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Abstract To characterize crustal anisotropy beneath the central North China Craton (CNCC), we
apply a recently developed deconvolution approach to effectively remove near-surface reverberations in
the receiver functions recorded at 200 broadband seismic stations and subsequently determine the fast
orientation and the magnitude of crustal azimuthal anisotropy by fitting the sinusoidal moveout of the P to
S converted phases from the Moho and intracrustal discontinuities. The magnitude of crustal anisotropy
is found to range from 0.06 s to 0.54 s, with an average of 0.25 ± 0.08 s. Fault-parallel anisotropy in the
seismically active Zhangjiakou-Penglai Fault Zone is significant and could be related to fluid-filled
fractures. Historical strong earthquakes mainly occurred in the fault zone segments with significant crustal
anisotropy, suggesting that the measured crustal anisotropy is closely related to the degree of crustal
deformation. The observed spatial distribution of crustal anisotropy suggests that the northwestern
terminus of the fault zone probably ends at about 114◦E. Also observed is a sharp contrast in the fast
orientations between the western and eastern Yanshan Uplifts separated by the North-South Gravity
Lineament. The NW-SE trending anisotropy in the western Yanshan Uplift is attributable to “fossil” crustal
anisotropy due to lithospheric extension of the CNCC, while extensional fluid-saturated microcracks
induced by regional compressive stress are responsible for the observed ENE-WSW trending anisotropy in
the eastern Yanshan Uplift. Comparison of crustal anisotropy measurements and previously determined
upper mantle anisotropy implies that the degree of crust-mantle coupling in the CNCC varies spatially.

1. Introduction
The North China Craton (NCC; Figure 1), located in the eastern margin of the Eurasian Plate, is one of the
major Archean cratons in the world and the largest cratonic block in China (Carlson et al., 2005; Kusky &
Li, 2003). The central NCC (CNCC; Figure 1) is tectonically divided into the western CNCC and the eastern
CNCC by the N-S trending Central Orogenic Belt. The western CNCC is generally regarded as a long-term
stable cratonic block and lacks significant internal deformation and large earthquakes (Zhao et al., 2001). On
the contrary, the eastern CNCC exhibits active seismicity and has undergone significant tectonic reactivation
with a sharp decrease in lithospheric thickness from ∼200 km in the Archean to 60–80 km at the present
(Chen et al., 2008; Griffin et al., 1998; Zhu et al., 2011; Zhu & Zheng, 2009).

The CNCC consists of four major tectonic units: the Yanshan Uplift in the north, Bohai Bay Basin in the east,
Taihangshan Uplift in the middle, and Datong Basin in the west (Figure 1). During the late Mesozoic and
Cenozoic, most parts of the CNCC underwent significant tectonic activities originated from the subduction
of the Palaeo-Pacific Plate in the east and convergence between the NCC and South China Block in the south
(Kusky et al., 2007; Ren et al., 2002). The subsidence of the Bohai Bay Basin and uplift of the Taihangshan
are generally considered to be related to the NW-SE extension during this period (Ren et al., 2002; Zhu et al.,
2012). In contrast, the Yanshan Uplift along the northern margin of the CNCC experienced several phases
of N-S directed compressional deformation, which were followed by widespread tectonic extension in the
late Mesozoic (Davis et al., 1998). Since the Mesozoic, cratonic destruction and accompanying large-scale
structural deformation and widespread magmatic activities occurred in the eastern NCC, probably due to
the subduction of the Pacific slab beneath the eastern NCC (Zhu et al., 2011). Dehydration of H2O-bearing
minerals in the subducted slab may have produced aqueous fluids, which could have migrated upwards
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Figure 1. Tectonic background of the study area showing elevation (Amante & Eakins, 2009), major geological block
boundaries (dashed purple lines), seismic stations used in the study (triangles), and GPS velocities relative to the stable
Eurasian Plate (white arrows; Wang et al., 2001). The red triangles are seismic stations with application of the sediment
removal approach (Yu et al., 2015), and the blue triangles are stations without application of the sediment removal
approach. Circled stations are not used in the study due to lack of a sufficient number of high-quality receiver
functions. The thick green line indicates the North-South Gravity Lineament. The Zhangjiakou-Penglai Fault Zone is
approximately outlined by the two black dashed lines. The thick yellow arrows are the Absolute Plate Motion
orientations in the HS3-NUVEL-1A model (Gripp & Gordon, 2002). The thick black arrows denote the mean maximum
horizontal compressional stress direction (Heidbach et al., 2016). The orange arrows show the orientation of
lithospheric extension of the CNCC during the Late Mesozoic and Cenozoic (Ren et al., 2002). The dashed black line in
the inset map encloses the NCC, and the red rectangle shows the location of the study area, CNCC. NCC = North
China Craton; CNCC = central NCC.

along the cracks and grain boundaries and hydrated the crust and upper mantle (Iwamori, 2007; Yang et al.,
2018a).

