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Fig. 1. With GAN Lab, users can interactively train Generative Adversarial Networks (GANSs), and visually examine the model training
process. In this example, a user has successfully used GAN Lab to train a GAN that generates 2D data points whose challenging
distribution resembles a ring. A. The model overview graph summarizes a GAN model’s structure as a graph, with nodes representing
the generator and submodels, and the data that flow through the graph (e.g., fake samples produced by the generator).
B. The layered distributions view helps users interpret the interplay between submodels through user-selected layers, such as the
discriminator’s classification heatmap, real samples, and fake samples produced by the generator.

Abstract—Recent success in deep learning has generated immense interest among practitioners and students, inspiring many to
learn about this new technology. While visual and interactive approaches have been successfully developed to help people more easily
learn deep learning, most existing tools focus on simpler models. In this work, we present GAN Lab, the first interactive visualization
tool designed for non-experts to learn and experiment with Generative Adversarial Networks (GANs), a popular class of complex
deep learning models. With GAN Lab, users can interactively train generative models and visualize the dynamic training process’s
intermediate results. GAN Lab tightly integrates an model overview graph that summarizes GAN'’s structure, and a layered distributions
view that helps users interpret the interplay between submodels. GAN Lab introduces new interactive experimentation features for
learning complex deep learning models, such as step-by-step training at multiple levels of abstraction for understanding intricate
training dynamics. Implemented using TensorFlow.js, GAN Lab is accessible to anyone via modern web browsers, without the need for
installation or specialized hardware, overcoming a major practical challenge in deploying interactive tools for deep learning.

Index Terms—Deep learning, information visualization, visual analytics, generative adversarial networks, machine learning, interactive
experimentation, explorable explanations
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Recent success in deep learning has generated a huge amount of in-
terest from practitioners and students, inspiring many to learn about
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this technology. Visual and interactive approaches have successfully
been used to describe concepts and underlying mechanisms in deep
learning [17,28,36,44]. For example, Karpathy’s popular interactive
demo [17] enables users to run convolutional neural nets and visualize
neuron activations, inspiring researchers to develop more interactive
tools for deep learning. Another notable example is Google’s Tensor-
Flow Playground [36], an interactive tool that visually represents a
neural network model and allows users to interactively experiment with
the model through direct manipulation; Google now uses it to educate
their employees about deep learning [31].

The rise of GANs and their compelling uses. Most existing interac-
tive tools, however, have been designed for simpler models. Meanwhile,
modern deep learning models are becoming more complex. For ex-
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ample, Generated Adversarial Networks (GANs) [9], a class of deep
learning models known for their remarkable ability to generate syn-
thetic images that look like natural images, are difficult to train and for
people to understand, even for experts. Since the first GAN publication
by Goodfellow et al. [9] in 2014, GANs have become one of the most
popular machine learning research topics [12,18]. GANs have achieved
state-of-the-art performance in a variety of previously difficult tasks,
such as synthesizing super-resolution images based on low-resolution
copies, and performing image-to-image translation (e.g., converting
sketches to realistic images) [8].

Key challenges in designing learning tools for GANs. At the high
level, a GAN internally combines two neural networks, called generator
and discriminator, to play a game where the generator creates “fake”
data and the discriminator guesses whether that data is real or fake (both
types of data are mixed together). A perfect GAN is one that generates
fake data that is virtually indistinguishable from real data. A user who
wishes to learn about GANs needs to develop a mental model of not
only what the two submodels do, but also how they affect each other
in its training process. The crux in learning about GANSs, therefore,
originates from the iterative, dynamic, intricate interplay between these
two submodels. Such complex interaction is challenging for novices
to recognize, and sometimes even for experts to fully understand [32].
Typical architecture diagrams for GANs (e.g., Fig. 2, commonly shown
in learning materials) do not effectively help people develop the crucial
mental models needed for understanding GANs.

Contributions. In this work, we contribute:

¢ GAN Lab, the first interactive tool designed for non-experts to
learn and experiment with GAN models, a popular class of complex
deep learning models, that overcomes multiple unique challenges for
developing interactive tools for GANs (Sect. 4).

* Novel interactive visualization design of GAN Lab (Fig. 1), which
tightly integrates a model overview graph that summarizes GAN’s
structure (Fig. 1A) as a graph, selectively visualizing components that
are crucial to the training process; and a layered distributions view
(Fig. 1B) that helps users interpret the interplay between submod-
els through user-selected layers (Sect. 6). GAN Lab’s visualization
techniques work in tandem to help crystalize complex concepts in
GANSs. For example, GAN Lab visualizes the generator’s data trans-
formation, which turns input noise into fake samples, as a manifold
(Fig. 1, big box with purple border). When the user hovers over
it, GAN Lab animates the input-to-output transformation (Fig. 3)
to visualize how the input 2D space is folded and twisted by the
generator to create the desired ring-like data distribution, helping
users more easily understand the complex behavior of the generator.

* New interactive experimentation features for learning complex
deep learning models, such as step-by-step training at multiple levels
of abstraction for understanding intricate training dynamics (Sect. 7).
The user can also interact with the training process by directly ma-
nipulating GAN’s hyperparameters.

* A browser-based, open-sourced implementation that helps
broaden public’s education access to modern deep learning tech-
nologies (Sect. 7.3). Training deep learning models conventionally
requires significant computing resources. For example, deep learning
frameworks, like TensorFlow [1], typically run on dedicated servers.
They are not designed to support low-latency computation needed
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Fig. 2. A graphical schematic representation of a GAN'’s architecture
commonly used.
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Fig. 3. In GAN Lab, the generator’s non-trivial data transformation is
visualized as a manifold, which turns input noise (leftmost) into fake sam-
ples (rightmost). GAN Lab animates the input-to-output transformation
to help users more easily understand this complex behavior.

for real-time interactive tools, or large number of concurrent user
sessions through the web. We overcome such practical challenges in
deploying interactive visualization for deep learning by using Tensor-
Flow,js Core," an in-browser GPU-accelerated deep learning library
recently developed by Google; the second author is a lead developer
of TensorFlow.js Core. Anyone can access GAN Lab using their web
browsers without the need for installation or specialized backend.
GAN Lab runs locally on the user’s web browser, allowing us to eas-
ily scale up deployment for our tool to the public, significantly broad-
ening people’s access to tools for learning about GANs. The source
code is available in https://github.com/poloclub/ganlab/.

