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ABSTRACT. Given two density matrices p and o, there are a number of different
expressions that reduce to the a-Rényi relative entropy of p with respect to ¢ in the
classical case; i.e., when p and o commute. Only those expressions for which the Data
Processing Inequality (DPI) is valid are of potential interest as quantum divergences
in quantum information theory. Audenaert and Datta have made a conjecture on
the validity of the DPI for an interesting family of quantum generalizations of the
a-Rényi relative entropies, the o — z—Rényi relative entropies. They and others have
contributed to the partial solution of this conjecture. We review the problem, its
context, and the methods that have been used to obtain the results that are known
at present, presenting a unified treatment of developments that have unfolded in a
number of different papers.

1. THE AUDENAERT-DATTA CONJECTURE AND KNOWN RESULTS

The sender of a message over a classical noisy communication channel encodes it
into a sequence of characters from an alphabet — possibly just {0,1} — that are physi-
cally represented by levels (amplitude or frequency) in a transmitted signal. Because
of noise, the received levels will be random variables with continuous and overlapping
distributions. The alphabet and encoding are known to the recipient, who is, how-
ever, faced with the problem of deciding whether each incoming random signal level
represents, say, 0 or 1.

Shannon’s theory tells the sender and the recipient just how much redundancy they
must employ for the recipient to correctly extract the message from the noisy signal
that is received with an arbitrarily small probability of error. For example, suppose the
communication channel they use is such that sending 0 through the channel results
in a random variable with a density p centered on 0, while sending 1 through the
channel results in a random variable with density o centered on 1. Suppose the noise
is such that the different random variables produced at each step of the transmission
are independent. Let X, denote the n-th signal received. If the densities p and o
overlap (and they will if the noise is Gaussian) the receiver cannot tell for sure what
was sent on a single observation. But if the sender repeats the transmission of the
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same signal m times, and the receiver knows it is the same signal being sent m times,
and makes optimal use of the observed signals, then the probability of reading the
wrong bit will go to zero exponentially fast as m increases.

Thus, the following problem is fundamental to classical communication theory:
Given two probability distributions p and ¢ on R, and a sequence of random vari-
ables X,, drawn from one of these two distributions, decide on the basis of the ob-
servations { X7y, ..., Xy} whether p or o is the distribution from which the random
sequence is being drawn. That is, one has to come up with a set Ay C RY so that
if (Xj(w),...,Xy(w)) € Ay, then one accepts that p is the governing distribution,
while otherwise, one accepts that o is the governing distribution.

There are two kinds of errors that one can make: accepting o when p is the governing
distribution, and accepting p when o is the governing distribution. Of course, if one
takes Ay to be all of RY, then one never makes the first kind of error, but one will
make the second kind of error whenever o is the governing distribution. Therefore,
fix some small £ > 0, and require of Ay that [ Ax p®N > 1 —¢. Then among all such
choices for Ay, choose one that (nearly) minimizes log [ Ay o®N. That is, define

Ben(p, o) = inf {log/ o . Ay C RY is such that / PPN >1—¢ } (1)
AN

AN
Then one has [25, 26]

. 1 1 1
lim sup 7 Pnellp,0) < =Dlpllo) and liminf =Bv.((p,0) = —7——D(pllo),
(2)

where D(pl||o) is the relative entropy or Kullbach—Liebler divergence of p with respect
to o:

D(pllo) = /Rp(ﬂ?)(log p(x) —logo(z))dz. (3)

If one chooses N so that e~ NP(ello)

of errors small, of order ¢.
It is an easy consequence of Jensen’s inequality that D(p||oc) > 0 with equality if

< g, then one can expect to have made both types

and only if p = 0. However, it is not in general true that D(p||c) = D(o||p), and
so the relative entropy is not a metric on the space of probability distributions. The
asymmetry directly reflects the asymmetry in the question that is answered in terms
of the relative entropy, namely: If one chooses the acceptance rule Ax so that the
probability of correctly accepting p is at least 1 — e, how small, as a function of N,
can one make the probability of incorrectly accepting p when o is sent? In this simple
setting of independent random variables, the fact that the relative entropy arises as
the answer to this question is a consequence of Cramér’s theorem on large deviations,
and it gives the relative entropy an operational meaning.

A (classical) divergence is a function on pairs of probability densities taking values
in [0,00] that is somehow connected with how “distinguishable” the two densities
are, and as above, such functions need not be symmetric. A mathematical definition
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of classical divergences was given by Rényi [38] who introduced the Rényi relative
entropies as a family of such divergences. For a € (0,1), the a-Rényi entropy is

defined as
Dulplle) = 1o [ )t (aja ) (@)

Later, Csizlar [13] gave an operational meaning to the Rényi relative entropies, but

going into this would be too large a digression. Suffice it to say that a great many
bounds on error probabilities have been given in terms of Rényi entropies. Our focus
here is on the quantum aspects of this problem, and especially, quantum analogs
of a certain monotonicity property that classical divergences must have. The basic
monotonicity property can be easily explained at an intuitive level for both the classical
and quantum cases.

Any divergence is supposed to give, or at least bound, the “best asymptotic rate
of distinguishability” between p and ¢ in some operational context Let P(x y) be a

non- negatlve kernel Wlth f P(z,y)dz =1 for all y. Define Pp(z fR y)dy
and Po(z) == [, P( y)dy. Any classical divergence D(pHJ) must satlsfy
D(Pp||Po) < D(pllo) (5)

since otherwise, one could apply the operation P to p and o, and use whatever proce-
dure one is using to distinguish p and from o, and get a better result. The inequality
(5) which reflects the fact that applying a further random corruption of the signal can
only make it harder to discern what is being sent, is known as the (classical) Data
Processing Inequality. For the classical divergences discussed above, this is true on ac-
count of Jensen’s inequality and the joint concavity of the integrands in p and o. There
are other important properties that divergences should have; e.g., certain additivity
properties over products, but we focus instead on (5) and its quantum analog.