The NW-SE trending Zhangjiakou-Penglai Fault Zone (Figure 1) separates the Yanshan and Taihangshan
Uplifts and is the boundary zone between the Yanshan Uplift and Bohai Bay Basin (Xu et al., 2002). This
sinistral strike slip fault zone (Guo et al., 2015) is seismically the most active region in the CNCC, in which
numerous historical destructive earthquakes including the 1976 M 7.8 Tangshan earthquake have occurred.

The eastern margin of the Central Orogenic Belt is near the North-South Gravity Lineament (NSGL), a
zone of dramatic change in the Bouguer gravity anomaly (e.g., Xu, 2007) and a possible boundary between
the area with thinner-than-normal lithosphere to the east and normal lithosphere to the west (Chen et al.,
2009). Numerous previous studies have revealed significant differences between the western and eastern
sides of the NSGL in crust thickness (Bao et al., 2013; Li et al., 2014; Wu et al., 2018). For example, the crust
thickness of the Bohai Bay Basin is about 32 km, while that in the Central Orogenic Belt is 36–40 km (Wu
et al., 2018). Lateral variations between the two sides of the NSGL in surface wave phase velocities (Chen
et al., 2014), depth of the lithosphere-asthenosphere boundary (Chen et al., 2008), and radial anisotropy (Fu
et al., 2015) are also reported. These sharp contrasts in tectonic setting and crustal characteristics, together
with the recent availability of a broadband seismic data set recorded by 200 densely spaced stations, make
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the CNCC an ideal locale for investigating crustal deformation and its relationship with mantle deformation
(e.g., Chen et al., 2009; Gao et al., 2010; Yang et al., 2018b; Zhu et al., 2011).

2. Previous Crustal and Mantle Anisotropy Studies in the CNCC
It has long been recognized that seismic anisotropy can provide important constraints on the deformation
and evolution of the lithosphere (e.g., Flesch et al., 2005; Wang et al., 2008). Anisotropy in the upper crust is
mostly produced by microcracks (Boness & Zoback, 2006; Crampin & Peacock, 2008; McNamara & Owens,
1993) and that in the lower crust and upper mantle is usually interpreted as strain-induced lattice preferred
orientation of anisotropic minerals (Silver, 1996), primarily mica, amphibole, and olivine (Ji et al., 2015; Ko
& Jung, 2015).

A number of seismic anisotropy studies, including shear wave splitting (e.g., Bai et al., 2010; Chang et al.,
2011, 2012a; Gao et al., 2010; Liu et al., 2008; Zhao & Xue, 2010), surface wave tomography (e.g., Chen et al.,
2015; Legendre et al., 2014), and Pn anisotropy tomography (e.g., Zhou & Lei, 2016), have been conducted in
the CNCC. Chang et al. (2012a) used SKS splitting to reveal a significant correlation between the fast orien-
tation of upper mantle anisotropy and the absolute plate motion direction in the CNCC and interpreted the
correlation by a simple asthenospheric mantle flow. However, most other studies revealed significant varia-
tions of fast orientations obtained using one or more of the XKS (including SKS, SKKS, and PKS) phases in
different parts of the CNCC (Bai et al., 2010; Liu et al., 2008; Zhao & Xue, 2010). Because anisotropy revealed
by the XKS phases can in principle exist from the core mantle boundary to the surface, improving the ver-
tical resolution of anisotropy measurements is key for a realistic interpretation of the observations. While
upper crustal anisotropy can be characterized using splitting of direct S waves from local earthquakes, one
of approaches for the characterization of anisotropy for the entire crust is to utilize source-normalized P to S
converted waves from the Moho (Pms), which are termed as receiver functions (RFs; Kong et al., 2016; Levin
& Park, 2000; Liu & Niu, 2012; McNamara & Owens, 1993; Park & Levin, 2016; Rumpker et al., 2014). In the
CNCC, Yang et al. (2018b) used a joint analysis (Liu & Niu, 2012) of Pms waves from RFs to obtain crustal
anisotropy measurements at 23 out of 198 stations. They suggested that the observed crustal anisotropy on
the margin of the Bohai Bay Basin is related to horizontal principal compressive stress and that in the Yan-
shan Uplift indicates an effect of multiple-phase N-S shortening from the early-to-middle Jurassic to the
Early Cretaceous. The study also suggested that tectonic extension and magmatic underplating from the
Late Mesozoic to Cenozoic may have played a key role in the formation of crustal anisotropy in the Datong
Basin. Due to the influence of the thick sedimentary layer (Wu et al., 2018) on the RFs (Yu et al., 2015),
no measurements were obtained in the interior part of the Bohai Bay Basin, which occupies a significant
portion of the CNCC (Figure 1).

This study takes advantage of a unique data set recorded by a dense portable array and the availability of
a recently developed reverberation-removal technique to suppress the influence of the loose sedimentary
layer on the RFs (Yu et al., 2015), for the purpose of providing constraints on the formation mechanisms of
crustal anisotropy and crust-mantle deformation style in the CNCC, as well as characterizing possible effects
of the tectonically active Zhangjiakou-Penglai Fault Zone on crustal anisotropy. Similar to most previous
investigations utilizing RFs to quantify crustal anisotropy (e.g., Kong et al., 2016; Liu & Niu, 2012; Nagaya
et al., 2008; Rumpker et al., 2014; Sun et al., 2012; Zheng et al., 2018), this study aims at quantifying the bulk
crustal anisotropy under the assumption of a single horizontal axis of symmetry and a flat interface.