» Usage scenarios that demonstrate how GAN Lab can help beginners
learn key concepts and training workflow in GANS, and assist practi-
tioners to interactively attain optimal hyperparameters for reaching
challenging equilibrium between submodels (Sect. 8).

VIS’s central role in AL. We believe in-browser interactive tools de-
veloped by our VIS community, like GAN Lab, will play critical roles
in promoting people’s understanding of deep learning, and raising their
awareness of this exciting new technology. To the best of our knowl-
edge, our work is the first tool designed for non-experts to learn and
experiment with complex GAN models, different from recent work in
visualization for deep learning [16, 20,21, 30, 37,43] which primar-
ily targets machine learning experts. Our work joins a growing body
of research that aims to use interactive visualization to explain com-
plex inner workings of modern machine learning techniques. Distill,
a new interactive form of journal, is dedicated to achieving this exact
goal [29]. We hope our work will help inspire even more research and
development of visualization tools that help people better understanding
artificial intelligence technologies.

2 BACKGROUND: GENERATIVE ADVERSARIAL NETWORKS

This section presents a brief introduction of Generated Adversarial
Networks, which will help ground our discussion in this paper.

Generative Adversarial Networks (GANs) [9] are a new class of
unsupervised generative deep learning models that model data distribu-
tions. It can be used for generating multi-dimensional data distributions
(e.g., an image is a multi-dimensional data point, where each pixel is
a dimension). The model takes real samples and random vectors (i.e.,
random noise) as inputs and transforms the random vectors into fake
samples that mimic the real samples. Ideally, the distribution of the fake
samples will be indistinguishable from the real samples. The architec-
ture of GAN’s is composed of two neural networks, called generator and
discriminator, and is often represented as an abstracted data-flow graph
as in Fig. 2. The generator, G, takes a random noise vector, z, as input
and transforms it into a fake sample, G(z) (i.e., a multi-dimensional
vector); the discriminator, D, which is a binary classifier, takes either
a real or fake sample, and determines whether it is real or fake (D(x)
represents the probability that x is real rather than fake).

A GAN model is iteratively trained through a game between the
discriminator and generator. In GAN, two cost functions exist: the
one for the discriminator measures the probability of assigning the

1TensorFlow.js (https://js.tensorflow.org) was formerly deeplearn.js.
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correct labels to both real and fake samples (i.e., the sum of D(x) and
1—D(G(z))); the other for the generator measures that for fake samples
only (i.e., 1 — D(G(z))). The goal of the discriminator is to maximize
its cost, but the goal of the generator is to minimize its cost, which in-
troduces conflicts (i.e., zero-sum). Therefore, it has to play a mini-max
game to find the optimum. Goodfellow et al. [9] used an interesting
analogy to explain how it works, where we can view the generator as a
counterfeiter who makes fake dollar bills, and the discriminator as the
police. If the police can spot the fake bills, that means the counterfeiter
is not “good enough,” so the counterfeiter carefully revises the bills to
make them more realistic. As the discriminator (police) differentiates
between real and fake samples, the generator (counterfeiter) can glean
useful information from the discriminator to revise its generation pro-
cess so that it will generate more realistic samples in the next iteration.
And to continue to receive such helpful information, the generator
keeps providing its updated samples to the discriminator. This iterative
interplay between the two players leads to generating realistic samples.

3 RELATED WORK
3.1 Visualization for Understanding Deep Learning

Researchers and practitioners have written articles and deployed ex-
plorable web-based demos to help people learn about concepts in deep
learning. One of the popular examples is Chris Olah’s series of es-
says,” explaining mathematical concepts behind deep learning using
visualizations. One article explains how neural networks transform and
manipulate manifolds [28]. Another popular example is Andrej Karpa-
thy’s collection of web-based demos developed using ConvNetJS,” a
lightweight JavaScript library for deep learning. His MNIST demo [17]
dynamically visualizes intermediate results, such as neuron activation.

Olah’s articles and Karpathy’s demos have inspired many researchers
to develop interactive visualizations for novices to easily understand
deep learning techniques [11,36]. A notable example is TensorFlow
Playground [36], an interactive visualization tool for non-experts to
train simple neural net models. Google has integrated it into its internal
machine learning course for educating its employees; the course is now
available to the public [31]. Distill, a new online interactive journal,
has recently been created and it is dedicated to interactive explanation
of machine learning [29]. The journal features a growing number of
articles with interactive visualization [5,7,42]. However, most existing
visualizations focus on simpler models. Modern deep learning models
are much more complex, and we will present and discuss unique design
challenges that stem from such complexity (Sect. 4).

3.2 Algorithm Visualization & Explorable Explanations

Even before the surge of interest in deep learning techniques, re-
searchers had studied how to design interactive visualization to help
learners better understand the dynamic behavior of algorithms [14, 15,
33,35]. These tools often graphically represent data structures and
allow students to execute programs in a step-by-step fashion [10,35].
While many of these tools target algorithms covered in undergraduate
computer science curricula, some specialized tools exist for artificial
intelligence [2]. As deep learning models are a category of special-
ized algorithms, when we design GAN Lab, we draw inspiration from
the principles and guidelines proposed in the aforementioned related
domains [34].

