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Abstract
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1. Introduction

In this paper we continue our study of the focusing nonlinear Schrodinger equation (NLS)
with diffusive forcing in one dimension, extending our earlier methods [6, 14] to obtain
quantitative bounds on the rate of exponential relaxation to equilibrium.

The one-dimensional deterministic NLS that we study in the following reads

2
igd;(x, = f%qﬁ(x, 1)+ mzqﬁ(x, 1) — /\(|¢>(x, t)|"72 + 4.0.)(;5()6, 1)+ K“¢“§r72¢(x, 1), (1.1)

where ¢ € R is time, x is a point in the circle T! of circumference L, ‘¢.0.” stands for terms
in |¢(x, )| of order strictly lower than p — 2 that will henceforth be neglected; (m, A, k are
positive constants, and the exponents p and r satisfy p < 6 and r > p + 2/(6 — p)). It is well
known that equation (1.1) is a Hamiltonian evolution equation, and, under the conditions
specified below, the Gibbs measure corresponding to its Hamiltonian functional exists; (For
p > 6, the Gibbs measure does not exist; see [6] and for further discussion.)

Equation (1.1) is used to describe the slowly varying envelopes of Langmuir waves in a
plasma, besides various other physical phenomena.

The evolution described by equation (1.1) corresponds to the flow generated by a Hamiltonian
vector field on an infinite-dimensional phase space, K, given by the Sobolev space H'(T").
This space consists of complex-valued functions, ¢, on T! with square-integrable derivative,
¢', and is equipped with the norm

Ml oy = </T \¢'(x)|2dx+/Tl |q5(x)2dx>é.

The phase space K can be viewed, more precisely, as the real affine space obtained by regard-
ing the complex space H'(T!') as a real Hilbert space equipped with the inner product

(0, 0)c = R((Ds V) (1))

where R(z) denotes the real part of z € C. The Hamiltonian nature of the time evolution
described by equation (1.1) can be made manifest by equipping the algebra of bounded
Fréchet-differentiable functionals on K with a Poisson bracket determined by the following
brackets of the complex coordinate functions:

{6(x).6(0)} =0, {6(x).0(»)} =0. {(x).0(»)} =id(x —y), (1.2)

for arbitrary x,y in T'.
The Hamiltonian functional, H} ., on K corresponding to equation (1.1) is defined by

1 , A .
Has(@) =5 [ 0100 + 16 WP =2 [ jotlPas-+ 2ol
(1.3)
where

AeER, p<6, k>0if A >0, and k > 0 otherwise,

withr > p + 6sz’ for A > 0, and r = 0, in the defocusing case, (A < 0). Since every function
¢ € H'(T') is bounded and hence in LP(T"), for all p, the Hamiltonian is well-defined and
finite on all of K. Using the Poisson brackets determined by (1.2), one easily verifies that the
NLS equation (1.1) is equivalent to the equation

¢ 1) = {Hx x(9), ¢(x. 1)},
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which renders the Hamiltonian nature of (1.1) manifest. The last term on the right side of (1.3),
which merely gives rise to a time-dependent phase of solutions to equation (1.1), enforces a
lower bound on the Hamiltonian H) ., for an appropriate choice of the exponent r and the
constant . This will play an important role in our considerations.

We remark that, in our analysis, the function |¢(x)|? under the integral in (1.3) could be
replaced by a more general functional of ¢(x) bounded by a power of |¢(x)| and also by certain
non-local functionals of ¢.

Equation (1.1) can be written as an infinite-dimensional ordinary differential equation:

do(t) = JDH «(6(1))dt,
where J is the complex structure defined by
J¢p =1i¢, for an arbitrary vector ¢ tangent to /C, (1.4)

and D denotes the Fréchet derivative defined on functionals on /C.
For p < 6, the Gibbs measure corresponding to the Hamiltonian H) ,,, which in standard
physical notation can be written as

1 _
CiﬁHAﬁ(gS)DQ&DQs, (15)

dﬂﬁ,/\,n(qb) = Z,B)\
P

is well defined provided r > p +2/(6 — p); see [6, theorem 3.6]. Henceforth we will some-
times omit the letters (3, A\, x and r from our notation, writing H, instead of H) ,, and dp,
instead of dug x -

The measure dy is absolutely continuous with respect to the Gaussian measure dug defined
by

1 _
dpg == Ze—m(‘f’)mm, (1.6)

where

Ho(@) = 5 [ 1/ + oo Pla (17

is the free Hamiltonian with mass m > 0. The covariance of the Gaussian dy is given by the
operator

C:=p""m>—-A)"". (1.8)

Let o be a self-adjoint Hilbert-Schmidt operator on K, so that o2 is a positive, trace-class
operator on K. Let w(¢) denote ‘Brownian motion on K’, and consider the stochastic differ-
ential equation

do(t) = JDH(4(t))dt — §UZDH(¢>)dt + odw(r) . (1.9)

Associated to the stochastic differential equation (1.9) is the Kolmogorov backward equa-
tion %F = LF, for smooth functionals F on the phase space K, where L is the generator of

the transition function associated with the process in (1.9); it is determined by

d
aEF(@) =ELF(¢,),

with E denoting the expectation with respect to the law of the stochastic process. Using Ito’s
formula, one finds that
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LF(¢) = (JDH(¢). DF) — HF, (1.10)
where H is the operator corresponding to the quadratic form defined by
(F,HF) () = E(F), (1.11)
with £ given by
1 _
E(F) = / (DF, 0*DF) Ee-ﬂH(@mm. (1.12)
Q

The positive quadratic form (‘metric’) o appearing on the right side of (1.12) is defined more
precisely in (1.13).