3. Data and Methods
3.1. Data
The three-component seismic data were recorded by 200 broadband portable stations in the North China
Seismic Array (Chen et al., 2014; Wu et al., 2018) deployed between October 2006 and September 2009.
Eleven of the stations were equipped with CMG-3T (120 s to 50 Hz) and 189 were equipped with CMG-3ESP
sensors (60 s to 50 Hz). The orientation of the sensors was verified by Chang et al. (2012b). The two NW
trending profiles (Figure 1) were deployed across the western, central, and eastern CNCC with an inter-
station distance of about 15 km, and the off-profile stations had an interstation distance of approximately
30 km.

The original RFs used in this study were calculated by Wu et al. (2018) using the following procedure and
data processing parameters. Data from a total of 825 teleseismic events with a magnitude MW greater than
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Figure 2. Distribution of teleseismic events used in the study. The circles representing the events are color coded by
the focal depths, and the magnitudes are proportional to the size of the circles. The epicentral distances are measured
from the center of the study area, which is located at (40.0◦N, 116.5◦E) and is indicated by the blue star.

5.5 in the epicentral distance range of 30–90◦ were used for the calculation of P wave RFs. The events have
a decent back azimuthal (BAZ) coverage (Figure 2), which is essential for reducing the impact from lat-
eral heterogeneities in the crust and for reliably extracting crustal azimuthal anisotropy measurements. The
waveform records were windowed from 10 s before to 150 s after the first P arrival and were filtered in
the frequency band of 0.05–2 Hz. The horizontal component seismograms were rotated into the radial and
transverse components, and the radial and transverse components were deconvolved from the vertical com-
ponent using the time domain iterative deconvolution technique (Ligorria & Ammon, 1999) to obtain the
RFs (Wu et al., 2018).

To ensure quality, only RFs with an impulsive onset, clear first P arrival, and low-amplitude coda were
selected using a signal-to-noise ratio (SNR) based procedure (Gao & Liu, 2014) followed by visual checking.
The final data set consists of 57,431 RFs, and the number of RFs per station varies from 17 to 620. While
some of the previous crustal anisotropy studies also used the transverse RFs (e.g., Liu & Niu, 2012; Yang
et al., 2018b), a visual inspection of the transverse RFs suggests that the arrival corresponding to the Moho
on the transverse RFs has a SNR that is much lower than that on the radial RFs (Figure 3). Therefore, only
radial RFs are used in the study.

3.2. Removal of Sedimentary Effects on the RFs
The eastern part of the study area is mostly occupied by the Bohai Bay Basin, which is covered by a loose
sedimentary layer (Jia et al., 2009; Menzies et al., 2007). Relative to stations on bedrock, the largest arrival of
the radial RFs observed at basin stations is the P to S conversion from the base of the sedimentary layer (Yeck
et al., 2013; Zelt & Ellis, 1999), and RFs of the basin stations may be contaminated by multiple reverberations
generated from the loose sedimentary layer (Tao et al., 2014; Yu et al., 2015), which can mask the P to S
conversions from targeted interfaces (Figure 3).

To remove or significantly reduce the influence of the loose sedimentary layer on the crustal anisotropy
measurements, we applied a recently developed reverberation removal technique (Yu et al., 2015) to the
original RFs provided by Wu et al. (2018). Autocorrelation was performed on the original RFs to obtain the
period and strength of the reverberations, which is followed by applying a resonance removal filter in the
frequency domain to eliminate or significantly weaken the reverberations. The sediment removal technique
is expected to perform well if the reverberations of the resulting RFs are significant, which are indicated
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Figure 3. Example RFs plotted against the BAZ. (a) Radial RFs recorded by station A207 (40.58◦N, 117.01◦E; see
Figure 1) situated on bedrock. (b) Transverse RFs recorded by station A207. (c). Radial RFs recorded by basin station
A010 (37.86◦N, 116.30◦E; see Figure 1) located in a sedimentary basin. Note that in (c), the small arrival at time zero is
the direct P wave, while the largest arrival is the P to S conversion from the bottom of the sedimentary layer. (d).
Transverse RFs recorded by station A010. RF = receiver function.
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Figure 4. Crustal anisotropy measurements at station K008 (41.36◦N, 113.86◦E; see Figure 1). (a) The red trace shows
the result of simple time domain summation of the individual original radial RFs. (b). BAZ band averaged original
radial RFs plotted against the BAZ for the time window of 0–10 s. (c) BAZ band averaged original radial RFs for the
time window of 4–7 s. The dot on each of the traces indicates the peak of the Pms arrival. The red curve is the
theoretical Pms moveout using equation (1). (d–f) The same as (a)–(c) but for RFs after removing the reverberations.
RF = receiver function; BAZ = back azimuthal.
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Figure 5. Double-layered crustal anisotropy measurements at station K015 (41.06◦N, 114.69◦E; see Figure 1). (a)
Bin-averaged radial receiver functions plotted against the back azimuthal showing the Pms (between the two red
dashed lines) and Pis (between the two blue dashed lines) arrivals. (b) Azimuthal variation of Pis. The blue curve is the
theoretical moveout computed using the optimal anisotropy parameters from the Pis phase. (c) Azimuthal variation of
the Pms before correcting for anisotropy above the Pis. The green curve is the theoretical moveout computed using the
optimal anisotropy parameters from the Pms phase. (d) Azimuthal variation of the Pms after correcting the Pms
parameters with those obtained from the Pis phase. The resulting anisotropy parameters characterize crustal
anisotropy beneath the intracrustal interface.