As web has become a central medium for sharing ideas and
documents, many interactive experimentation tools implemented in
JavaScript have been viewed as “explorable explanations,” an umbrella
term coined by Bret Victor in 2011 [39]. He advocated the use of
interactive explanations with examples to help people better understand
complex concepts by actively engaging in the learning process. Many
interactive tools instantiate this idea, including the ones showcased on
the popular website with the same name (Explorable Explanations®).
These tools aim to help people actively learn through playing and
interactive experimentation. GAN Lab aligns with this research theme.

2Colah’s blog, http://colah.github.io
3ConvNetJS, https://cs.stanford.edu/people/karpathy/convnetjs/
4Explorable Explanations, http://explorabl.es/
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3.3 Visual Analytics for Deep Learning Models & Results

Over the past few years, many visual analytics tools for deep learning
have been developed [4,16,20,21,27,37,41], as surveyed in [13,23].
Most were designed for experts to analyze models and their results.
For instance, TensorFlow Graph Visualizer [43] visualizes model struc-
tures, to help researchers and engineers build mental models about
them. Many other tools focus to visually summarize model results
for interpreting how models respond to their datasets. For example,
CNNVis [21] was designed for inspecting CNN model results; LST-
MVis [37] and RNNVis [27] were for RNN models. A few other
tools allow users to diagnose models during training. For example,
DeepEyes [30] does so through t-SNE visualizations. Two visual ana-
lytics tools have been developed for GANs [20,41]. DGMTracker [20]
allows experts to diagnose and monitor the training process of gen-
erative models through visualization of time-series data on data-flow
graphs. GANViz [41] helps experts evaluate and interpret trained re-
sults through multiple views, including one showing the distributions
of real and fake image samples, for a selected epoch, using t-SNE. Dif-
ferent from all existing tools designed to help experts analyze models
and results that we summarized above, we focus on non-experts and
learners, helping them build intuition of the internal mechanisms of
models, through interactive experimentation.

4 DESIGN CHALLENGES FOR COMPLEX DEEP LEARNING
MODELS

Our goal is to build an interactive, visual experimentation tool for users
to better understand GANS, a complex deep learning model. To design
GAN Lab, we identified four key design challenges unique to GANSs.

Cl1. [MoDEL] Complex model structures with submodels. The
structures of modern deep learning models (including GANs) are
complex; they often incorporate multiple base neural networks
or deep learning models as submodels. For example, a GAN
combines two neural nets: generator and discriminator; an image
captioning model often consists of both CNNs and RNNs for
translation between images and text [40]. Effective visualiza-
tion of such models calls for new strategies different from those
designed for conventional models. For example, it is crucial to
find the appropriate levels of visual abstraction for the models,
as visualizing all low-level details will overwhelm users. Special
visual design may be needed to help users interpret the intricate
interplay between submodels (e.g., discriminator and generator).

C2. [DATA] High-dimensional datasets. As deep learning models
often work with large, high-dimensional datasets, visualizing their
distributions would quickly create many traditional challenges
well-studied in information visualization research [22]. While
we may use techniques like dimensionality reduction to partially
address such issues, this could introduce additional complexities
to the systems, potentially distracting users from their main goal
of understanding how deep learning models work.

C3. [TRAINING PROCESS] Many training iterations until conver-
gence. Deep learning models are trained through many iterations
(i.e., at least thousands), introducing nontrivial challenges for de-
veloping interactive tools. First of all, as it takes time to converge,
the tools need to keep providing users with information during
training (e.g., progress), and users may also want to provide feed-
back to models (e.g., by changing hyperparameters). In addition,
one popular feature used in many experimentation tools is a step-
by-step execution of systems [10,33], however, the definition of
steps becomes different in training of complex models, because
the training process consists of many iterations and each iteration
also consists of the training of multiple submodels.

C4. [DEPLOYMENT] Conventional deep learning frameworks ill-
fitted for multi-user, web-based deployment. Training deep
learning models conventionally requires significant computing
resources. Most deep learning frameworks written in Python or
C++, like TensorFlow [1], typically run on dedicated servers that
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0 LAYERED DISTRIBUTIONS e METRICS

Fig. 4. The GAN Lab interface integrates multiple views: A. The model overview graph summarizes a GAN model’s structure as a graph, with nodes
representing the submodels, and the data that flow through the graph; B. The layered distributions view overlays magnified versions of the graph’s
component visualizations, to help users more easily compare and understand their relationships; C. The metrics view presents line charts that track
metric values over the training process. Users start the model training by clicking the play button on menu bar. The three views are dynamically
updated, as training progresses. In this example, real samples are drawn from two Gaussian distributions, and the generator, consisting of a single
hidden layer with 14 neurons, has created samples whose distribution is quite similar to that of the real samples.

utilize powerful hardware with GPU, to speed up the training
process. However, even with a powerful backend, they cannot
easily support a large number of concurrent user sessions through
the web, because each session requires significant computation
resources. When combined, even a small number of concurrent
sessions can bog down a powerful server. Off-loading compu-
tation to the end user is a possible solution, but conventional
deep learning frameworks are not designed to support low-latency
computation needed for real-time interactive tools.

5 DESIGN GOALS

Based on the identified design challenges in the previous section, we
distill the following main design goals for GAN Lab, a novel interactive
visualization tool for learning and experimenting with GANs.