The Kolmogorov forward equation is then %p = L*p, where L* is the adjoint of £ in the
scalar product of L?(11), and p is a time dependent probability measure on &, continuous as a
function of r > 0, that is in the domain of L£* for all # > 0. The forward equation can be solved
in various spaces, and it is not necessary to specify the space in which we work at this point,
which in any case is not always the same. We are chiefly concerned with measuring the rate of
approach to the steady sate in the L metric, and in the relative entropy sense. In the first case,
we shall work in in an L? setting, and then we impose shall a square integrability condition
on p, and seek a spectral gap. In the second case, it is instead an Llog L Orlicz space that is
relevant, and we seek a logarithmic Sobolev inequality. The second setting allows for a much
larger class of initial data. In a previous study of this model (see [14]) a cutoff on the number
of modes in the fields was introduced, and the existence of a strictly positive spectral gap for
the finite-dimensional problem with cutoffs was proven. Here, we shall avoid the cutoff, and
moreover, prove a logarithmic Sobolev inequality.

Equation (1.1) with p =4 has been studied in detail in [6], where it is shown that the
semigroup (e'“);>o generated by the operator £ in (1.10) is ergodic, and that £ has a strictly
positive spectral gap above its lowest eigenvalue, provided r > 9 and o is chosen to be a frac-
tional power of the covariance C introduced in (1.8):

7
0% =C*, with §<s<1. (1.13)

Under these conditions on r and s, a certain operator arising in the analysis of the Dirichlet
form can be shown to be trace-class, and this provides the crucial compactness property that
is used in [6] to prove the existence of a spectral gap, for all positive values of \ and k.
Because the proof in [6] only exploits the compactness of a certain operator, it does not yield
quantitative information on the size of the spectral gap. In the present work we prove quanti-
tative bounds on the gap above the ground state energy in the spectrum of L, for all values
of A and k > 0. We will actually prove a quantitative logarithmic Sobolev inequality, for all
Aand k > 0, which implies the strict positivity of and an explicit bound on the spectral gap.
Moreover, we avoid introducing any cutoffs and work directly with the infinite-dimensional
theory.

Note that the stochasticity in (1.9) acts on all phase space variables, that is, on the ‘posi-
tion variables’ (R(¢)) as well as the ‘momentum variables’ (3(¢)). This is different from
what is often studied in stochastic particle systems, where the noise typically acts only on
the ‘momentum variables’ corresponding, in our case, to the imaginary part of ¢. It would
be more difficult to prove bounds on the rate of approach to equilibrium in this case; see
section 2.
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2. Log-concave measures and logarithmic Sobolev inequalities

In finite dimensions, the Bakry—Emery Theorem establishes a very useful link between loga-
rithmic Sobolev inequalities and log-concavity of measures. We recall some relevant facts
before turning to results in infinitely many dimensions.

Let v be a finite Borel measure on R” of the form dv = e~V®dx. The measure v is log-
concave in case V is a convex function on R” [3]. For ¢ € R, the measure v is c-log-concave
iff the Hessian of V, Hessy (x), satisfies

Hessy(x) > ¢, VxeR", 2.1

where [/ is the n x n identity matrix. Equivalently, v is c-log-concave in case eh*/2dy is
log-concave.

Bakry and Emery proved that if v is c-log-concave, for ¢ > 0, the logarithmic Sobolev
inequality (with constant c)

/v () log | () 2dw (x) /Ww du(x) 2.2)

holds for all continuously differentiable functions fon R”, with [, f*(x)dv(x) = 1.

For a differentiable function u € L*(v) satisfying [;, udv = 0 and [, |u[*dv = 1, we set
f:= /1 — €2 + eu. For this choice of fin (2.2), and keeping only the leading terms in ¢ on
both sides of (2.2), one concludes that

() Pavx) < © [ [VuGo)av() 3)

R» C Jgrn

Thus, the logarithmic Sobolev inequality (2.2) implies the Poincaré inequality (2.3), and

hence positivity of the spectral gap, for the operator corresponding to the quadratic form
= [pu [Vu(x)[Pdv(x)

Bakry and Emery proved their theorem by taking two derivatives of the relative entropy
along the flow of the semigroup generated by the Dirichlet form. While it is likely that one
could extend their analysis to the infinite-dimensional setting, we do not know of a suitable
reference.

There is however another approach to the Bakry—Emery theorem relying on a theorem of
Caffarelli [4] that has been extended to a suitable infinite-dimensional setting in a series of
papers by Feyel and Ustiinel [8, 9, 11, 12]. Their results concern pairs of Dirichlet forms of
the type

E(F) = / (DF, UZDF)Zie’BHI(¢)D¢D$. (2.4)
(9] 1
and
&(F) = / (DF, aZDF>Zie—ﬁH2<¢>D¢D$, (2.5)
Q 2

where H, and H, are Hamiltonians with the property that the probability measures appearing
in the two Dirichlet forms are both absolutely continuous with respect to the same Wiener
measure. Then, roughly speaking, if H, is more convex than H;, and if the Dirichlet form &,
satisfies the logarithmic Sobolev inequality with constant ¢, then the Dirichlet form &; satisfies
the logarithmic Sobolev inequality with the same constant ¢ [8, 9, 11, 12].
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In our application of this result we shall take H; to be a positive multiple of the quadratic
free Hamiltonian (1.7), for a strictly positive mass m. It is well known, going back to results
of Nelson, Federbush and Gross [7, 13, 15], that the Dirichlet form associated with the corre-
sponding Gaussian measure satisfies the logarithmic Sobolev inequality with an explicitly
computable, sharp constant. Thus, all that is required to prove an explicit logarithmic Sobolev
inequality for the Dirichlet form (1.12) is to prove that H is more convex than some strictly
positive multiple of Hy. This turns out to be true for sufficiently small values of A, see sec-
tion A.2 in the appendix. For large values of A, H fails to be convex. However, the failure of
convexity only occurs in finitely many low-energy modes. For all values of A\, we will there-
fore be able to find a function W that depends on ¢ only through finitely many modes such
that the functional H + W is more convex than a strictly positive multiple of Hy, and moreover,
we shall do this with a point-wise bounded perturbation W. This allows us to apply another
theorem on logarithmic Sobolev inequalities for a pair of Dirichlet forms such as (2.4) and
(2.5), but this time with H, = H; + W with ||W||s < oo. The Holley—Stroock lemma [10]
then says that if & satisfies a logarithmic Sobolev inequality with a constant ¢ as in (2.2) then
&, satisfies a logarithmic Sobolev inequality with a constant that is no smaller than ce =Wl
Then, as in the passage from (2.2) to (2.3), we obtain a spectral gap by linearizing around the
constant function. Note that while a Dirichlet form may satisty a spectral gap inequality with-
out satisfying a logarithmic Sobolev inequality, one advantage of working with logarithmic
Sobolev inequalities when they hold is that (2.2) can be written as

[ 1R 08170 Pt + 1oz A3 < 2 [ (90 Px)ave)

valid for all f € L? without any orthogonality constraint such as one has in the spectral
gap inequality (2.3). This absence of an orthogonality constraint, which is quite sensitive to
bounded changes of measure, gives the logarithmic Sobolev inequality an advantageous qual-
ity of robustness. Our main result is the following theorem.