by a clear sequence of decaying sinusoids and a delayed largest peak, which is the P to S converted phase
from the bottom of the loose sedimentary layer (Figure 3c). Among the 200 stations, 76 (Tables S1 and S2)
were processed with the reverberation removal technique. The locations of these stations correspond well
with the area with a thick sedimentary cover (Figure 1; Wu et al., 2018). An example of crustal anisotropy
measurement by using the reverberation-removed RFs can be found in Figure 4.

3.3. Detection of Crustal Azimuthal Anisotropy
When the P to S converted phases travel through an anisotropic layer with a horizontal axis of symmetry,
the arrival time (t) can be expressed as (Liu & Niu, 2012; Rumpker et al., 2014)

t = t0 + Δt = t0 −
𝛿t
2

cos[2(𝜙 − 𝜃)], (1)

where t0 is the arrival time of the P to S converted phases in an isotropic crust, 𝛥t denotes the moveout
due to crustal anisotropy along the raypath, 𝜙 is the fast orientation (measured clockwise from the north)
along which the P to S converted phases have the earliest arrival and is equivalent to the fast polarization
orientation in shear wave splitting analysis, 𝛿t is the magnitude of seismic anisotropy and is equivalent to
the delay time between the fast and slow shear waves in shear wave splitting analysis, which represents the
strength of crustal azimuthal anisotropy, and 𝜃 is the BAZ of the RFs.

The following preprocessing steps are conducted for the purpose of increasing the reliability of the measured
anisotropy parameters: (1) all the arrival times of the P to S converted phases are corrected to a uniform
epicentral distance of 60◦; (2) traces within 10◦ azimuthal bins are stacked together to increase the SNR
and eliminate dominance by RFs from a limited number of BAZ bands; (3) stations at which the number of
available BAZ bands is less than 12 out of the 36 possible bands, or there is a BAZ coverage gap of 180◦ or
greater, are rejected in the study; (4) the azimuthal variation of 𝛥t is clear, smooth, and coherent. The two
phases utilized in this study include Pis and Pms. The former is the P to S converted phase from an intracrustal
interface for measuring upper crustal anisotropy parameters, and the latter is the P to S converted phase
from the Moho for extracting whole crustal anisotropy parameters.

The anisotropy parameters (𝛿t and 𝜙) can be obtained by fitting the arrival times of the P to S converted
phases relative to the direct P phase based on equation (1) using a nonlinear least squares fitting procedure
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Figure 6. Crustal anisotropy measurements from this study (red bars) and Yang et al. (2018b; green bars). The length
and orientation of the bars denote the 𝛿t and 𝜙 measurements, respectively. For the eight stations with double-layered
anisotropy, the cyan and brown bars show the upper-layer and lower-layer anisotropy, respectively. The black lines
denote active faults at the surface. The blue solid lines separate the study area into four subunits. The equal-area
projection rose diagrams represent the distribution of the 𝜙 values in each of the four subunits.

(Kong et al., 2016). For a few stations where the Pis can be clearly observed, the layer stripping method
(Rumpker et al., 2014) was employed to detect the anisotropy parameters of both the upper and lower lay-
ers. In order to obtain reliable double-layered crustal anisotropy measurements, three preconditions are
required: (1) the existence of an intracrustal discontinuity; (2) clear and azimuthal variations of Pis and
Pms arrivals; and (3) good BAZ coverage. Because the Pis exhibits a characteristic sinusoidal variation with
the BAZ, azimuthal anisotropy above the intracrustal interface (“upper crust”) can be detected using the
azimuthal moveout of the Pis phase by applying equation (1). In this case, the arrival times of the Pms reflect
an integrated effect of the two anisotropic layers, and they can be corrected using the resulting upper-layer
anisotropy parameters to remove the contribution of the upper layer. The lower-layer parameters can then
be determined based on equation (1) to the corrected arrival times of the Pms (Figure 5).