In the quantum setting, probability densities are replaced by density matrices; that
is, by non-negative trace class matrices p with unit trace, and integrals are replaced
by traces. One natural quantum analog of the relative entropy D(p||o), known as the
Umegaki relative entropy [42], is defined to be

D(pllo) = Tr[p(log p — log )] , (6)
which is closely related to the von Neumann entropy of a density matrix p:
S(p) = —Tr[plogp] . (7)

The fact that D(p|lo) > 0 with equality if and only if p = o is still true in this
setting, but it is no longer a direct application of Jensen’s inequality. Indeed, not
every classical entropy inequality is valid in the quantum setting. For example, a
marginal of a classical joint probability distribution never has an entropy exceeding
that of the joint distribution itself. In the quantum setting, however, this is false.
Even when a classical entropy inequality has a valid quantum analog, its proof in the
quantum setting may be much more difficult. Probably the first conjecture about a
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classical entropy inequality that did not obviously hold true in quantum mechanics was
made by Lanford and Robinson, namely, Strong Subadditivity of the von Neumann
entropy (SSA). This was proved in [28] based on a convexity theorem for certain
trace functionals in [27]. It is a remarkable fact that while some of the inequalities in
classical information theory carry through in quantum information theory and some
do not, it is often the more complicated ones that carry through, SSA for instance,
while some of the simpler ones fail. SSA is essentially equivalent to the joint convexity
of the Umegaki relative entropy, and the quantum analog of (5), the Data Processing
Inequality. Wehrl’s paper [43] provides a good review of the what was known on
entropy and relative entropy inequalities, classical and quantum, through 1978, and it
is an especially good source on differences between the classical and quantum settings.

The quantum Data Processing Inequality for a divergence D says that for completely
positive trace preserving maps £ and all density matrices p and o, one has

D(&pl|€a) < D(pllo) - (8)

Completely positive trace preserving (CPTP) maps are also known as quantum oper-
ations, and are the general class of state transformations possible in an open quantum
system [24]. Applying any such operation can only make the states harder to dis-
tinguish, and hence if D is to have an operational meaning, it must satisfy the Data
Processing Inequality.

While the von Neumann entropy (7) is the natural analog of the classical entropy
S(p) = — [ plogp, the situation is more complicated when one considers relative
entropy and other divergences, since these involve two density matrices p and o that
need not commute. Thus, there are many ways one might try to write down a quantum
analog of plog(p/o), for example.

Relative entropy arises in the answers to all sorts of questions in classical probability
theory, and it is not evident that it is Umegaki’s quantum generalization that answers
the corresponding question in the quantum setting. Among the many other expressions
that reduce to it when p and ¢ commute are

Te[plog(o~2po™/%)]  and  Tr[plog(p"?o~"p'?)] . 9)

The Data Processing Inequality may be used to winnow the large field of putative
divergences leaving a reduced class for which one might hope to find operational
meanings. For example, the trace function on the right in (9) does satisfy (8), as
does the Umegaki relative entropy, but the trace function on the left does not [12].
It turns out that the Umegaki relative entropy is the “right choice” as far as the
direct quantum analog of the classical decision problem that was discussed above is
concerned, as shown by Hiai and Petz [21]: Consider two density matrices p and o on
a finite dimensional Hilbert space H. Let P(H®Y) be the set of orthogonal projections
onto subspaces of H®V. Fix ¢ > 0, and define

B-n(p,o) = inf {log Tr[c®V Ay] + Ay € P(H®Y), Tr[p®VAx] >1—¢c}. (10)
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The result of Hiai and Petz [21] is that then (2) is valid also in this quantum setting
where now D(p||o) denotes the Umegaki relative entropy. (They actually prove this
in a somewhat more general setting.) Another of their results is that

Tr[p(log p — log )] < Tr[plog(p'/*o~"p"/?)] (11)

and the inequality is strict when p and o do not commute. Hence while the quantity on
the right in (11) may seem to be a natural extension of the notion of relative entropy
to the quantum setting, and while it does satisfy (8), it is not the one that is relevant
to the decision problem that we have been discussing — which is not to say that is is
not the relevant quantity for some other problem.

Thus, when generalizing classical entropy inequalities to the quantum setting, there
is the difficulty that non-commutativity prevents one from directly mimicking the clas-
sical proofs, but also the non-commutativity is the source of a multiplicity of distinct
quantum analogs of classical entropies or divergences: Which analog is meaningful in
which settings?

This situation naturally arises when one considers quantum analogs of the Rényi
relative entropies. The obvious generalization of (4), namely,

Da(pllo) = —— log (Tr[p"s" ) | (12)

turns out to have the same operational meaning that was given for (4) by Ciszlar; this
was proved by Mosonyi and Hiai [34]. However, (12) is not the only quantum analog
of (4) to have an operational meaning.

Another generalization of the relative Rényi entropy was introduced recently by
Miiller-Lennert, Dupuis, Szehr, Fehr, Tomamichel [36] and Wilde, Winter, Yang [44].
They introduces the sandwiched Rényi entropies

Pa(pllor) = —— log (Ta{(o =0/ 1=/ (13)
For certain values of the the parameter, an operational meaning has been given in
35].

Audenaert and Datta realized that all of these different quantum Rényi entropies
— and more — could be brought together in a two parameter family, the a — z Rényi
entropies defined by

1 — z /z — Z\ %
Dos(pllor) i= —— log (Ta[(o1=0/2 g/ 1=20/22)7) (14)

Evidently, Do (p||o) = Da1(pllo) and Da(p||o) = Daa(pllo). The a-z Rényi relative
entropies have appeared earlier in a paper by Jaksic, Ogata, Pautrat and Pillet [22].
Audenaert and Datta raised the question:

For which values of a and z does D,, , satisfy the

quantum Data Processing Inequality (8)?
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By an argument of Lindblad and Uhlmann, based on Stinespring’s theorem, this
question is equivalent to whether the trace functionals appearing in the D, , have
certain convexity or concavity properties. This will be explained below in detail, but in
a nutshell, for our finite dimensional setting, the Stinespring Representation Theorem
[40] allows one to express CPTP operations in terms of isometric injections, unitary
conjugations and partial traces, in such a way that once one knows the monotonicity
(8) under partial traces — one example of a CPTP map — one knows it in general. Since
partial traces can be written as averages over unitary conjugations [41], it suffices to
prove D(Ep||Ea) < D(p||o) when £ takes the form

| M
() = = 3 U
j=1
where Uy, ..., Uy are unitary. Now consider, for example, the trace functional in (12),
Tr[p®c!'~?|. Evidently, for each 7,

Te[((U;pU; ) (UjoU;)'~0] = Te[p™o' ]

and therefore if (p, o) — Tr[p®c'™%] is jointly concave, the standard quantum Rényi
relative entropy (12) with a € (0, 1) satisfies D(Ep||E0) < D(p||o).