Theorem 2.1. Let H be the Hamiltonian specified in equation (1.3), withp =4 and r > 5.
Let & be the Dirichlet form introduced in (1.12), and let &y be the ‘Gaussian Dirichlet form’
given by the same formula, with Hy in place of H. Let Cy denote the constant appearing in the
logarithmic Sobolev inequality for &,

2
[ PP 10g[FPap < & E(F.F),

for all F in the domain of & with [ |F|*dpo = L
Then, for all r > 5 and all positive values of A and &, there is a computable constant C
depending on these parameters and Cy such that the Dirichlet form & satisfies

2
/|F\Zlog|F\2d,uO < ES(F,F),

for all F in the domain of £ with f |F|>dp = 1. As X increases to infinity, the constant C de-
creases to zero exponentially in a power of \. This power is always at least 2, and approaches
2 as r approaches infinity.

The Holley—Stroock lemma has been used for related models by Blower [1]; see also [2].
Combining this Theorem with the results of Caffarelli, Feyel and Ustiinel we are able to carry
out a convexity comparison directly in the infinite-dimensional setting and to avoid sharp cut-
offs or finite-dimensional approximations.
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3. Convexity comparison

In this section we estimate the Hessians of the various terms in the Hamiltonian H) ,. The
term that has the potential to spoil the convexity is the interaction term —%Hqﬁ“ 7, which is
concave. To avoid complicated remainder terms, we specialize to the case p = 4 and define

1
Vi(g) = Z/Tl |(x)[*dx . (3.1)

Giventwocomplexnumbers,zandw,weletd € [0, 2 )besuchthatRzw = cos(6)|z||w|. Thefunc-
tiont — £is convex on[0, oo), and hence t — (|z|2 + |w|? + 2|z||w|1)* + (|z]* + [w|* — 2|z||w]r)?
is an increasing function of 7 on [0, 1]. Therefore,

24wl [z = wi* < lzl + Wl + (2] = [wll*.

It follows from this inequality and the fact that V| is convex that

0.< 3[Vi(6+n) + V16 —m)] = Vi(6) < 5 Va(lol + I + Vi(19] — Inl)] ~ Vi(6),

and

1 2o 1

5[V1(|¢\+|77D+V1(|¢\—In\)]—V1(¢):/ GlelInl” + 7 Inl")dx (3.2)
'ﬂ‘]

1
=3 [ 1oPlnPac+ gl @3
T!

Therefore, for any Hilbert space H C L* with the property that ||7||5 = o([|n|3,), as||n]l% \( O,
the Hessian of V) at ¢ € H, Hessy, (¢), satisfies

0< (Hessy (@) <3 [ 1o Plnto)Par. (3.4)

Note that

[ 1ePinpas < lol3lml @3

We shall estimate ||n||o in terms of Ho(n) = m?||n||3 + ||n’||3. We must, however, retain a
piece of the term m?||n||3 in Ho(n) for later use. Therefore, for a > 0, we define an operator
A, as

Ay =— —A. (3.6)

Then

&2
Ho(n) = (n, <m2 - F) )+ (. Aan) - (.7
To control |||, We use the following simple Sobolev embedding lemma:

Lemma 3.1. (Sobolev embedding). Forall a > 0 and all v > 1/4, there is a universal
constant C, -, such that, for all functions 1 on the torus in the domain of the operator (—A)7,

[lloe < CarnL?? 2| AT3L2 - (3.8)
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Proof. We write ¢)(x) as a Fourier series:

W(x) = 1-1/2 Z@(k)ez’ﬂk"ﬂ —[2-1/2 Z?Z(k) (a2 + (27rk)2>’yez,ﬂkx/L(a2 + (27k)}) 7.

12
k€EZ kEZ

Applying the Cauchy—Schwarz inequality yields (3.8) with

Ci, =) (a+ (2mk)*) 7. 0
kez
We define P, to be the projector onto the span of the functions {e 2™/ : —n < k < n}

in L2. In what follows a decomposition into low-frequency and high-frequency modes is cru-
cial. Since P, commutes with any power of A,, we have that

12115 = 143 Pap |3 + A7 P13 (3.9)
The next lemma is the key to much of what follows afterwards.
Lemma3.2. Forally € H(T'), alla>0,v > 1/4and e > 0 such that v + € < 1/2, and
alln € N,

— 2—4 2—4(~y+ 4
1912, < Canl® ‘(Hmnz V|1PAY RS+ 1PEap 34O | P AL 230

(2mn/L)t ™ "
(3.10)
where C, is the constant specified in lemma 3.1.
We set

S1(n) = 3C,, LY |Panlly ™ 1 PaA nlly (3.11)

and
1 _
w2 géy—1 L 2=4(vt+e) | pL 4172, j4(v+e)

Sa(n) = 3C, L™ WIIP,, nll3 1P AL 1l : (3.12)
Combining lemma 3.2 with (3.4) and (3.5), we obtain the bound