To evaluate the uncertainties of the resulting crustal anisotropy measurements, we adopt the bootstrap
resampling technique (Efron & Tibshirani, 1986; Liu et al., 2003; Liu & Gao, 2010) to measure the mean
and standard deviation (SD) of the 𝜙 and 𝛿t of a given station. The resulting SDs after 10 iterations for the
two individual parameters are weighted to compute a combined SD for the measurement according to the
following equation:

𝜎 =
𝜎𝛿t

1.0
+

𝜎𝜙

90.0
, (2)

where 𝜎𝛿t is the linear SD for 𝛿t, and 𝜎𝜙 is the circular SD of𝜙. Stations with a 𝜎 ≥0.4 are rejected in the study.
The application of equation (2) is aimed at normalizing the misfits of the 𝜙 and 𝛿t, which have a maximum
angular difference of 90◦ for 𝜙 and a maximum difference of 1.0 s for 𝛿t.
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Figure 7. (a) Spatial distributions of the 𝛿t measurements. The individual 𝛿t observations are fitted using a continuous
curvature surface gridding algorithm (Smith & Wessel, 1990) with a tension factor of 0.5 and a sampling interval of
0.1◦. The black stars denote M ≥ 6.0 earthquakes since the 23rd century BCE (Department of Earthquake Disaster
Prevention State Seismological Bureau, 1995; Song et al., 2011). The red arrows represent averaged crustal 𝜙 values in
each of the four subunits. The blue arrows show the mean fast orientations from XKS splitting analyses (Bai et al.,
2010; Chang et al., 2011, 2012a; Huang et al., 2011; Li et al., 2017; Liu et al., 2008; Zhao & Xue, 2010), and the black
arrows are averaged GPS velocities relative to the stable interior of Eurasia (Wang et al., 2001). The black squares mark
the locations of cities: Beijing (BJ), Datong (DT), Shijiazhuang (SJZ), Tangshan (TS), Tianjin (TJ), and Zhangjiakou
(ZJK). (b) Spatial distributions of the Vs anisotropy using equation (3). This quantity depends on 𝛿t, crustal thickness,
and crustal Vp∕Vs ratio. The average P velocity in the crust is set as 6.1 km/s.
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Table 1
Averaged Anisotropy Parameters From Direct S Splitting in the Upper Crust (Gao et al., 2010, 2011; Zhao
et al., 2011), Pms Moveout, XKS Splitting (Bai et al., 2010; Chang et al., 2011, 2012a; Huang et al., 2011;
Li et al., 2017; Liu et al., 2008; Zhao & Xue, 2010), and GPS Directions (Wang et al., 2001) for the Subareas

Western Eastern Datong Bohai Bay
Data in the study area Yanshan Uplift Yanshan Uplift Basin Basin
Direct S𝜙 (◦) 85.8 ± 16.4 85.5 ± 33.1 50.8 ± 35.4 91.8 ± 41.8
Direct S𝛿t (ms/km) 2.35 ± 1.39 3.64 ± 1.40 1.83 ± 1.27 2.47 ± 0.91
Pms𝜙 (◦) 120.0 ± 26.1 90.6 ± 20.2 56.6 ± 33.6 53.6 ± 25.2
Pms𝛿t (s) 0.29 ± 0.09 0.27 ± 0.09 0.25 ± 0.07 0.19 ± 0.04
XKS 𝜙 (◦) 107.8 ± 9.7 110.5 ± 13.5 118.2 ± 27.0 111.4 ± 9.8
XKS 𝛿t (s) 0.93 ± 0.19 0.91 ± 0.20 0.92 ± 0.21 0.96 ± 0.18
GPS (◦) 121.3 ± 7.4 127.5 ± 14.1 140.2 ± 9.3 129.1 ± 19.7

The observed 𝛿t can be used to estimate the average crustal Vs anisotropy according to the following
equation:

AVs =
𝛿t · Vs

H
=

𝛿t · Vp

H · k
, (3)

where AVs is the average crustal Vs anisotropy, Vp (6.1 km/s) and Vs are the average P velocity and S velocity,
respectively, k is the crustal Vp∕Vs ratio, and H is the Moho depth based on a published study (Wu et al.,
2018).

4. Results
Among the 200 stations (Figure 1), 104 stations have reliable single-layered and 8 stations have
double-layered anisotropy parameters (Tables S1 and S2 in the supporting information). Reverberation
removal was applied to 28 of the 112 stations. Figure 6 shows all the 112 crustal anisotropy measurements
and the comparison between the Pms moveout results from this study and the results of Yang et al. (2018b).
The observed 𝛿t measurements at the stations vary from 0.06 to 0.54 s with an average of 0.25 ± 0.08 s. For
stations located in the Zhangjiakou-Penglai Fault Zone, the mean 𝛿t is 0.40 ± 0.07 s, which is about twice as
large as that observed at stations in the other areas (0.23 ± 0.08 s; Figure 7).

The fast orientations demonstrate spatial consistency with surface geological features. To facilitate discus-
sion, the study area is divided into four subunits separated by the NSGL and Zhangjiakou-Penglai Fault
Zone: the Datong Basin, Bohai Bay Basin, western Yanshan Uplift, and eastern Yanshan Uplift (Figure 6
and Table 1). In the Datong and Bohai Bay Basins, the fast orientations are dominantly NE-SW, which is
consistent with the regional tectonic trend and dominant strike of surface geological features. A contrast of
the 𝜙 measurements is observed between the western and eastern Yanshan Uplifts separated by the NSGL,
with NW-SE fast orientations for the western part, and ENE-WSW for the eastern part (Figure 6).