G1. Visual abstraction of models and data flow. To give an
overview of the structure of complex models, we aim to cre-
ate a visual representation of a model by selectively choosing
and grouping low-level operations (and intermediate data) into
high-level components (C1). It helps users visually track how
input data are transformed throughout the models. For users to
clearly examine the internal model training process and data flow,
we would use low-dimensional datasets (C2). (Sect. 6.1)

G2. Visual analysis of interplay between discriminator and gen-
erator. As GANSs internally use two different neural nets, it is
important for users to understand how they work together, to get
a holistic picture of the overall training process (C1). In response,
we would like to enable users to examine and compare the visual-
izations of the model components to understand they affect each
other to accomplish the generation tasks. (Sect. 6.2)

G3. Dynamic experimentations through direct manipulation of
hyperparameters. We aim to let users dynamically play and
experiment with models. To help users quickly understand the
roles of many hyperparameters and control them (C3), we would
like to design interactive interfaces which users can easily lo-
cate and manipulate the options. The users’ actions are directly
applied to the model training process. (Sect. 7.1)

G4. Supporting step-by-step execution for learning the training
process in detail. Since the training process of deep learning
models consists of many iterations and each iteration also consists

of several steps, the step-by-step execution of models can greatly
help novices to understand the training process (C3). To address
this needs, we aim to design multiple ways to execute models in
a step-by-step fashion by decomposing the training process into
steps at multiple levels of abstraction. (Sect. 7.2)

G5. Deployment using cross-platform lightweight web technolo-
gies. To develop a tool that is accessible from multiple users
without a need to use specialized powerful backend (C4), we
would like to use web browsers both for training models and
visualizing results. (Sect. 7.3)

6 VISUALIZATION INTERFACE OF GAN LAB

This section describes GAN Lab’s interface and visualization design.
Fig. 4 shows GAN Lab’s interface, consisting of multiple views. Using
the control panel on top, users can run models and control the speed
of training, which we describe in detail in the next section (Sect. 7).
This section primarily describes the other three views that visualize
models and trained results: (A) model overview graph view on the left
(Sect. 6.1); (B) layered distributions view in the middle (Sect. 6.2);
(C) metrics view on the right (Sect. 6.3). In the figure, 2D real samples
are drawn from two Gaussian distributions. The user’s goal is to train
the model so that it will generate a similar distribution, by transforming
2D Gaussian noise using a neural net with a single hidden layer.

Color scheme. In our visualization, we color real data green and
fake data purple. We do not use a more traditional green-red color
scheme, as we do not want to associate fake data with a negative value.
For visualizing the discriminator, we use , a color unrelated to the
color scheme chosen for coloring data. For visualizing the generator,
we again use the color purple because the generated points are the fake
points the model sees.

6.1 Model Overview Graph: Visualizing Model Structure
and Data Flow

The model overview graph view (Fig. 4 at A) visually represents a
GAN model as a graph, by selectively grouping low-level operations
into high-level components and presenting data flow among them.

Abstraction of Model Architecture as Overview Graph

The model overview graph visually summarizes the architecture of a
GAN model. Instead of presenting all low-level operations and inter-
mediate data (i.e., output tensors), it selectively represents high-level
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components and important intermediate data as nodes. Specificallly,
nodes of the graph include two main submodels (i.e., generator and
discriminator) and several intermediate data (e.g., fake samples). Each
submodel, which is a neural network, is represented as a large box, and
six data nodes are visualized as small boxes. This decision is based
on our observation of how people draw the architecture of GANs [6]
(like Fig. 2). Users are often familiar with the structure of the basic
neural networks and more interested in the overall picture and interplay
between the two submodels. When we determine the position of the
nodes, we place input data nodes on the left side of the submodels and
output nodes on the right (for forward data flow). Then we draw edges
where forward data paths are drawn from left to right and backward data
paths, representing backpropagation, are drawn as two large backward
loops (one for the discriminator and the other for the generator).

Visualization of Nodes in Overview Graph

We visualize the current states of models within the nodes in the graph
for users to understand and monitor the training process.

Using 2D datasets to promote comprehension. One challenge in
visualizing this information arises from the difficulty of visualizing a
large number of high-dimensional data points. To tackle this issue, we
decided that we limit our GAN models to generate two-dimensional
data samples, while GANs often work with high-dimensional image
data. This decision is mainly for helping users easily interpret visual-
ization and focus to understand the internal mechanisms of the models.
As many researchers identified, when designing interactive tools, it
is even more desirable to focus on simpler cases [34]. Visualization
of two-dimensional space is easier for people to understand how data
are transformed by the models than that of higher- or one-dimensional
spaces: 3D or larger requires dimensionality reduction techniques that
add more complexity to users and hinders their understanding.

Below we describe how we visualize each node. We show a miniatur-
ized copy of each node’s visualization from Fig. 4 for easier referencing.

Real samples are what a GAN would like to model. Each ... .
sample, a two-dimensional vector, is represented as a ’_g )
green dot, where its x and y position represents the values T
of its two-dimensional data point. In this example, two

Gaussian distributions exist: on the upper-left, and on the right.

Random noise, an input to the generator, is a set of ran-
dom samples. In GAN Lab, noise can be either 1D or 2D.
If it is a 1D value, data points are positioned in a line; if
a 2D vector (which is default), positioned in a square box,
as shown in the small figure on the right.

Fake samples are output produced the generator by trans-
forming the random noise. Like real samples, fake sam-
ples are also drawn as dots, but in purple. For a well- k:
trained GAN, the generated distribution should look in- o
distinguishable from the real samples’ distribution.

Generator, a neural net model, is a transformation func-

tion, G : RZ — R2, that maps a 2D data point (i.e., ran- Q

dom noise, z) to another 2D data point (i.e., fake sample, '
G(z)). We visualize the transformed results as a 2D

manifold [28], as in the figure on the right. To draw this

manifold, we first create a square grid (e.g., 20x20) for the random noise
(see Fig. 5, leftmost) where each cell represents a certain noise range
(e.g..{z=1(z1,22) ] 0.85 < z; <0.90A0.10 < zp < 0.15)}). We color
each cell in purple, encode its probability density with opacity (i.e.,
more opaque means more samples in the cell). The generator G trans-
forms the random noise into fake samples by placing them in new loca-
tions. To determine the transformation for the grid cells, we feed each
cell’s four corners into the generator, which returns their transformed
positions forming a quadrangle (e.g., G(0.85,0.10) = (0.21,0.75),
G(0.85,0.15) = (0.24,0.71), ...). Thus, the whole grid, now consist-
ing of irregular quadrangles, would look like a warped version of the
original regular grid. The density of each (warped) cell has changed.
We calculate its new density by dividing the original density value (in
the input noise space) by the area of the quadrangle. Thus, a higher
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Fig. 5. Visualization of generator’s transformation. When users mouse
over the generator node, an animation of the square grid transitioning
into a warped version is played.