0 < (. Hessy, (¢)n)n < [[#1351(n) + || #][252(n) - (3.13)
The merit of this bound is that the exponents of the derivative terms in S;(n) and S,(n),

|P,AY *nl|2 and ||P-AL 1], respectively, are both less than two, allowing one to control

these terms with the help of the contribution from Hy(n). Moreover, by choosing n suffi-

ciently large, one can make the constant factor as small as one may wish, while S;(¢)

3Ca,
(27Tn/Z)4‘
depends on ¢ only through finitely many modes. We shall exploit this fact to quantitatively
bound the log-Sobolev constant, and hence the spectral gap, for arbitrarily large values of the

coupling constant \.
Proof of lemma 3.2. By (3.8)
0113 < Cor LY MAYYNE = CoA LY ™ W, AT Y)

Since

((a® + (2mk)*) /L2)> = (M O20) =20 (7120 (@ o+ (2mk)?) /L7)7,
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the arithmetic—geometric mean inequality yields

43915 < (1 =29/ O2V |3 + 29~ 27| 205
Choosing ¢ to minimize the right side, we obtain the interpolation inequality

4291 < Il 1Al (3.14)
Applying this inequality to each of the two terms on the right side of (3.9) yields

IAZYIP < 1P~ 1Pl 201y + 1Pl P AP0l (3.19)
Combining (3.15) with (3.8), we obtain that

2—4 4 2—4 4
1612, < Cay (IPAIZIPAY 2GS + P03 |PEAL )

(3.16)
. 1/2
Since [|PrAd *PI3 > i IPE 13,
4 —4e 4(v+e
[P AL 23" < WHP,W)HZ ‘€| PAL 2|30,
and combining this bound with (3.16) completes the proof. (|

The remaining terms in the Hamiltonian H} , are much simpler to treat. For r > 1, we
define

1

Va(o) = ;Hﬁf’”%r- (3.17)

Lemma 3.3.

1
V2@ +m) + Va(6 = m)] = Va(9) >[I0l Inll3 - (3.18)

Proof. By the convexity of the rth power, for r > 1, and the parallelogram law,
1 r r 1 ’ ’
100+ (1o =) > (5 Lo+ all + ho—nlf]) = (hol + InlB)"

Applying the inequality f(¢ + s) > f(s) +f’(s)t, valid for any differentiable convex function,
to the function f(f) = #, we conclude that

r —
(112 + 1ml1z)" = Nl l13” + rllell3>[mll3

which completes the proof. |

The only remaining term in the Hamiltonian H,, is the free Hamiltonian,
Ho(¢) = (¢, (m* — A)¢), which is quadratic in ¢ and positive. Hence, by the parallelogram
law and the definition of A,, (3.6),
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L Ho(6 + ) + Ho(é — )] — Ho(6) = Holn)

= (n, (m* — A)n)
, & 2 1/2, 112
= \m" =7z ) Inllz + A nll2
= m[nll3 + 144> nll3, (3.19)
where
2
m2 = m* — % . (3.20)

Combing the estimates in (3.13), (3.18) and (3.19), we obtain that
(. Hessuy , (@)n)w > m2 [l + I3 = G111 () + Sam)] + sll 6122l - (321
Therefore, for any « € (0, 1),
(n,Hessy, , (¢)n)2 — c(n, Hesspy (#)n)n

is bounded below by the sum of

(1= a)[mZ||Panll3 + [PaAL *nl3] = M SI1PS1(n) + sll0l132(1Panll3 (3.22)
and
(1= ) |Pnll5 + [1PrAY 5] = AlllPS2(n) + sl 613 1Panll3, (3.23)

which we estimate separately, beginning with (3.22). We choose « € (0, 1), and we define
t:= ||PaAY 0]l and M := 3XC2 L[ 6[3|[Panll3*". We then have that

(1= ) [PaAl 03 = Al6I*S1 () = (1 = a)r® — mr* .
Simple computations show that there is a constant ¢, ,, depending only on « and +y such that
(1—a)? =M™ > —c,  M"/072 v > 0.

Using this inequality to eliminate ||P,,A,1/ 277H§, we obtain the following lower bound on the
quantity in (3.22):

—1\/(1=27) 2/(1-2 r— .
(1= aymz = ez, L7~ " g3 e gl ) 1Pl 629

Forr>1+1/(1—=27),lets =r— (1/(1 —2v)) — 1. Then, setting t = H¢||§/(]727), we may
write our lower bound as

H,,]”Z ((1 _ a)mg _ (3)\C3,7L47_1)1/(1727)t+ Krt(l—z'y)(r—l)) ) (3.25)

Recall that, below (1.5), we imposed the restriction r > p +2/(6 — p), which, for p =4, is
implied by r > 5. We suppose that (1 — 2)(r — 1) > 1, and, since y > 1/4, this requires  to
be very close to 1/4 if r is close to 5; and, no matter how large r is, we require v < 1/2. With
~ chosen as required, we define g := (1 — 2)(r — 1) — L For b, ¢ > 0, we have that

I q LAY
—ctbtr> 2 () D,
1+q<(1+q)b>
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Setting

b:=kr and c:= (3)\C2,7L4w—1)1/(1—27) i

this inequality shows that the quantity in (3.25) is non-negative, provided that

2 q 1 e 2 pay—1)(a+1)/q(1-27)
(1—a)m; T+q <(1 T q)m> (3)\CML ) (3.26)
is non-negative, which is evidently satisfied if \ is sufficiently small or « is sufficiently large—
but only in these cases! Note that the exponent (g + 1)/g(1 — 27) is at least as large as 2,
which it approaches when r 1 co and v | 1/4.

The situation is much better for the high-frequency modes. The same analysis shows that
if (1=2(y+¢€))(r—1)>1, and for ¢’ defined by ¢ := (1 —2(y+¢))(r—1) — 1, the
quantity in (3.23) is non-negative, provided that

q 1 1/q 1 (¢"+1) /4’ (1=2(y+e€))
(1 —a)m? <7) <3Ac§7L47*‘ 7) >0
( y

a ] / 1 / 2 L)% :
+q +q')kr (2mn/L) 3.27)

The exponent (¢' + 1)/q' (1 — 2(y + €)) is always at least as large as 2, which it approaches
when r 1 0o,y | 1/4and € | 0.