5. Comparison With Previous Crustal Anisotropy Studies
Yang et al. (2018b) used the Pms phase to map crustal anisotropy in the CNCC beneath 23 stations and
obtained an average 𝛿t of 0.23 s. Comparison between our measurements and those by Yang et al. (2018b) is
shown in Figure 6. While some differences exist at some stations in the Datong Basin, the 𝛿t and 𝜙 measure-
ments in the whole Yanshan Uplift from the two studies are generally consistent. However, the application
of the reverberation removal procedure in this study led to better spatial resolution, especially in the Bohai
Bay Basin where no measurement was obtained by Yang et al. (2018b). The increased spatial coverage is
essential for constraining anisotropy-forming mechanisms and crust-mantle deformation models.

Besides crustal anisotropy investigations using RFs, a number of surface wave and Pn anisotropy tomogra-
phy studies have been conducted in the CNCC. Chen et al. (2015) determined 3-D azimuthal anisotropy from
inversion of Rayleigh wave dispersions. At the depth range of 30–40 km, the NE-SW trending anisotropy in
the Datong Basin and NW-SE trending anisotropy in the western Yanshan Uplift are consistent with results
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Figure 8. (a) Crustal anisotropy measurements in the Zhangjiakou-Penglai Fault Zone and adjacent areas. Red bars,
yellow bars, and blue bars correspond to the measurements that are perpendicular to the center of the fault zone (the
solid black line labeled as Profile AB) within 20 km, between 20 and 50 km, and between 50 and 100 km, respectively.
The length and orientation of the bars denote the 𝛿t and 𝜙 measurements, respectively. (b) The 𝛿t observations (blue
dots) at stations that are perpendicular to Profile AB within 100 km. Thick and thin horizontal black bars denote the
mean value and standard deviation, respectively. (c) Same as (b) but the observations are plotted against the absolute
distance from Profile AB.

from this study. The most significant difference was a nearly 90◦ deviation of the fast orientations in the
eastern Yanshan Uplift. As the crust in the Bohai Bay Basin and eastern Yanshan Uplift is most likely thin-
ner than 40 km (Bao et al., 2013; Li et al., 2014), the azimuthal anisotropy of Rayleigh wave at 40 km may
not reflect crustal but mantle anisotropy. Zhou and Lei (2016) presented a high-resolution Pn anisotropic
tomography beneath China using arrival time data. The fast orientations from this study agree well with the
Pn anisotropy results in most of the study area (Figure 8 in Zhou & Lei, 2016).

6. Discussion
6.1. Formation Mechanisms of the Observed Crustal Anisotropy
6.1.1. Zhangjiakou-Penglai Fault Zone
The NW-SE trending Zhangjiakou-Penglai Fault Zone is seismically the most active fault zone in CNCC,
where numerous devastating historical earthquakes have occurred (Figure 7; Department of Earthquake
Disaster Prevention State Seismological Bureau, 1995; Song et al., 2011). The Zhangjiakou-Penglai Fault
Zone is a crustal- or lithospheric-scale fault zone and is a major seismogenic structure in North China (Guo
et al., 2015). Microcracks in the middle to lower crust may thus have a significant effect on crustal anisotropy.
For stations within 20 km from the center of the fault zone (Profile AB in Figure 8a), the average 𝛿t values
are similar between the two sides of Profile AB. The average 𝛿t of 0.40 ± 0.07 s in the band of 0–20 km
from the fault zone is the largest in the three distance bands shown in Figure 8c, suggesting that the crust

ZHENG ET AL. 11



Geochemistry, Geophysics, Geosystems 10.1029/2019GC008181

Figure 9. (a) The 𝜙 measurements observed at stations within 20 km from Profile AB in Figure 8a plotted against the
distance from Point A. The dashed black line is the approximate strike of the Zhangjiakou-Penglai Fault Zone. (b) The
same as Figure 9a but for the 𝛿t observations.

beneath the fault zone is more anisotropic than the areas away from the fault. The large 𝛿t measurements
also suggest that crustal anisotropy in the fault zone has a nonnegligible contribution to the XKS splitting
measurements, which have a 𝛿t of about 0.9 s in the area (e.g., Chang et al., 2012a). The zone of anomalously
large 𝛿t measurements has a total width of about 40 km approximately centered at the fault zone, and the 𝛿t
measurements show insignificant variations with the distance from the center of the fault zone, which may
imply the existence of a broad shear zone at depth beneath the fault zone. For stations more than 20 km away
from Profile AB (Figure 8), the average 𝛿t values of the two sides are statistically identical (thick horizontal
red bars in Figure 8b), and the observed 𝛿t measurements demonstrate a gradual decrease with increasing
distance from the fault (from 0.40 ± 0.07 s for 0–20 km, to 0.22 ± 0.07 s for 50–100 km). Such a spatial
variation is consistent with results from a direct S splitting study (Gao et al., 2011), which shows that the
average delay time in the central part of the fault zone is greater than 5 ms/km, whereas that in the area away
from the fault is generally less than 3 ms/km. The inverse relationship between the 𝛿t measurements and
the distance to the center of the fault zone, when combined with the observation that the fast orientations at
the stations closest to the fault zone are parallel or subparallel to the strike of the fault zone (Figure 9), may
indicate a gradual intensification of fluid-filled fractures toward the center of the active fault zone (Kong
et al., 2016; Zheng et al., 2018). An alternative mechanism for the enhanced anisotropy along the fault zone
is a broad zone of viscous deformation in the middle to lower crust, and a narrow zone of fluid-filled fractures
in the upper crust (e.g., Burgmann & Dresen, 2008). However, this mechanism is not in good agreement
with the presence of earthquakes in the middle and lower crust along the fault zone (Guo et al., 2015), which
suggests brittle rather than ductile deformation dominates in the middle and lower crust.