L

opacity means more samples in smaller space. Ideally, a very fine-
grained manifold will look almost the same as the visualization of the
fake samples. Our visualization technique aligns with the continuous
scatterplots idea [3] that generalizes scatterplots to continuous data by
computing the density of data samples in the scatterplot space. To help
users better understand the transformation, we show an animation of
the square grid transitioning into the warped version (see Fig. 5), when
users mouse over the generator node in the overview graph.

Discriminator is another neural net model, which is a

binary classifier, that takes a sample as input and deter-

mines whether it is real or fake by producing its pre-

diction score (values from O to 1). We visualize the

discriminator using a 2D heatmap, as in TensorFlow

Playground [36]. The background colors of a grid cell encode the pre-
diction values (darker green for higher values representing that samples
in that region are likely real; darker purple for lower values indicating
that samples are likely fake). As a GAN approaches the optimum,
the colors become more gray (as in the above figure), indicating the
discriminator cannot distinguish fake examples from the real ones.

Predictions are outputs from the discriminator. We place

real or fake samples at their original positions, but their

fill colors now represent prediction scores determined by

the discriminator. Darker green indicates it is likely a

real sample; darker purple likely a fake sample. In this example, most
samples are predicted as fake, except for the ones on the upper left.

Gradients for generator are computed for each fake sam- =

ple by backpropagating the generator’s loss through the s
graph. This snapshot of gradients indicates that how each 3
sample should move to, in order to decrease the loss value. 3
As a gradient represents a vector, we visualize it as a line starting from
the position of each sample, where length indicates strength.

Real samples Fake samples

Discriminator's classification

Fig. 6. The discriminator’s performance can be interpreted through the
layered distributions view, a composite visualization composed of 3 layers
selected by the user: Real samples, Fake samples, and Discriminator’s
classification. Here, the discriminator is performing well, since most
real samples lies on its classification surface’s green region (and fake
samples on purple region).
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Bad

Distributions of fake and real samples
do not match well

Good

Distribution of fake samples are similar
to real samples' density contour

Fig. 7. Evaluating how well the distribution of fake samples matches that
of real samples by turning on real samples’ density contour and fake
samples in the layered distributions view.

6.2 Layered Distributions: Visual Analysis of Interplay be-
tween Discriminator and Generator

In complex models like GANSs, it is a key to understanding relationships
among several elements of the models. For example, users may want to
check how the distribution of fake samples are similar to those of real
samples. Although users can perform a side-by-side comparison of the
two different nodes on the model overview graph, this task would be
greatly improved when they are overlapped in the same coordinates.
To help visually analyzing relationships among multiple components,
we create a layered distributions view (Fig. 4 at B) that presents a large
canvas showing the visual representations of the nodes in the model
overview graph as multiple layers. The layers can be turned on or off
using toggle switches. We do not intend to visualize all layers, as it is
overwhelming to users and it is much more effective to include only the
useful information for particular tasks. The view currently supports six
layers. All layers, except the one for the real samples’ density contour,
are magnified versions of the visual representations of the graph nodes
we described in the previous subsection (Sect. 6.1). The layers are:

e Real samples (green dots)

» Real samples’ density contour (see Fig. 7)
e Generator transformation manifold

» Fake samples (purple dots)

* Discriminator’s classification heatmap

* Generator’s gradients (pink lines)

Useful combinations of layers. By selecting which visualizations
to be included in the canvas, users can visually analyze the state of the
models and the interplay between discriminator and generator, from
multiple angles. We describe three example combinations that support
multiple analysis tasks. First, Fig. 6 illustrates that the discriminator
may be visually interpreted by comparing the samples’ positions with
grid’s background colors. Here, the discriminator is performing well,
as most real and fake samples lie on its classification’s green and purple
regions, respectively. The second example in Fig. 7 illustrates how users
may visually evaluate how well the distribution of fake samples matches
that of the real samples. It helps users to determine whether the two
distributions are similar or not, which is the main goal of GANs. The
last example in Fig. 8 shows how the view can help users understand the
interplay between discriminator and generator. Fake samples’ gradient
directions point to the classification’s green regions, meaning that the
generator leverages information from the discriminator to make fake
samples less distinguishable from the real ones.

6.3 Metrics: Monitoring Performances

The metrics view (Fig. 4 at C) shows a number of line charts that track
several metric values changing as the training promises. GAN Lab
currently provides two classes of metrics. The first kind is the loss
values of the discriminator and generator, which are helpful for eval-
uating submodels and comparing their strengths. The second kind of
metrics is for evaluating how similar the distributions of real and fake
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Fake samples' gradients point to green areas

) Generator's
gradient direction

Fake sample's
current location

Fig. 8. Example of understanding the interplay between discriminator
and generator using the layered distributions view. Fake samples’ move-
ment directions are indicated by the generator’s gradients (pink lines),
based on those samples’ current locations and the discriminator’s current
classification surface (visualized by background colors).

samples are. GAN Lab provides Kullback-Leibler (KL) and Jensen-
Shannon (JS) divergence values [19, 38] by discretizing the 2D con-
tinuous space (via the grid). Formally, the KL divergence value is
defined as KL(Preat||Prake) = — L Preal () log ];r:j((;)) , where Preal(i) is
the probability density of the real samples in the i-th cell, calculated by
dividing the number of real samples in the i-th cell by the total number
of real samples; Prye (i) is similarly defined for the fake examples. We
decided to use these measures, among others, because they are some of
the most commonly used approaches for comparing distributions and
they do not incur heavy in-browser computation overhead.