No matter how large A is or how small « is, the negative term can be made arbitrarily small
by choosing # sufficiently large. Thus, no matter how large the value of the coupling constant
A may be, or how small x may be, there exists a finite # € N such that the quantity in (3.23) is
non-negative. For such a value of n, the failure of convexity only concerns the 2n + 1 lowest
frequency modes. We may then compensate this failure by adding a uniformly bounded term,
W(¢), to H(¢) that depends on ¢ only through the 2n + 1 lowest-frequency modes, with the
property that the Dirichlet form associated with the perturbed measure

%efﬁ[ﬂ(¢)+w(¢)]p¢]}$
satisfies a logarithmic Sobolev inequality. As explained in the last section, one may then apply

the Holley—Stroock lemma to show that the Dirichlet form for the unperturbed measure (1.5)
satisfies a log-Sobolev inequality.

3.1. The convexity-restoring perturbation

We seek to add a bounded function W(¢) to Hy ,.(¢) such that the sum of (r, Hessw(¢)n) and
the quantity in (3.24) is non-negative. If » > 1 + 1/(1 — 2) and if ||¢||3 > R, for some suf-
ficiently large R depending on ), the quantity in (3.24) is actually non-negative. We choose
such a value of R. We are then left with analyzing the Hessian of H . (¢) for ||$||3 < R. Here,
and only here, do we need help from W().

Let x be a smooth non-negative cut-off function on [0, co) bounded above by 1, with the
properties that x(7) = 1, for < 1, x(¢) = 0, for # > 2, and that |x'(¢)|, |x”(t)| < 5, for all
t € 0, 00). (One may set x(#) := 1 — 30 flt(l —x)3(2 — x)2dx, for 1 < t < 2.) We then define
xr(t) = x(t/R), R > 0.

We choose the functional W(¢) to be given by

W(e) =< i\é(k)ﬁ Xk anlé(k)l2 : (3.28)
2

k=—n k=—n
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where ¢ is a constant to be chosen later. Recall that P, denotes the orthogonal projection onto
the span of the {e >™/L : —n <k < n}in L%
By direct calculation,

<779 HCSSW(¢)77> = CXR (||Pn¢||%) HPnnH%
+ cg1 (IPaol3) [1Panl3 + cg2 (1P2o|I3) [(¢. Pum) (3.29)

where g1 (s) = sxg(s)and g2(s) = 2(2x(s) + sxz(s)). Note that since|g; (s)| + s|g2(s)| < 35,
for all s,

g1 (1Pa@lI3) [1Panll3 + g2 (1Pud3) {6 Pam)*] < 35| Puntll3 - (3.30)

The parameters in W are chosen as follows: The parameters L, m, x and A are given. We
have already chosen a constant @ > 0 such that the quantity m,, defined in (3.20), is posi-
tive. Next, we choose v € (1/4,1/2) such that (1 — 2)(r — 1) > 1, and € > 0. This fixes the
exponents g and ¢’ in (3.26) and (3.27), respectively. As we have noted, these exponents are
at least as large as 2.

(1) If the quantity in (3.26) is non-negative, we may choose ¢ = 0 and n = oc. In this case A
is so small and x is so large that there is no need to add the functional W. Otherwise, we
choose ¢ to be minus the quantity in (3.26), for the chosen value of ~.

(2) Choose € = (1 — /2), then choose n such that (3.27) is satisfied for this choice of e.

(3) Choose R so large that

)1/(“27)

—(3xc2, L RY =29 4 R =2 > 35¢ .

To satisfy this bound when A is not small or when L is large, one needs to choose r such
that r — 1 > 1/(1 — 2), which we have already assumed. Since the terms in the second
line on the right side of (3.29) are bounded by 35¢||P,n|/3 and vanish, unless ||¢||» > R,
they can be absorbed into positive terms coming from the Hessian of H) ;.

With this choice of parameters, we have that

Hessy, ,+w(¢) > aHessy,(¢) . (3.31)

Remark 3.4. The size of the constant in the log-Sobolev inequality, and hence the magni-
tude of the spectral gap will tend to zero exponentially fast in ||W/|| . Therefore it is useful
to pay attention to how ||W|| depends on the allowed choices of parameters. First, for given
values of v and L, there is a constant \g(c, L) > 0 such that if 0 < A < A\g(e, L), the quantity
in (3.26) is non-negative, and we may set W = 0. For large A, our prescription yields

(1—=27)(r—1)
c=0 ()\(l—h)m—zw(r—l)—l)) .

In the limit of large r, the exponent in this expression approaches 2, but it is always larger
than 2. We must then choose R := O(c!/(*~2). Since cR/2 < ||W||oo < cR, for large ),
[W|loo = A", for some w > 2, but with w approaching 2 in the limit 7 — co. The log-Sobolev
constant and the spectral gap will thus be at least as large order O (e~ ’\w), for some constant
K. This is probably somewhat pessimistic, even for m close to 2; we do not have a trial func-
tion that shows the gap is so small, though it is not hard to show that is goes to zero at least
exponentially in \.
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Finally, we observe that we could have defined W without the projection P,. While it is
comforting that, in this problem, we only need help from W for finitely many modes, this is
not a necessary condition for the applicability of our strategy.

4. Application of the Holley-Stroock lemma
Let (9, F, i) be a probability space. We define the functional

Ent, (/) = [ finfdn - ( / fdu) In ( / fdu>

on non-negative functions f, with f(In f) . integrable, and we define Ent,, ( f)to be 400, elsewhere.
Given a function f > 0, with f Inf integrable, we define the function ¢ on (0, 00) by setting

o) = [ |rm(5) +1-r an.

Note that <,0 is convex and continuously differentiable, and that ¢’(r) = —¢=! [ fdp + 1.

Hence ¢(1) = ¢ ([ fdu) = Ent,(f), forall z € (0,1).
It follows that for all non-negative functions f with the property that fInf is integrable,
Ent,(f) = e%{)lf )/ [fln <f> +tff} dp . 4.1
I ,00

This leads directly to the following lemma; in our applications, the quadratic fuction I'(f,f)
in the lemma will be (DF, 0>DF).