Three stations (stations L209, L223, and A703 in Figure 6) located far away from the Zhangjiakou-Penglai
Fault Zone show double-layered anisotropy. For all the three stations, the fast orientations for the upper and
lower layers are similar. In contrast, the fast orientations for the upper and lower layers measured at five sta-
tions in the Zhangjiakou-Penglai Fault Zone are significantly different (Figure 6). This nearly 90◦ flip of the
fast orientations is also found by direct S splitting from local events conducted in the Zhangjiakou-Penglai
Fault Zone (Gao et al., 2011) and active fault zones in Iceland (Crampin et al., 2002), as well as Pms moveout
in the eastern Tibetan Plateau (Kong et al., 2016; Zheng et al., 2018). The 90◦ difference between the fast
orientation of the upper and lower layers could be caused by complex crustal structure beneath the fault
zone with a broad shear zone at depth. Alternatively, a 90◦ flip in the fast orientation is expected if the pore
pressure exceeds the maximum horizontal compression stress (Crampin et al., 2002; Gao et al., 2011).

The observed spatial distribution of crustal anisotropy can be used to provide constraints on the location
of the northwestern terminus of the Zhangjiakou-Penglai Fault Zone, which has been a debated issue (Guo
et al., 2015; Ju et al., 2016; Suo et al., 2013). The fast orientations at stations K001-K003 and K005 (Figure 6)
are inconsistent with the strike of the Zhangjiakou-Penglai Fault Zone, and the 𝛿t measurements are smaller
than those observed in the fault zone, suggesting that the fault zone most probably ends at about 114◦E
(Figure 6).
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6.1.2. Different Anisotropy-Forming Mechanisms Between the Western and Eastern Yanshan
Uplifts
The western and eastern Yanshan Uplifts are separated by the NSGL, and significant differences in crustal
and mantle velocity structure between the western and eastern Yanshan Uplifts are found by previous stud-
ies. An S-RF study (Chen et al., 2008) suggested the presence of a shallower lithosphere-asthenosphere
boundary beneath the eastern Yanshan Uplift than the western Yanshan Uplift. The Moho depth also
decreases from west to east (Jia et al., 2009; Li et al., 2014). Surface wave phase velocity tomography (Chen
et al., 2014, 2015) and ambient noise tomography investigations (Bao et al., 2013) revealed that relative to
the western part, the eastern Yanshan Uplift has a lower velocity structure from the middle and lower crust
to the upper mantle.

Our measurements show a clear contrast in the fast orientations between the western and eastern Yanshan
Uplifts (Figure 6). The measured fast orientations in the western Yanshan Uplift are consistent with the
NW-SE trending lithospheric extensional stress field of the CNCC during the Late Mesozoic and Cenozoic
(Ren et al., 2002). The extensional stress is also consistent with the strong positive radial anisotropy (VSH >

VSV ) observed in the western Yanshan Uplift from 25-km depth to the Moho (Figure 9f in Fu et al., 2015). In
addition, both surface wave and body wave tomography investigations revealed pronounced high-velocity
continental roots beneath the western CNCC including the western Yanshan Uplift (An & Shi, 2006; Huang
& Zhao, 2006; Li et al., 2006). Chang et al. (2012a) used XKS splitting measurements to suggest that the
average delay time in the western CNCC is about 0.75 s, which is less than the global average of 1 s (Silver,
1996) but is comparable to the splitting times observed beneath other major stable cratons such as those
found in Craton in southern Africa (Silver et al., 2001) and North America (Liu et al., 2014). We speculate
that the NW-SE trending crustal anisotropy in the western Yanshan Uplift is possibly part of the “fossil”
anisotropy frozen in the thick lithosphere due to lithospheric extension of the CNCC.