7 INTERACTIVE EXPERIMENTATION

This section describes how users can interactively experiment with
GAN models using GAN Lab.

Basic workflow. Clicking the play button, located on the top of the
interface, starts running the training of a GAN model and dynamically
updates the visualizations of intermediate results every n epochs (a.k.a.,
iterations). This helps users keep track of the model’s training and
examine how they evolve. Users can pause the training by clicking the
pause button (the play button changes to pause button during training).

7.1 Direct Manipulation of Hyperparameters

GAN Lab is designed for users to directly manipulate

model’s training as easy as possible. When users \PH p*
click the editing icon on the right side of the label for b
the model overview graph view, several up/down buttons or dropdown
menus, which controls the model’s hyperparameters, are shown (see
Fig. 4). Each item is located near its relevant submodel or data node
for users to easily locate it. Users can directly change the values using
the buttons or dropdown menus, and the user’s actions (e.g., increasing
learning rate) are immediately applied to the model training process,
except for some of the submodel-specific options (e.g., number of
hidden layers), and the effects of this change will be visualized, as the
training further progresses. This would greatly help users understand
how these hyperparameters affect the model training process. The
current available hyperparameters in GAN Lab include:

* Number of layers for generator and discriminator
* Number of neurons in each layer for generator and discriminator
* Optimizer type (e.g., Stochastic Gradient Descent, Adam) for up-
dating the generator and discriminator
* Learning rates for updating the generator and discriminator
Loss function (e.g., log loss [9], least square loss (LS-GAN [25]))
* Number of training runs for discriminator (and generator) for every
epoch?
* Noise dimension (e.g., 1D, 2D) and distribution type (e.g., uniform,
Gaussian)
GAN Lab also allows users to pick a distribution of real samples using
the drop-down menu that currently implements five examples (e.g.,

3In training of GANS, for every epoch, the discriminator and generator are
trained by turns. Goodfellow et al. [9] suggested that the discriminator can be
updated k more times in practice, and GAN Lab enables to adjust this k value.
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APPLY

Fig. 9. Users can create real samples by drawing their distribution.

ring). Users can also specify a new distribution by drawing one on a
canvas with brush, as illustrated in Fig. 9.

7.2 Step-by-Step Model Training at Multiple Levels

GAN Lab supports step-by-step training at multiple levels of abstraction
for understanding intricate training dynamics. The step-by-step execu-
tion of systems is one of the useful ways for learners to understand how
they work [35], however, training of GANs consists of thousands of
iterations and each iteration also consists of several steps (as illustrated
in Fig. 10). To address this problem, we decompose the training process
into steps in multiple levels: epoch-, submodel-, and component-level.

7.2

Users can train a model for only one epoch, by
clicking a button once. This epoch-level step
execution is designed to help users track the
training process to see how models update to
find the optimum state through iterations. To use this feature, a user
first clicks the step icon on top, which will shows three buttons. The
last button (“Both”) represents the training for one epoch. We describe
the other two buttons’ usage next.

Manual Step Execution in Epoch-Level

Generator
Discriminator
Both

7.2.2 Manual Step Execution in Submodel-Level

A single epoch consists of training of a discriminator and generator,
as illustrated in Fig. 10. GAN Lab allows users to update only the
discriminator or generator. The experimentation of training only one
of the two submodels is effective for users to understand how they
work differently. For example, clicking the button for the discriminator
changes the background grid while preserving the positions of fake
samples. On the other hand, clicking the discriminator button moves
the fake samples while fixing the background grid. To use this feature,
users click the step icon first, then the three buttons will be shown. The
first button is for training the discriminator; the second button is for the
generator; and the last button is for training both submodels.

7.2.3 Slow-Motion Mode in Component-Level

GAN Lab also provides the slow-motion mode, designed to -
help novices learn how each component of the model works (:)
to make updates within each epoch. It works differently from O
the manual step execution described in the two previous paragraphs.
When users turn on this mode by clicking the icon on top during train-
ing, it slows down the speed of training. In addition, two similar lists
of five steps are presented: one for updating the discriminator and the
other for the generator, as depicted in Fig. 11. The five steps include
(1) running the generator; (2) running the discriminator; (3) computing
discriminator or generator loss; (4) computing gradients; and (5) up-
dating the discriminator or generator. For every few seconds, it moves
to the next step highlighting the corresponding model components
with textual descriptions. For example, each of the five steps for the
discriminator is highlighted one after another. At the same time, the
whole training loop for the discriminator is also highlighted (i.e., edges
colored by blue). Once the five steps are completed, it proceeds to the
training of the generator, highlighting the training loop for the generator
(i.e., purple edges) and executing its five steps. By following these
training paths, users can learn how every component is used in training
GAN:S.
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Training progress

EPOCH-LEVEL Epoch #1 Epoch #2
SUBMODEL-LEVEL Training of Training of Trainirjg of Training of
Discriminator | Generator | Discriminator | Generator

COMPONENT-LEVEL |#1|#2|#3 #4 #5 #1‘#2 #3 | HA | H#5|#1 | H#2|#3 HA|HS #1‘#2 H3|#4 #5

Fig. 10. Training typically involves of thousands of epochs (iterations).
Each epoch includes training both discriminator and generator. GAN Lab
supports step-by-step model training at different abstraction levels.

7.3 Browser-based Implementation for Deployment

GAN Lab is an open-source, web-based visualization tool. Anyone
can access it using their modern web browsers without the need for
installation or specialized backend. The demo is currently available at
https://poloclub.github.io/ganlab/.