Lemma 4.1. (Holley—Stroock lemma). Let (Q, F, 1) be a probability space on which
there is a densre subset D of L*(Q0, F, i) on which there is defined a real bilinear map

= T(f.f) € LN, F, 1). Suppose further that F fQ (f.f)dp is a Dirichlet form on
L*(Q, F, ), and that that the log-Sobolev inequality

Ent, (%) < 2 / D(f.f)dp

is valid. Let V be a continuous function with finite oscillation,
osc(V) :=supV —inf V,
and define a new probability measure i by i = %ev,u. Then the logarithmic Sobolev inequal-
ity
2 2 osc(V) ~
Entz(1) < (&) | 1(7.0)d7
is valid

Proof. Note that f2(Inf?), is integrable with respect to y if and only if it is integrable with
respect to /i, so that Enty; and Ent,, have the same domain of definition. By (4.1), and since the
integrand is non-negative,

2 2 1
Entz (f7) = tei(ggo)/ {f 1n< ) 41— f} Zevdp
1

—asupVoos 2 f 2 1 sup V 2
7€ E}gﬁ@)/ {f ln( )-I—t f}dp 7¢ Ent,(f7) .

N
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Even more simply,
[T =e? [ D an <@ [ rer.nd.
Q Q

Combining these bounds completes the proof of the lemma. (|

We apply this lemma with g := duy ., as introduced in equation (1.5), and I'(f,f) :=
(DF, 0>DF). Recall that

A
Hy.«(¢) = Ho(¢) + kl|0|13 — I;Hab\l,f’ :

To H) . (¢) we add the functional

W(9) =a( D 16k )xr( Y 16(k)F). 4.2)

k=—n k=—n

Let P, be the projector onto the span of the {e2™/L : —n < k < n}. Then

Hessw (¢) = 2axr( ) [6(K)*)Pu +2ag1( Y [$(K)P)Py +dag2( D |6(K)[*)|Pad) (Pud,

k=—n k=—n k=—n

where g (s) = Xz(s) and g2(s) = 2xg(s) + sxg(s).

To estimate the Hessian of Hj ,(¢) + W(¢), we return to (3.21) and make two changes:
first, we add the additional terms due to the inclusion of W. Second, we use the spectral
decomposition to estimate the term

! 1

i 534 (300 + e+ 16— ] - o) =3 [ lofin®

1—0 f 2
‘We use lemma 3.2 to show that

3/\/ 620> < CollPunlly™ 11Pan 13710115 + CylIP I3~ 1P 13711113 -
We require positivity of S; + S,, where

1 m
$i01) = (1= )3 1PE7 13 + (1 = )l
= 3AC P P 1371615 + mrll el 1Panll3, 4.3)

and

1 m _ _
Sa(n) = (1 - a)EHPnn'H% +(1- a)gl\PmH% =3P~ P 1137 16115 + srllg ] Imll3

+2axz( Y 10(k) )Pl +2ag1( Y 16(k) )Pl +daga( Y 16(k))(Pagh ) -
k=—n k=—n k=—n
4.4)
It suffices to show that, for some n and appropriate choices of the other parameters, S; and S,
are positive.
First, we consider S;. Since ||P;n'(3 > (ZWJWHP,{WH%,

4 — 4(y+
1P 47 < 1Pl | P 307,

1
(2mn/L)%
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hence S; > S,’, where
1 m
$i' 1= (1= )z [Py I3+ (1 = )5 1nl3

- 3AC§WHPMII?4(H) 12 157113 + srlell3 12,3
4.5)
Note that no matter how large A may be, we may choose n large enough that the negative
term in Sy’ is negligible. In other words, the ‘effective’ \ here is An—*¢ which can be made
arbitrarily small by choosing n large enough, and then positivity of S}’ follows from our previ-
ous result. Turning to S,, we observe that the inclusion of W effectively makes the mass in S,
arbitrarily large, and hence, once again, our previous analysis establishes the positivity of S,.

Altogether, this completes the proof of the main theorem.
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Appendix. Spectral gap and Witten Laplacian

In this section, we briefly recapitulate a formulation of the problem of exhibiting a gap above
the ground-state energy of our Hamiltonian in terms of the Witten Laplacian. The material
reviewed here and in section A.1 is standard and is similar to the contents of section 7 in [14].
‘We add it here to fix our notations and for the convenience of the reader.

We start our review by considering systems with only finitely many degrees of freedom.
It will turn out to be convenient to re-write our Hamiltonian in Fourier modes. For ease of
exposition, we consider the cubic NLS, with p =4, and we set 8 = m = 1. The resulting
Hamiltonian, denoted by 2@, is then given by

_ A o
2®(a,a) = 2:(112 +1)|a,)? - 5 Z Gy, Gy Oy G,y

nez ny—np+nz—ng=0

K — \r+1
+ I(Xn:anan) (A1)

where a,,a, € C. This definition differs from the one in (1.3) by a factor of 2 and r is replaced
by r + 1, which slightly simplifies some of the factors later on, in section A.2.
Consider a truncated Hamiltonian, @y, instead of ®, which we define to be given by

®y = Pla, =0,a, =0, for|n| > N.

For simplicity of notation, we drop the subscript N below. Up to a normalization factor, the
truncated Gibbs measure takes the form

o< e 2® H da,da,,. (A2)
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When identifing C2¥*! with R2GN+1)_; is a probability measure on R2V+1), We will show
that, up to a normalization constant, e~® is the unique ground-state of a certain Schrodinger
operator, which is, in fact, the generator of a diffusion process, (see £ in section 1). To pro-
vide precise ideas, we need to engage on a short digression and introduce some notions and
notations.