However, the joint concavity of (p,o) — Tr[p®c!7?] is a special case of the Lieb
Concavity Theorem [27], which says that for 0 < p,q with p+¢ < 1, (4,B) —
Tr[AP B is jointly concave. One may also consider Rényi relative entropies for o >
1. In this case, the factor of == in (12) is negative, and so the DPI will follow if
(p,0) — Tr[p*ct~?] is conver, and for a € (1,2) this is true by the Ando Convexity
Theorem [1], which says that (A, B) — Tr[A?BY] is jointly convex for —1 < ¢ < 0 and
0 < g+ p<1. (Since we shall be concerned with the relation between convexity and
concavity inequalities in what follows, it is worth remarking, that the proof of Ando’s
Convexity Theorem relies on the concavity result of [27].) Since the Umegaki relative
entropy is the a — 1 limit of the Rényi relative entropy, these convexity results also
yield the Data Processing Inequality for it as well, as first proved by Lindblad [31, 32].

To prove the data processing inequality for the o — z Rényi entropies one requires
concavity and convexity of more complicated trace functionals. ( In fact, as explained
below, concavity/convexity is necessary as well as sufficient for the data processing
inequality.) The convexity theorem that implies the data processing inequality for
certain of the sandwiched Rényi entropies was proved in [16] (see also [6]). In their
paper [5] Audenaert and Datta deduced the data processing inequality in certain cases
from concavity theorems of Hiai and conjectured a precise parameter regime for the
validity of the data processing inequality.

Let My denote the set of complex N x N matrices and Py denote the subset of
positive definite matrices. Their conjecture refers to the trace function at the heart of
the definition of the o — z Rényi entropies, and may be stated as follows:
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Conjecture 1. If 1 <p <2 and —1 < ¢ <0, then for any K € My
Pn X Py 3 (A, B)—Tr (BQ/2K*ApKBq/2)1/(p+q)

15 jointly convex.

Currently, this conjecture is known for ¢ = p — 1 [1], for p = 1 [16] and for p = 2
[9]. It is open in the remaining cases.
Conjecture 1 is stated in a different, but equivalent form in [5], namely, as convexity

of Py 5 A— Tr (Aq/ 2K AP AY 2)1/(p+Q). The equivalence of this version with the
one stated above will be explained at the end of this introduction.

The concavity of (A, B) — Tr[APBY] with 0 < p,q and p + g < 1 lies at the basis
of all of the examples of quantum data processing inequalities that we have discussed.
A number of different proofs of this fundamental result were given by other authors,
and the two that are most relevant for our purposes appeared within a few years of
[27]. One of these was due to Araki [2, 3]. His proof introduced a method making use
of the relative modular operator and other tools coming from modern theory of von
Neumann algebras, and has the merit of providing generalizations of the inequality to
this setting. The paper [2] is especially clear on the matricial case and is accessible
without prior knowledge of the the modern theory of von Neumann algebras. An even
more pedestrian account of this approach, which is now well known in the quantum
information theory community, can be found in [37].

Another methodology was introduced by Epstein [15], who employs the theory of
Herglotz functions, also known as Pick or Nevanlinna functions. These are functions ¢
that are analytic in the open upper half plane, C,, and that have a positive imaginary
part. Such functions have a canonical integral representation, as recalled below, and
from this a number of their properties follow. These functions have played a central
role in the theory of operator inequalities since the 1934 theorem of Lowner [33]
stating that a function f : R — R is such that for all self adjoint matrices A, B of
the same size, f(A) > f(B) whenever A > B (in the usual ordering of self-adjoint
matrices) if and only if f has an analytic continuation to a Herglotz function. The
deep part of Lowner’s Theorem is the “only if” part: It is an immediate consequence
of the integral representation for Herglotz functions that if f is Herglotz, not only is
A — f(A) operator monotone, it is operator concave. A full account of this theory,
with three distinct proofs of Lowner’s Theorem, can be found in the book of Donoghue
[14]. A forthcoming book of Simon [39] will present 11 distinct proofs, three of them
new.

One of the merits of Epstein’s method, explained in Section 3, is that he was able
to use it to prove a conjecture that had been made in [27], namely that for fixed self
adjoint B, the map A > Tr[(BAPB)/?] is concave for p € (0,1). At the end of the first
paragraph of his paper, Epstein wrote: “The applicability of the method obviously
extends beyond the examples treated here.” Hiai [17, 18] has carried out a thorough
development of the method, bringing in a number of significant new ideas. However,
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the method still has limitations. It was conjectured in [10] and proved in [11] that A —
Tr[(BAPB)/?] is convex for 1 < p < 2. Since z + 2P is a Herglotz function only for
0 < p <1, Epstein’s argument cannot be adapted to this case. The method of proof,
which turns out to be useful also for some cases of the Audenaert-Datta Conjecture,
relied on variational arguments, specifically Legendre transforms, and, most crucially,
the fact that if f(z,y) is jointly convex on R™ x R™, then ¢(y) := inf erm{f(x,y)} is
convex in y. This variational method is explained in Section 4.

One of the intriguing aspects of the story of progress on the Audenaert-Datta
Conjectures is the interplay between the “analyticity method” and the “variational
method”. It appears that the analyticity method is especially useful for proving con-
cavity and the variational method is more useful for proving convexity, but this is not
meant to be an absolute distinction. However, it is our belief that understanding these
two methodologies is a worthwhile endeavor also for work outside the Audenaert—Datta
program. There are quite a number of papers [17, 11, 18, 16, 5, 9, 19] over which trace
inequalities related to the Audenaert and Datta conjecture are spread out. These pa-
pers, both before and after the Audenaert—Datta paper [5], are often not self-contained,
and one of our goals is to try to tell the story seamlessly and thereby make the results
from the literature more easily available also to newcomers to the field. There are no
new results in this paper, but we hope to present a newly coherent account of recent
advances.

