, exists and can solve the 
problem much more efficiently and faster than the CVX 
package [21]. Furthermore, parallel computing can also be 
exploited by virtue of the scanning scheme of the beamformers, 
yielding further acceleration (by estimating the weights for 
different voxels in parallel). Overall, it takes about 7 seconds to 
find the solution of RMVB using parallel computing (in 
MATLAB and on a server computer with 8x32 GB of RAM and 
a 2x Intel Xeon E5-2697v2 2.7GHz processor) which is 
approximately 20 times slower than the conventional LCMV. 
This amount of time is reasonably short for applications where 
source imaging is performed off-line. Besides optimization, 
estimation of uncertainty regions can be computationally 
demanding as well, since it requires building several forward 
models depending on the source of uncertainty in the actual 
problem. However, these regions are computed only once 
before source imaging is performed. Furthermore, the 
uncertainty region estimation at each location is independent 

from other locations. Thus, these can be computed in a parallel 
fashion (as in solving the optimization problem), resulting in 
efficient implementations of beamformer approaches. Such 
reduction in computation times due to parallel computing 
makes robust beamformer approaches desirable and practically 
achievable.  

Finally, a fixed-orientation model was used to solve the 
inverse problem in this study. Although this choice can be 
justified through the anatomical location and orientation of 
pyramidal neuron cells generating EEG/MEG signals, 
estimating the orientations through solving the inverse problem 
rather than assuming the orientation a priori may be beneficial. 
For instance, segmentation of the cortex may not be accurate 
enough, and the normal orientations estimated from such 
segmentation results may be inaccurate, especially if the 
segmentation is coarse. Estimating the orientation of dipoles 
while solving the inverse problem may be achieved by 
considering free orientations for the current dipoles along 
different axis e.g., 𝑥ො, 𝑦ො and 𝑧̂  in a Cartesian coordinate. The 
extension of this work to a vector robust beamformer, which is 
based on rotational models, will be the topic of a future study.   

V. CONCLUSION 

In this work, we have proposed and investigated robust 
beamformers for the purpose of electromagnetic source 
imaging. The main advantage of robust beamformers over 
conventional adaptive beamformers, is that the RMVB and 
RMVB-ND-DN are more robust to mismatches between the 
forward and inverse modeling, which are inevitable in practice.  
The robust beamformers presented in this paper outperformed 
the conventional beamformers in terms of localization error, 
recovering source dynamics and estimation of the underlying 
source extents, when uncertainty in the lead field matrix is 
properly determined and modeled. This can justify the robust 
implementation of beamformers for applications, where source 
imaging is performed to study pathological and normal brain 
networks.  
 
 

Fig. 6. The Monte Carlo simulation statistics for the extended source scenario. The Average ROC curves for four types of beamformers namely, 
LCMV, RMVB, LCMV-ND-DN and RMVB-ND-DN and for SNRs of 5 and 20 dB in the left and right panels, respectively. The corresponding 
AUC of all the curves are reported in the legend.  
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Fig. 7. The Monte Carlo simulation statistics for the extended source 
scenario. The median MCC results along with the first and third quartile 
error bars for four types of beamformers namely, LCMV, RMVB, 
LCMV-ND-DN and RMVB-ND-DN and for SNR of 20 dB.  