A.1. Some elements of differential calculus on RN

In this section, we review some basic elements of differential calculus on RY. We equip R
with the standard euclidian metric, (5,7)%.:1. Let ¢ be a smooth real-valued function on RY,
i.e. » € C°(RN;R). Let d be the usual exterior differentiation

N
d="> dx/ndy (),
j=1

and
N
dy =e %de? =d +dpA =D d/Az(-),
j=1

where
_ 0 99
97 o0 T o
For details concerning differential calculus, see for example [18].

If fis a form of degree m, then dyf is a form of degree m +- 1. For example, if fis a 0-form,
i.e. a scalar function in C°°(R¥; R), then

N
daf =y 5(f)dw!
j=1

is a 1-form, which we may identify with a covariant vector-valued function, F, with components

Fj(x) = () (x),
which are functions in C°°(RY;RN). We note that if ¢ = 0 then dgf = df, which is just the
usual differential of f. If fis a I-form, f = Zj fidx/, then
dof = zi(f)dx Adx/
i<j
is a 2-form, which we may identify with an N x N antisymmetric matrix function, M, with
matrix elements

Mij(x) = =Mji(x) = z(f;) (%),
i.e. M is a function in C*°(RY; RY A RM). In view of its action on e~ %, the operator z; can be
interpreted as an ‘annihilation operator’:

ze ? =0, forj=1,2,..,N.
The space of m-forms, m = 1,...,N, can be equipped with an L?-scalar product: For two

m-forms, w and v, the scalar product, (w, ), is defined by
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(w,v) = /w A %, (A3)

where * is the Hodge *-operation, (which involves the metric (J;) on RY). Choosing v = duf,
with fan (m — 1)-form, we may introduce the adjoint, d7, of the operator d; by setting

(dgw.f) := (w, daf).

Thus,
N
dy = ePdte™? = de’j z (),
j=1
where
. 1o} 0o
G = a0 T o

(recall that the metric is given by (J;)), and ‘|’ is the usual interior multiplication, which low-
ers the degree of forms by one.
If wis a form of degree m, then djw is a form of degree m — 1. For example, if

N
w= Z wjdxj
=1
is a 1-form, then
N
djw = sz (wy)
j=1
is a O-form, i.e. a scalar function in C*° (]RN; R). (If wis a 1-form then, for ¢ := 0, d;‘,w =d*w

is just the ‘divergence’ of w.) If w is a O-form, then djw = 0.
The operator z; can be interpreted as a ‘creation operator’. For example, if N = 1 and ¢ = X2,

then z* := z]?‘ generates the first Hermite polynomial. The operators z;, z}k, j=1,...,N, sat-
isfy the canonical commutation relations:
[z, 2;] = 20;0k¢. (A4)

One easily checks that the operators d and d} are nilpotent, i.e.
dydy = dydy = 0.
The space of smooth differential forms is defined by
N
QRY) := P S®RY; (RV)M),  where (RV)M :=RVA--- ARY.

—_—
=1 £ times

Here S denotes Schwartz space. On the space Q(RM) of differential forms we define the
‘Witten Laplacian’ [19]

Ay = d:;dd) + d¢d;;. (A.5)
Notice that
d¢A¢ = A¢d¢ and d:;A¢ = A(;sd:;, (A.(,)
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where one uses (A.5). More precisely, denoting by Ag) the restriction of the Witten Laplacian
A to forms of degree ¢, we have that

d A(E) A(Z+1)d d*A(EJrl) A(Z)d*

The standard Hodge Laplacian corresponds to setting ¢ = 0. For a quick overview of analyti-
cal aspects of Hodge theory, see chapter 11.3 in [5].
The explicit expression for A¢0) is given by

N N 2

0 * * 9
AS)) =didy = ZZij — Z pel + ||d¢||* — Tr Hess¢.

=1

j=1

For example, if ¢ is a non-degenerate quadratic function on RV, then Ag)) is the Hamiltonian

of N harmonic oscillators, and z; and z; are the usual annihilation and creation operators of N
harmonic oscillators, respectively.
More generally, we have that

By =3 asidsdxd + 30 ) cigdrjar
=3 S digady + diddy)) + [ 2f]dx do]
=355 +2)0 > (0y0u0)dx def
=AY @142 > (0,0,0)dxdx.

where, to obtain the third line from the second line, we have used (A.4). In particular, with the
identification of 1-forms with covariant-vector-valued functions on RY, we find that

A(l) = A(O) ® I + 2 Hess ¢. (A7)

Henceforth, we assume that ¢ is polynomially bounded, then (A( )w w) = 0, for an
arbitrary ¢-form w € Q(RY), and A( ) is a non- negative, self-adjoint operator on a dense

domain in the Hilbert-space completlon of the space Q(RV) with respect to the scalar product
introduced in (A.3). If the function ¢ grows like a positive (fractional) power of |x| then the

operators A( ) have compact resolvents and hence their spectra are discrete and contained in
[0, 00); see [17] The lowest eigenvalue of A( ) is zero, and the corresponding eigenstate is

given by Ze~?, where Z is a normalization factor. This state is annihilated by d. The eigen-
value 0 is simple; for, if u is another eigenfunction corresponding to the eigenvalue O, then

0= (Ag))u, u) = ||dsul/* and hence dyu = 0, which implies that u is a multiple of e~¢.
Using (A.6), we obtain the following intertwining property of the spectra:

0 1
(AP0} € o(A)). (A8)
This is because if u is an eigenfunction of A(()), i.e.
Ag))u = KU
corresponding to an eigenvalue x > 0 then, applying dy to both sides, we find that

dp A u = (dody)dsu = AL (dgu) = rdyu.
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Thus, if £ # 0 then dgu # 0 is an eigenform for A((;), which is the statement in (A.8). Using
(A.7), we conclude that J(Ag))) has a spectral gap if ¢ is strictly convex. (This implication is

the main reason why we have introduced Ag).)
Replacing N by 2(2N + 1) and setting ¢ := ®, we observe that e~® is (proportional to)

the ground-state eigenfunction of the Witten Laplacian A(O), which is a Schrodinger operator
with potential

V = ||d®||* — Tr Hess®.