In the following we will study a more general problem than the one occurring in
Conjecture 1, with three parameters instead of two. For A, B € Py, K € My and
parameters p,q,s € R we define

W, qs(A, B) :=Tr (BV?*K*APK BY?)" |
and the problem is to determine the values of p, ¢, s such that ¥, , ; is jointly convex
or concave. Because of symmetries, it suffices to consider p, ¢, s such that

p>q and s>0. (15)

To see this, note that by an approximation argument, we can assume that K is invert-
ible, and then (BY?K*APKBY?)” = (B~2K~'APK—*B~92)"" so that with K~
replacing K on the right,

qu,w(AvB) = \I/—p,—q,—S(Aa B) .
Next since BY/2K* AP B4/? and AP/? K B1K*AP/? have the same non-zero eigenvalues
with the same mutiplicities, with K* replacing K on the right,

\ij,q,S(Aa B) = \I’q,p,S(Ba A)- (16>
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The following theorem, which is the main subject of this paper, summarizes our
current knowledge about concavity and convexity properties of ¥, , ..

Theorem 2. Let K € My be arbitrary.

(1) f0<g<p<land0<s<1/(p+gq), then U, is jointly concave.

(2) If -1<q¢<p<0ands >0, then ¥, is jointly convex.

B) If1<p<2 —-1<¢g<0ands>min{l/(p—1),1/(qg+ 1)}, then U, is
jointly convex. If p=2, -1 <q <0 and s> 1/(2+q), then ¥, , is jointly
conver.

In part (3), for p = 1 the condition s > min{1/(p—1),1/(¢+1)} is to be understood

as s > 1/(g+1). The information contained in the thoerem, and extended by symmetry
in p and ¢, is summarized in the following figure:

q axis q="pr
convex\
for s > convex for
1 .
1 1 §> —— 7
g—1 p+1 p+2 o
concave -’ convex for
for s > L
| T 244
<s< ——
L p+q p axis
convex 7 convex \
for for s >
6> 0 IS O
/ p—1 q+1
‘ -1

Convexity and concavity for ¥, , ¢

History. We discuss the three cases in the theorem separately, plus the case s = 1
which historically came first and played an important role in the development of the
field of matrix analysis.

(0) Case s = 1: This is due to Lieb [27] for 0 < ¢ < p < 1 with p+ ¢ < 1, as well
as for —1 < ¢ < p <0, and due to Ando [1] for 1 <p <2, —1 < ¢ < 0 with
p+q=1
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(1) Case 0 < g < p < 1: Partial results by Hiai for 1 < s < 1/(p+gq) [17, Theorem
2.3] and for 1/2 < s < 1/(p + ¢) [18, Theorem 2.1 (1)] and by the authors
for 0 < s < 1/(1+ q) [9, Theorem 4.4] (see also [16, Proposition 3] for p = 1,
s =1/(1+q)). Later Hiai found a proof [19, Theorem 2.1] that covers the full
range. We reproduce this proof in Section 3.

(2) Case —1 < ¢ < p < 0: This is due to Hiai. After a partial result for 1/2 < s <
—1/(p+ q) [18, Theorem 2.1 (2)], the full result appears in [19, Theorem 2.1].
We reproduce this proof in Section 4. The key to Hiai’s proof is to consider the
equivalent result for negative s: Of the two equivalent results that are related
by changing the signs of p, ¢ and s, only one is amenable to treatment by the
variational method.

(3) Case 1 < p <2, —1<¢q<0: Result for p=1, s =1/(1+ ¢) due to the last
two authors [16, Proposition 3]. Remaining results due to the authors [9]. We
reproduce the proofs in Section 4.

We now complement Theorem 2 with necessary conditions.

Proposition 3. Let s > 0 and p > q with (p,q) # (0,0).
(1) If Po x Py 3 (A, B) — ¥, ,s(A, B) is jointly concave for K =1, then 0 < g <
p<land0<s<1/(p+q).
(2) If Py x Py 2 (A, B) — ¥, , (A, B) is jointly conver for K = 1, then either
—1<g¢g<p<O0ands>00rl1<p<2 —-1<qg<0, (pq) #(1,-1) and
s>1/(p+q).

This proposition is due to Hiai [18, Propositions 5.1(2) and 5.4(2)]. It is natural to
conjecture that these necessary conditions are also sufficient.

Conjecture 4. If 1 <p<2, —-1<¢g<0ands>1/(p+q), then for any K € My
Py X Py 3 (A, B) = Tt (BY?K*APKBY/?)"
1s jointly convex.

Note that for s = 1/(p + ¢) this is Conjecture 1 of Audenaert and Datta. The
remaining case of the conjecture is

l<p<2, =1<¢<0,1/(p+q) <s<min{l/(p—1),1/(g+1)}.
(In fact, the case s = 1 can be excluded as a conjecture, due to a theorem of Ando.)

We now turn to a different, but related problem. For A € Py, K € My and
parameters p, s € R we define

T, (A) = (K APK)®

that is, T, s(A) = ¥, ,s(A, 1) for any ¢. As before, we can and will restrict ourselves
to the case s > 0.
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We will be interested in convexity and concavity properties of T, ;. While those are
a consequence of similar properties of ¥, ,,, we will conversely prove them first and

use them in our discussion of ¥, , ;.

Proposition 5. Let K be arbitrary.

(1) If0<p<1land0<s<1/p, then Y, is concave.
(2) If -1 <p <0 and s >0, then T, is convez.
(3) If1<p<2ands>1/p, then T, is conver.

History.

(1) Case 0 < p < 1: Initial result for s = 1/p due to Epstein [15]. The first and
third authors proved the result under the assumption s > 1 [11, Theorem 1.1].
The full result is due to Hiai [18, Theorem 4.1 (1)].

(2) Case —1 < p < 0: Result due to Hiai [18, Theorem 4.1 (2)].
(3) Case 1 < p < 2: Result due to the first and third author [11, Theorem 1.1].

We next show that the conditions in Proposition 5 are also necessary.
Proposition 6. Let s > 0 and p # 0.

(1) If Pa 3 A— Y, (A) is concave for any invertible K, then 0 < p < 1.
(2) If Py > A= T, (A) is convexr for any invertible K, then either —1 < p <0
and s >0 or1 <p<2ands>1/p.

This proposition is due to Hiai [18, Propositions 5.1(1) and 5.4(1)]. Earlier, the first
and third authors [11] had used a similar argument to show that T, s is not convex or
concave for p > 2. Related arguments also appear in [7].