The tool is implemented in HTML and TypeScript (a typed ver-
sion of JavaScript) with a few open-source JavaScript libraries: Ten-
sorFlow.js® is used for training and running models, which we will
elaborate in detail in the next paragraph; Polymer’ is used for building
web applications; and D3.js® is used to visualize the model overview
graph and layered distributions. The source code is available in
https://github.com/poloclub/ganlab/.

Using TensorFlow.js for model building and training. GAN Lab
runs locally on user’s web browsers by using TensorFlow.js Core (for-
merly known as deeplearn.js), an in-browser GPU-accelerated deep
learning library, developed by Google. The TensorFlow.js library uses
WebGL to efficiently perform computation on browsers, required for
training deep learning models. Not only does it enable rapid experimen-
tation of the models, but also allows us to easily scale up deployment for
the public. While most other implementations of GANSs that use Python
or other server-side languages would backfire when multiple users train
models concurrently, our GAN models are trained in JavaScript, which
means that that the models and their visualizations run locally on web
browsers, enabling us to significantly broaden people’s access to GAN
Lab for learning about GANs.

8 USAGE SCENARIOS

This section describes two example usage scenarios for GAN Lab,
demonstrating how it may promote user learning of GANs. The sce-
narios highlight: (1) how beginners may learn key concepts for GANs
by experimenting with the tool’s visualizations and interactive features
(Sect. 8.1); (2) how the tool may help practitioners discover advanced
inner-workings of GANs, and how it can assist them to interactively
attain optimal hyperparameters for reaching equilibrium between sub-
models (Sect. 8.2).

8.1 Beginners Learning Concepts and Training Procedure

Consider Alice, a data scientist at a technology company, who has basic
knowledge about machine learning. Recently, she has started to learn
about deep learning, and a few of the introductory articles she has been
reading mention GANs. Excited about their potential, she wishes to
use GAN Lab to interactively learn GANSs.

Becoming familiar with basic workflow. When Alice launches
GAN Lab in her web browser, she sees the model overview graph,
which looks like a GAN architecture diagram that she has seen in her
articles. By default, real samples are drawn from a 2D distribution that
resembles a line. She clicks the play button on the tool bar. During the
training, the movement of the fake samples in the layered distribution
view attracts her attention. They keep moving towards the real samples.

Using the slow-motion mode for tracking the training proce-
dure. Alice is aware that discriminator and generator take turns to
train, but she is unsure of what that means. To see how training pro-
gresses, Alice clicks the slow-motion icon (Sect. 7.2.3) to enter the

6TensorFlow.js, https://js.tensorflow.org/
7Polymer, https://www.polymer-project.org/
8D3 s, https://d3js.org/
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Training of Generator:

-

Compndies generater
4 gradants

Fig. 11. The slow-motion mode slowly executes the model training process in a component level, in a step-by-step fashion. The steps are grouped
into two lists, one for discriminator and the other for generator, each consisting of five steps.

Training generator moves fake samples towards real samples.
But without updating discriminator, they move to undesired positions

Training discriminator does not update fake samples, but updates
classification boundary used to compute generator's gradients

Updating both submodels leads to generating fake samples
whose distribution match that of real samples

Fig. 12. Experimenting with manual step execution, to understand the
interplay between discriminator and generator.

slow-motion training mode, which slows down the speed of training,
and presents two lists of training steps, one for the discriminator, and
another for the generator (see Fig. 11). She notices that in for every
epoch, the discriminator is trained first, then the generator follows. The
two models’ training sequences seem very similar, but she discovers
several key differences. For example, she is able to find that while
discriminator’s loss is computed by using both real and fake samples,
only fake samples are used when computing the generator’s loss.
Understanding the different roles of discriminator and genera-
tor with the manual step execution. While the slow-motion mode
has helped her better understand the steps of the training process, Alice
wonders how the discriminator and generator play a “game” to generate
data distributions. To analyze the different effects for the discriminator
and the generator, she would like to experiment with the two submodels
using the manual step-by-step execution feature. She clicks the button
(Sect. 7.2.1) to update the generator. Her initial clicks cause the fake

samples to move towards the real samples, but as she clicks a few
more times, the fake samples “overshoot,” no longer matching real
samples’ distribution (Fig. 12, top row). She now realizes that the fake
samples have moved towards regions where the colors of background
grid cells are green, not directly towards the real samples. This leads
Alice to hypothesize that training the discriminator is necessary for
the generator to produce better fake samples. So, she switches to only
training the discriminator, which does not reposition the fake samples,
but the grid colors update (Fig. 12, second row) to correct a decision
boundary that separates the real and fake samples. She believes that this
new boundary helps guide the fake samples towards desirable regions
where the real samples are located. This experiment helps her realize
that updating both submodels is important for generation of better fake
samples. Now she clicks the buttons for updating the discriminator and
generator alternatively, which successfully creates a fake distribution
that matches the real distribution. That is, the discriminator cannot
distinguish between real and fake samples. (Fig. 12, last row).

8.2 Practitioners Experimenting with Hyperparameters

One of GAN Lab’s key features is the interactive, dynamic training
of GANs. Experimentation using GAN Lab could provide valuable
practical experience in training GAN models even to experts. Consider
Bob, a machine learning engineer at a technology company.

Guiding models to find the optimum. Bob launches GAN Lab
and starts the training process. Fake samples quickly move towards
real samples. However, as the training progresses, he notices that the
fake samples oscillate around the real samples. Based on his previous
experience, he believes this indicates that the learning rates may be set
too high. He first decreases the value for the discriminator by using the
dropdown menu, but the amount of oscillation becomes more severe.
By checking the interface, he quickly realizes that there are two learning
rates in GANSs, so he reverts its value and decreases the generator’s
learning rate. After a few more iterations, the oscillation subsides and
the distribution of the fake samples almost matches that for the real
samples. This experimentation helps him understand the importance in
balancing the power between the discriminator and generator.