Contrary to the western Yanshan Uplift, the fast orientations observed in the eastern Yanshan Uplift
are ENE-WSW, which is approximately consistent with the direction of the regional compressive stress
(Figures 1 and 6; Heidbach et al., 2016). Although the influence of the Mesozoic-Cenozoic NW-SE exten-
sion on crustal anisotropy in this area cannot be readily ruled out, this similarity suggests that extensional
fluid-saturated microcracks associated with the regional compression may be responsible for the observed
crustal anisotropy. While the resulting ENE-WSW measurements agree well with previous direct S splitting
results (Gao et al., 2010, 2011), the average delay time in their studies is only about 0.05 s and significantly less
than the average value of 0.27 ± 0.09 s found by this study, suggesting the existence of significant anisotropy
in the aseismic middle and lower crust.
6.1.3. The Datong and Bohai Bay Basins
Crustal anisotropy observed in the Datong and Bohai Bay Basins is similar, with predominantly NE-SW fast
orientations which are basically parallel to the strike of major basement faults as well as the orientation of
the maximum compressional stress (Figure 1). Numerous Holocene and late Pleistocene NE trending faults
commonly occur in the Datong and Bohai Bay Basins (Figure 6; Ding, 1991). Relocation of small earthquakes
in this area suggested that the distribution of the earthquakes is closely related to seismic faults and the focal
depth of some earthquakes has even reached the Moho (Zhao et al., 2013), suggesting brittle deformation
in the whole crust. Therefore, it is reasonable to hypothesize that the observed crustal anisotropy in the two
basins is associated with the active faults and extensional cracks related to the regional compressional stress.

6.2. Crust-Mantle Coupling Relationship
Coupling relationship between the crust and mantle is closely related to past dynamic processes in the
lithosphere and is also critically influenced by present-day plate movements (e.g., Bendick & Flesch, 2007;
Flesch et al., 2005; Wang et al., 2008). The degree of crust-mantle coupling in the NCC is an important fac-
tor in the establishment of the present-day deep dynamic movement model for eastern China (Gao et al.,
2010). Because results from GPS, Pms moveout, and XKS splitting act as a proxy for surface deformation
field, crustal deformation field, and upper mantle deformation field, respectively, the three types of mea-
surements can be combined to evaluate the deformation at different depths within the crust and mantle
and the extent of crust-mantle coupling (e.g., Flesch et al., 2005; Holt, 2000; Long & Silver, 2009). Good
agreements (Figure 7 and Table 1) among the GPS observations, the Pms moveout, and the XKS splitting in
the northwestern CNCC, further imply a coupled crust and mantle deformation model. In contrast, signifi-
cant discrepancies among the three measurements in the eastern CNCC, together with the significant depth
variations of the dominant fast orientations revealed by surface wave tomography (Chen et al., 2015), may
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suggest that the crust and mantle are possibly decoupled. Ambient noise tomography study (Bao et al., 2013)
revealed that the western CNCC is marked by a high-velocity (perhaps also higher viscosity) structure from
the middle and lower crust to the upper mantle, whereas the eastern CNCC is characterized by low veloci-
ties (perhaps lower viscosity) compared to the stable western CNCC. The rheological condition thus may be
similar to the crust-mantle coupled deformation model (Flesch et al., 2005; Wang et al., 2008) in the west-
ern NCC, but such coupling can hardly exist in the eastern CNCC. In addition, previous studies (Ai et al.,
2008; Bao et al., 2013) indicated a strong heterogeneity of the lithospheric mantle in the NCC, which provide
additional evidence for different lithospheric deformation characteristics between the northwestern CNCC
and the eastern CNCC.

6.3. Correlation With Historical Large Earthquakes
Figure 7a shows the spatial distribution of the 𝛿t measurements and the historical large earthquakes. The
Zhangjiakou-Penglai Fault Zone, where the observed 𝛿t measurements are the largest in the study area,
is also the seismically most active zone. In addition, previous studies (Chen et al., 2015; Huang & Zhao,
2004) found that the historical large earthquakes in the CNCC more frequently occurred in the transition
zone of low- and high-velocity anomalies. We speculate that the observed significant crustal anisotropy in
the Zhangjiakou-Penglai Fault Zone is closely related to the degree of crustal deformation which is in turn
associated with the historical large earthquakes.

7. Conclusions
In this study, we investigate the crustal azimuthal anisotropy beneath the CNCC using the sinusoidal move-
out of P to S converted phases from the Moho and from an intracrustal discontinuity. The results in the
Zhangjiakou-Penglai Fault Zone support the existence of a broad shear zone at depth, and the fault zone has
limited influence on the interior of the stable western CNCC. The observed crustal azimuthal anisotropy
in the Zhangjiakou-Penglai Fault Zone is likely caused by fluid-filled fractures, and significant crustal
anisotropy in the fault zone is related to the degree of crustal deformation which is in turn associated with
the historical large earthquakes. The resulting 𝜙 measurements show an obvious difference between the
western and eastern Yanshan Uplifts separated by the NSGL. The consistency between the 𝜙 measurements
and the direction of lithospheric extension indicates that the observed crustal anisotropy in the western
Yanshan Uplift may be attributed to “fossil” anisotropy frozen in the thick lithosphere due to lithospheric
extension of the CNCC, while extensional fluid-saturated microcracks related to the regional compression
may result in the measured crustal anisotropy in the eastern Yanshan Uplift and the Datong and Bohai Bay
Basins. The observations from the GPS, whole crust and upper mantle anisotropy, when combined with
results from previous studies, imply that crust and mantle coupling relationship in the northwestern CNCC
and eastern CNCC may be different.
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