We conclude this introduction by explaining why Conjecture 1 is equivalent to the
form in [5], which corresponds to taking A = B in our form. Given A, B € Py and
K e My let

A 0 0 K
OA’B:<O B)EPQN and LK:(O O)EMQN,

Then
Tr <C%129L;<CZ,BLKC%%>S Ty (Bq/QK*ApKBq/Q)s '

Thus, since (A, B) — C4 p is linear, convexity of C' +— Tr(C¥2L*CLPC%?)* on Pyy,
implies joint convexity of (A, B) — Tr (BY2K*APK BY?)" on Py x Py.
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2. APPLICATION: MONOTONICITY OF THE & — 2 RELATIVE ENTROPIES

In this section we present an application of Theorem 2 to a problem motivated by
quantum information theory. For p,o € Py and «, z > 0 with « # 1, we consider the
so-called o — z-relative Rényi entropies

1 T (om0 palp (1-00/(22))

Da.. = 1
(pllo) = —n Ty

(One also obtains interesting quantities by taking the limit « — 1, possibly simul-
taneously with z — 0 [5], but for the sake of brevity we exclude this case.) These
functionals appeared in [22, Sec. 3.3] and were further studied in [5], where the

question was raised whether the o — z-relative Rényi entropies are monotone under
completely positive, trace preserving maps (CPTP), that is, whether for any such map
£ and any p,o € Py one has

Doz (pllo) > Da:(E(p)[IE(0)) -
Proposition 7. Let o,z > 0 with o # 1 and define
p=a/z and  g=(1—a)/z.

Then D, . s monotone under CPTP maps on Py for all N iof and only if ¥y, 41/(p+q)
with K =1 is jointly convez (if a > 1) or jointly concave (if « < 1) on Py X Py for
all N.

Proof. For simplicity of notation, we write U := W, /44 With K = 1 in the fol-
lowing. Clearly, D, . is monotone under CPTP maps if and only if ¥ is monotone
decreasing (if o > 1) or increasing (if @ < 1) under CPTP maps. Therefore the
proposition follows from what we prove in the following two steps.

Step 1. We show that for a > 1, if ¥ is monotone decreasing under CPTP maps
on Py, then W is jointly convex on Py X Px. A similar assertion holds for a@ < 1 if
decreasing and convex are replaced by increasing and concave.

We give the proof for a > 1. For pg, p1, 00,01 € Py and 0 € [0, 1] we consider the
operators

p=1=0)p )T [+0p@[ | and o= (1=0)o0®| 1) (T |+b001®]|)({ |

on CY @ C?, where | 1), | |) denote a basis of C2. Applying the assumed monotonicity
with the channel that takes the partial trace over C?, we conclude that

\IJ((l — Q)po -+ 9p1, (1 — 6)0’0 + (9(71) S (1 — Q)qf(po, O'Q) + Q\Ij(pl, 0'1) y

which means that ¥ is jointly convex.

Step 2. We show that for v > 1, if ¥ is jointly convex on Py2 X Py2, then ¥ is
monotone decreasing under CPTP maps on Py. A similar assertion holds for a < 1
if convex and decreasing are replaced by concave and increasing.

Again, we assume o > 1. Following a method of Lindblad and Uhlmann, we
use Stinespring’s theorem [40] to obtain an integer N’ < N2 a non-negative matrix
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T € My with Tr7 = 1 (which can be chosen to be rank one) and a unitary U on
CN @ CY' such that
E)=TrU(yoT1)U".

Thus, if du denotes normalized Haar measure on all unitaries on CV', then
EM) @ (N) Mew = /(1 Qu)U (y@71) U (1®@u")du. (17)
By the tensor property of W,

U(E(p), (o)) = W(E(p) @ (N') gwr, E(0) ® (N)Hewr) - (18)
By (17) and the assumed convexity the expression in (18) is bounded from above by
/\I!((l Ru)U (p@1) U (1@u"),1@u)U(c@7)U(1®u"))du.
By unitary invariance and the tensor property of ¥, the integrand here equals
V(1euw)U (pe 1)U (1eu"), (1u)U (c @ 1)U (1ou")) = V(pT,007) = ¥(p,0),
and therefore, recalling that Haar measure is normalized, we conclude that
W(&(p), E(0)) < W¥(p,0),
which means that ¥ is monotone decreasing under CPTP maps. OJ

Combining this proposition with Theorem 2 and Proposition 3 we obtain the fol-
lowing monotonicity result.

Corollary 8. D, . is monotone under completely positive, trace preserving maps if
one of the following holds

0<a<landz>max{a,1—a},
l<a<2andze{a/2,1,a},
2<a<ooandz=a«.

Conversely, if D, . is monotone under completely positive, trace preserving maps, then
one of the following holds

0<a<1andz>max{a,1—a},
l<a<2anda/2<z<a,
2<a<xwanda—1<z<q«.

If Conjecture 1 is true, then monotonicity holds also in the cases 1 < a < 2,

af2 < z<a,aswellas 2 < a < oo, — 1 <z < q, that is, in the full range allowed
by the second part of the corollary.

Remark 9. Hiai and Mosonyi have made further progress [20] on the conjecture under
the additional assumption that the CPTP map in question is unital and preserves
either p or o.
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3. THE COMPLEX ANALYSIS METHOD

In this section we show part (1) of Theorem 2, namely that
(A, B) = Tr (BY*K* APK BY?)’

is jointly concave for 0 < ¢ <p <1and 0 < s <1/(p+ q). Note that this also proves
part (1) of Theorem 5.

This was shown under the extra assumption s > 1/2 in [18] using the complex
analysis method and under the extra assumption s < 1/(1 + ¢) in [9, Theorem 4.4]
using the variational method. Here we follow Hiai’s proof [19, Theorem 2.1], using the
complex analysis method, which works for the full range of exponents.

Proposition 10. Let 0 < p,q < 1. Then

- ~1
(A, B) — Tr (1 + (BQ/QK*ApKBq/Q) 1/(p+q))

15 jointly concave.