We note that the operator Ag)) coincides with a truncation of the operator £ introduced in
section 1, provided o is chosen to be the identity operator; (see section 2 of [14]).

A.2. A quantitative estimate on the spectral gap

We now apply the formalism introduced above to estimate the spectral gap of the generator L,
see (1.10), of the stochastic process introduced in (1.9). When expressed in terms of Fourier
modes, the metric o2 (see (1.13)) is a constant diagonal matrix given by

—

o%(n,n) :=o*(n,n) = ("* +1)°,5 > 0.

Let d denote exterior differentiation, as above. In terms of Fourier modes, it is given by
d =" "db, Ay, ("),
n

where b, stands for either a, or a,, and

dp = e 2de? = Zdbn A (ab,, + ab,,(p)(')'

We introduce the ‘metric’

o> 0
A=
(5 )

where each block corresponds to one of the four possible ‘sectors’ aa, aa, aa, aa; (we recall
the identification of C2¥*! with R22V+1) introduced earlier). We define the (formal) adjoint
of dg with respect to A to be:

dy = (—05, + 05, ®) 0 AdbL(-),

n

where o denotes operator (matrix) composition. The Witten—Laplacian is defined by
Ap = d:%dcp + d@d;,.

Rather straightforward computations show that the restrictions of the Witten Laplacian to the
spaces of O-forms and 1-forms are given by

0 o
AP =23 Fga + (Ad®,d®) — Tr (Hess ® o A),
n

AEDI) — ASI?) ® I+ 2Hess P oA, (A9
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where the Hessian matrix is given by

Hess ® = M| + M,, (A.10)
with
([0, Ouy @] 0
M, = (17 ,
1 ( 0 (04052
0 [[02,04,®P]]
M, = i“al
’ (uaa,aa@n 0
and[[ ]]denotes a matrix of second order partial derivatives. Notice that AEI,O ) coincides with

the operator £ introduced in section 1 and that spectral gap above the ground-state energy of
L governs the exponential rate of approach to equilibrium. In the following proposition, the
constants A, and « are as in (1.3); (while r differs by 1, see (A.1)).

Proposition A.1. Up to constant multiples, the function e~ is the unique eigenfunction of
A((I?) corresponding to the eigenvalue 0. The smallest strictly positive eigenvalue, E;, of A((I?)
satisfies the lower bound

provided 0 < € < 1, \is chosen small enough, r > -2, and s < 1.

1—¢

Remark A.1. Note that £; > 1 — \/e, as r — oo. In this limit, E£; ought to correspond to
the smallest non-zero eigenvalue of the operator A(()), with ¢ (see (1.3)) restricted to a ball of
radius 1 and Dirichlet boundary conditions imposed on the Laplacian acting on ¢.

Proof. The statements that the eigenvalue O is simple and that the spectra of Ag)) and Ag)
are related by

0 1
o(APN0} € o(AY))
are proven as explained above; (our arguments are independent of the choice of the metric A).
Using (A.9), one observes that if there exists a constant ¢ > 0 such that, for all w,
(Aw,2Hess ® o Aw) > c(Aw,w),

then E; > ¢ > 0. To apply this abstract argument to our concrete example, we need to make
some explicit computations using (A.10). We write

o, (M M _(u
AoZHess<I>oA.—/\/l—</\/12l M22>’ w_(ﬁ>'

Then
(w, Mw) = 2(u, M u) + 2Re(i, M ,i).

The matrix elements of M can be seen to be as follows:

My (n7 m) = Dn6nm — By + Cos,
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with
Dn _ (n2 + 1)172? + (I’l2 + 1)72sl{(z agﬁg)r
Bun =)@+ )70 + 1) > a
k—f=n—m
Cnm = (n2 + 1)7S(m2 + 1)7‘”@’.(2 azaz)rilaﬂam’
and
Mia(n,m) := =B, + Cp,..
where
B = (\2) + )7+ 1) Y a
k-+l=n+m
C/nm = (n2 + 1)7S(m2 + 1)73/{/,.(2 aeaf)rilanam‘
Since

(11, Cu) + Re{ui, C'ii) > 0,

we have that
(, My u) + Re(i, M)
> (, (D — B)u) — Re(u, B'u1)
=1D.

Let & be the function with Fourier coefficients
iy = (> 4+ 1)"u,.

Then

(@, Du) = ||l + llal3"||all3.

and, similarly,
(@, Bu)| + |Re(i, B'm)|
ial3

2l all3
A
€

<A
<A

< Zllall e fal3,

for € > 0. Thus
A

D> Jalf, - 2l

- A i .
> llallf, — Zllaltllalsllal + slalz a3,

e [lall3 + wllal3 a3
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with € > 0. We set

] €
a3~

lalz = K

A
RHS =(1 — ;K)||u||%,l

a0
+h WH“HH'
2

A -
> (1= 2K + 5Kl

ifr > ﬁ, 0 < € < 1. Here we have used that

]l
]2

=

>l

Let

A
X=1--K+rK, K>O0.
€

Setting 90X /0K = 0, leads to

Since

9*X/OK* > 0,

this yields
Xminzl_(i)'il(r_l) 11 =c>0,
€ r (k)T

for A small enough and r > -2, with 0 < € < 1. We conclude that

1—e€’

(Aw,2Hess ® o Aw) > c||W||7;, > c(w,Aw),

where W3, = |lallz, + ]|, provided 1 — 2s > —s, ors < 1. O

Let fou be the distribution of the initial data ug for the stochastic NLS in (1.9), where p is
the normalized Gibbs measure in (4.7). Let f;u be the distribution of the solution at time 7, u,.
One then has the following result on exponential convergence to the Gibbs state.

Corollary A.1.

1 = Uz < e ™ N fo — Ulez(u)»

where E; > 0 satisfies the lower bound in proposition A.1, provided 0 < € <7/9 and \ is
sufficiently small.
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Proof. This follows from theorem 5.7 in [6], which, thanks to proposition A.1, can be ap-
plied provided r > 9, since the lower bound on E; is then uniform in the truncation of the
Fourier modes at n = N. O
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