Understanding equilibrium between discriminator and genera-
tor. Bob wonders what would happen if he perturbs the equilibrium
between the discriminator and generator. That is, what if either sub-
model overpowers its complement. Looking into the model overview
graph, he finds that some other hyperparameters also come in matched
pairs, such as the number of training loops, one for the discriminator
and the other for the generator. Originally, both numbers are set to 1
(i.e., the submodels run one training epoch in alternate sequence). Bob
decides to increase discriminator’s loop count 3 (i.e., 3 discriminator
epochs, followed by 1 generator epoch, followed, and repeat). To his
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All fake samples collapsed into a single point.

Fig. 13. Mode collapse, a common problem in GANs.

surprise, this “unbalanced” epoch setting (3 vs. 1) causes GAN to
converge faster. Comparing this “unbalanced” setting with the original
“balanced” (1 vs. 1) setting, Bob starts to understand that a more pow-
erful discriminator can indeed accelerate training, because a stronger
discriminator leads to stronger gradients for the generator, which in
turns more quickly move the fake samples towards the real distribution,
thus faster training convergence.

Exploring mode collapse. Bob would like to train a GAN to work
with more complex data distributions. He picks one distribution that
consists of three disjoint dense regions. He increases the number of
layers for both the generator and discriminator, then clicks the play
button. After a few seconds, all fake samples seem to have disappeared,
as he can only see real samples. He temporarily hides the real samples
(by toggling their visibility), thinking that they may be covering the
fake samples. Then, he realizes that all fake samples have collapsed
into a single point (as shown in Fig. 13). He does not know why
this happens, and wonders if it is due to his hyperparameter choices.
So he experiments with several other sets of hyperparameters, and
observes the pattern that this happens more often when the generators
and discriminators are set to use more layers and neurons. He consults
the literature for possible causes, and learns that this is in fact a well-
known problem in GANS, called mode collapse, whose exact cause
is still an active research topic [8,26]. Bob’s observation through
GAN Lab motivates him to study new variants of GANs, which may
overcome this problem [8,26].

9 INFORMED DESIGN THROUGH ITERATIONS

The current design of GAN Lab is the result of 11 months of investi-
gation and development through many iterations. Below we share two
key lessons learned from our experience.

The model overview graph is a crucial and effective feature that helps
users develop mental models for GANs. Our early design (Fig. 14)
did not include the overview graph. Instead, it displayed a long list of
hyperparameters. While that design had all the necessary features for
training GANS interactively, pilot users, including machine learning
experts, commented that the tool was difficult to use and to interpret.
The main reason is that, without an overview, users had to develop
mental models for GANs (in their heads) to keep track of how the larger
number of hyperparameters map to the different model components.
This finding prompted us to add the model overview graph, inspired
from common architecture diagrams for GANs, which helps users build
mental models for the training process of GANs [24].

Animating the generator’s transformation (Fig. 5) was helpful in
helping users interpret the manifold visualization. Our early version
only showed the transformed manifold (e.g., Fig. 5, rightmost). How-
ever, many users were puzzled by what they saw because, the manifold
could be so severely distorted that they could not tell what its original
shape was (a uniform 2D grid), thus they could not make the connec-
tion to realize that the manifold visualization was indeed representing
the generator’s output. We though about adding text to the interface
to explain the manifold, but as GAN Lab is intended to be used as a
standalone tool, we would like to keep the visual design compact, and
we wanted to include textual descriptions only when necessary. Thus,
we came up with the idea of visually explaining the transformation as
an animated transition, which was immediately clear to all users.
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Fig. 14. Early design of GAN Lab did not include a model overview graph
that helps users develop mental models for GANSs.

10 LIMITATIONS AND FUTURE WORK

Transferring user knowledge to higher dimensions. Our main
decision to use 2D datasets is to promote comprehension [34]. Through
our tool, with 2D datasets, users can gain important knowledge about
the overall training process of GANs, and specific details, such as
how model components interact over time, how data flow through
components, and how losses are recomputed to iteratively update com-
ponents. These important concepts and knowledge are transferable to
practical use cases of GANs where higher dimensional data are used
(e.g., images). However, it remains an open research problem whether
certain behaviors (e.g., mode collapse) that users may observe when
experimenting with 2D datasets would be easily reproducible in higher
dimensional datasets, where the larger number of parameters would
lead to more-complex interactions and less-predictable results. We plan
to conduct studies to develop deeper understanding of how and when
such correspondence or mismatch may occur.

Supporting image data. To extend GAN Lab to support image
data, some modifications and optimizations will be needed. Training
on image data is often time consuming. To speed this up, pre-trained
models may be provided to users so they can skip the earlier training
steps. As for visual design, projection methods (e.g., t-SNE) may be
used to replace some views in GAN Lab to visualize the distribution of
generated image samples [41].

Speed and scalability. GAN Lab leverages TensorFlow.js to accel-
erate GAN training for browser-based deployment. For models with
many parameters, this can be time consuming. In the short term, we
believe rapid advances in JavaScript and hardware will shorten this by a
good amount. A longer-term challenge to overcome is browsers’ inabil-
ity to render visualization and perform computation at the same time
(i.e., single-threaded). Developers need to strike a good balance in plan-
ning and interleaving these actions, to maximize model computation
speed and visual responsiveness.

Supporting more GAN variants. While GAN Lab currently im-
plements a few different loss functions, other GAN variants exist [12].
Through open-sourcing GAN Lab, we look forward to seeing the com-
munity to build on GAN Lab to implement more variants, enabling
users to interactively and visually compare them, easing the challenges
in evaluating GANs [8]. Some variants may require minor design
changes of the interface (e.g., adding new nodes to overview graph).

In-depth evaluation of educational benefits. Longitudinal studies
of GAN Lab will help us better understand how it helps with learning
of GANSs. It would be particularly valuable to investigate how different
types of users (e.g., students, practitioners, and researchers) would
benefit from the tool.
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