Before proving this proposition we use it to deduce the concavity part of Theorem 2.
Proof of Theorem 2. (1). Multiplying A by a power of ¢t we deduce from Proposition
10 that

q/2 17* AD q/2 —1/(p+q) -1
(A,B) — Tr (14t (BY?K*APK B?)

is jointly concave for any ¢ > 0. Multiplying by ¢ and letting ¢ — oo we deduce that
(A, B) = Tr (BY2K* AP K B9/2) /7

is jointly concave. This is the assertion for s =1/(p + ¢q).
Now let 0 := s(p+¢) < 1. Then

. © 1
= sin(mo) / 1o dt for all x > 0
s 0 1 + t/l'

.IU

and therefore

S 1 o0 _ —1
Tl" (BQ/QK*APKBq/Q) = M / TI- <1 _|_ t (BQ/QK*ApKBq/Q) 1/(p+Q)> t_1+o- dt .
T 0

As observed at the beginning of the proof, the integrand is jointly concave and therefore
so is Tr (BQ/QK*APKB‘I/Q)S. This concludes the proof of part (1) of Proposition 2. [

We now turn to Hiai’s proof of Proposition 10. It is based on Epstein’s method,
which relies on the following lemma from complex analysis.

Lemma 11. Let ¢ be analytic in C, with Imp > 0 and assume that it extends
continuously to a real function on (R,o0) for some R > 0. Then
d2

g €1/ <0 forallg € (0,1/F).
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Proof of Lemma 11. By the Nevanlinna theorem [14] there are numbers a > 0 and
b € R and a non-negative measure p with [, (t* +1)7" du(t) < oo such that

1 t

Since

S I T .
du(t) =7""w 61_1)r(1)1+1mg0(t+26)dt

and since ¢ is assumed real on (R, 00), we infer that supp u C (—oo, R]. Using this
fact one can show that the above representation formula for ¢(z) is also valid for
z € (R, o) and, therefore,

2
Ep(1/€) = ot—i—bf%—/]R (ﬁtg— i tZit— 1) du(t) for all £ € (0,1/R).

By dominated convergence it follows that & — £p(1/£) is smooth on (0, R) and that

d_2 - du—(t) or a
dgz(fw(1/§))—2/R(§t_1)3 for all ¢ € (0,1/R).

Since (£t —1)™3 < 0 for € < 1/R and t € suppu C (—o0, R|, we obtain the claimed
concavity. O

Proof of Proposition 10. By an approximation argument we may assume that K is
invertible. Let C' and D be positive definite and G and H Hermitian. We will show

that
2

d
e (1 + (D + EH)"2K*(C + €GP K (D + EH)Y?)

for all sufficiently small ¢ > 0, which will prove the proposition. To achieve this, we

1/<p+q>>1 <0

write
Tv (1 + ((D+ EH)*K*(C + £GP K (D + §H)‘1/2)_1/(p+q)> o ep(1/9)
with
s0(33) — Ty <$—1 + ((xD + H>q/2K*(IC+ G)pK(:ED + H)q/Q)—l/(p+q)>1 (19)

and appeal to Lemma 11. Thus we need to show that ¢ is well-defined on (R, 00) for
some R > (0 and has an analytic extension to C, with non-negative imaginary part.
Let us introduce some notation. For —m < a < f < 7 we set

Sag=4{re?e€C: r>0, a<f<p}
and (dropping the dimension N from the notation)
Sop = {M € My : Im (e’m]\/[) >0, Im (e”ﬂM) < O}.
For z € C, we define
F(z):= (2D + H)Y?K*(2C + G)*K (2D + H)¥?.
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This is well-defined since Im(zC + G) = (Im 2)C' > 0 and similarly Im(zD + H) > 0,
and for such matrices the p-th and ¢/2-th root are well-defined by analytic functional
calculus. Moreover, F' is analytic in C;..

Since Im(2C'+ G) > 0 and Im(zD + H) > 0, one has (see, for instance, [15, Lemma

1))
(2C 4+ G € Sppr and (2D + H)? € So,qn/2 5

and, since K is invertible, also K*(2C + G)PK € Sy ,». Therefore (see, for instance,
[15, Lemma 2] or, for a simpler proof, [4, Lemma 10])
spec F(2) € So,(p+q)r -

By the analytic functional calculus we can define F(z)~"/®+9 for » € C, and by the
spectral mapping theorem we obtain

spec F(z)"Y®+9) ¢ C_ .
Therefore z~! 4+ F(2)~1/(*9) is invertible for z € C, and
spec (27" + F(z)_l/(pJ”J))i1 eC,.
This proves that
p(z) =Tr (27" + ]7(,2)_1/(1‘””))71
is analytic in C; and that Im p(z) > 0 for z € C,.

Let £ > max{Anax(G)/ Amin(C), Amax(H)/Amin(D)} =: R, where Apax /min(M) de-
note the largest and smallest eigenvalue of a Hermitian matrix M. Then F extends
continuously from C, to (R,00) and F(z) is a positive definite matrix for x > R.
Therefore ¢ extends continuously from C; to (R, o0) and the continuation is given by
the right side of (19). Note that () is real (in fact, positive) for x > R. O

4. THE VARIATIONAL METHOD

In this section we show parts (2) and (3) of Theorem 2, namely that
(A, B) = Tr (B2 K*APK BY?)°
is jointly convex for —1 < ¢ <p<0Oands>0and for1 <p <2 —-1<¢<0and
s >min{l/(p —1),1/(¢+1)}. We also prove parts (2) and (3) of Proposition 5.
We begin with the proof of Proposition 5, since this is simpler and since this will
also be needed in the proof of Theorem 2. We use a variational method which orig-

inates in the work [11]. It is based on two ingredients. The first one is a variational
characterization of the trace of a power.

Lemma 12. [f X € Py, then

TrX*=sup (s Tt XY — (s — 1) Try*/(=71) ifs>1ors<Q0, (20)
Y>0
TrX*=inf (sTe XY + (1—s)TrY ¥/079)  fo<s<1. (21)

Y>0
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Proof. We provide two different proofs.
First proof. We first assume s > 1. Then by Hoélder’s and Young’s inequalities for
any Y > 0,

1 s—1

T XY < (Tr Xo)Y (Tey /=)0 < Sy x4 Tr /(=)
S

S
This proves > in (20), and for < it suffices to choose Y = X*.
Next, let 0 < s < 1. Then by Holder’s and Young’s inequalities for any Y > 0,

Tr X* — Tr(ys/QXsys/Q)Y—s < (Tr(Ys/QXsys/Q)l/s)s (Tr Y—s/(l—s))l—s
< sTr(Y2Xys /)Y 4 (1 — ) ey —5/079)
By the Lieb—Thirring inequality [30] (see also [8, Theorem 7.4]),
Tr(Y¥2X3Ys /)Y < Tr XY,

so we obtain > in (21), and for < it suffices to choose Y = X*.

Finally, for s < 0 we apply (21) with s replaced by s/(s — 1) € (0,1) and with the
roles of X and Y interchanged. We obtain
s

1
TrYys/6-1 < - Tr XY + - Tr X°.

5 — -5
This proves > in (20), and for < we choose again Y = X°*.

Second proof. We provide the details only in the case 0 < s < 1 (since in that case
before we had to use the Lieb—Thirring inequality). It is easy to see that the infimum
on the right side of (21) is attained by some Yj and, differentiating with respect to Y,
this minimizer satisfies

sX —sYy /7 =0,
that is, Yy = X !¢, Inserting this we obtain

inf (sTrXY + (1—s)TrY /09)) = s Tr XY, + (1 - $)TrYy /0 = Ty X* |

Y>0
as claimed. m

The second ingredient in this section is a result about suprema and infima of convex
functions.

Lemma 13. Let X be a convex subset of a vector space, Y a set and f : X xY — R
a function such that f(-,y) is convez for any y € Y.

(1) Then x + sup,ey f(x,y) is conver.
(2) If Y is a convex subset of a vector space and f is jointly conver on X XY,
then x — inf ey f(x,y) is convez.

Proof. Let xg,z1 € X and 0 < 0 < 1.
(1) Abbreviating g(z) := sup,cy f(x,y), we have for any y € Y,

J((U=0)zo + b1, y) < (1= 0)f (20, y) + 0 (x1,y) < (1 = 0)g(wo) + bg(a1)
Taking the supremum over y we obtain g((1 — 0)xo + 6x1) < (1 — 0)g(xo) + 0g(z1).
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(2) Let h(z) := inf ey f(z,y). Let € > 0 and choose yo,y; € Y such that
f(zo,90) < Mxo) +e  and  fla1,y1) < h(z) +¢.
Then, by joint convexity,
h((1 —0)xg + 0xq) < f((1 — )z + 01, (1 — 0)yo + Oy1)
< (1=0)f(zo,y0) + 0f(z1,91)
< (1—=0)h(xo) + Oh(xy) + €.
Since € > 0 is arbitrary, we obtain A((1 — 0)x¢ + 0z1) < (1 — 0)h(xo) + Oh(z1). O

We now use these tools to deduce the convexity assertions in Proposition 5.

Proof of Proposition 5. (2). Let —1 < p < 0. We begin with the more difficult case
s < 1 (which is the only case that will be used in the proof of Theorem 2). Then, by
(21),

Y,s(A) = inf (sTr K*APKY + (1 — s) Tr Y ~/07%))

Y >0

= inf (s Tt K*APKC' P + (1 — 5) Tr C =7/ (=)
C>0

By Ando’s convexity theorem [1] (see also [8, Theorem 6.2]), (A, C) +— Tr K*APKC*~P
is jointly convex. Moreover, since —s(1 —p)/(1 —s) <0, C' — Tr c—*E2 is convex.

Thus, by part (2) of Lemma 13, T, s is convex.
We now consider the case s > 1 and therefore
T,s(A) = sup (s Tt K*APKY — (s — 1) Tr Y¥/(71)
Since A +— AP is operator convex, A — Tr K*APKY is convex. Thus, by part (1) of
Lemma 13, T, 5 is convex.

The case s = 1 is even simpler and follows directly from the operator convexity of
A AP O

Proof of Proposition 5. (3). The argument is similar to that in part (1) and we refer
to [11] for details . This result will not be needed in the proof of Theorem 2. O

Before we turn to the proof of Theorem 2 we recall a joint operator convexity
statement from [9].

Lemma 14. For any —1 < ¢ <0 and any K € My the map
Py x Py 3 (A, B)— AKB'K*A
15 jointly convexz.
In fact, in [9, Theorem 3.2] we also proved that the restriction —1 < ¢ < 0 is
necessary and that convexity does not hold if A is raised to a non-zero power.

In [9] we observed that this lemma follows from [27, Corollary 2.1]. (The presence
of the operators K and K* does not present a problem. They can be dealt with by
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doubling of dimension as, for instance, in [9, Lemma 1.1]. In this way they can be made
into unitary operators and then they can be absorbed into B.) Also, in [9, Remark
3.5] we explained a simple alternative proof which reduces the case —1 < ¢ < 0 to the
well-known case ¢ = —1 [23, 29].

We now prove the convexity assertions in Theorem 2.

Proof of Theorem 2. (2). We assume that —1 < ¢ < p < 0 and that s > 0. By an
approximation argument we may assume that K is invertible and we denote L := K~*.

Then, by (20),

W, qs(A,B) =Tr (B~?L*AP LB~

p7q7s

— sup <—s Te B2 APLBY?Y + (s + 1) Tryﬁ)
Y >0

= sup (—s T L*A™PLZ + (s + 1) Tr(BQ/QZBQ/Q)?SI> .

Z>0

Since A — A™P is operator concave, A — —sTr L* A™PLZ is convex for any Z. More-
over, by part (1) of Proposition 5, B — Tr(ZY/2B1ZY/2)s1 = Tr(BY2ZBY?)+1 is
convex for any Z. (We apply the lemma with A replaced by B, K by Z'/2, p by q and
s by s/(s+1).) Thus, by part (1) of Lemma 13, ¥, , ; is convex. O

Proof of Theorem 2. (3). We break the proof into three steps.
Step 1. We assume 1 <p <2, —1<¢g<0and s> 1/(1+q). Then, by (20),

U, 05(A, B) =sup (s Tr BY?K*APKBY?Y — (s — 1) Tr YS/(S*U)
Y>0

—sup (s Te K APKZ — (s = 1) Tx (B2 /%)),
Z>0
Since A — AP is operator convex, A — sTr K*APK 7 is convex for any Z > 0. More-
over, by part (1) of Proposition 5 and since %5 < —%, B Tr (Z'2B~1Z1/2)+ 1 =
Tr (B_q/QZB_q/Q)ﬁ is concave. Thus, by part (1) of Lemma 13, ¥, , , is convex.

Step 2. We assume 1 <p <2 —1<g<O0ands>1/(p—1). First, assume that
s = 1, so that necessarily p = 2. The joint convexity follows from (16) and the fact
that according to Lemma 14 (A, B) — AK BYK*A is operator convex.

Now let s > 1 (and still s > 1/(p — 1)). Then, by (16) and (20),

Uyq,s(A, B) = sup (8 Tr AP2KBIK*AP?Y — (s —1) Tr YS/(s—l))
Y>0

—sup (s Tr AKBUK"AZ — (s — 1) Tr (AT /274122707

Z>0
Again by Lemma 14, (A, B) — Tr AKBYK*AZ is jointly convex. Moreover, by part
(1) of Proposition 5 and since s/(s —1) < 1/(2—p), A— Tr (Zl/QAQ_PZl/Q)S/(S_l) =
Tr (A1*P/2ZA1*P/2)S/(871) is concave. Thus, by part (1) of Lemma 13, ¥, , ; is convex.
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Step 3. We assume that p =2 and 1/(2+ ¢q) < s < 1. Then, by (16) and (21),

Us4s(A, B) = inf (s Te AKB'K"AY + (1 — ) TrY */079)
>
— inf (sTr AKB'K*AZ"* 4+ (1—5) Tr 2).
Z>0

By [27, Corollary 2.1] and since ¢ + 1 —1/s > —1, (A, B, Z) — Tr AK BIK*AZ'~Y/3
is jointly convex. (Note that the operator K, which is not present in [27, Corollary
2.1], can be dealt with as explained after Lemma 14.) Thus, by part (2) of Lemma
13, Wy, s is convex. ]

Remark 15. Both in Steps 1 and 2 of the previous proof we applied part (1) of Propo-
sition 5. We have proved the latter, as a special case of part (1) of Theorem 2, using
the complex analysis method. It is interesting to note, however, that in Steps 1 and
2 of the previous proof we applied part (1) of Proposition 5 only with a power s > 1.
For such powers part (1) of Proposition 5 can be proved also using the variational
method; see [11, Theorem 1.1].

Remark 16. In the special case p = 2, —1 < ¢ < 0, s > 1 there is a proof which is
only based on Lemma 14 and which does not use Proposition 5; see [9, Remark 4.3].

Remark 17. Let us give an alternative proof for p = 2 and 1/(2+ ¢) < s < 1, which
does not use the deep [27, Corollary 2.1], but only the special case ¢ = —1 of Lemma
14, plus part (3) of Theorem 2 for p = 1. (Recall that Lemma 14 can be deduced from
(27, Corollary 2.1], but that its special case ¢ = —1 is rather simple and well-known.)
We do not use (16), but use directly (21) to write

W2.5(A, B) = inf (s Tt B2 K*A’KBY?Y + (1 — ) Tr Y —/(79)
>
= inf (sTr K*A’KZ7' + (1 — s) Te(B~Y2Z2 7' B~9/2)=s/0=9)) |
>
By Lemma 14, (A, Z) — Tr K*A2KZ~! is jointly convex. Moreover, by Step 1 in the
proof of part (3) of Theorem 2, (B, Z) +— Tr(Z/?BiZ'/?)v= = Tr(B~4?Z'B~9/?) 17>
is jointly convex. Thus, by part (2) of Lemma 13, Wy, ¢ is convex.

5. NECESSARY CONDITIONS

In this section we reproduce the arguments from [7, 11, 19] to prove Propositions 6
and 3 containing necessary conditions for concavity and convexity.

Proof of Proposition 6. (1) Clearly, concavity of T, s on Py implies that (0,00) 3 a —
aP® is concave and therefore 0 < ps < 1. Moreover, taking

a 0 10
A= (O b) and K = ( ) 5)
with numbers a,b and ¢ and letting ¢ — 0, we deduce from concavity on P, that

(0,00) x (0,00) 3 (a,b) — (a? + bP)® is jointly concave. By differentiating twice with
respect to a and evaluating at a < b we find that p < 1.
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(2) Clearly, convexity of T, on P; implies that (0,00) 3 a — a”® is convex and
therefore 0 < ps < 1 or ps < 0. If s = 1, then the convexity of T, ; on P, for any
(invertible) K implies that P, 3 A — AP is operator convex. As is well known, this
implies that —1 <p <0or 1 <p <2 Now let s # 1. Taking

a 0 1 0
A—(O b) and K_(l 5)

where now a,b and 1 are 2 x 2 matrices and letting ¢ — 0, we deduce from convexity
on Py that Py x Py 3 (A, B) — Tr(AP 4+ BP)® is jointly convex. In particular, for any
t>0,Py > A Tr(tA? + BP)® is convex. Using

Tr(tAP + BP)* = Tr BP® + st Tr BPC VAP 4 o(t) ast— 0

we deduce that P, > A +— Tr BPE~Y AP is convex, which (since s # 1) means that
Py 5 A — AP is operator convex. As before, this implies —1 <p<0Oorl1 <p<2. 0O

Proof of Proposition 3. (1) Clearly, concavity of ¥, , ; on Py x P; implies that (0, 00) >
a +— aPt% is concave and therefore 0 < (p + ¢)s < 1. Writing an invertible K as
K = U|K| with U unitary, chosing B%? = |K| and absorbing U into A we deduce
from the concavity of P, 5 A — ¥, (A, B) that P, 5 A — T, ,(A) is concave.
According to part (1) of Proposition 6 this implies 0 < p < 1. Exchanging the roles
of p and ¢ we find that 0 < ¢ < 1.

(2) Clearly, convexity of ¥, . on Py x P; implies that (0,00) x (0,00) 3 (a,b) —
aP*b?® is jointly concave. By an elementary analysis of the Hessian we conclude that,
if p >0, then ¢ <0 and (p+ ¢)s > 1. Similarly as in the first part of the proof, part
(2) of Proposition 6 implies either —1 < p <0 or 1 < p < 2 and, exchanging the roles
of p and ¢, either —1 < ¢ <0 or 1 < ¢ < 2. This corresponds to four disjoint squares
in the (p, ¢) plane. The square —1 < p <0, 1 < ¢ < 2 is excluded by our assumption
p > q and the square 1 < p,q < 2 is excluded by the above elementary analysis. This
concludes the proof. O
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